1
|
Xia J, Qiu Y, Li W, Zhang Y, Liu L, Wang Y, Mou W, Xue D. Genome-Wide In Silico Analysis of 1-Aminocyclopropane-1-carboxylate oxidase (ACO) Gene Family in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3490. [PMID: 39771188 PMCID: PMC11728468 DOI: 10.3390/plants13243490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
The plant hormone ethylene elicits crucial regulatory effects on plant growth, development, and stress resistance. As the enzyme that catalyzes the final step of ethylene biosynthesis, 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO) plays a key role in precisely controlling ethylene production. However, the functional characterization of the ACO gene family in rice remains largely unexplored. In this study, we performed a phylogenetic analysis of seven OsACO genes (OsACO1-OsACO7), which were classified into three subfamilies (Types I, II, and III). The members within the same clades exhibited similar tertiary structures and conserved protein motifs. We conducted inter/intraspecies covariance assays of OsACOs to elucidate their evolutionary and duplication events. Numerous cis-acting elements identified in OsACO promoter regions are associated with development, hormonal stimuli, and environmental responses. The expression assay by RT-qPCR revealed that OsACO genes exhibited tissue-specific expression and were significantly altered under various abiotic stresses, indicating their potential involvement in these processes regulated at the transcriptional level. Additionally, we predicted candidate-targeting miRNAs and identified putative cysteine sites of S-nitrosylation (SNO) and S-sulfhydration (SSH) in OsACOs, providing insights into their post-transcriptional and post-translational regulatory mechanisms. These findings pave the way for the further investigation of OsACO functions and their potential applications in improving rice growth and stress resilience by modulating ethylene biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Y.Q.); (W.L.); (Y.Z.); (L.L.); (Y.W.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (Y.Q.); (W.L.); (Y.Z.); (L.L.); (Y.W.)
| |
Collapse
|
2
|
Heslop-Harrison G, Nakabayashi K, Espinosa-Ruiz A, Robertson F, Baines R, Thompson CRL, Hermann K, Alabadí D, Leubner-Metzger G, Williams RSB. Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants. PLANT COMMUNICATIONS 2024; 5:100846. [PMID: 38460510 PMCID: PMC11211550 DOI: 10.1016/j.xplc.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
Collapse
Affiliation(s)
- George Heslop-Harrison
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Kazumi Nakabayashi
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Ana Espinosa-Ruiz
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Francesca Robertson
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Gerhard Leubner-Metzger
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.
| |
Collapse
|
3
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
4
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
5
|
Chauhan H, Aiana, Singh K. Genome-wide identification of 2-oxoglutarate and Fe (II)-dependent dioxygenase family genes and their expression profiling under drought and salt stress in potato. PeerJ 2023; 11:e16449. [PMID: 38025721 PMCID: PMC10666615 DOI: 10.7717/peerj.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The 2-Oxoglutatrate-dependent dioxygenases (2OGDs) comprise the 2-Oxoglutatrate and Fe(II)-dependent dioxygenases (2ODD) enzyme families that facilitate the biosynthesis of various compounds like gibberellin, ethylene, etc. The 2OGDs are also involved in various catabolism pathways, such as auxin and salicylic acid catabolism. Despite their important roles, 2ODDs have not been studied in potato, which is the third most important crop globally. In this study, a comprehensive genome wide analysis was done to identify all 2ODDs in potatoes, and the putative genes were analysed for the presence of the signature 2OG-FeII_Oxy (PF03171) domain and the conserved DIOX_N (PF14226) domain. A total of 205 St2ODDs were identified and classified into eight groups based on their function. The physiochemical properties, gene structures, and motifs were analysed, and gene duplication events were also searched for St2ODDs. The active amino acid residues responsible for binding with 2-oxoglutarate and Fe (II) were conserved throughout the St2ODDs. The three-dimensional (3D) structures of the representative members of flavanol synthase (FNS), 1-aminocyclopropane-1-carboxylic acid oxidases (ACOs), and gibberellin oxidases (GAOXs) were made and docked with their respective substrates, and the potential interactions were visualised. The expression patterns of the St2ODDs under abiotic stressors such as heat, salt, and drought were also analysed. We found altered expression levels of St2ODDs under abiotic stress conditions, which was further confirmed for drought and salt stress using qRT-PCR. The expression levels of St2ODD115, St2ODD34, and St2ODD99 were found to be upregulated in drought stress with 2.2, 1.8, and 2.6 fold changes, respectively. After rewatering, the expression levels were normal. In salt stress, the expression levels of St2ODD151, St2ODD76, St2ODD91, and St2ODD34 were found to be upregulated after 24 hours (h), 48 hours (h), 72 hours (h), and 96 hours (h). Altogether, the elevated expression levels suggest the importance of St2ODDs under abiotic stresses, i.e., drought and salt. Overall, our study provided a knowledge base for the 2ODD gene family in potato, which can be used further to study the important roles of 2ODDs in potato plants.
