1
|
Sudaraka Tennakoon MSBWTMN, Lee KH, Shin HJ. Expression of recombinant swine ferritin heavy chain with enhanced solubility in Escherichia coli and simplified purification of ferritin nanoparticles. Protein Expr Purif 2025; 231:106700. [PMID: 40086537 DOI: 10.1016/j.pep.2025.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Ferritin is a versatile biomolecule used in various medical applications such as drug delivery, vaccines, biological imaging, and diagnostics. The purity and concentration of the ferritin nanoparticles are crucial for achieving excellent outcomes. In this study, we expressed and purified the recombinant swine ferritin heavy chain (rsFTH) as a new candidate for recombinant ferritin nanoparticles. We generated two types of plasmids that can express rsFTH in mammalian and prokaryotic systems. The myc-tagged rsFTH expressed in the mammalian system was purified and ferritin nanoparticles were validated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). A prokaryotic expression system was used to produce rsFTH on a large scale. Protein expression was optimized in Escherichia coli BL21 under varying temperatures and IPTG conditions, and solubility was enhanced by incubation at 25 °C for 18-22 h in auto-induction media, resulting in approximately >50 % protein content in the soluble fraction compared with the pellet. Protein purification was achieved using His-tag affinity chromatography and dialysis with Tris-HCl buffer, yielding adequately pure rsFTH without any apparent protein aggregates. SDS-PAGE and Western blot analysis confirmed the expected molecular weight of rsFTH, and Native-PAGE demonstrated polymerization into higher molecular weight forms. Particle size analysis of purified rsFTH revealed a mean diameter of 15.5 nm, with transmission electron microscopy (TEM) imaging confirming spherical ferritin particles with an iron core. These results suggest that rsFTH can be efficiently expressed and purified in both mammalian and bacterial systems, and has potential applications in nanotechnology and biotechnology.
Collapse
Affiliation(s)
| | - Kyoung-Ho Lee
- Laboratory of Infectious diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; CellEnVax Co., Ltd, South Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea; CellEnVax Co., Ltd, South Korea.
| |
Collapse
|
2
|
Sudaraka Tennakoon MSBWTMN, Park JY, Lee HM, Ryu JH, Shin HJ. Ferritin nanoparticle complex with porcine epidemic diarrhea virus spike protein induces neutralizing antibody response against PEDV in mouse models. Microb Pathog 2025; 203:107509. [PMID: 40147557 DOI: 10.1016/j.micpath.2025.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
As the spike protein is the major antigen that contains various neutralizing epitopes against porcine epidemic diarrhea virus (PEDV), numerous vaccine trials employing the spike protein have been established. In this study, we developed a ferritin-based nanoparticle vaccine for PEDV by combining gene delivery functions of recombinant adenoviruses. To generate nanoparticles, the S1 subunit of the spike protein was genetically linked to the N-terminus of the human ferritin heavy chain (hFTHC), and recombinant adenoviruses were generated to deliver the genetic material. The efficacy of S1 conjugated human ferritin heavy chain (S1-hFTHC) adenoviruses against S1 adenoviruses was evaluated in BALB/c mice immunized intramuscularly without adjuvant. Two weeks after the final boost, we observed a significantly higher IgG response in S1-hFTHC immunized mice compared with the S1 immunized mice, and results from the virus neutralization assay revealed robust virus neutralization activity in the S1-hFTHC immunized group compared to the S1 immunized group. Furthermore, analysis of the serum based on IgG and neutralizing titers 40 days after the last vaccination revealed the significance and longevity of the immune response induced by S1-hFTCH compared to S1 only. This strategy elucidates the efficacy of combined vaccine strategies for developing promising vaccine candidates against PEDV.
Collapse
Affiliation(s)
| | - Jae-Yeon Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Mi Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | | | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Wu H, Weng R, Li J, Huang Z, Tie X, Li J, Chen K. Self-Assembling protein nanoparticle platform for multivalent antigen delivery in vaccine development. Int J Pharm 2025; 676:125597. [PMID: 40233885 DOI: 10.1016/j.ijpharm.2025.125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Nanoparticle vaccines can efficiently and repeatedly display multivalent antigens, thereby improving the targeted delivery of antigens and inducing more durable immune responses, making them an important representative of novel vaccines. The global COVID-19 pandemic has accelerated the development of nanoparticle vaccines, offering a promising solution for the prevention and control of infectious diseases. Currently, the development of nanoparticle vaccines involves the use of various types of nanoparticles, including liposomes, polymers, inorganic materials, and emulsions. Protein nanoparticles candidate vaccines are attracting increasing attention because of their unique antigen presentation methods and self-assembly characteristics during their development, leading to a broad consensus on their promising future. Naturally self-assembling protein nanoparticles, such as ferritin, enhance antigen presentation, which aids in the activation of both humoral and cellular immune responses. This has led to significant advancements in the study of hepatitis B virus. Meanwhile, some synthetically engineered protein nanoparticles, such as mi3, and I53-50, can induce higher antibody titers through chemical conjugation with the SpyTag-SpyCatcher system, thereby providing better immunoprotection and showing promising prospects in the prevention of H1N1 and H3N2 influenza virus infections. This article reviews the unique advantages of protein nanoparticles as antigen delivery platforms, progress made in immunological design mechanisms, advances in the application of related adjuvants in preclinical and clinical trials, and the performance of commonly used computationally designed protein nanoparticles in preclinical trials, with a particular emphasis on the progress in the application of cationic nanoparticle vaccines. The aim is to provide future researchers with effective adjuvant strategies and high-quality selections for computationally designed protein nanoparticles, thereby promoting the clinical trial process of protein nanoparticles vaccines.
Collapse
Affiliation(s)
- Hao Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiaxuan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Zhiwei Huang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiaotian Tie
- Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, PR China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
4
|
Addetia A, Schäfer A, Sprouse K, Valdez A, Taylor A, Navarro MJ, Brown JT, Leaf EM, Miranda MC, Walls AC, Lee J, Catanzaro NJ, Treichel C, Willoughby I, Powers J, Martinez DR, Vesari B, Ravichandran R, Seo AJ, Stewart C, Merz B, Beirne E, Zepeda S, Cook A, Pessaint L, Sharma A, Edwards D, Lee K, Smith K, Starr T, Baric R, King NP, Veesler D. Phylogeny-driven design of broadly protective sarbecovirus receptor-binding domain nanoparticle vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.11.652904. [PMID: 40463102 PMCID: PMC12132498 DOI: 10.1101/2025.05.11.652904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Vaccines against emerging SARS-CoV-2 variants and sarbecoviruses with pandemic potential must elicit a robust humoral immune response in a population imprinted with the SARS-CoV-2 spike (S) protein. Here, we designed protein nanoparticle (NP) vaccines co-displaying the SARS-CoV-2 BA.5, SARS-CoV-1, and BtKY72 receptor-binding domains (RBDs) with or without the Wuhan-Hu-1 (Wu) RBD. We show that these vaccines elicit cross-reactive and broadly neutralizing plasma antibody responses against SARS-CoV-2 variants and sarbecoviruses in naive and pre-immune animals. Immunization with multivalent RBD-NPs overcomes immune imprinting and elicits neutralizing antibodies and memory B cells specific for the BA.5, SARS-CoV-1, and BtKY72 RBDs in mRNA-1273-vaccinated non-human primates. Multivalent RBD-NPs outperform a monovalent Wu RBD-NP vaccine by providing superior protection in mice and non-human primates challenged with the vaccine-mismatched SARS-CoV-2 XBB.1.5 or the pre-emergent RsSHC014. These data support the use of multivalent RBD-NP vaccines for SARS-CoV-2 variants and sarbecoviruses in naive and pre-immune populations.
