1
|
Yang L, Li Y, Xie Q, Xu T, Qi X. Insights into ubiquitinome dynamics in the host‒pathogen interplay during Francisella novicida infection. Cell Commun Signal 2024; 22:508. [PMID: 39425216 PMCID: PMC11487746 DOI: 10.1186/s12964-024-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Ubiquitination functions as an important posttranslational modification for orchestrating inflammatory immune responses and cell death during pathogenic infection. The ubiquitination machinery is a major target hijacked by pathogenic bacteria to promote their survival and proliferation. Type I interferon (IFN-I) plays detrimental roles in host defense against Francisella novicida (F. novicida) infection. The effects of IFN-I on the ubiquitination of host proteins during F. novicida infection remain unclear. Herein, we delineate the dynamic ubiquitinome alterations in both wild-type (WT) and interferon-alpha receptor-deficient (Ifnar-/-) primary bone marrow-derived macrophages (BMDMs) during F. novicida infection. Using diGly proteomics and stable isotope labeling (SILAC), we quantified ubiquitination sites in proteins from primary WT and Ifnar-/- BMDMs with and without F. novicida infection. Our mass spectrometry analysis identified 2,491 ubiquitination sites in 1,077 endogenous proteins. Our study revealed that F. novicida infection induces dynamic changes in the ubiquitination of proteins involved in the cell death, phagocytosis, and inflammatory response pathways. IFN-I signaling is essential for both the increase and reduction in ubiquitination in response to F. novicida infection. We identified IFN-I-dependent ubiquitination in proteins involved in glycolysis and vesicle transport processes and highlighted key hub proteins modified by ubiquitination within cell death pathways. These findings underscore the significant influence of IFN-I signaling on modulating ubiquitination during F. novicida infection and provide valuable insights into the complex interplay between the host and F. novicida.
Collapse
Affiliation(s)
- Luyu Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yanfeng Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qingqing Xie
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Mal S, Majumder D, Birari P, Sharma AK, Gupta U, Jana K, Kundu M, Basu J. The miR-26a/SIRT6/HIF-1α axis regulates glycolysis and inflammatory responses in host macrophages during Mycobacterium tuberculosis infection. FEBS Lett 2024; 598:2592-2614. [PMID: 39155147 DOI: 10.1002/1873-3468.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Here, a macrophage infection model was used to unravel the role of the histone deacetylase sirtuin 6 (SIRT6) in Mtb-triggered regulation of the innate immune response. Mtb infection downregulated microRNA-26a and upregulated its target SIRT6. SIRT6 suppressed glycolysis and expression of HIF-1α-dependent glycolytic genes during infection. In addition, SIRT6 regulated the levels of intracellular succinate which controls stabilization of HIF-1α, as well as the release of interleukin (IL)-1β. Furthermore, SIRT6 inhibited inducible nitric oxide synthase (iNOS) and proinflammatory IL-6 but augmented anti-inflammatory arginase expression. The miR-26a/SIRT6/HIF-1α axis therefore regulates glycolysis and macrophage immune responses during Mtb infection. Our findings link SIRT6 to rewiring of macrophage signaling pathways facilitating dampening of the antibacterial immune response.
Collapse
Affiliation(s)
- Soumya Mal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Pankaj Birari
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Umesh Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
3
|
WANG ZHIGUO, LI KUNLIN, LU CONGHUA, FENG MINGXIA, LIN CAIYU, YIN GUOFANG, LUO DAN, LIU WENYI, JIN KAIYU, DOU YUANYAO, WU DI, ZHENG JIE, ZHANG KEJUN, LI LI, FAN XIANMING. Metformin promotes anti-tumor immunity in STK11 mutant NSCLC through AXIN1-dependent upregulation of multiple nucleotide metabolites. Oncol Res 2024; 32:1637-1648. [PMID: 39308524 PMCID: PMC11413838 DOI: 10.32604/or.2024.052664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024] Open
Abstract
Background Metformin has pleiotropic effects beyond glucose reduction, including tumor inhibition and immune regulation. It enhanced the anti-tumor effects of programmed cell death protein 1 (PD-1) inhibitors in serine/threonine kinase 11 (STK11) mutant non-small cell lung cancer (NSCLC) through an axis inhibition protein 1 (AXIN1)-dependent manner. However, the alterations of tumor metabolism and metabolites upon metformin administration remain unclear. Methods We performed untargeted metabolomics using liquid chromatography (LC)-mass spectrometry (MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis. Results According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, most metabolites were annotated into metabolism, including nucleotide metabolism. Next, the differentially expressed metabolites in H460 (refers to H460 cells), H460_met (refers to metformin-treated H460 cells), and H460_KO_met (refers to metformin-treated Axin1 -/- H460 cells) were distributed into six clusters based on expression patterns. The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis. We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated. Furthermore, these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes (STING) pathway independently of AXIN1. Conclusion Relying on AXIN1, metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC, indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.
Collapse
Affiliation(s)
- ZHIGUO WANG
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - KUNLIN LI
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - CONGHUA LU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - MINGXIA FENG
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - CAIYU LIN
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - GUOFANG YIN
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - DAN LUO
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - WENYI LIU
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - KAIYU JIN
- Department of Respiratory Disease, People’s Hospital of Xuyong County, Luzhou, 646000, China
| | - YUANYAO DOU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - DI WU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - JIE ZHENG
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - KEJUN ZHANG
- Department of Outpatients, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - LI LI
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - XIANMING FAN
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Mertens RT, Misra A, Xiao P, Baek S, Rone JM, Mangani D, Sivanathan KN, Arojojoye AS, Awuah SG, Lee I, Shi GP, Petrova B, Brook JR, Anderson AC, Flavell RA, Kanarek N, Hemberg M, Nowarski R. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity 2024; 57:2077-2094.e12. [PMID: 38906145 DOI: 10.1016/j.immuni.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/10/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.
Collapse
Affiliation(s)
- Randall T Mertens
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xiao
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joseph M Rone
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Mangani
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Anderson
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roni Nowarski
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA; Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Reynolds MB, Klein B, McFadden MJ, Judge NK, Navarrete HE, Michmerhuizen BC, Awad D, Schultz TL, Harms PW, Zhang L, O'Meara TR, Sexton JZ, Lyssiotis CA, Kahlenberg JM, O'Riordan MX. Type I interferon governs immunometabolic checkpoints that coordinate inflammation during Staphylococcal infection. Cell Rep 2024; 43:114607. [PMID: 39126652 DOI: 10.1016/j.celrep.2024.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1β. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.
Collapse
Affiliation(s)
- Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin Klein
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah K Judge
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hannah E Navarrete
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Britton C Michmerhuizen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Diercks AH, Podolskaia IS, Murray TA, Jahn AN, Mai D, Liu D, Amon LM, Nakagawa Y, Shimano H, Aderem A, Gold ES. Oxysterol binding protein regulates the resolution of TLR-induced cytokine production in macrophages. Proc Natl Acad Sci U S A 2024; 121:e2406492121. [PMID: 39361877 PMCID: PMC11331125 DOI: 10.1073/pnas.2406492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/30/2024] [Indexed: 10/05/2024] Open
Abstract
Toll-like receptors (TLRs) on macrophages sense microbial components and trigger the production of numerous cytokines and chemokines that mediate the inflammatory response to infection. Although many of the components required for the activation of the TLR pathway have been identified, the mechanisms that appropriately regulate the magnitude and duration of the response and ultimately restore homeostasis are less well understood. Furthermore, a growing body of work indicates that TLR signaling reciprocally interacts with other fundamental cellular processes, including lipid metabolism but only a few specific molecular links between immune signaling and the macrophage lipidome have been studied in detail. Oxysterol-binding protein (Osbp) is the founding member of a family of lipid-binding proteins with diverse functions in lipid sensing, lipid transport, and cell signaling but its role in TLR responses is not well defined. Here, we demonstrate that altering the state of Osbp with its natural ligand, 25-hydroxycholesterol (25HC), or pharmacologically, sustains and thereby amplifies Tlr4-induced cytokine production in vitro and in vivo. CRISPR-induced knockdown of Osbp abrogates the ability of these ligands to sustain TLR responses. Lipidomic analysis suggested that the effect of Osbp on TLR signaling may be mediated by alterations in triglyceride production and treating cells with a Dgat1 inhibitor, which blocks triglyceride production and completely abrogates the effect of Osbp on TLR signaling. Thus, Osbp is a sterol sensor that transduces perturbations of the lipidome to modulate the resolution of macrophage inflammatory responses.