Collapse
Affiliation(s)
- Hanny Chauhan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Aiana
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Yadav M, Panwar R, Rustagi A, Chakraborty A, Roy A, Singh IK, Singh A. Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense. FRONTIERS IN PLANT SCIENCE 2023; 14:1221526. [PMID: 38023937 PMCID: PMC10654349 DOI: 10.3389/fpls.2023.1221526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
Plants being sessile organisms and lacking both circulating phagocytic cells and somatic adaptive immune response, have thrived on various defense mechanisms to fend off insect pests and invasion of pathogens. CYP450s are the versatile enzymes, which thwart plants against insect pests by ubiquitous biosynthesis of phytohormones, antioxidants, and secondary metabolites, utilizing them as feeding deterrents and direct toxins. Therefore, a comprehensive analysis of biotic stress-responsive CYPs from Glycine max was performed to ascertain their function against S. litura-infestation. Phylogenetic analysis and evolutionary studies on conserved domains and motifs disclosed the evolutionary correspondence of these GmCYPs with already characterized members of the CYP450 superfamily and close relatedness to Medicago truncatula. These GmCYPs were mapped on 13 chromosomes; they possess 1-8 exons; they have evolved due to duplication and are localized in endoplasmic reticulumn. Further, identification of methyl-jasmonate, salicylic acid, defense responsive and flavonoid biosynthesis regulating cis-acting elements, their interaction with biotic stress regulating proteins and their differential expression in diverse types of tissues, and during herbivory, depicted their responsiveness to biotic stress. Three-dimensional homology modelling of GmCYPs, docking with heme cofactor required for their catalytic activity and enzyme-substrate interactions were performed to understand the functional mechanism of their action. Moreover, to gain insight into their involvement in plant defense, gene expression analysis was evaluated, which revealed differential expression of 11 GmCYPs upon S. litura-infestation, 12 GmCYPs on wounding while foliar spray of ethylene, methyl-jasmonate and salicylic acid differentially regulated 11 GmCYPs, 6 GmCYPs, and 10 GmCYPs respectively. Our study comprehensively analysed the underlying mechanism of GmCYPs function during S. litura-infestation, which can be further utilized for functional characterization to develop new strategies for enhancing soybean resistance to insect pests.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Ruby Panwar
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, Delhi, India
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Forest Molecular Entomology Lab, EXTEMIT-K, EVA 4.0, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, Gargi College, University of Delhi, Delhi, India
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Chelliah A, Arumugam C, Punchakkara PM, Suthanthiram B, Raman T, Subbaraya U. Genome-wide characterization of 2OGD superfamily for mining of susceptibility factors responding to various biotic stresses in Musa spp. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1319-1338. [PMID: 38024958 PMCID: PMC10678914 DOI: 10.1007/s12298-023-01380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Bananas are an important staple food and cash crop, but they are vulnerable to a variety of pests and diseases that substantially reduce yield and quality. Banana diseases are challenging to control and necessitate an integrated strategy, and development of resistant cultivars is one of the effective ways of managing diseases. Lasting disease resistance is the main goal in crop improvement and resistance mediated by a single resistant (R) gene mostly lack durability. However, long-term resistance can be obtained by inactivating susceptibility factors (S), which facilitate pathogen infection and proliferation. Identification and inactivation of susceptibility factors against the major pathogens like Fusarium oxysporum f. sp. cubense (Foc), Pseudocercospora eumusae and Pratylenchus coffeae in banana will be an effective way in developing banana varieties with more durable resistance. Downy mildew resistance 6 (DMR6) and DMR-like oxygenases (DLO1) are one such susceptibility factors and they belong to 2-oxoglutarate Fe(II) dependent oxygenases (2OGD) superfamily. 2OGDs are known to catalyze a plethora of reactions and also confer resistance to different pathogens in various crops, but not much is known about the 2OGD in Musa species. Through a comprehensive genome-wide analysis, 133 and 122 potential 2OGDs were systematically identified and categorized from the A and B genomes of banana, respectively. Real time expression of dmr6 and dlo1 genes showed positive correlation with transcriptome data upon Foc race1 and TR4 infection and examination of expression pattern of Macma4_04_g22670 (Ma04_g20880) and Macma4_02_g13590 (Ma02_g12040) genes revealed their involvement in Foc race1 and TR4 infections, respectively. Further the expression profile of 2OGDs, specifically Macma4_04_g25310 (Ma04_g23390), Macma4_08_g11980 (Ma08_g12090) and Macma4_04_g38910 (Ma04_g36640) shows that they may play a significant role as a susceptibility factor, particularly against P. eumusae and P. coffeae, implying that they can be exploited as a candidate gene for editing in developing resistant cultivars against these diseases. In summary, our findings contribute to a deeper comprehension of the evolutionary and functional aspects of 2OGDs in Musa spp. Furthermore, they highlight the substantial functions of these family constituents in the progression of diseases. These insights hold significance in the context of enhancing the genetic makeup of bananas to attain extended and more durable resistance against pathogens. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01380-y.