Collapse
|
5
|
Zhang R, Li D, Gao P, Ruan W, Qiao S, Xu S, Dai L, Luo T, Zhao X, Gao GF. A SARS-CoV and SARS-CoV-2 RBD Heterodimer Vaccine Candidate. J Med Virol 2025; 97:e70367. [PMID: 40317517 DOI: 10.1002/jmv.70367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The continuous evolution of SARS-CoV-2 through accumulating mutations, combined with the persistent risk of zoonotic sarbecovirus transmission events, highlights the critical demand for broadly protective vaccines. Building on our previous findings that a heterodimeric receptor-binding domain (RBD) design substantially improves cross-reactive immunogenicity in vaccine candidates, we propose this strategy as a foundation for developing pan-sarbecovirus vaccines with cross-neutralizing capacity against diverse and emerging variants. In this study, we developed a sarbecovirus immunogen, utilizing a heterodimeric strategy incorporating the RBDs from both SARS-CoV and SARS-CoV-2. Pseudovirus neutralization assays revealed that mice immunized with the SARS-CoV-2 prototype (PT)-SARS-CoV heterodimer (PT-SARS) developed 39.9- to 305.6-fold higher neutralizing antibody (NAb) titers against SARS-CoV-2 sub-variants compared to the SARS-CoV RBD homodimer (SARS-SARS). Furthermore, PT-SARS elicited 17.6- and 31.2-fold enhanced neutralization against WIV1 and SARS-CoV, respectively, relative to the SARS-CoV-2 PT homodimer (PT-PT). To address evolving Omicron sub-variants, we further updated BA.1-SARS and BA.2-SARS immunogens. Notably, BA.2-SARS exhibited a 6.2-fold increase in neutralizing potency against BA.2.86 compared to PT-SARS. Crucially, the heterodimeric immunogen induced balanced and broadly reactive NAbs against multiple sarbecoviruses, including RaTG13, Pangolin GD, SARS-CoV, and SARS-CoV-2 variants/sub-variants, demonstrating its potential as a sarbecovirus immunogen candidate.
Collapse
Affiliation(s)
- Rong Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyue Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjing Ruan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Senyu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
6
|
Wu J, Liang J, Li S, Lu J, Li Y, Zhang B, Gao M, Zhou J, Zhang Y, Chen J. Cancer vaccine designed from homologous ferritin-based fusion protein with enhanced DC-T cell crosstalk for durable adaptive immunity against tumors. Bioact Mater 2025; 46:516-530. [PMID: 39868073 PMCID: PMC11764028 DOI: 10.1016/j.bioactmat.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity. Upon fusing with the KALA peptide, this nanovaccine presents as a novel 40-mer cage structure, with highly enriched antigen peptides of proper size (25 nm) for targeted delivery to lymph nodes. The loading of SOCS1 siRNA onto the KALA peptide promoted DC maturation in tumor environment, leading to a 3-fold increase in antigen presentation compared to alum adjuvant. Moreover, it demonstrates remarkable efficacy in suppressing tumor progression and metastasis, together with prolonged survival. In addition, the nanovaccine stimulates up to 40 % memory T cells, thereby achieving sustained protection against tumor re-challenge. This unprecedented nanovaccine platform can ignite fresh interdisciplinary discussions on interactive strategies for future peptide vaccine development.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
- School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Bin Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
7
|
Hildt E. [Platform technologies in vaccine development]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025; 68:368-377. [PMID: 40035793 PMCID: PMC11950034 DOI: 10.1007/s00103-025-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Platform technologies in the narrower sense refer to approaches to vaccine development in which the vaccine is always based on a consistently identical framework and differs only in terms of the antigen. One advantage of platform technologies is their rapid adaptability for the development of a vaccine against novel pathogens or variants. Currently approved vaccines in the EU use viral vectors and mRNA as platforms. Recombinant adenoviruses (Ad), vesicular stomatitis virus (VSV), and modified vaccinia virus Ankara (MVA) serve as viral vectors. The application of mRNA-based vaccines is carried out in the form of lipid nanoparticles (LNPs). The function of the LNPs is to protect the mRNA from degradation, promote the uptake of the mRNA into the cells, and provide an adjuvant effect.
Collapse
Affiliation(s)
- Eberhard Hildt
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen (Hessen), Deutschland.
| |
Collapse
|
8
|
Rosado VC, Adams L, Yousif AS, Sangesland M, Ronsard L, Okonkwo V, McCarthy C, Alexander C, Irvine D, Lingwood D. A modular protocol for virosome display of subunit vaccine antigens. STAR Protoc 2025; 6:103610. [PMID: 39891914 PMCID: PMC11834092 DOI: 10.1016/j.xpro.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Antigen array increases B cell receptor (BCR) triggering and the titer of antibodies elicited by subunit vaccines. Here, we present a protocol for multivalent antigen display by synthetic virosomes: preformed liposomes bearing glycoprotein spike proteins from enveloped viruses. We describe how to customize lipid stoichiometry within preformed liposomes and attach user-defined antigens via covalent and/or non-covalent interactions. In addition to generating vaccine research tools, this protocol demonstrates how two-dimensional membrane array resolves and activates exceptionally weak but critical virus-receptor interactions.
Collapse
Affiliation(s)
- Victoria C Rosado
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Lindsey Adams
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Ashraf S Yousif
- University of Virginia, School of Medicine, Beirne B. Carter Center for Immunology Research, 345 Crispell Dr., Charlottesville, VA 22908, USA
| | - Maya Sangesland
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Caroline Alexander
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Darrell Irvine
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Yang J, Zhao Z, Ma T, Bai J. Aptamer Paper-Based Fluorescent Sensor for Determination of SARS-CoV-2 Spike Protein. SENSORS (BASEL, SWITZERLAND) 2025; 25:1637. [PMID: 40292706 PMCID: PMC11945200 DOI: 10.3390/s25061637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/30/2025]
Abstract
Point-of-care (POC) antigen detection plays a crucial role in curbing the spread of viruses. Paper-based fluorescence aptasensors are expected to offer a low-cost tool to meet the needs of decentralized POC diagnosis. Herein, we report on a fluorescent paper-based sensing system for detecting the SARS-CoV-2 spike protein. The sensing system was constructed by loading multi-layer Nb2C MXene nano-quenchers and carbon-dot-labeled aptamer (G-CDs@Apt) probes onto a mixed cellulose ester (MCE) paper substrate. On the Nb2C MXene/G-CDs@Apt sensing paper, abundant G-CDs@Apt probes were attached to the multilayer MXene nano-quenchers and kept in a fluorescence-off state, while recognition of the target detached the G-CDs@Apt probes formed the nano--quenchers, resulting in fluorescence recovery of the sensing paper. The developed paper-based sensor performed well in the one-step detection of the SARS-CoV-2 S1 protein with a detection limit of 0.067 ng/mL (0.335 pg/test). The assay exhibited good selectivity and anti-interference in the detection of the SARS-CoV-2 S1 protein in artificial saliva. Moreover, the paper-based aptasensor was successfully used to detect the SARS-CoV-2 S1 protein in actual environmental samples with recoveries of 90.87-100.55% and relative standard deviations of 1.52-3.41%. The proposed technology provides a cost-effective alternative to traditional antibody test strips for a wide range of POC diagnostic applications.
Collapse
Affiliation(s)
| | | | | | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Y.); (Z.Z.); (T.M.)
| |
Collapse
|
10
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
11
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Adia YM, Gnanapragasam PNP, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. Cell 2025; 188:1036-1050.e11. [PMID: 39855201 PMCID: PMC11845252 DOI: 10.1016/j.cell.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2COMs), five (mosaic-5COM), or seven (mosaic-7COM) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges. Naive and COVID-19 pre-vaccinated mice immunized with mosaic-7COM elicited antibodies targeting conserved RBD epitopes, and their sera exhibited higher binding and neutralization titers against sarbecoviruses than mosaic-8b. Mosaic-2COMs and mosaic-5COM elicited higher antibody potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons, supporting its use to protect against SARS-CoV-2 variants and zoonotic sarbecoviruses.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luis F Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yusuf M Adia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
12
|
Pilapitiya D, Lee WS, Vu MN, Kelly A, Webster RH, Koutsakos M, Kent SJ, Juno JA, Tan HX, Wheatley AK. Mucosal vaccination against SARS-CoV-2 using recombinant influenza viruses delivering self-assembling nanoparticles. Vaccine 2025; 46:126668. [PMID: 39740385 DOI: 10.1016/j.vaccine.2024.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms. Following intranasal immunisation, mice developed potent serological anti-RBD responses, with ferritin nanoparticles superseding monomeric or trimeric RBD responses. While parenteral and mucosal immunisation elicited robust anti-RBD IgG in serum, mucosal immunisation seeded respiratory IgA, RBD-specific lung-resident memory and germinal centre (GC) B cells. In animals with prior intramuscular vaccination, intranasal boosting with recombinant influenza vectors augmented mucosal IgG, IgA, GC and memory B cells, and SARS-CoV-2 lung neutralising titres. Recall of RBD-specific memory B cells via antigen re-exposure in the lung increased antibody-secreting cells in the lung-draining lymph nodes, with maintenance of lung GC B cells. Recombinant influenza-based vaccines effectively deliver highly immunogenic self-assembling nanoparticles, generating antibodies and B cells in the respiratory mucosa. This strategy provides a tractable pathway to augment lung-localised responses against recurrent respiratory viral infections.