Collapse
Affiliation(s)
- Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Irina S. Podolskaia
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Tara A. Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Ana N. Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Dong Liu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Lynn M. Amon
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, SugitaniToyama930-0194, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki305-8577, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki305-8575, Japan
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Elizabeth S. Gold
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
- Center for Cardiovascular Health, Virginia Mason Franciscan Health, Seattle, WA98101
| |
Collapse
|
7
|
Zhang X, Yang YX, Lu JJ, Hou DY, Abudukeyoumu A, Zhang HW, Li MQ, Xie F. Active Heme Metabolism Suppresses Macrophage Phagocytosis via the TLR4/Type I IFN Signaling/CD36 in Uterine Endometrial Cancer. Am J Reprod Immunol 2024; 92:e13916. [PMID: 39166450 DOI: 10.1111/aji.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Uterine endometrial cancer (UEC) is a common gynecological estrogen-dependent carcinoma, usually accompanied by intermenstrual bleeding. Active heme metabolism frequently plays an increasingly important role in many diseases, especially in cancers. Tumor-associated macrophages (TAMs) are the major population in the immune microenvironment of UEC. However, the roles of heme metabolisms in the crosstalk between UEC cells (UECCs) and macrophages are unclear. MATERIALS AND METHODS In our study, by using TCGA database analysis, integration analysis of the protein-protein interaction (PPI) network and sample RNA transcriptome sequencing were done. The expression level of both heme-associated molecules and iron metabolism-related molecules were measured by quantitative real-time polymerase chain reaction. Heme level detection was done through dehydrohorseradish peroxidase assay. In addition to immunohistochemistry, phagocytosis assay of macrophages, immunofluorescence staining, intracellular ferrous iron staining, as well as enzyme-linked immune sorbent assay were performed. RESULTS In the study, we verified that heme accumulation in UECCs is apparently higher than in endometrial epithelium cells. Low expression of succinate dehydrogenase B under the regulation of estrogen contributes to over-production of succinate and heme accumulation in UECC. More importantly, excessive heme in UECCs impaired macrophage phagocytosis by regulation of CD36. Mechanistically, this process is dependent on toll-like receptor (TLR4)/type I interferons alpha (IFN Iα) regulatory axis in macrophage. CONCLUSION Collectively, these findings elucidate that active heme metabolism of UECCs directly decreases phagocytosis by controlling the secretion of TLR4-mediated IFN Iα and the expression of CD36, and further contributing to the immune escape of UEC.
Collapse
Affiliation(s)
- Xing Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yi-Xing Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Jia-Jing Lu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Ding-Yu Hou
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai, People's Republic of China
| | - Hong-Wei Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Mabry CJ, Weindel CG, Stranahan LW, Martinez EL, VanPortfliet JJ, West AP, Patrick KL, Watson RO. Necrosis drives susceptibility to Mycobacterium tuberculosis in POLG mtDNA mutator mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603991. [PMID: 39091776 PMCID: PMC11291070 DOI: 10.1101/2024.07.17.603991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The genetic and molecular determinants that underlie the heterogeneity of Mycobacterium tuberculosis (Mtb) infection outcomes in humans are poorly understood. Multiple lines of evidence demonstrate that mitochondrial dysfunction can exacerbate mycobacterial disease severity and mutations in some mitochondrial genes confer susceptibility to mycobacterial infection in humans. Here, we report that mutations in mitochondria DNA (mtDNA) polymerase gamma (POLG) potentiate susceptibility to Mtb infection in mice. POLG mutator mtDNA mice fail to mount a protective innate immune response at an early infection timepoint, evidenced by high bacterial burdens, reduced M1 macrophages, and excessive neutrophil infiltration in the lungs. Immunohistochemistry reveals signs of enhanced necrosis in the lungs of Mtb-infected POLG mice and POLG mutator macrophages are hyper-susceptible to extrinsic triggers of necroptosis ex vivo. By assigning a role for mtDNA mutations in driving necrosis during Mtb infection, this work further highlights the requirement for mitochondrial homeostasis in mounting balanced immune responses to Mtb.
Collapse
Affiliation(s)
- CJ Mabry
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - CG Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - LW Stranahan
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - EL Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| | - JJ VanPortfliet
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - AP West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - KL Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - RO Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
9
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Leisching G, Yennemadi A, Gogan K, Keane J. Interferon α and β induce differential transcriptional and functional metabolic phenotypes in human macrophages and blunt glycolysis in response to antigenic stimuli. Eur J Immunol 2024:e2451032. [PMID: 38993003 DOI: 10.1002/eji.202451032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
The impact of chronic exposure to type I interferons (IFN)-α2a, 2b, and β on macrophage metabolism, intimately linked to macrophage function, is not well understood. This study assesses the nuanced host responses induced by type I IFN cytokines, offering insights into potential therapeutic approaches in diseases associated with these cytokines. Employing a combination of transcriptional profiling and real-time functional analysis, we delineated metabolic reprogramming in response to chronic IFN exposure. Our results reveal distinct transcriptional metabolic profiles between macrophages chronically exposed to IFN-α and IFN-β. IFN-β significantly diminishes the oxygen consumption rate and glycolytic proton extrusion rate in macrophages. Conversely, IFN-α2b decreased parameters of mitochondrial fitness and induced a shift toward glutamine oxidation. Assessing the ability of macrophages to induce glycolysis in response to antigenic stimuli (LPS and iH37Rv), we found that chronic exposure to all IFN subtypes limited glycolytic induction. This study addresses a critical oversight in the literature, where individual roles of IFN subtypes are frequently amalgamated and lack distinction. These findings not only provide novel insights into the divergent effects of IFN-α2a, α2b, and β on macrophage metabolism but also highlight their potential implications for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gina Leisching
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Anjali Yennemadi
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Karl Gogan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
O'Carroll SM, Henkel FDR, O'Neill LAJ. Metabolic regulation of type I interferon production. Immunol Rev 2024; 323:276-287. [PMID: 38465724 DOI: 10.1111/imr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Over the past decade, there has been a surge in discoveries of how metabolic pathways regulate immune cell function in health and disease, establishing the field of immunometabolism. Specifically, pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, and those involving lipid metabolism have been implicated in regulating immune cell function. Viral infections cause immunometabolic changes which lead to antiviral immunity, but little is known about how metabolic changes regulate interferon responses. Interferons are critical cytokines in host defense, rapidly induced upon pathogen recognition, but are also involved in autoimmune diseases. This review summarizes how metabolic change impacts interferon production. We describe how glycolysis, lipid metabolism (specifically involving eicosanoids and cholesterol), and the TCA cycle-linked intermediates itaconate and fumarate impact type I interferons. Targeting these metabolic changes presents new therapeutic possibilities to modulate type I interferons during host defense or autoimmune disorders.
Collapse
Affiliation(s)
- Shane M O'Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona D R Henkel
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
12
|
Kennicott K, Liang Y. The immunometabolic function of VGLL3 and female-biased autoimmunity. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00041. [PMID: 38726338 PMCID: PMC11078290 DOI: 10.1097/in9.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases exhibit a pronounced yet unexplained prevalence among women. Vestigial-like family member 3 (VGLL3), a female-biased factor that promotes autoimmunity, has recently been discovered to assist cells in sensing and adapting to nutritional stress. This role of VGLL3 may confer a selective advantage during the evolution of placental mammals. However, the excessive activation of the VGLL3-mediated energy-sensing pathway can trigger inflammatory cell death and the exposure of self-antigens, leading to the onset of autoimmunity. These observations have raised the intriguing perspective that nutrient sensing serves as a double-edged sword in immune regulation. Mechanistically, VGLL3 intersects with Hippo signaling and activates multiple downstream, immune-associated genes that play roles in metabolic regulation. Understanding the multifaceted roles of VGLL3 in nutrient sensing and immune modulation provides insight into the fundamental question of sexual dimorphism in immunometabolism and sheds light on potential therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Kameron Kennicott
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Bobba S, Chauhan KS, Akter S, Das S, Mittal E, Mathema B, Philips JA, Khader SA. A protective role for type I interferon signaling following infection with Mycobacterium tuberculosis carrying the rifampicin drug resistance-conferring RpoB mutation H445Y. PLoS Pathog 2024; 20:e1012137. [PMID: 38603763 PMCID: PMC11037539 DOI: 10.1371/journal.ppat.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase β subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kuldeep S. Chauhan
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Wu M, Fan Y, Li L, Yuan J. Bi-directional regulation of type I interferon signaling by heme oxygenase-1. iScience 2024; 27:109185. [PMID: 38420586 PMCID: PMC10901085 DOI: 10.1016/j.isci.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Moderate activation of IFN-I contributes to the body's immune response, but its abnormal expression, stimulated by oxidative stress or other factors causes pathological damage. Heme oxygenase-1 (HO-1), induced by stress stimuli in the body, exerts a central role in cellular protection. Here we showed that HO-1 could promote IFN-1 under Spring Viremia of Carp virus (SVCV) infection and concomitantly attenuate the replication of SVCV. Further characterization of truncated mutants of HO-1 confirmed that intact HO-1 was essential for its antiviral function via IFN-I. Importantly, HO-1 inhibited the IFN-I signal by degrading the IRF3/7 through the autophagy pathway when it was triggered by H2O2 treatment. The iron ion-binding site (His28) was critical for HO-1 to degrade IRF3/7. HO-1 degradation of IRF3/7 is conserved in fish and mammals. Collectively, HO-1 regulates IFN-I positively under viral infection and negatively under oxidative stress, elucidating a mechanism by which HO-1 regulates IFN-I signaling in bi-directions.