Collapse
Affiliation(s)
- Anuradha Chelliah
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Chandrasekar Arumugam
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Prashina Mol Punchakkara
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Thangavelu Raman
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu 620 102 India
| |
Collapse
|
8
|
Hausinger RP, Rifayee SBJS, Thomas MG, Chatterjee S, Hu J, Christov CZ. Biological formation of ethylene. RSC Chem Biol 2023; 4:635-646. [PMID: 37654506 PMCID: PMC10467617 DOI: 10.1039/d3cb00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/08/2023] [Indexed: 09/02/2023] Open
Abstract
This review summarizes the structures, biochemical properties, and mechanisms of two major biological sources of ethylene, the ethylene-forming enzyme (EFE) and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). EFE is found in selected bacteria and fungi where it catalyzes two reactions: (1) the oxygen-dependent conversion of 2-oxoglutarate (2OG) to ethylene plus three molecules of CO2/bicarbonate and (2) the oxidative decarboxylation of 2OG while transforming l-arginine to guanidine and l-Δ1-pyrroline-5-carboxylic acid. ACCO is present in plants where it makes the plant hormone by transforming ACC, O2, and an external reductant to ethylene, HCN, CO2, and water. Despite catalyzing distinct chemical reactions, EFE and ACCO are related in sequence and structure, and both enzymes require Fe(ii) for their activity. Advances in our understanding of EFE, derived from both experimental and computational approaches, have clarified how this enzyme catalyzes its dual reactions. Drawing on the published mechanistic studies of ACCO and noting the parallels between this enzyme and EFE, we propose a novel reaction mechanism for ACCO.
Collapse
Affiliation(s)
- Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing Michigan 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing Michigan 48824 USA
| | | | - Midhun G Thomas
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing Michigan 48824 USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing Michigan 48824 USA
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| |
Collapse
|
9
|
Genome scale analysis of 1-aminocyclopropane-1-carboxylate oxidase gene family in G. barbadense and its functions in cotton fiber development. Sci Rep 2023; 13:4004. [PMID: 36899024 PMCID: PMC10006085 DOI: 10.1038/s41598-023-30071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
A class of proteins, 1-aminocyclopropane-1-carboxylate oxidase (ACO), is required in the final step of production of ethylene from its immediate precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Despite the crucial and regulatory role of ACO gene family in the fiber development, it has not been thoroughly analyzed and annotated in G. barbadense genome. In the present study, we have identified and characterized all isoforms of ACO gene family from genomes of Gossypium arboreum, G. barbadense, G. hirsutum and G. raimondii. Phylogenetic analysis classified all ACO proteins into six distinct groups on the basis of maximum likelihood. Gene locus analysis and circos plots indicated the distribution and relationship of these genes in cotton genomes. Transcriptional profiling of ACO isoforms in G. arboreum, G. barbadense and G. hirsutum fiber development exhibited the highest expression in G. barbadense during early fiber elongation. Moreover, the accumulation of ACC was found highest in developing fibers of G. barbadense in comparison with other cotton species. ACO expression and ACC accumulation correlated with the fiber length in cotton species. Addition of ACC to the ovule cultures of G. barbadense significantly increased fiber elongation while ethylene inhibitors hindered fiber elongation. These findings will be helpful in dissecting the role of ACOs in cotton fiber development and pave a way towards genetic manipulations for fiber quality improvement.