Collapse
MESH Headings
- Animals
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Mice
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Female
- Administration, Intranasal
- Immunity, Mucosal
- Immunoglobulin G/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Mice, Inbred BALB C
- Antibodies, Neutralizing/immunology
- Immunoglobulin A/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Vaccination/methods
- Lung/immunology
- B-Lymphocytes/immunology
- Humans
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
Collapse
Affiliation(s)
- Devaki Pilapitiya
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mai N Vu
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Andrew Kelly
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Rosela H Webster
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
13
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2025; 13:1383-1394. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
14
|
Tennakoon MNS, Lee KH, Lee HM, Park JY, Shin HJ. Optimization of Conditions for Expression of Dengue Serotype 2 EDIII Protein in Escherichia coli and Immune Responses of Adjuvant-Free EDIII Ferritin Nanoparticles Against Dengue Virus in BALB/c Mice. Viruses 2025; 17:129. [PMID: 39861918 PMCID: PMC12128699 DOI: 10.3390/v17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in E. coli, protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles. Thus, purified DENV2 EDIII and EDIII human ferritin heavy chain nanoparticles were immunized intramuscularly into BALB/c mice without an adjuvant, and the immunogenicity was analyzed using IgG ELISA and a serum-neutralizing assay. Purified, properly refolded, aggregate-free EDIII and EDIII ferritin proteins were obtained, and ferritin nanoparticles were identified using an electron microscope. By analyzing the immunogenicity of mouse serum, EDIII ferritin generated significantly higher IgG responses and neutralizing activity than EDIII-immunized mice. The IgG ELISA results confirmed that EDIII ferritin can induce a significantly higher IgG titer (O.D.:1.8) than EDIII (O.D.:0.05). Furthermore, EDIII ferritin produced a neutralizing titer of 1:68, whereas EDIII protein produced an average titer of 1:16, which is the serum dilution that inhibited 90% of the viruses. The longevity of the immune responses was analyzed using the serum obtained 2 months after the final immunization, and the results confirmed that EDIII ferritin induced constant immunity throughout the period.
Collapse
Affiliation(s)
- M.S.B.W.T.M. Nipuna Sudaraka Tennakoon
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (M.N.S.T.); (K.-H.L.); (H.-M.L.); (J.-Y.P.)
| | - Kyoung-Ho Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (M.N.S.T.); (K.-H.L.); (H.-M.L.); (J.-Y.P.)
- CellEnVax. Co., Ltd., Daejeon 34134, Republic of Korea
| | - Hye-Mi Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (M.N.S.T.); (K.-H.L.); (H.-M.L.); (J.-Y.P.)
| | - Jae-Yeon Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (M.N.S.T.); (K.-H.L.); (H.-M.L.); (J.-Y.P.)
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea; (M.N.S.T.); (K.-H.L.); (H.-M.L.); (J.-Y.P.)
| |
Collapse
|
15
|
Gao X, Zhu X, Liu X, Zhou C, Shang Y, Wu T, Jia H, Zhang Z, Li Y, Xin T. A Ferritin-Based Eg95 Nanoparticle Vaccine Adjuvanted with pCpG Eliciting Robust Immune Responses Against Cystic Echinococcosis in Mice Model. Int J Nanomedicine 2025; 20:309-325. [PMID: 39802377 PMCID: PMC11725278 DOI: 10.2147/ijn.s499938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity. Purpose This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease. Methods A ferritin-based Eg95 nanoparticle antigen was prepared and then mixed with a plasmid containing the TLR9 agonist CpG to formulate a novel nanovaccine. The safety and efficacy of the vaccine were evaluated in vitro and in vivo. Results The nanovaccine induced potent and enduring Eg95-specific humoral and cellular immune responses, as well as protective immunity-associated Th1 polarization supported by the higher ratios of IgG2a/IgG1 and IFN-γ/IL-4. Meanwhile, this nanovaccines exhibited favorable safety and economic profiles. Conclusion Our data demonstrated that the ferritin-CpG hybrid is a promising combination adjuvant to upgrade the traditional Quil-A and this combination adjuvant-based nanovaccine presents good potential as an alternative to the commercial one for practical CE control.
Collapse
MESH Headings
- Animals
- Ferritins/chemistry
- Nanoparticles/chemistry
- Echinococcosis/prevention & control
- Echinococcosis/immunology
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/administration & dosage
- Mice
- Antigens, Helminth/immunology
- Antigens, Helminth/chemistry
- Disease Models, Animal
- Female
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides/chemistry
- Adjuvants, Vaccine/chemistry
- Adjuvants, Vaccine/administration & dosage
- Immunity, Cellular/drug effects
- Vaccines/immunology
- Vaccines/chemistry
- Immunity, Humoral
- Nanovaccines
Collapse
Affiliation(s)
- Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xizhou Zhu
- Bioproducts Engineering Center, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chenghao Zhou
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuting Shang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Li P, Jiang Z, Shi J, Sha H, Yu Z, Zhao Y, Han S, Ma L. A self-assembled nanoparticle vaccine elicits effective neutralizing antibody response against EBV infection. Front Immunol 2025; 15:1530364. [PMID: 39830517 PMCID: PMC11739326 DOI: 10.3389/fimmu.2024.1530364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a significant global public health concern because of its association with various malignancies and autoimmune diseases. Over 90% of the global population is chronically infected with EBV, impacting numerous cancer-related cases annually. However, none of the effective prophylactic vaccines against EBV is approved at present. Methods In this study, we developed a novel vaccine candidate based on epitope peptides from the receptor-binding domain of EBV-encoded gp350 glycoprotein to prevent EBV infection. These epitope peptides detected a binding capability with host cells were then fused by flexibility linkers and expressed in Escherichia coli to reduce the unnecessary glycan modifications to simulate their free-glycan status. The fused recombinant protein (L350) was displayed on the surface of ferritin-based nanoparticle. The immunogenicity of the L350-ferritin nanoparticle was evaluated in Balb/c mice, and the neutralizing titers of sera from immunized mice were detected by means of an infection blocking assay in an in vitro cell model. Results All the five epitope peptides could bind to AKATA cells, and their fused recombinant protein (L350) was successfully presented on the surface of self-assembled ferritin nanoparticles. Sera from the L350-ferritin nanoparticle-immunized mice showed high titers of both L350 protein-specific and gp350D123 protein-specific antibodies, and sera from gp350D123 protein-immunized mice could also recognize L350 protein well. Most importantly, the L350-ferritin nanoparticle induced efficient neutralizing antibodies to block EBV-GFP infection in AKATA cells and also constructed a strong antigen-specific B-cell memory in immunized mice. Moreover, histopathological changes of main tissues from all vaccinated mice were not observed. Conclusion These data indicate that the L350-ferritin nanoparticle vaccine candidate has considerable potential application in preventing EBV infection and provides a promising basis for developing prophylactic EBV vaccines.