Collapse
Affiliation(s)
- Miaomiao Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
| | - Yihui Fan
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, People’s Republic of China
- National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, People’s Republic of China
| |
Collapse
|
16
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
17
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
18
|
Ferdosnejad K, Zamani MS, Soroush E, Fateh A, Siadat SD, Tarashi S. Tuberculosis and lung cancer: metabolic pathways play a key role. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38305273 DOI: 10.1080/15257770.2024.2308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Despite the fact that some cases of tuberculosis (TB) are undiagnosed and untreated, it remains a serious global public health issue. In the diagnosis, treatment, and control of latent and active TB, there may be a lack of effectiveness. An understanding of metabolic pathways can be fundamental to treat latent TB infection and active TB disease. Rather than targeting Mycobacterium tuberculosis, the control strategies aim to strengthen host responses to infection and reduce chronic inflammation by effectively enhancing host resistance to infection. The pathogenesis and progression of TB are linked to several metabolites and metabolic pathways, and they are potential targets for host-directed therapies. Additionally, metabolic pathways can contribute to the progression of lung cancer in patients with latent or active TB. A comprehensive metabolic pathway analysis is conducted to highlight lung cancer development in latent and active TB. The current study aimed to emphasize the association between metabolic pathways of tumor development in patients with latent and active TB. Health control programs around the world are compromised by TB and lung cancer due to their special epidemiological and clinical characteristics. Therefore, presenting the importance of lung cancer progression through metabolic pathways occurring upon TB infection can open new doors to improving control of TB infection and active TB disease while stressing that further evaluations are required to uncover this correlation.
Collapse
Affiliation(s)
| | | | - Erfan Soroush
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Chen C, He YQ, Gao Y, Pan QW, Cao JS. Extracellular vesicles of Bacteroides fragilis regulated macrophage polarization through promoted Sema7a expression. Microb Pathog 2024; 187:106527. [PMID: 38163490 DOI: 10.1016/j.micpath.2023.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Abnormal activation of macrophage and gut Bacteroides fragilis (BF) are the important induction factors in the occurrence of type 2 diabetes (T2D) and vascular complications. However, it remains unknown whether BF involves in macrophage polarization. In this study, we found that BF extracellular vesicles (EV) can be uptaken by macrophage. BF-EV promote macrophage M1/M2 polarization significantly, and increase Sting expression significantly. Bioinformatics analysis found that Sema7a is an important gene involving in macrophage polarization. The expression of Sema7a can be induced by BF-EV and can be inhibited after C-176 treated. The inhibition expression of Sema7a prevent BF-EV to induce macrophage polarization. Further analysis reveals that there is no direct interaction between Sting and Sema7a, but Sgpl1 can interact with Sting or Sema7a. BF-EV promote the expression of Sgpl1, which the phenomenon can be inhibited after C-176 treated. Importantly, overexpression of Sgpl1 reversed the effect of C-176 for Sema7a expression, while inhibit Sema7a expression has limitation influence for Sting and Sgpl1 expression. In conclusion, this study confirms that Sting-Sgpl1-Sema7a is a key mechanism by which BF-EV regulates macrophage polarization.
Collapse
Affiliation(s)
- Cong Chen
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu-Qi He
- The First Affiliated Hospital, Department of Laboratory Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Gao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism, Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qun-Wen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jing-Song Cao
- The First Affiliated Hospital, Institute of Endocrinology and Metabolism, Center for Clinical Research in Diabetes, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
20
|
Zou S, Wang B, Yi K, Su D, Chen Y, Li N, Geng Q. The critical roles of STING in mitochondrial homeostasis. Biochem Pharmacol 2024; 220:115938. [PMID: 38086488 DOI: 10.1016/j.bcp.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The stimulator of interferon genes (STING) is a crucial signaling hub in the immune system's antiviral and antimicrobial defense by detecting exogenous and endogenous DNA. The multifaceted functions of STING have been uncovered gradually during past decades, including homeostasis maintenance and overfull immunity or inflammation induction. However, the subcellular regulation of STING and mitochondria is poorly understood. The main functions of STING are outlined in this review. Moreover, we discuss how mitochondria and STING interact through multiple mechanisms, including the release of mitochondrial DNA (mtDNA), modulation of mitochondria-associated membrane (MAM) and mitochondrial dynamics, alterations in mitochondrial metabolism, regulation of reactive oxygen species (ROS) production, and mitochondria-related cell death. Finally, we discuss how STING is crucial to disease development, providing a novel perspective on its role in cellular physiology and pathology.
Collapse
Affiliation(s)
- Shishi Zou
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China
| | - Dandan Su
- Department of Neurology, Wuhan University Renmin Hospital, 430060, China
| | - Yukai Chen
- Department of Oncology, Wuhan University Renmin Hospital, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Wuhan University Renmin Hospital, 430060, China.
| |
Collapse
|
21
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Mai D, Jahn A, Murray T, Morikubo M, Lim PN, Cervantes MM, Pham LK, Nemeth J, Urdahl K, Diercks AH, Aderem A, Rothchild AC. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog 2024; 20:e1011871. [PMID: 38236787 PMCID: PMC10796046 DOI: 10.1371/journal.ppat.1011871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Alveolar macrophages (AMs) play a critical role during Mycobacterium tuberculosis (Mtb) infection as the first cells in the lung to encounter bacteria. We previously showed that AMs initially respond to Mtb in vivo by mounting a cell-protective, rather than pro-inflammatory response. However, the plasticity of the initial AM response was unknown. Here, we characterize how previous exposure to Mycobacterium, either through subcutaneous vaccination with Mycobacterium bovis (scBCG) or through a contained Mtb infection (coMtb) that mimics aspects of concomitant immunity, impacts the initial response by AMs. We find that both scBCG and coMtb accelerate early innate cell activation and recruitment and generate a stronger pro-inflammatory response to Mtb in vivo by AMs. Within the lung environment, AMs from scBCG vaccinated mice mount a robust interferon-associated response, while AMs from coMtb mice produce a broader inflammatory response that is not dominated by Interferon Stimulated Genes. Using scRNAseq, we identify changes to the frequency and phenotype of airway-resident macrophages following Mycobacterium exposure, with enrichment for both interferon-associated and pro-inflammatory populations of AMs. In contrast, minimal changes were found for airway-resident T cells and dendritic cells after exposures. Ex vivo stimulation of AMs with Pam3Cys, LPS and Mtb reveal that scBCG and coMtb exposures generate stronger interferon-associated responses to LPS and Mtb that are cell-intrinsic changes. However, AM profiles that were unique to each exposure modality following Mtb infection in vivo are dependent on the lung environment and do not emerge following ex vivo stimulation. Overall, our studies reveal significant and durable remodeling of AMs following exposure to Mycobacterium, with evidence for both AM-intrinsic changes and contributions from the altered lung microenvironments. Comparisons between the scBCG and coMtb models highlight the plasticity of AMs in the airway and opportunities to target their function through vaccination or host-directed therapies.
Collapse
Affiliation(s)
- Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ana Jahn
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Tara Murray
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Morikubo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Animal Biotechnology and Biomedical Sciences Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Johannes Nemeth
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kevin Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
23
|
Qin C, Xie T, Yeh WW, Savas AC, Feng P. Metabolic Enzymes in Viral Infection and Host Innate Immunity. Viruses 2023; 16:35. [PMID: 38257735 PMCID: PMC10820379 DOI: 10.3390/v16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic enzymes are central players for cell metabolism and cell proliferation. These enzymes perform distinct functions in various cellular processes, such as cell metabolism and immune defense. Because viral infections inevitably trigger host immune activation, viruses have evolved diverse strategies to blunt or exploit the host immune response to enable viral replication. Meanwhile, viruses hijack key cellular metabolic enzymes to reprogram metabolism, which generates the necessary biomolecules for viral replication. An emerging theme arising from the metabolic studies of viral infection is that metabolic enzymes are key players of immune response and, conversely, immune components regulate cellular metabolism, revealing unexpected communication between these two fundamental processes that are otherwise disjointed. This review aims to summarize our present comprehension of the involvement of metabolic enzymes in viral infections and host immunity and to provide insights for potential antiviral therapy targeting metabolic enzymes.