Collapse
|
10
|
Hua YP, Zhang YF, Zhang TY, Chen JF, Song HL, Wu PJ, Yue CP, Huang JY, Feng YN, Zhou T. Low iron ameliorates the salinity-induced growth cessation of seminal roots in wheat seedlings. PLANT, CELL & ENVIRONMENT 2023; 46:567-591. [PMID: 36358019 DOI: 10.1111/pce.14486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Wheat plants are ubiquitously simultaneously exposed to salinity and limited iron availability caused by soil saline-alkalisation. Through this study, we found that both low Fe and NaCl severely inhibited the growth of seminal roots in wheat seedlings; however, sufficient Fe caused greater growth cessation of seminal roots than low Fe under salt stress. Low Fe improved the root meristematic division activity, not altering the mature cell sizes compared with sufficient Fe under salt stress. Foliar Fe spray and split-root experiments showed that low Fe-alleviating the salinity-induced growth cessation of seminal roots was dependent on local low Fe signals in the roots. Ionomics combined with TEM/X-ray few differences in the root Na+ uptake and vacuolar Na+ sequestration between two Fe levels under salt stress. Phytohormone profiling and metabolomics revealed salinity-induced overaccumulation of ACC/ethylene and tryptophan/auxin in the roots under sufficient Fe than under low Fe. Differential gene expression, pharmacological inhibitor addition and the root growth performance of transgenic wheat plants revealed that the rootward auxin efflux and was responsible for the low Fe-mediated amelioration of the salinity-induced growth cessation of seminal roots. Our findings will provide novel insights into the modulation of crop root growth under salt stress.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Na Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Phylogenesis of the Functional 1-Aminocyclopropane-1-Carboxylate Oxidase of Fungi and Plants. J Fungi (Basel) 2022; 9:jof9010055. [PMID: 36675876 PMCID: PMC9866368 DOI: 10.3390/jof9010055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The 1-aminocyclopropane-1-carboxylic acid (ACC) pathway that synthesizes ethylene is shared in seed plants, fungi and probably other organisms. However, the evolutionary relationship of the key enzyme ACC oxidase (ACO) in the pathway among organisms remains unknown. Herein, we cloned, expressed and characterized five ACOs from the straw mushroom (Volvariella volvacea) and the oyster mushroom (Pleurotus ostreatus): VvACO1-4 and PoACO. The five mushroom ACOs and the previously identified AbACO of the button mushroom contained all three conserved residues that bound to Fe(II) in plant ACOs. They also had variable residues that were conserved and bound to ascorbate and bicarbonate in plant ACOs and harbored only 1-2 of the five conserved ACO motifs in plant ACOs. Particularly, VvACO2 and AbACO had only one ACO motif 2. Additionally, VvACO4 shared 44.23% sequence identity with the cyanobacterium Hapalosiphon putative functional ACO. Phylogenetic analysis showed that the functional ACOs of monocotyledonous and dicotyledonous plants co-occurred in Type I, Type II and Type III, while putative functional gymnosperm ACOs also appeared in Type III. The putative functional bacterial ACO, functional fungi and slime mold ACOs were clustered in ancestral Type IV. These results indicate that ACO motif 2, ACC and Fe(II) are essential for ACO activity. The ACOs of the other organisms may come from the horizontal transfer of fungal ACOs, which were found ordinarily in basidiomycetes. It is mostly the first case for the horizontal gene transfers from fungi to seed plants. The horizontal transfer of ACOs from fungi to plants probably facilitates the fungal-plant symbioses, plant-land colonization and further evolution to form seeds.
Collapse
|
12
|
Santos IS, Ribeiro THC, de Oliveira KKP, dos Santos JO, Moreira RO, Lima RR, Lima AA, Chalfun-Junior A. Multigenic regulation in the ethylene biosynthesis pathway during coffee flowering. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1657-1669. [PMID: 36387981 PMCID: PMC9636343 DOI: 10.1007/s12298-022-01235-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Ethylene regulates different aspects of the plant's life cycle, such as flowering, and acts as a defense signal in response to environmental stresses. Changes induced by water deficit (WD) in gene expression of the main enzymes involved in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO), are frequently reported in plants. In this study, coffee (Coffea arabica) ACS and ACO family genes were characterized and their expression profiles were analyzed in leaves, roots, flower buds, and open flowers from plants under well-watered (WW) and water deficit (WD) conditions. Three new ACS genes were identified. Water deficit did not affect ACS expression in roots, however soil drying strongly downregulated ACO expression, indicating a transcriptional constraint in the biosynthesis pathway during the drought that can suppress ethylene production in roots. In floral buds, ACO expression is water-independent, suggesting a higher mechanism of control in reproductive organs during the final flowering stages. Leaves may be the main sites for ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) production in the shoot under well-watered conditions, contributing to an increase in the ethylene levels required for anthesis. Given these results, we suggest a possible regulatory mechanism for the ethylene biosynthesis pathway associated with coffee flowering with gene regulation in leaves being a key point in ethylene production and ACO genes play a major regulatory role in roots and the shoots. This mechanism may constitute a regulatory model for flowering in other woody species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01235-y.