Collapse
Affiliation(s)
- Ping Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Ziyi Jiang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jingjing Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Haochuan Sha
- College of International Education, Henan University of Technology, Zhengzhou, China
| | - Zihang Yu
- Institute of Bio-Architeture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, China
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
17
|
Wang X, Qin Z, Zhang M, Shang B, Li Z, Zhao M, Tang Q, Tang Q, Luo J. Immunogenicity and protection of recombinant self-assembling ferritin-hemagglutinin nanoparticle influenza vaccine in mice. Clin Exp Vaccine Res 2025; 14:23-34. [PMID: 39927225 PMCID: PMC11799580 DOI: 10.7774/cevr.2025.14.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose Influenza virus remains a serious burden to global public health. Current influenza vaccine fails to provide impeccable protection efficacy to the annual seasonal influenza and cannot offer a timely response to potential pandemic influenza. It is necessary to develop next generation influenza vaccines to solve the current dilemma. Materials and Methods We developed a recombinant, self-assembling ferritin nanoparticle that presents the extracellular domain of the influenza hemagglutinin antigen on its surface, designated as ferritin-HA. After characterizing its structure and properties, we evaluated its capacity to trigger an immune response and offer protection against influenza virus challenge in a mouse model. Results The recombinant ferritin-HA protein expressed in Chinese hamster ovary cells assembles into nanoparticles of a defined size. This nanoparticle vaccine enhances the uptake efficiency of Dendritic cells and promotes their maturation. Immunization with ferritin-HA nanoparticle in mice induced high levels of immunoglobulin G, hemagglutination inhibition antibodies, and microneutralization antibodies, demonstrating their stronger immunogenicity compared to current split virion vaccines. Additionally, ferritin-HA nanoparticle conferred well protection against a lethal challenge with a heterologous H3N2 influenza virus in mice. Conclusion This study indicates that a self-assembling ferritin-HA nanoparticle has great potential for enhancing immune response and protective efficacy in mice, presenting a promising strategy for developing next generation influenza vaccine candidate.
Collapse
Affiliation(s)
- Xu Wang
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Ziyao Qin
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Baoyuan Shang
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Zhilei Li
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Meiyi Zhao
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Qing Tang
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Qi Tang
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
| | - Jian Luo
- Department of Virology & Vaccine, Shanghai Institute of Biological Products, Shanghai, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
18
|
Li L, Zhou H. Development of an all-in-one pan-sarbecovirus ferritin nanoparticle vaccine in humans. THE LANCET. MICROBE 2025; 6:100974. [PMID: 39419050 DOI: 10.1016/j.lanmic.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Liuying Li
- Traditional Chinese Medicine Department, Zigong First People's Hospital, Zigong, Sichuan, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hao Zhou
- Department of Microbiology and Immunology, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
19
|
Chentoufi AA, Ulmer JB, BenMohamed L. Antigen Delivery Platforms for Next-Generation Coronavirus Vaccines. Vaccines (Basel) 2024; 13:30. [PMID: 39852809 PMCID: PMC11769099 DOI: 10.3390/vaccines13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of concern (VOCs). This underscores the critical need for next-generation broad-spectrum pan-Coronavirus vaccines (pan-CoV vaccine) to break this cycle and end the pandemic. The development of a pan-CoV vaccine offering protection against a wide array of VOCs requires two key elements: (1) identifying protective antigens that are highly conserved between passed, current, and future VOCs; and (2) developing a safe and efficient antigen delivery system for induction of broad-based and long-lasting B- and T-cell immunity. This review will (1) present the current state of antigen delivery platforms involving a multifaceted approach, including bioinformatics, molecular and structural biology, immunology, and advanced computational methods; (2) discuss the challenges facing the development of safe and effective antigen delivery platforms; and (3) highlight the potential of nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) as the platform that is well suited to the needs of a next-generation pan-CoV vaccine, such as the ability to induce broad-based immunity and amenable to large-scale manufacturing to safely provide durable protective immunity against current and future Coronavirus threats.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Li Y, Rodriguez-Otero MR, Champion JA. Self-assembled protein vesicles as vaccine delivery platform to enhance antigen-specific immune responses. Biomaterials 2024; 311:122666. [PMID: 38879893 DOI: 10.1016/j.biomaterials.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Self-assembling protein nanoparticles are beneficial platforms for enhancing the often weak and short-lived immune responses elicited by subunit vaccines. Their benefits include multivalency, similar sizes as pathogens and control of antigen orientation. Previously, the design, preparation, and characterization of self-assembling protein vesicles presenting fluorescent proteins and enzymes on the outer vesicle surface have been reported. Here, a full-size model antigen protein, ovalbumin (OVA), was genetically fused to the recombinant vesicle building blocks and incorporated into protein vesicles via self-assembly. Characterization of OVA protein vesicles showed room temperature stability and tunable size. Immunization of mice with OVA protein vesicles induced strong antigen-specific humoral and cellular immune responses. This work demonstrates the potential of protein vesicles as a modular platform for delivering full-size antigen proteins that can be extended to pathogen antigens to induce antigen specific immune responses.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Mariela R Rodriguez-Otero
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA
| | - Julie A Champion
- BioEngineering Program, Georgia Institute of Technology, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, USA.
| |
Collapse
|
21
|
Asrorov AM, Ayubov MS, Tu B, Shi M, Wang H, Mirzaakhmedov S, Kumar Nayak A, Abdurakhmonov IY, Huang Y. Coronavirus spike protein-based vaccines. Vaccine delivery systems. MEDICINE IN DRUG DISCOVERY 2024; 24:100198. [DOI: 10.1016/j.medidd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
|
22
|
Martinez EJ, Chang WC, Chen WH, Hajduczki A, Thomas PV, Jensen JL, Choe M, Sankhala RS, Peterson CE, Rees PA, Kimner J, Soman S, Kuklis C, Mendez-Rivera L, Dussupt V, King J, Corbett C, Mayer SV, Fernandes A, Murzello K, Cookenham T, Hvizdos J, Kummer L, Hart T, Lanzer K, Gambacurta J, Reagan M, Duso D, Vasan S, Collins ND, Michael NL, Krebs SJ, Gromowski GD, Modjarrad K, Kaundinya J, Joyce MG. SARS-CoV-2 ferritin nanoparticle vaccines produce hyperimmune equine sera with broad sarbecovirus activity. iScience 2024; 27:110624. [PMID: 39351195 PMCID: PMC11440237 DOI: 10.1016/j.isci.2024.110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The rapid emergence of SARS-CoV-2 variants of concern (VoC) and the threat of future zoonotic sarbecovirus spillover emphasizes the need for broadly protective next-generation vaccines and therapeutics. We utilized SARS-CoV-2 spike ferritin nanoparticle (SpFN), and SARS-CoV-2 receptor binding domain ferritin nanoparticle (RFN) immunogens, in an equine model to elicit hyperimmune sera and evaluated its sarbecovirus neutralization and protection capacity. Immunized animals rapidly elicited sera with the potent neutralization of SARS-CoV-2 VoC, and SARS-CoV-1 pseudoviruses, and potent binding against receptor binding domains from sarbecovirus clades 1b, 1a, 2, 3, and 4. Purified equine polyclonal IgG provided protection against Omicron XBB.1.5 virus in the K18-hACE2 transgenic mouse model. These results suggest that SARS-CoV-2-based nanoparticle vaccines can rapidly produce a broad and protective sarbecovirus response in the equine model and that equine serum has therapeutic potential against emerging SARS-CoV-2 VoC and diverse sarbecoviruses, presenting a possible alternative or supplement to monoclonal antibody immunotherapies.
Collapse
Affiliation(s)
- Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jordan Kimner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Courtney Corbett
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
23
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
Rodrigues M, Patão S, Thomaz M, Nunes T, Alves PM, Roldão A. Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles. Bioconjug Chem 2024; 35. [PMID: 39332819 PMCID: PMC11487507 DOI: 10.1021/acs.bioconjchem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Ferritin (Ft) nanoparticles have become versatile platforms for displaying antigens, being a promising technology for vaccine development. While genetic fusion has traditionally been the preferred method for antigen display, concerns about improper folding and steric hindrance that may compromise vaccine efficacy or stability have prompted alternative approaches. Bioconjugation offers the advantage of preserving native protein structure and function, with recent advancements improving efficiency and specificity. In this study, we used tyrosinase (TYR) to bioconjugate the receptor binding domain of the SARS-CoV-2 spike protein, tagged with a tyrosine (RBD-Y), to native cysteines on Ft, resulting in RBD-Y-Ft nanoparticles. We quantified available cysteines on ferritin using Ellman's assay and monitored their reduction during the reactions. Denaturing analytics (via SDS-PAGE, Western blot, and LC-TOF-MS) confirmed the formation of RBD-Y-Ft monomers with an expected molecular weight of 46 kDa. Mass photometry and HPLC estimated a molecular weight of RBD-Y-Ft nanoparticles of 680 kDa, which was higher than that of nonfunctionalized ferritin (480 kDa), indicating successful binding of up to eight RBD-Y antigens per 24-mer Ft nanoparticle. This work enhances our understanding of how Ft nanoparticles can be engineered to present antigens, leveraging them as a robust scaffold for producing tailored-made candidate vaccines in a timely manner.