Collapse
Affiliation(s)
- Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Liu Y, Kors L, Butter LM, Stokman G, Claessen N, Zuurbier CJ, Girardin SE, Leemans JC, Florquin S, Tammaro A. NLRX1 Prevents M2 Macrophage Polarization and Excessive Renal Fibrosis in Chronic Obstructive Nephropathy. Cells 2023; 13:23. [PMID: 38201227 PMCID: PMC10778504 DOI: 10.3390/cells13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism. The specific impact of NLRX1 on macrophages and its involvement in renal fibrosis is not fully understood. METHODS To explore the specific role of NLRX1 in macrophages, bone-marrow-derived macrophages (BMDMs) extracted from wild-type (WT) and NLRX1 knockout (KO) mice were stimulated with pro-inflammatory and pro-fibrotic factors to induce M1 and M2 polarization in vitro. The expression levels of macrophage polarization markers (Nos2, Mgl1, Arg1, and Mrc1), as well as the secretion of transforming growth factor β (TGFβ), were measured using RT-PCR and ELISA. Seahorse-based bioenergetics analysis was used to assess mitochondrial respiration in naïve and polarized BMDMs obtained from WT and NLRX1 KO mice. In vivo, WT and NLRX1 KO mice were subjected to unilateral ureter obstruction (UUO) surgery to induce renal fibrosis. Kidney injury, macrophage phenotypic profile, and fibrosis markers were assessed using RT-PCR. Histological staining (PASD and Sirius red) was used to quantify kidney injury and fibrosis. RESULTS Compared to the WT group, an increased gene expression of M2 markers-including Mgl1 and Mrc1-and enhanced TGFβ secretion were found in naïve BMDMs extracted from NLRX1 KO mice, indicating functional polarization towards the pro-fibrotic M2 subtype. NLRX1 KO naïve macrophages also showed a significantly enhanced oxygen consumption rate compared to WT cells and increased basal respiration and maximal respiration capacities that equal the level of M2-polarized macrophages. In vivo, we found that NLRX1 KO mice presented enhanced M2 polarization markers together with enhanced tubular injury and fibrosis demonstrated by augmented TGFβ levels, fibronectin, and collagen accumulation. CONCLUSIONS Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.
Collapse
Affiliation(s)
- Ye Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lotte Kors
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Loes M. Butter
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geurt Stokman
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Coert J. Zuurbier
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jaklien C. Leemans
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
25
|
Collins JM, Kipiani M, Jin Y, Sharma AA, Tomalka JA, Avaliani T, Gujabidze M, Bakuradze T, Sabanadze S, Avaliani Z, Blumberg HM, Benkeser D, Jones DP, Peloquin C, Kempker RR. Pharmacometabolomics in TB Meningitis - understanding the pharmacokinetic, metabolic, and immune factors associated with anti-TB drug concentrations in cerebrospinal fluid. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.14.23299982. [PMID: 38168338 PMCID: PMC10760251 DOI: 10.1101/2023.12.14.23299982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Poor penetration of many anti-tuberculosis (TB) antibiotics into the central nervous system (CNS) is thought to be a major driver of morbidity and mortality in TB meningitis (TBM). While the amount of a particular drug that crosses into the cerebrospinal fluid (CSF) varies from person to person, little is known about the host factors associated with interindividual differences in CSF concentrations of anti-TB drugs. In patients diagnosed with TBM from the country of Georgia (n=17), we investigate the association between CSF concentrations of anti-TB antibiotics and multiple host factors including serum drug concentrations and CSF concentrations of metabolites and cytokines. We found >2-fold differences in CSF concentrations of anti-TB antibiotics from person to person for all drugs tested including cycloserine, ethambutol, imipenem, isoniazid, levofloxacin, linezolid, moxifloxacin pyrazinamide, and rifampin. While serum drug concentrations explained over 40% of the variation in CSF drug concentrations for cycloserine, isoniazid, linezolid, and pyrazinamide (adjusted R 2 >0.4, p<0.001 for all), there was no evidence of an association between serum concentrations of imipenem and ethambutol and their respective CSF concentrations. CSF concentrations of carnitines were significantly associated with concentrations of ethambutol and imipenem (q<0.05), and imipenem was the only antibiotic significantly associated with CSF cytokine concentrations. These results indicate that there is high interindividual variability in CSF drug concentrations in patients treated for TBM, which is only partially explained by differences in serum drug concentrations and not associated with concentrations of cytokines and chemokines in the CSF.
Collapse
|
26
|
Corleis B, Tzouanas CN, Wadsworth MH, Cho JL, Linder AH, Schiff AE, Zessin B, Stei F, Dorhoi A, Dickey AK, Medoff BD, Shalek AK, Kwon DS. Tobacco smoke exposure recruits inflammatory airspace monocytes that establish permissive lung niches for Mycobacterium tuberculosis. Sci Transl Med 2023; 15:eadg3451. [PMID: 38055798 DOI: 10.1126/scitranslmed.adg3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Tobacco smoking doubles the risk of active tuberculosis (TB) and accounts for up to 20% of all active TB cases globally. How smoking promotes lung microenvironments permissive to Mycobacterium tuberculosis (Mtb) growth remains incompletely understood. We investigated primary bronchoalveolar lavage cells from current and never smokers by performing single-cell RNA sequencing (scRNA-seq), flow cytometry, and functional assays. We observed the enrichment of immature inflammatory monocytes in the lungs of smokers compared with nonsmokers. These monocytes exhibited phenotypes consistent with recent recruitment from blood, ongoing differentiation, increased activation, and states similar to those with chronic obstructive pulmonary disease. Using integrative scRNA-seq and flow cytometry, we identified CD93 as a marker for a subset of these newly recruited smoking-associated lung monocytes and further provided evidence that the recruitment of monocytes into the lung was mediated by CCR2-binding chemokines, including CCL11. We also show that these cells exhibit elevated inflammatory responses upon exposure to Mtb and accelerated intracellular growth of Mtb compared with mature macrophages. This elevated Mtb growth could be inhibited by anti-inflammatory small molecules, providing a connection between smoking-induced pro-inflammatory states and permissiveness to Mtb growth. Our findings suggest a model in which smoking leads to the recruitment of immature inflammatory monocytes from the periphery to the lung, which results in the accumulation of these Mtb-permissive cells in the airway. This work defines how smoking may lead to increased susceptibility to Mtb and identifies host-directed therapies to reduce the burden of TB among those who smoke.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Constantine N Tzouanas
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Marc H Wadsworth
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Josalyn L Cho
- Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Abigail E Schiff
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Björn Zessin
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Fabian Stei
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Amy K Dickey
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
27
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
28
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
29
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. Virally encoded interleukin-6 facilitates KSHV replication in monocytes and induction of dysfunctional macrophages. PLoS Pathog 2023; 19:e1011703. [PMID: 37883374 PMCID: PMC10602306 DOI: 10.1371/journal.ppat.1011703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.
Collapse
Affiliation(s)
- Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
30
|
Pacl HT, Chinta KC, Reddy VP, Nadeem S, Sevalkar RR, Nargan K, Lumamba K, Naidoo T, Glasgow JN, Agarwal A, Steyn AJC. NAD(H) homeostasis underlies host protection mediated by glycolytic myeloid cells in tuberculosis. Nat Commun 2023; 14:5472. [PMID: 37673914 PMCID: PMC10482943 DOI: 10.1038/s41467-023-40545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa
- Department of Laboratory Medicine and Pathology, Walter Sisulu University, Eastern Cape, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Africa Health Research Institute, University of KwaZulu Natal, Durban, South Africa.
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
31
|
Bobba S, Khader SA. Rifampicin drug resistance and host immunity in tuberculosis: more than meets the eye. Trends Immunol 2023; 44:712-723. [PMID: 37543504 PMCID: PMC11170062 DOI: 10.1016/j.it.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious agent, with more than 1.5 million deaths attributed to TB annually worldwide. The global dissemination of drug resistance across Mycobacterium tuberculosis (Mtb) strains, causative of TB, resulted in an estimated 450 000 cases of drug-resistant (DR) TB in 2021. Dysregulated immune responses have been observed in patients with multidrug resistant (MDR) TB, but the effects of drug resistance acquisition and impact on host immunity remain obscure. In this review, we compile studies that span aspects of altered host-pathogen interactions and highlight research that explores how drug resistance and immunity might intersect. Understanding the immune processes differentially induced during DR TB would aid the development of rational therapeutics and vaccines for patients with MDR TB.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Jani C, Solomon SL, Peters JM, Pringle SC, Hinman AE, Boucau J, Bryson BD, Barczak AK. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo. mSystems 2023; 8:e0005223. [PMID: 37439558 PMCID: PMC10506474 DOI: 10.1128/msystems.00052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Tuberculosis (TB), caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is a global health threat. Targeting host pathways that modulate protective or harmful components of inflammation has been proposed as a therapeutic strategy that could aid sterilization or mitigate TB-associated permanent tissue damage. In purified form, many Mtb components can activate innate immune pathways. However, knowledge of the pathways that contribute most to the observed response to live Mtb is incomplete, limiting the possibility of precise intervention. We took a systematic, unbiased approach to define the pathways that drive the earliest immune response to Mtb. Using a macrophage model of infection, we compared the bulk transcriptional response to infection with the response to a panel of Mtb-derived putative innate immune ligands. We identified two axes of response: an NF-kB-dependent response similarly elicited by all Mtb pathogen-associated molecular patterns (PAMPs) and a type I interferon axis unique to cells infected with live Mtb. Consistent with growing literature data pointing to TLR2 as a dominant Mtb-associated PAMP, the TLR2 ligand PIM6 most closely approximated the NF-kB-dependent response to the intact bacterium. Quantitatively, the macrophage response to Mtb was slower and weaker than the response to purified PIM6. On a subpopulation level, the TLR2-dependent response was heterogeneously induced, with only a subset of infected cells expressing key inflammatory genes known to contribute to the control of infection. Despite potential redundancies in Mtb ligand/innate immune receptor interactions during in vivo infection, loss of the TLR2/PIM6 interaction impacted the cellular composition of both the innate and adaptive compartments. IMPORTANCE Tuberculosis (TB) is a leading cause of death globally. Drug resistance is outpacing new antibiotic discovery, and even after successful treatment, individuals are often left with permanent lung damage from the negative consequences of inflammation. Targeting host inflammatory pathways has been proposed as an approach that could either improve sterilization or improve post-treatment lung health. However, our understanding of the inflammatory pathways triggered by Mycobacterium tuberculosis (Mtb) in infected cells and lungs is incomplete, in part because of the complex array of potential molecular interactions between bacterium and host. Here, we take an unbiased approach to identify the pathways most central to the host response to Mtb. We examine how individual pathways are triggered differently by purified Mtb products or infection with the live bacterium and consider how these pathways inform the emergence of subpopulation responses in cell culture and in infected mice. Understanding how individual interactions and immune pathways contribute to inflammation in TB opens the door to the possibility of developing precise therapeutic interventions.
Collapse
Affiliation(s)
- Charul Jani
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Sydney L. Solomon
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joshua M. Peters
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Amelia E. Hinman
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Bryan D. Bryson
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- The Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Zhao H, Wen Z, Xiong S. Activated Lymphocyte-Derived DNA Drives Glucose Metabolic Adaptation for Inducing Macrophage Inflammatory Response in Systemic Lupus Erythematosus. Cells 2023; 12:2093. [PMID: 37626904 PMCID: PMC10453374 DOI: 10.3390/cells12162093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Activated lymphocyte-derived DNA (ALD-DNA) has been reported to drive the polarization of macrophages toward M2b, producing inflammatory cytokines and inducing inflammation, correspondingly playing an essential role in the development of systemic lupus erythematosus (SLE). Recently, accumulating evidence has pinpointed metabolic adaptation as the crucial cell-intrinsic determinant for inflammatory response, in which glucose metabolism is the key event. However, whether and how glucose metabolism was involved in ALD-DNA-induced macrophage inflammatory response and SLE development remains unclear. Herein, we performed glucose metabolomic analyses of ALD-DNA-stimulated macrophages and uncovered increased glycolysis and diminished pentose phosphate pathway (PPP), as well as enhanced glycogenesis. In ALD-DNA-stimulated macrophages, increased glycolysis resulted in higher lactate production, whereas diminished PPP efficiently led to lower levels of nicotinamide adenine dinucleotide phosphate (NADPH) with higher levels of reactive oxygen species (ROS). While blockade of lactate generation exerted no significant effect on macrophage inflammation in response to ALD-DNA, scavenging ROS fundamentally inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Further, cyclic adenosine monophosphate (cAMP), a master for regulating glycogen metabolism, was downregulated by ALD-DNA in macrophages, which subsequently imbalanced glycogen metabolism toward glycogenesis but not glycogenolysis. Administration of cAMP effectively restored glycogenolysis and enhanced PPP, which correspondingly reduced ROS levels and inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Finally, blocking glucose metabolism using 2-deoxy-D-glucose (2-DG) efficiently restricted macrophage inflammatory response and alleviated ALD-DNA-induced lupus disease. Together, our findings demonstrate that ALD-DNA drives the adaptation of glucose metabolism for inducing macrophage inflammatory response in SLE, which might further our understanding of disease pathogenesis and provide clues for interventive explorations.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Hang NTL, Hijikata M, Maeda S, Thuong PH, Huan HV, Hoang NP, Tam DB, Anh PT, Huyen NT, Cuong VC, Kobayashi N, Wakabayashi K, Miyabayashi A, Seto S, Keicho N. Host-pathogen relationship in retreated tuberculosis with major rifampicin resistance-conferring mutations. Front Microbiol 2023; 14:1187390. [PMID: 37469437 PMCID: PMC10352910 DOI: 10.3389/fmicb.2023.1187390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction It is assumed that host defense systems eliminating the pathogen and regulating tissue damage make a strong impact on the outcome of tuberculosis (TB) disease and that these processes are affected by rifampicin (RIF) resistance-conferring mutations of Mycobacterium tuberculosis (Mtb). However, the host responses to the pathogen harboring different mutations have not been studied comprehensively in clinical settings. We analyzed clinico-epidemiological factors and blood transcriptomic signatures associated with major rpoB mutations conferring RIF resistance in a cohort study. Methods Demographic data were collected from 295 active pulmonary TB patients with treatment history in Hanoi, Vietnam. When recruited, drug resistance-conferring mutations and lineage-specific variations were identified using whole-genome sequencing of clinical Mtb isolates. Before starting retreatment, total RNA was extracted from the whole blood of HIV-negative patients infected with Mtb that carried either the rpoB H445Y or rpoB S450L mutation, and the total RNA was subjected to RNA sequencing after age-gender matching. The individual RNA expression levels in the blood sample set were also measured using real-time RT-PCR. Logistic and linear regression models were used to assess possible associations. Results In our cohort, rpoB S450L and rpoB H445Y were major RIF resistance-conferring mutations [32/87 (36.8%) and 15/87 (17.2%), respectively]. H445Y was enriched in the ancient Beijing genotype and was associated with nonsynonymous mutations of Rv1830 that has been reported to regulate antibiotic resilience. H445Y was also more frequently observed in genetically clustered strains and in samples from patients who had received more than one TB treatment episode. According to the RNA sequencing, gene sets involved in the interferon-γ and-α pathways were downregulated in H445Y compared with S450L. The qRT-PCR analysis also confirmed the low expression levels of interferon-inducible genes, including BATF2 and SERPING1, in the H445Y group, particularly in patients with extensive lesions on chest X-ray. Discussion Our study results showed that rpoB mutations as well as Mtb sublineage with additional genetic variants may have significant effects on host response. These findings strengthen the rationale for investigation of host-pathogen interactions to develop countermeasures against epidemics of drug-resistant TB.