Collapse
Affiliation(s)
- Margarida
Q. Rodrigues
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sara Patão
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Mónica Thomaz
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago Nunes
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António Roldão
- iBET,
Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB
NOVA, Instituto de Tecnologia Química e Biológica António
Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
25
|
Luong JHT. Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties. J Funct Biomater 2024; 15:267. [PMID: 39330242 PMCID: PMC11433040 DOI: 10.3390/jfb15090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
AMR occurs when bacteria, viruses, fungi, and parasites no longer respond to antimicrobial medicines, including antibiotics, antivirals, antifungals, and antiparasitics [...].
Collapse
Affiliation(s)
- John H T Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| |
Collapse
|
26
|
Zheng W, Li S, Shi Z, Su K, Ding Y, Zhang L, Tang Q, Han J, Zhao H, Wang F, Zhang H, Hong Z. Recombinant ferritin-based nanoparticles as neoantigen carriers significantly inhibit tumor growth and metastasis. J Nanobiotechnology 2024; 22:562. [PMID: 39272180 PMCID: PMC11401311 DOI: 10.1186/s12951-024-02837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Tumor neoantigen peptide-based vaccines, systemic immunotherapies that enhance antitumor immunity by activating and expanding antigen-specific T cells, have achieved remarkable results in the treatment of a variety of solid tumors. However, how to effectively deliver neoantigens to induce robust antitumor immune responses remains a major obstacle. RESULTS Here, we developed a safe and effective neoantigen peptide delivery system (neoantigen-ferritin nanoparticles, neoantigen-FNs) that successfully achieved effective lymph node targeting and induced robust antitumor immune responses. The genetically engineered self-assembled particles neoantigen-FNs with a size of 12 nm were obtained by fusing a neoantigen with optimized ferritin, which rapidly drainage to and continuously accumulate in lymph nodes. The neoantigen-FNs vaccine induced a greater quantity and quality of antigen-specific CD8+ T cells and resulted in significant growth control of multiple tumors, dramatic inhibition of melanoma metastasis and regression of established tumors. In addition, no obvious toxic side effects were detected in the various models, indicating the high safety of optimized ferritin as a vaccine carrier. CONCLUSIONS Homogeneous and safe neoantigen-FNs could be a very promising system for neoantigen peptide delivery because of their ability to efficiently drainage to lymph nodes and induce efficient antitumor immune responses.
Collapse
Affiliation(s)
- Wei Zheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shixiong Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Zhongliang Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Kailing Su
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Yu Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Luyue Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qian Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Jiani Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Han Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Fengwei Wang
- School of Medicine, Nankai University, Tianjin, 300071, PR China
- People's Hospital of Tianjin, Tianjin, 300180, PR China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Shenzhen, 518045, PR China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
- Nankai International Advanced Research Institute (SHENZHEN FUTIAN), Shenzhen, 518045, PR China.
| |
Collapse
|
27
|
Tan Z, Yang C, Lin PH, Ramadan S, Yang W, Rashidi Z, Lang S, Shafieichaharberoud F, Gao J, Pan X, Soloff N, Wu X, Bolin S, Pyeon D, Huang X. Inducing Long Lasting B Cell and T Cell Immunity Against Multiple Variants of SARS-CoV-2 Through Mutant Bacteriophage Qβ-Receptor Binding Domain Conjugate. Adv Healthc Mater 2024; 13:e2302755. [PMID: 38733291 PMCID: PMC11305917 DOI: 10.1002/adhm.202302755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/04/2024] [Indexed: 05/13/2024]
Abstract
More than 3 years into the global pandemic, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a significant threat to public health. Immunities acquired from infection or current vaccines fail to provide long term protection against subsequent infections, mainly due to their fast-waning nature and the emergence of variants of concerns (VOCs) such as Omicron. To overcome these limitations, SARS-CoV-2 Spike protein receptor binding domain (RBD)-based epitopes are investigated as conjugates with a powerful carrier, the mutant bacteriophage Qβ (mQβ). The epitope design is critical to eliciting potent antibody responses with the full length RBD being superior to peptide and glycopeptide antigens. The full length RBD conjugated with mQβ activates both humoral and cellular immune systems in vivo, inducing broad spectrum, persistent, and comprehensive immune responses effective against multiple VOCs including Delta and Omicron variants, rendering it a promising vaccine candidate.
Collapse
Affiliation(s)
- Zibin Tan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Po-Han Lin
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemistry, Benha University, Benha, 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Zahra Rashidi
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Fatemeh Shafieichaharberoud
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xingling Pan
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nachy Soloff
- Hatzalah of Michigan, 13650 Oak Park Blvd., Oak Park, MI, 48237, USA
| | - Xuanjun Wu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong, 250100, China
| | - Steven Bolin
- Veterinary Diagnostic Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Liu T, Li M, Tian Y, Dong Y, Liu N, Wang Z, Zhang H, Zheng A, Cui C. Immunogenicity and safety of a self-assembling ZIKV nanoparticle vaccine in mice. Int J Pharm 2024; 660:124320. [PMID: 38866086 DOI: 10.1016/j.ijpharm.2024.124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that highly susceptibly causes Guillain-Barré syndrome and microcephaly in newborns. Vaccination is one of the most effective measures for preventing infectious diseases. However, there is currently no approved vaccine to prevent ZIKV infection. Here, we developed nanoparticle (NP) vaccines by covalently conjugating self-assembled 24-subunit ferritin to the envelope structural protein subunit of ZIKV to achieve antigen polyaggregation. The immunogenicityof the NP vaccine was evaluated in mice. Compared to monomer vaccines, the NP vaccine achieved effective antigen presentation, promoted the differentiation of follicular T helper cells in lymph nodes, and induced significantly greater antigen-specific humoral and cellular immune responses. Moreover, the NP vaccine enhanced high-affinity antigen-specific IgG antibody levels, increased secretion of the cytokines IL-4 and IFN-γ by splenocytes, significantly activated T/B lymphocytes, and improved the generation of memory T/B cells. In addition, no significant adverse reactions occurred when NP vaccine was combined with adjuvants. Overall, ferritin-based NP vaccines are safe and effective ZIKV vaccine candidates.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yuhan Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China; Beijing Laboratory of Biomedical Materials, Beijing 100069, China.
| |
Collapse
|
29
|
Furukawa H, Nakamura S, Mizuta R, Sakamoto K, Inaba H, Sawada SI, Sasaki Y, Akiyoshi K, Matsuura K. Enveloped Viral Replica Equipped with Spike Protein Derived from SARS-CoV-2. ACS Synth Biol 2024; 13:2029-2037. [PMID: 38885191 DOI: 10.1021/acssynbio.4c00165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Synthetic viral nanostructures are useful as materials for analyzing the biological behavior of natural viruses and as vaccine materials. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus embedding a spike (S) protein involved in host cell infection. Although nanomaterials modified with an S protein without an envelope membrane have been developed, they are considered unsuitable for stability and functionality. We previously constructed an enveloped viral replica complexed with a cationic lipid bilayer and an anionic artificial viral capsid self-assembled from β-annulus peptides. In this study, we report the first example of an enveloped viral replica equipped with an S protein derived from SARS-CoV-2. Interestingly, even the S protein equipped on the enveloped viral replica bound strongly to the free angiotensin-converting enzyme 2 (ACE2) receptor as well as ACE2 localized on the cell membrane.
Collapse
Affiliation(s)
- Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Sosuke Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentarou Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
30
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
31
|
Wu X, Li W, Rong H, Pan J, Zhang X, Hu Q, Shi ZL, Zhang XE, Cui Z. A Nanoparticle Vaccine Displaying Conserved Epitopes of the Preexisting Neutralizing Antibody Confers Broad Protection against SARS-CoV-2 Variants. ACS NANO 2024; 18:17749-17763. [PMID: 38935412 DOI: 10.1021/acsnano.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rapid development of the SARS-CoV-2 vaccine has been used to prevent the spread of coronavirus 2019 (COVID-19). However, the ongoing and future pandemics caused by SARS-CoV-2 variants and mutations underscore the need for effective vaccines that provide broad-spectrum protection. Here, we developed a nanoparticle vaccine with broad protection against divergent SARS-CoV-2 variants. The corresponding conserved epitopes of the preexisting neutralizing (CePn) antibody were presented on a self-assembling Helicobacter pylori ferritin to generate the CePnF nanoparticle. Intranasal immunization of mice with CePnF nanoparticles induced robust humoral, cellular, and mucosal immune responses and a long-lasting immunity. The CePnF-induced antibodies exhibited cross-reactivity and neutralizing activity against different coronaviruses (CoVs). CePnF vaccination significantly inhibited the replication and pathology of SARS-CoV-2 Delta, WIV04, and Omicron strains in hACE2 transgenic mice and, thus, conferred broad protection against these SARS-CoV-2 variants. Our constructed nanovaccine targeting the conserved epitopes of the preexisting neutralizing antibodies can serve as a promising candidate for a universal SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Xuefan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Heng Rong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zheng-Li Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xian-En Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
32
|
Xu M, Wei S, Duan L, Ji Y, Han X, Sun Q, Weng L. The recent advancements in protein nanoparticles for immunotherapy. NANOSCALE 2024; 16:11825-11848. [PMID: 38814163 DOI: 10.1039/d4nr00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, the advancement of nanoparticle-based immunotherapy has introduced an innovative strategy for combatting diseases. Compared with other types of nanoparticles, protein nanoparticles have obtained substantial attention owing to their remarkable biocompatibility, biodegradability, ease of modification, and finely designed spatial structures. Nature provides several protein nanoparticle platforms, including viral capsids, ferritin, and albumin, which hold significant potential for disease treatment. These naturally occurring protein nanoparticles not only serve as effective drug delivery platforms but also augment antigen delivery and targeting capabilities through techniques like genetic modification and covalent conjugation. Motivated by nature's originality and driven by progress in computational methodologies, scientists have crafted numerous protein nanoparticles with intricate assembly structures, showing significant potential in the development of multivalent vaccines. Consequently, both naturally occurring and de novo designed protein nanoparticles are anticipated to enhance the effectiveness of immunotherapy. This review consolidates the advancements in protein nanoparticles for immunotherapy across diseases including cancer and other diseases like influenza, pneumonia, and hepatitis.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Siyuan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lifan Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yifan Ji
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaofan Han
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Sun
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
33
|
Pandey KK, Sahoo BR, Pattnaik AK. Protein Nanoparticles as Vaccine Platforms for Human and Zoonotic Viruses. Viruses 2024; 16:936. [PMID: 38932228 PMCID: PMC11209504 DOI: 10.3390/v16060936] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vaccines are one of the most effective medical interventions, playing a pivotal role in treating infectious diseases. Although traditional vaccines comprise killed, inactivated, or live-attenuated pathogens that have resulted in protective immune responses, the negative consequences of their administration have been well appreciated. Modern vaccines have evolved to contain purified antigenic subunits, epitopes, or antigen-encoding mRNAs, rendering them relatively safe. However, reduced humoral and cellular responses pose major challenges to these subunit vaccines. Protein nanoparticle (PNP)-based vaccines have garnered substantial interest in recent years for their ability to present a repetitive array of antigens for improving immunogenicity and enhancing protective responses. Discovery and characterisation of naturally occurring PNPs from various living organisms such as bacteria, archaea, viruses, insects, and eukaryotes, as well as computationally designed structures and approaches to link antigens to the PNPs, have paved the way for unprecedented advances in the field of vaccine technology. In this review, we focus on some of the widely used naturally occurring and optimally designed PNPs for their suitability as promising vaccine platforms for displaying native-like antigens from human viral pathogens for protective immune responses. Such platforms hold great promise in combating emerging and re-emerging infectious viral diseases and enhancing vaccine efficacy and safety.
Collapse
Affiliation(s)
- Kush K. Pandey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (K.K.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
34
|
Ober Shepherd BL, Scott PT, Hutter JN, Lee C, McCauley MD, Guzman I, Bryant C, McGuire S, Kennedy J, Chen WH, Hajduczki A, Mdluli T, Valencia-Ruiz A, Amare MF, Matyas GR, Rao M, Rolland M, Mascola JR, De Rosa SC, McElrath MJ, Montefiori DC, Serebryannyy L, McDermott AB, Peel SA, Collins ND, Joyce MG, Robb ML, Michael NL, Vasan S, Modjarrad K. SARS-CoV-2 recombinant spike ferritin nanoparticle vaccine adjuvanted with Army Liposome Formulation containing monophosphoryl lipid A and QS-21: a phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial. THE LANCET. MICROBE 2024; 5:e581-e593. [PMID: 38761816 PMCID: PMC11192176 DOI: 10.1016/s2666-5247(23)00410-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 05/20/2024]
Abstract
BACKGROUND A self-assembling SARS-CoV-2 WA-1 recombinant spike ferritin nanoparticle (SpFN) vaccine co-formulated with Army Liposomal Formulation (ALFQ) adjuvant containing monophosphoryl lipid A and QS-21 (SpFN/ALFQ) has shown protective efficacy in animal challenge models. This trial aims to assess the safety and immunogenicity of SpFN/ALFQ in a first-in-human clinical trial. METHODS In this phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial, adults were randomly assigned (5:5:2) to receive 25 μg or 50 μg of SpFN/ALFQ or saline placebo intramuscularly at day 1 and day 29, with an optional open-label third vaccination at day 181. Enrolment and randomisation occurred sequentially by group; randomisation was done by an interactive web-based randomisation system and only designated unmasked study personnel had access to the randomisation code. Adults were required to be seronegative and unvaccinated for inclusion. Local and systemic reactogenicity, adverse events, binding and neutralising antibodies, and antigen-specific T-cell responses were quantified. For safety analyses, exact 95% Clopper-Pearson CIs for the probability of any incidence of an unsolicited adverse event was computed for each group. For immunogenicity results, CIs for binary variables were computed using the exact Clopper-Pearson methodology, while CIs for geometric mean titres were based on 10 000 empirical bootstrap samples. Post-hoc, paired one-sample t tests were used to assess the increase in mean log-10 neutralising antibody titres between day 29 and day 43 (after the second vaccination) for the primary SARS-CoV-2 targets of interest. This trial is registered at ClinicalTrials.gov, NCT04784767, and is closed to new participants. FINDINGS Between April 7, and June 29, 2021, 29 participants were enrolled in the study. 20 individuals were assigned to receive 25 μg SpFN/ALFQ, four to 50 μg SpFN/ALFQ, and five to placebo. Neutralising antibody responses peaked at day 43, 2 weeks after the second dose. Neutralisation activity against multiple omicron subvariants decayed more slowly than against the D614G or beta variants until 5 months after second vaccination for both dose groups. CD4+ T-cell responses were elicited 4 weeks after the first dose and were boosted after a second dose of SpFN/ALFQ for both dose groups. Neutralising antibody titres against early omicron subvariants and clade 1 sarbecoviruses were detectable after two immunisations and peaked after the third immunisation for both dose groups. Neutralising antibody titres against XBB.1.5 were detected after three vaccinations. Passive IgG transfer from vaccinated volunteers into Syrian golden hamsters controlled replication of SARS-CoV-1 after challenge. INTERPRETATION SpFN/ALFQ was well tolerated and elicited robust and durable binding antibody and neutralising antibody titres against a broad panel of SARS-CoV-2 variants and other sarbecoviruses. FUNDING US Department of Defense, Defense Health Agency.