Collapse
Affiliation(s)
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shinji Maeda
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | | | | | | | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Pham Thu Anh
- Tuberculosis Network Management Office, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Nguyen Thu Huyen
- NCGM-BMH Medical Collaboration Center, Hanoi, Vietnam
- Department of Health Policy and Economics, Hanoi University of Public Health, Hanoi, Vietnam
| | | | | | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, JATA, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, JATA, Tokyo, Japan
- National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Yennemadi AS, Jameson G, Glass M, De Pasquale C, Keane J, Bianchi M, Leisching G. Chronic IFNα treatment induces leukopoiesis, increased plasma succinate and immune cell metabolic rewiring. Cell Immunol 2023; 390:104741. [PMID: 37356269 DOI: 10.1016/j.cellimm.2023.104741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Although clinically effective, the actions of IFNα, either produced endogenously or by therapeutic delivery, remain poorly understood. Emblematic of this research gap is the disparate array of notable side effects that occur in susceptible individuals, such as neuropsychiatric consequences, autoimmune phenomena, and infectious complications. We hypothesised that these complications are driven at least in part by dysregulated cellular metabolism. Male Wistar rats were treated with either 170,000 IU/kg human recombinant IFNα-2a or BSA/saline (0.9% NaCl) three times per week for three weeks. Bone marrow (BM) immune cells were isolated from the excised femurs for glycolytic rate and mitochondrial function assessment using Agilent Seahorse Technology. Frequencies of immune cell populations were assessed by flow cytometry to determine whether leukopoietic changes had occurred in both blood and BM. Plasma levels of lactate and succinate were also determined. BMDMs were metabolically assessed as above, as well as their metabolic response to an antigenic stimulus (iH37Rv). We observed that BM immune cells from IFN-treated rats exhibit a hypermetabolic state (increased basal OCR/GlycoPER) with decreased mitochondrial metabolic respiration and increased non-mitochondrial OCR. Flow cytometry results indicated an increase in immature granulocytes (RP1- SSChi CD45lo) only in the blood, together with increased succinate levels in the plasma. BMDMs from IFN-treated rats retained the hypermetabolic phenotype after differentiation and failed to induce a step-up in glycolysis and mitochondrial respiration after bacterial stimulation. This work provides the first evidence of the effects of IFNα treatment in inducing hypermetabolic immune features that are associated with markers of inflammation, leukopoiesis, and defective responses to bacterial stimulation.
Collapse
Affiliation(s)
- Anjali S Yennemadi
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gráinne Jameson
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Mary Glass
- Ulysses Neuroscience Limited, Trinity College Institute of Neuroscience, Lloyd Institute, Trinity College Dublin, Ireland
| | - Carolina De Pasquale
- Ulysses Neuroscience Limited, Trinity College Institute of Neuroscience, Lloyd Institute, Trinity College Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Massimiliano Bianchi
- Ulysses Neuroscience Limited, Trinity College Institute of Neuroscience, Lloyd Institute, Trinity College Dublin, Ireland
| | - Gina Leisching
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Wu H, Zaib G, Luo H, Guo W, Wu T, Zhu S, Wang C, Chai W, Xu Q, Cui H, Hu X. CCL4 participates in the reprogramming of glucose metabolism induced by ALV-J infection in chicken macrophages. Front Microbiol 2023; 14:1205143. [PMID: 37333648 PMCID: PMC10272584 DOI: 10.3389/fmicb.2023.1205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Interferon and chemokine-mediated immune responses are two general antiviral programs of the innate immune system in response to viral infections and have recently emerged as important players in systemic metabolism. This study found that the chemokine CCL4 is negatively regulated by glucose metabolism and avian leukosis virus subgroup J (ALV-J) infection in chicken macrophages. Low expression levels of CCL4 define this immune response to high glucose treatment or ALV-J infection. Moreover, the ALV-J envelope protein is responsible for CCL4 inhibition. We confirmed that CCL4 could inhibit glucose metabolism and ALV-J replication in chicken macrophages. The present study provides novel insights into the antiviral defense mechanism and metabolic regulation of the chemokine CCL4 in chicken macrophages.
Collapse
Affiliation(s)
- Huixian Wu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gul Zaib
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huan Luo
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wang Guo
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Wu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shutong Zhu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenjun Wang
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenxian Chai
- Changzhou Animal Disease Prevention and Control Center, Changzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Wolf AJ. Peptidoglycan-induced modulation of metabolic and inflammatory responses. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00024. [PMID: 37128291 PMCID: PMC10144284 DOI: 10.1097/in9.0000000000000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Bacterial cell wall peptidoglycan is composed of innate immune ligands and, due to its important structural role, also regulates access to many other innate immune ligands contained within the bacteria. There is a growing body of literature demonstrating how innate immune recognition impacts the metabolic functions of immune cells and how metabolic changes are not only important to inflammatory responses but are often essential. Peptidoglycan is primarily sensed in the context of the whole bacteria during lysosomal degradation; consequently, the innate immune receptors for peptidoglycan are primarily intracellular cytosolic innate immune sensors. However, during bacterial growth, peptidoglycan fragments are shed and can be found in the bloodstream of humans and mice, not only during infection but also derived from the abundant bacterial component of the gut microbiota. These peptidoglycan fragments influence cells throughout the body and are important for regulating inflammation and whole-body metabolic function. Therefore, it is important to understand how peptidoglycan-induced signals in innate immune cells and cells throughout the body interact to regulate how the body responds to both pathogenic and nonpathogenic bacteria. This mini-review will highlight key research regarding how cellular metabolism shifts in response to peptidoglycan and how systemic peptidoglycan sensing impacts whole-body metabolic function.
Collapse
Affiliation(s)
- Andrea J. Wolf
- The Karsh Division of Gastroenterology and Hepatology, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
39
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. KSHV uses viral IL6 to expand infected immunosuppressive macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531224. [PMID: 36945595 PMCID: PMC10028810 DOI: 10.1101/2023.03.05.531224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Here we demonstrate that KSHV preferentially infects CD14 + monocytes and sustains viral replication through the viral interleukin-6 (vIL6)-mediated activation of STAT1 and 3. Using vIL6-sufficient and vIL6-deficient recombinant KSHV, we demonstrated that vIL6 plays a critical role in promoting the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL6-sufficient KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL6-deficient KSHV infection or uninfected control. These results highlight a clever strategy, in which KSHV utilizes vIL6 to secure its viral pool by expanding infected dysfunctional macrophages. This mechanism also facilitates KSHV to escape from host immune surveillance and to establish a lifelong infection. 160. Summary KSHV causes multiple inflammatory diseases, however, the underlying mechanism is not clear. Shimoda et al. demonstrate that KSHV preferentially infects monocytes and utilizes virally encoded interleukin-6 to expand and deregulate infected monocytes. This helps the virus escape from host immune surveillance.
Collapse
|
40
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
41
|
Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute lung injury. Clin Immunol 2023; 249:109289. [PMID: 36918041 PMCID: PMC10008193 DOI: 10.1016/j.clim.2023.109289] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions triggered by multiple intra- and extra-pulmonary injury factors, characterized by complicated molecular mechanisms and high mortality. Great strides have been made in the field of immunometabolism to clarify the interplay between intracellular metabolism and immune function in the past few years. Emerging evidence unveils the crucial roles of immunometabolism in inflammatory response and ALI. During ALI, both macrophages and lymphocytes undergo robust metabolic reprogramming and discrete epigenetic changes after activated. Apart from providing ATP and biosynthetic precursors, these metabolic cellular reactions and processes in lung also regulate inflammation and immunity.In fact, metabolic reprogramming involving glucose metabolism and fatty acidoxidation (FAO) acts as a double-edged sword in inflammatory response, which not only drives inflammasome activation but also elicits anti-inflammatory response. Additionally, the features and roles of metabolic reprogramming in different immune cells are not exactly the same. Here, we outline the evidence implicating how adverse factors shape immunometabolism in differentiation types of immune cells during ALI and summarize key proteins associated with energy expenditure and metabolic reprogramming. Finally, novel therapeutic targets in metabolic intermediates and enzymes together with current challenges in immunometabolism against ALI were discussed.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zou Shishi
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wang Bo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Lin Huiqing
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
42
|
Zhang J, Han L, Ma Q, Wang X, Yu J, Xu Y, Zhang X, Wu X, Deng G. RIP3 impedes Mycobacterium tuberculosis survival and promotes p62-mediated autophagy. Int Immunopharmacol 2023; 115:109696. [PMID: 36638666 DOI: 10.1016/j.intimp.2023.109696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Macrophage is believed to play a vital role in the fight against Mycobacterium tuberculosis (M.tb) infection by activating autophagy. Recently, receptor-interacting protein kinase-3 (RIP3), an essential kinase for necroptotic cell death signaling, has been demonstrated to be involved in autophagy. However, RIP3's role in fighting against M.tb infection remains elusive. Here we show that a substantial increase in inflammatory cell infiltration and higher bacterial burden are observed in the lungs of RIP3-/- mice with Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection. Meanwhile, RIP3 ameliorates lung injury and promote autophagy via induce autophagosome and autophagolysosome formation which indicate that RIP3 is indispensable for host clearance of BCG via autophagy. Mechanically, RIP3 enhances p62 binding to ubiquitylated proteins and LC3 by interacting with p62, and RHIM domain is required for RIP3-p62 interaction. Hence, our results conclusively show that RIP3 impedes M.tb survival and promotes p62-mediated autophagy. The findings provide further insight into understanding the mechanism of M.tb immune escape and pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Jiamei Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China
| | - Lu Han
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China
| | - Qinmei Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China
| | - Xiaoping Wang
- Tuberculosis Reference Laboratory, Ningxia Institute for Tuberculosis Control, The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750021, China
| | - Jialin Yu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China
| | - Yanan Xu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiaoling Wu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China.