Collapse
Affiliation(s)
- Brittany L Ober Shepherd
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul T Scott
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Global Clinical Development, Vaccines, Merck, Rahway, NJ, USA
| | - Jack N Hutter
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christine Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melanie D McCauley
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ivelese Guzman
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Wei-Hung Chen
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Thembi Mdluli
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anais Valencia-Ruiz
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret F Amare
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mangala Rao
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Departments of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Departments of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Immunology, Sanofi Vaccines, Lyon, France
| | - Sheila A Peel
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - M Gordon Joyce
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Sandhya Vasan
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Vaccine Research and Development, Pfizer, Pearl River, NY, USA
| |
Collapse
|
35
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
36
|
Salinas ND, Ma R, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. A Self-Assembling Pfs230D1-Ferritin Nanoparticle Vaccine Has Potent and Durable Malaria Transmission-Reducing Activity. Vaccines (Basel) 2024; 12:546. [PMID: 38793797 PMCID: PMC11125772 DOI: 10.3390/vaccines12050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria is caused by eukaryotic protozoan parasites of the genus Plasmodium. There are 249 million new cases and 608,000 deaths annually, and new interventions are desperately needed. Malaria vaccines can be divided into three categories: liver stage, blood stage, or transmission-blocking vaccines. Transmission-blocking vaccines prevent the transmission of disease by the mosquito vector from one human to another. Pfs230 is one of the leading transmission-blocking vaccine antigens for malaria. Here, we describe the development of a 24-copy self-assembling nanoparticle vaccine comprising domain 1 of Pfs230 genetically fused to H. pylori ferritin. The single-component Pfs230D1-ferritin construct forms a stable and homogenous 24-copy nanoparticle with good production yields. The nanoparticle is highly immunogenic, as two low-dose vaccinations of New Zealand White rabbits elicited a potent and durable antibody response with high transmission-reducing activity when formulated in two distinct adjuvants suitable for translation to human use. This single-component 24-copy Pfs230D1-ferritin nanoparticle vaccine has the potential to improve production pipelines and the cost of manufacturing a potent and durable transmission-blocking vaccine for malaria control.
Collapse
Affiliation(s)
- Nichole D. Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.D.S.)
| | - Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.D.S.)
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lynn E. Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (N.D.S.)
| |
Collapse
|
37
|
Wang W, Meng X, Cui H, Zhang C, Wang S, Feng N, Zhao Y, Wang T, Yan F, Xia X. Self-assembled ferritin-based nanoparticles elicit a robust broad-spectrum protective immune response against SARS-CoV-2 variants. Int J Biol Macromol 2024; 264:130820. [PMID: 38484812 DOI: 10.1016/j.ijbiomac.2024.130820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| |
Collapse
|
38
|
Zhang Y, Zhang J, Li D, Mao Q, Li X, Liang Z, He Q. A Cocktail of Lipid Nanoparticle-mRNA Vaccines Broaden Immune Responses against β-Coronaviruses in a Murine Model. Viruses 2024; 16:484. [PMID: 38543849 PMCID: PMC10976147 DOI: 10.3390/v16030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
Severe acute respiratory syndrome (SARS)-coronavirus (CoV), Middle Eastern respiratory syndrome (MERS)-CoV, and SARS-CoV-2 have seriously threatened human life in the 21st century. Emerging and re-emerging β-coronaviruses after the coronavirus disease 2019 (COVID-19) epidemic remain possible highly pathogenic agents that can endanger human health. Thus, pan-β-coronavirus vaccine strategies to combat the upcoming dangers are urgently needed. In this study, four LNP-mRNA vaccines, named O, D, S, and M, targeting the spike protein of SARS-CoV-2 Omicron, Delta, SARS-CoV, and MERS-CoV, respectively, were synthesized and characterized for purity and integrity. All four LNP-mRNAs induced effective cellular and humoral immune responses against the corresponding spike protein antigens in mice. Furthermore, LNP-mRNA S and D induced neutralizing antibodies against SARS-CoV and SARS-CoV-2, which failed to cross-react with MERS-CoV. Subsequent evaluation of sequential and cocktail immunizations with LNP-mRNA O, D, S, and M effectively elicited broad immunity against SARS-CoV-2 variants, SARS-CoV, and MERS-CoV. A direct comparison of the sequential with cocktail regimens indicated that the cocktail vaccination strategy induced more potent neutralizing antibodies and T-cell responses against heterotypic viruses as well as broader antibody activity against pan-β-coronaviruses. Overall, these results present a potential pan-β-coronavirus vaccine strategy for improved preparedness prior to future coronavirus threats.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongmei Li
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| | - Xiuling Li
- Shanghai Biological Products Research Institute Co., Ltd., State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Shanghai 200052, China;
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; (Y.Z.); (J.Z.)
| |
Collapse
|
39
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Wang E, Cohen AA, Caldera LF, Keeffe JR, Rorick AV, Aida YM, Gnanapragasam PN, Bjorkman PJ, Chakraborty AK. Designed mosaic nanoparticles enhance cross-reactive immune responses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582544. [PMID: 38464322 PMCID: PMC10925254 DOI: 10.1101/2024.02.28.582544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
1Using computational methods, we designed 60-mer nanoparticles displaying SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) by (i) creating RBD sequences with 6 mutations in the SARS-COV-2 WA1 RBD that were predicted to retain proper folding and abrogate antibody responses to variable epitopes (mosaic-2COMs; mosaic-5COM), and (ii) selecting 7 natural sarbecovirus RBDs (mosaic-7COM). These antigens were compared with mosaic-8b, which elicits cross-reactive antibodies and protects from sarbecovirus challenges in animals. Immunizations in naïve and COVID-19 pre-vaccinated mice revealed that mosaic-7COM elicited higher binding and neutralization titers than mosaic-8b and related antigens. Deep mutational scanning showed that mosaic-7COM targeted conserved RBD epitopes. Mosaic-2COMs and mosaic-5COM elicited higher titers than homotypic SARS-CoV-2 Beta RBD-nanoparticles and increased potencies against some SARS-CoV-2 variants than mosaic-7COM. However, mosaic-7COM elicited more potent responses against zoonotic sarbecoviruses and highly mutated Omicrons. These results support using mosaic-7COM to protect against highly mutated SARS-CoV-2 variants and zoonotic sarbecoviruses with spillover potential.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- These authors contributed equally
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- These authors contributed equally
| | - Luis F. Caldera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Yusuf M. Aida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
- Present address: School of Clinical Medicine, University of Cambridge, Hills Rd, Cambridge, CB2 0SP, UK
| | | | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139
- Lead contact
| |
Collapse
|
41
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
42
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
43
|
Sankhala RS, Dussupt V, Chen WH, Bai H, Martinez EJ, Jensen JL, Rees PA, Hajduczki A, Chang WC, Choe M, Yan L, Sterling SL, Swafford I, Kuklis C, Soman S, King J, Corbitt C, Zemil M, Peterson CE, Mendez-Rivera L, Townsley SM, Donofrio GC, Lal KG, Tran U, Green EC, Smith C, de Val N, Laing ED, Broder CC, Currier JR, Gromowski GD, Wieczorek L, Rolland M, Paquin-Proulx D, van Dyk D, Britton Z, Rajan S, Loo YM, McTamney PM, Esser MT, Polonis VR, Michael NL, Krebs SJ, Modjarrad K, Joyce MG. Antibody targeting of conserved sites of vulnerability on the SARS-CoV-2 spike receptor-binding domain. Structure 2024; 32:131-147.e7. [PMID: 38157856 PMCID: PMC11145656 DOI: 10.1016/j.str.2023.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Spencer L Sterling
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jocelyn King
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Courtney Corbitt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Samantha M Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ethan C Green
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dewald van Dyk
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Zachary Britton
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yueh Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
44
|
Sevinc Ozdemir N, Belyaev D, Castro MN, Balakin S, Opitz J, Wihadmadyatami H, Anggraeni R, Yucel D, Kenar H, Beshchasna N, Ana ID, Hasirci V. Advances in In Vitro Blood-Air Barrier Models and the Use of Nanoparticles in COVID-19 Research. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:82-96. [PMID: 37597193 DOI: 10.1089/ten.teb.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Respiratory infections caused by coronaviruses (CoVs) have become a major public health concern in the past two decades as revealed by the emergence of SARS-CoV in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The most severe clinical phenotypes commonly arise from exacerbation of immune response following the infection of alveolar epithelial cells localized at the pulmonary blood-air barrier. Preclinical rodent models do not adequately represent the essential genetic properties of the barrier, thus necessitating the use of humanized transgenic models. However, existing monolayer cell culture models have so far been unable to mimic the complex lung microenvironment. In this respect, air-liquid interface models, tissue engineered models, and organ-on-a-chip systems, which aim to better imitate the infection site microenvironment and microphysiology, are being developed to replace the commonly used monolayer cell culture models, and their use is becoming more widespread every day. On the contrary, studies on the development of nanoparticles (NPs) that mimic respiratory viruses, and those NPs used in therapy are progressing rapidly. The first part of this review describes in vitro models that mimic the blood-air barrier, the tissue interface that plays a central role in COVID-19 progression. In the second part of the review, NPs mimicking the virus and/or designed to carry therapeutic agents are explained and exemplified.
Collapse
Affiliation(s)
- Neval Sevinc Ozdemir
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- Department of Medical Biotechnology, ACU Graduate School of Health Sciences, Istanbul, Turkey
- ACU Department of Pharmaceutical Basic Sciences, School of Pharmacy, Istanbul, Turkey
| | - Dmitry Belyaev
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Manuel Nieto Castro
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Sascha Balakin
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Hevi Wihadmadyatami
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Rahmi Anggraeni
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Deniz Yucel
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- Department of Histology and Embryology, ACU School of Medicine, Istanbul, Turkey
| | - Halime Kenar
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- ACU Faculty of Engineering Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche Straße 2, Dresden, Germany
| | - Ika Dewi Ana
- Department of Tissue Engineering and Regenerative Medicine, Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency (BRIN) and Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada (UGM), Bulaksumur, Yogyakarta, Indonesia
| | - Vasif Hasirci
- Acibadem University (ACU) Biomaterials A&R Center, Atasehir, Istanbul, Turkey
- ACU Graduate Department of Biomaterials, Istanbul, Turkey
- ACU Faculty of Engineering Sciences, Department of Biomedical Engineering, Istanbul, Turkey
- BIOMATEN, METU Ctr. of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| |
Collapse
|
45
|
Wamhoff EC, Ronsard L, Feldman J, Knappe GA, Hauser BM, Romanov A, Case JB, Sanapala S, Lam EC, Denis KJS, Boucau J, Barczak AK, Balazs AB, Diamond MS, Schmidt AG, Lingwood D, Bathe M. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. Nat Commun 2024; 15:795. [PMID: 38291019 PMCID: PMC10828404 DOI: 10.1038/s41467-024-44869-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Larance Ronsard
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Jared Feldman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blake M Hauser
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Kerri J St Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amy K Barczak
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Alejandro B Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA.
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Wang Y, Liu S, Li B, Sun X, Pan Q, Zheng Y, Liu J, Zhao Y, Wang J, Liu L, Du E. A novel CpG ODN compound adjuvant enhances immune response to spike subunit vaccines of porcine epidemic diarrhea virus. Front Immunol 2024; 15:1336239. [PMID: 38322258 PMCID: PMC10846067 DOI: 10.3389/fimmu.2024.1336239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs) boost the humoral and cellular immune responses to antigens through interaction with Toll-like receptor 9 (TLR9). These CpG ODNs have been extensively utilized in human vaccines. In our study, we evaluated five B-type CpG ODNs that have stimulatory effects on pigs by measuring the proliferation of porcine peripheral blood mononuclear cells (PBMCs) and assessing interferon gamma (IFN-γ) secretion. Furthermore, this study examined the immunoenhancing effects of the MF59 and CpG ODNs compound adjuvant in mouse and piglet models of porcine epidemic diarrhea virus (PEDV) subunit vaccine administration. The in vitro screening revealed that the CpG ODN named CpG5 significantly stimulated the proliferation of porcine PBMCs and elevated IFN-γ secretion levels. In the mouse vaccination model, CpG5 compound adjuvant significantly bolstered the humoral and cellular immune responses to the PEDV subunit vaccines, leading to Th1 immune responses characterized by increased IFN-γ and IgG2a levels. In piglets, the neutralizing antibody titer was significantly enhanced with CpG5 compound adjuvant, alongside a considerable increase in CD8+ T lymphocytes proportion. The combination of MF59 adjuvant and CpG5 exhibits a synergistic effect, resulting in an earlier, more intense, and long-lasting immune response in subunit vaccines for PEDV. This combination holds significant promise as a robust candidate for the development of vaccine adjuvant.
Collapse
Affiliation(s)
- Yating Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shijia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Boshuo Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinyao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qi Pan
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, China
| | - Yuxin Zheng
- Yangling Carey Biotechnology Co., Ltd., Yangling, China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongqiang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Liming Liu
- Nanjing JSIAMA Biopharmaceuticals Ltd., Nanjing, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Yangling Carey Biotechnology Co., Ltd., Yangling, China
| |
Collapse
|
47
|
Xu K, Li J, Lu X, Ge X, Wang K, Wang J, Qiao Z, Quan Y, Li C. The Immunogenicity of CpG, MF59-like, and Alum Adjuvant Delta Strain Inactivated SARS-CoV-2 Vaccines in Mice. Vaccines (Basel) 2024; 12:60. [PMID: 38250873 PMCID: PMC10819607 DOI: 10.3390/vaccines12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The continuous evolution and mutation of SARS-CoV-2 have highlighted the need for more effective vaccines. In this study, CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines were prepared, and the immunogenicity of these vaccines in mice was evaluated. The Delta + MF59-like vaccine group produced the highest levels of S- and RBD-binding antibodies and live Delta virus neutralization levels after one shot of immunization, while mice in the Delta + Alum vaccine group had the highest levels of these antibodies after two doses, and the Delta + MF59-like and Delta + Alum vaccine groups produced high levels of cross-neutralization antibodies against prototype, Beta, and Gamma strain SARS-CoV-2 viruses. There was no significant decrease in neutralizing antibody levels in any vaccine group during the observation period. CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines excited different antibody subtypes compared with unadjuvanted vaccines; the Delta + CpG vaccine group had a higher proportion of IgG2b antibodies, indicating bias towards Th1 immunity. The proportions of IgG1 and IgG2b in the Delta + MF59-like vaccine group were similar to those of the unadjuvanted vaccine. However, the Delta + Alum vaccine group had a higher proportion of IgG1 antibodies, indicating bias towards Th2 immunity. Antigen-specific cytokine secretion CD4/8+ T cells were analyzed. In conclusion, the results of this study show differences in the immune efficacy of CpG, MF59-like, and Alum adjuvant Delta strain inactivated SARS-CoV-2 vaccines in mice, which have significant implications for the selection strategy for vaccine adjuvants.
Collapse
Affiliation(s)
- Kangwei Xu
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Jing Li
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Xu Lu
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Xiaoqin Ge
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Kaiqin Wang
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Jiahao Wang
- Sinovac Life Sciences Co., Ltd., No. 21, Tianfu St., Daxing Biomedicine Industrial Base of Zhongguancun Science Park, Daxing District, Beijing 100050, China
| | - Zhizhong Qiao
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Yaru Quan
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| | - Changgui Li
- National Institutes for Food and Drug Control, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China; (K.X.)
| |
Collapse
|
48
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
49
|
Girma A, Mebratie G, Alamnie G, Bekele T. Advances With Selected Nanostructured Materials in Health Care. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2024. [DOI: 10.1016/b978-0-323-95486-0.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
50
|
Wang Z, Zhang B, Ou L, Qiu Q, Wang L, Bylund T, Kong WP, Shi W, Tsybovsky Y, Wu L, Zhou Q, Chaudhary R, Choe M, Dickey TH, El Anbari M, Olia AS, Rawi R, Teng IT, Wang D, Wang S, Tolia NH, Zhou T, Kwong PD. Extraordinary Titer and Broad Anti-SARS-CoV-2 Neutralization Induced by Stabilized RBD Nanoparticles from Strain BA.5. Vaccines (Basel) 2023; 12:37. [PMID: 38250850 PMCID: PMC10821209 DOI: 10.3390/vaccines12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 μg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of β-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Zhantong Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingyuan Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Thayne H. Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Mohammed El Anbari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| |
Collapse
|