| | - Guangcun Deng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, NingXia 750021, China; School of Life Science, NingXia University, Yinchuan, NingXia 750021, China.
| |
Collapse
|
43
|
Bouabid C, Rabhi S, Thedinga K, Barel G, Tnani H, Rabhi I, Benkahla A, Herwig R, Guizani-Tabbane L. Host M-CSF induced gene expression drives changes in susceptible and resistant mice-derived BMdMs upon Leishmania major infection. Front Immunol 2023; 14:1111072. [PMID: 37187743 PMCID: PMC10175952 DOI: 10.3389/fimmu.2023.1111072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Leishmaniases are a group of diseases with different clinical manifestations. Macrophage-Leishmania interactions are central to the course of the infection. The outcome of the disease depends not only on the pathogenicity and virulence of the parasite, but also on the activation state, the genetic background, and the underlying complex interaction networks operative in the host macrophages. Mouse models, with mice strains having contrasting behavior in response to parasite infection, have been very helpful in exploring the mechanisms underlying differences in disease progression. We here analyzed previously generated dynamic transcriptome data obtained from Leishmania major (L. major) infected bone marrow derived macrophages (BMdMs) from resistant and susceptible mouse. We first identified differentially expressed genes (DEGs) between the M-CSF differentiated macrophages derived from the two hosts, and found a differential basal transcriptome profile independent of Leishmania infection. These host signatures, in which 75% of the genes are directly or indirectly related to the immune system, may account for the differences in the immune response to infection between the two strains. To gain further insights into the underlying biological processes induced by L. major infection driven by the M-CSF DEGs, we mapped the time-resolved expression profiles onto a large protein-protein interaction (PPI) network and performed network propagation to identify modules of interacting proteins that agglomerate infection response signals for each strain. This analysis revealed profound differences in the resulting responses networks related to immune signaling and metabolism that were validated by qRT-PCR time series experiments leading to plausible and provable hypotheses for the differences in disease pathophysiology. In summary, we demonstrate that the host's gene expression background determines to a large degree its response to L. major infection, and that the gene expression analysis combined with network propagation is an effective approach to help identifying dynamically altered mouse strain-specific networks that hold mechanistic information about these contrasting responses to infection.
Collapse
Affiliation(s)
- Cyrine Bouabid
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Faculty of Sciences of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sameh Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Kristina Thedinga
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gal Barel
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hedia Tnani
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Rabhi
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- Higher Institute of Biotechnology at Sidi-Thabet (ISBST), Biotechnopole Sidi-Thabet- University of Manouba, Sidi-Thabet, Tunisia
| | - Alia Benkahla
- Laboratory de BioInformatic, BioMathematic and BioStatistic (BIMS), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ralf Herwig
- Department Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lamia Guizani-Tabbane
- Laboratory of Medical Parasitology, Biotechnology and Biomolecules (PMBB), Institut Pasteur de Tunis, Tunis, Tunisia
- *Correspondence: Lamia Guizani-Tabbane,
| |
Collapse
|
44
|
Macrophage Mitochondrial Biogenesis and Metabolic Reprogramming Induced by Leishmania donovani Require Lipophosphoglycan and Type I Interferon Signaling. mBio 2022; 13:e0257822. [PMID: 36222510 PMCID: PMC9764995 DOI: 10.1128/mbio.02578-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogen-specific rewiring of host cell metabolism creates the metabolically adapted microenvironment required for pathogen replication. Here, we investigated the mechanisms governing the modulation of macrophage mitochondrial properties by the vacuolar pathogen Leishmania. We report that induction of oxidative phosphorylation and mitochondrial biogenesis by Leishmania donovani requires the virulence glycolipid lipophosphoglycan, which stimulates the expression of key transcriptional regulators and structural genes associated with the electron transport chain. Leishmania-induced mitochondriogenesis also requires a lipophosphoglycan-independent pathway involving type I interferon (IFN) receptor signaling. The observation that pharmacological induction of mitochondrial biogenesis enables an avirulent lipophosphoglycan-defective L. donovani mutant to survive in macrophages supports the notion that mitochondrial biogenesis contributes to the creation of a metabolically adapted environment propitious to the colonization of host cells by the parasite. This study provides novel insight into the complex mechanism by which Leishmania metacyclic promastigotes alter host cell mitochondrial biogenesis and metabolism during the colonization process. IMPORTANCE To colonize host phagocytes, Leishmania metacyclic promastigotes subvert host defense mechanisms and create a specialized intracellular niche adapted to their replication. This is accomplished through the action of virulence factors, including the surface coat glycoconjugate lipophosphoglycan. In addition, Leishmania induces proliferation of host cell mitochondria as well as metabolic reprogramming of macrophages. These metabolic alterations are crucial to the colonization process of macrophages, as they may provide metabolites required for parasite growth. In this study, we describe a new key role for lipophosphoglycan in the stimulation of oxidative phosphorylation and mitochondrial biogenesis. We also demonstrate that host cell pattern recognition receptors Toll-like receptor 4 (TLR4) and endosomal TLRs mediate these Leishmania-induced alterations of host cell mitochondrial biology, which also require type I IFN signaling. These findings provide new insight into how Leishmania creates a metabolically adapted environment favorable to their replication.
Collapse
|
45
|
Pan SW, Syed RR, Catanzaro DG, Ho ML, Shu CC, Tsai TY, Tseng YH, Feng JY, Chen YM, Su WJ, Catanzaro A, Rodwell TC. Circulating mitochondrial cell-free DNA dynamics in patients with mycobacterial pulmonary infections: Potential for a novel biomarker of disease. Front Immunol 2022; 13:1040947. [PMID: 36466831 PMCID: PMC9709461 DOI: 10.3389/fimmu.2022.1040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
ObjectivesHuman mitochondrial cell-free DNA (Mt-cfDNA) may serve as a useful biomarker for infectious processes. We investigated Mt-cfDNA dynamics in patients with pulmonary mycobacterial infections to determine if this novel biomarker could be used to differentiate disease states and severity.MethodsPatients with pulmonary tuberculosis (PTB), latent tuberculosis infection (LTBI), and nontuberculous mycobacterial-lung disease (NTM-LD) were enrolled at a tertiary care hospital in Taiwan between June 2018 and August 2021. Human Mt-cfDNA and nuclear-cfDNA (Nu-cfDNA) copy numbers were estimated by quantitative polymerase chain reaction. Variables associated with PTB and 2-month sputum culture-positivity, indicating poor treatment response, were assessed using logistic regression.ResultsAmong 97 patients with PTB, 64 with LTBI, and 51 with NTM-LD, Mt-cfDNA levels were higher in patients with PTB than in LTBI (p=0.001) or NTM-LD (p=0.006). In the Mycobacterium tuberculosis-infected population, Mt-cfDNA levels were highest in smear-positive PTB patients, followed by smear-negative PTB (p<0.001), and were lowest in LTBI persons (p=0.009). A Mt-cfDNA, but not Nu-cfDNA, level higher than the median helped differentiate culture-positive PTB from culture-negative PTB and LTBI (adjusted OR 2.430 [95% CI 1.139–5.186], p=0.022) and differentiate PTB from NTM-LD (adjusted OR 4.007 [1.382–12.031], p=0.011). Mt-cfDNA levels decreased after 2 months of treatment in PTB patients (p=0.010). A cutoff Mt-cfDNA level greater than 62.62 x 106 copies/μL-plasma was associated with a 10-fold risk of 2-month culture-positivity (adjusted OR 9.691 [1.046–89.813], p=0.046).ConclusionElevated Mt-cfDNA levels were associated with PTB disease and failed sputum conversion at 2 months in PTB patients, and decreased after treatment.
Collapse
Affiliation(s)
- Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Rehan R. Syed
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA, United States
| | - Donald G. Catanzaro
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University, Taipei, Taiwan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States
| | - Chin-Chung Shu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yeh Tsai
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Jia-Yih Feng,
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Juin Su
- Division of Chest Medicine, China Medical University Hospital, Taipei Branch, Taipei, Taiwan
| | - Antonino Catanzaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Timothy C. Rodwell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
46
|
Arumugam P, Chauhan M, Rajeev T, Chakraborty R, Bisht K, Madan M, Shankaran D, Ramalingam S, Gandotra S, Rao V. The mitochondrial gene-CMPK2 functions as a rheostat for macrophage homeostasis. Front Immunol 2022; 13:935710. [PMID: 36451821 PMCID: PMC9702992 DOI: 10.3389/fimmu.2022.935710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 09/04/2024] Open
Abstract
In addition to their role in cellular energy production, mitochondria are increasingly recognized as regulators of the innate immune response of phagocytes. Here, we demonstrate that altering expression levels of the mitochondria-associated enzyme, cytidine monophosphate kinase 2 (CMPK2), disrupts mitochondrial physiology and significantly deregulates the resting immune homeostasis of macrophages. Both CMPK2 silenced and constitutively overexpressing macrophage lines portray mitochondrial stress with marked depolarization of their membrane potential, enhanced reactive oxygen species (ROS), and disturbed architecture culminating in the enhanced expression of the pro-inflammatory genes IL1β, TNFα, and IL8. Interestingly, the long-term modulation of CMPK2 expression resulted in an increased glycolytic flux of macrophages akin to the altered physiological state of activated M1 macrophages. While infection-induced inflammation for restricting pathogens is regulated, our observation of a total dysregulation of basal inflammation by bidirectional alteration of CMPK2 expression only highlights the critical role of this gene in mitochondria-mediated control of inflammation.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Meghna Chauhan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Thejaswitha Rajeev
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rahul Chakraborty
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Kanika Bisht
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Mahima Madan
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Deepthi Shankaran
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Sivaprakash Ramalingam
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sheetal Gandotra
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| | - Vivek Rao
- Immunology and Infectious Disease Unit, Council of Scientific and Industrial Research (CSIR)- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)- Human Resource Development Centre, Ghaziabad, India
| |
Collapse
|
47
|
Li J, Sang ER, Adeyemi O, Miller LC, Sang Y. Comparative transcriptomics reveals small RNA composition and differential microRNA responses underlying interferon-mediated antiviral regulation in porcine alveolar macrophages. Front Immunol 2022; 13:1016268. [PMID: 36389683 PMCID: PMC9651005 DOI: 10.3389/fimmu.2022.1016268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Previous studies have shown that interferon-mediated antiviral activity is subtype-dependent. Using a whole transcriptome procedure, we aimed to characterize the small RNA transcriptome (sRNA-Seq) and specifically the differential microRNA (miRNA) responses in porcine alveolar macrophages (PAMs) upon antiviral activation during viral infection and interferon (IFN) stimulation. Data showed that near 90% of the qualified reads of sRNA were miRNAs, and about 10% of the other sRNAs included rRNA, snoRNA, snRNA, and tRNA in order of enrichment. As the majority of sRNA (>98%) were commonly detected in all PAM samples under different treatments, about 2% sRNA were differentially expressed between the different antiviral treatments. Focusing on miRNA, 386 miRNA were profiled, including 331 known and 55 novel miRNA sequences, of which most were ascribed to miRNA families conserved among vertebrates, particularly mammalian species. Of the miRNA profiles comparably generated across the different treatments, in general, significantly differentially expressed miRNA (SEM) demonstrated that: (1) the wild-type and vaccine strains of a porcine arterivirus (a.k.a., PRRSV) induced nearly reversed patterns of up- or down-regulated SEMs; (2) similar SEM patterns were found among the treatments by the vaccine strain and antiviral IFN-α1/-ω5 subtypes; and (3) the weak antiviral IFN-ω1, however, remarked a suppressive SEM pattern as to SEMs upregulated in the antiviral treatments by the vaccine and IFN-α1/-ω5 subtypes. Further articulation identified SEMs commonly or uniquely expressed in different treatments, and experimentally validated that some SEMs including miR-10b and particularly miR-9-1 acted significantly in regulation of differential antiviral reactions stimulated by different IFN subtypes. Therefore, this study provides a general picture of porcine sRNA composition and pinpoints key SEMs underlying antiviral regulation in PAMs correlated to a typical respiratory RNA virus in pigs.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Eric R. Sang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Oluwaseun Adeyemi
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C. Miller
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
48
|
Simper JD, Perez E, Schlesinger LS, Azad AK. Resistance and Susceptibility Immune Factors at Play during Mycobacterium tuberculosis Infection of Macrophages. Pathogens 2022; 11:pathogens11101153. [PMID: 36297211 PMCID: PMC9611686 DOI: 10.3390/pathogens11101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), is responsible for >1.5 million deaths worldwide annually. Innate immune cells, especially macrophages, are the first to encounter M.tb, and their response dictates the course of infection. During infection, macrophages exert a variety of immune factors involved in either controlling or promoting the growth of M.tb. Research on this topic has been performed in both in vitro and in vivo animal models with discrepant results in some cases based on the model of study. Herein, we review macrophage resistance and susceptibility immune factors, focusing primarily on recent advances in the field. We include macrophage cellular pathways, bioeffector proteins and molecules, cytokines and chemokines, associated microbiological factors and bacterial strains, and host genetic factors in innate immune genes. Recent advances in mechanisms underlying macrophage resistance and susceptibility factors will aid in the successful development of host-directed therapeutics, a topic emphasized throughout this review.
Collapse
Affiliation(s)
- Jan D. Simper
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Department of Microbiology, Immunology and Molecular Genetics, UT Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Esteban Perez
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Translational Sciences Program, UT Health San Antonio Graduate School of Biomedical Sciences, San Antonio, TX 78229, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| | - Abul K. Azad
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Correspondence: (L.S.S.); (A.K.A.); Tel.: +1-210-258-9578 (L.S.S.); +1-210-258-9467 (A.K.A.)
| |
Collapse
|
49
|
Pagán AJ, Lee LJ, Edwards-Hicks J, Moens CB, Tobin DM, Busch-Nentwich EM, Pearce EL, Ramakrishnan L. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell 2022; 185:3720-3738.e13. [PMID: 36103894 PMCID: PMC9596383 DOI: 10.1016/j.cell.2022.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023]
Abstract
Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.
Collapse
Affiliation(s)
- Antonio J. Pagán
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| | - Lauren J. Lee
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Cecilia B. Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M. Tobin
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth M. Busch-Nentwich
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Erika L. Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK,Department of Microbiology, University of Washington, Seattle, WA 98195, USA,Corresponding author
| |
Collapse
|
50
|
Abstract
Macrophage surface receptors are critical for pathogen defense, as they are the gatekeepers for pathogen entry and sensing, which trigger robust immune responses. TREM2 (triggering receptor expressed on myeloid cells 2) is a transmembrane surface receptor that mediates anti-inflammatory immune signaling. A recent study showed that TREM2 is a receptor for mycolic acids in the mycobacterial cell wall and inhibits macrophage activation. However, the underlying functional mechanism of how TREM2 regulates the macrophage antimycobacterial response remains unclear. Here, we show that Mycobacterium tuberculosis, the causative agent for tuberculosis, specifically binds to human TREM2 to disable the macrophage antibacterial response. Live but not killed mycobacteria specifically trigger the upregulation of TREM2 during macrophage infection through a mechanism dependent on STING (the stimulator of interferon genes). TREM2 facilitated uptake of M. tuberculosis into macrophages and is responsible for blocking the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and reactive oxygen species (ROS), while enhancing the production of interferon-β (IFN-β) and IL-10. TREM2-mediated blockade of ROS production promoted the survival of M. tuberculosis within infected macrophages. Consistent with this, genetic deletion or antibody-mediated neutralization of TREM2 reduced the intracellular survival of M. tuberculosis through enhanced production of ROS. Importantly, inhibition of type I IFN signaling in TREM2-overexpressing macrophages restored the ability of these cells to produce inflammatory cytokines and ROS, resulting in normal levels of intracellular bacteria killing. Collectively, our study identifies TREM2 as an attractive host receptor for host-directed antimycobacterial therapeutics. IMPORTANCE Mycobacterium tuberculosis is one of the most ancient bacterial pathogens and remains the leading cause of death from a single bacterial agent. The success of M. tuberculosis relies greatly on its ability to parasitize and disable its host macrophages. Previous studies have found that M. tuberculosis uses its unique cell wall lipids to manipulate the immune response by binding to specific surface receptors on macrophages. Our study reveals that M. tuberculosis binds to TREM2, an immunomodulatory receptor expressed on macrophages, to facilitate a "silent" mode of entry. Increased levels of TREM2 triggered by intracellular sensing of M. tuberculosis promoted the intracellular survival of M. tuberculosis through type I IFN-driven inhibition of reactive oxygen species (ROS) and proinflammatory cytokine production. Importantly, deletion of TREM2 reversed the effects of "silent" entry and resulted in increased production of inflammatory cytokines, generation of ROS, and cell death. As such, antibody-mediated or pharmacological targeting of TREM2 could be a promising strategy for novel treatments against M. tuberculosis infection.
Collapse
|