Collapse
Affiliation(s)
- Iasminy Silva Santos
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Thales Henrique Cherubino Ribeiro
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Kellen Kauanne Pimenta de Oliveira
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Jacqueline Oliveira dos Santos
- Minas Gerais Agricultural Research Company, EPAMIG, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Rafael Oliveira Moreira
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Renato Ribeiro Lima
- Statistics Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - André Almeida Lima
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| | - Antonio Chalfun-Junior
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil
| |
Collapse
|
13
|
Yeh CCG, Ghafoor S, Satpathy JK, Mokkawes T, Sastri CV, de Visser SP. Cluster Model Study into the Catalytic Mechanism of α-Ketoglutarate Biodegradation by the Ethylene-Forming Enzyme Reveals Structural Differences with Nonheme Iron Hydroxylases. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C.-C. George Yeh
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Kawai K, Takehara S, Kashio T, Morii M, Sugihara A, Yoshimura H, Ito A, Hattori M, Toda Y, Kojima M, Takebayashi Y, Furuumi H, Nonomura KI, Mikami B, Akagi T, Sakakibara H, Kitano H, Matsuoka M, Ueguchi-Tanaka M. Evolutionary alterations in gene expression and enzymatic activities of gibberellin 3-oxidase 1 in Oryza. Commun Biol 2022; 5:67. [PMID: 35046494 PMCID: PMC8770518 DOI: 10.1038/s42003-022-03008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/23/2021] [Indexed: 11/15/2022] Open
Abstract
Proper anther and pollen development are important for plant reproduction. The plant hormone gibberellin is important for anther development in rice, but its gametophytic functions remain largely unknown. Here, we report the functional and evolutionary analyses of rice gibberellin 3-oxidase 1 (OsGA3ox1), a gibberellin synthetic enzyme specifically expressed in the late developmental stages of anthers. Enzymatic and X-ray crystallography analyses reveal that OsGA3ox1 has a higher GA7 synthesis ratio than OsGA3ox2. In addition, we generate an osga3ox1 knockout mutant by genome editing and demonstrate the bioactive gibberellic acid synthesis by the OsGA3ox1 action during starch accumulation in pollen via invertase regulation. Furthermore, we analyze the evolution of Oryza GA3ox1s and reveal that their enzyme activity and gene expression have evolved in a way that is characteristic of the Oryza genus and contribute to their male reproduction ability. The authors solve the crystal structure of OsGA3ox2 and predict that of OsGA3ox1. These enzymes catalyze the final step in the biosynthesis of gibberellin, one of the plant hormones. Evolutionary analysis combined with the new structure reveal important aspects of the OsGA3ox1’s function in plant male reproduction.
Collapse
|
15
|
Brisou G, Piquerez SJM, Minoia S, Marcel F, Cornille A, Carriero F, Boualem A, Bendahmane A. Induced mutations in SlE8 and SlACO1 control tomato fruit maturation and shelf-life. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6920-6932. [PMID: 34369570 DOI: 10.1093/jxb/erab330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Fruit maturation and softening are critical traits that control fruit shelf-life. In the climacteric tomato (Solanum lycopersicum L.) fruit, ethylene plays a key role in fruit ripening and softening. We characterized two related proteins with contrasting impact on ethylene production, ACC oxidase 1 (SlACO1) and SlE8. We found SlACO1 and SlE8 to be highly expressed during fruit ripening. To identify loss-of-function alleles, we analysed the tomato genetic diversity but we did not find any natural mutations impairing the function of these proteins. We also found the two loci evolving under purifying selection. To engineer hypomorphic alleles, we used TILLING (target-induced local lesions in genomes) to screen a tomato ethylmethane sulfonate-mutagenized population. We found 13 mutants that we phenotyped for ethylene production, shelf-life, firmness, conductivity, and soluble solid content in tomato fruits. The data demonstrated that slaco1-1 and slaco1-2 alleles could be used to improve fruit shelf-life, and that sle8-1 and sle8-2 alleles could be used to accelerate ripening. This study highlights further the importance of SlACO1 and SlE8 in ethylene production in tomato fruit and how they might be used for post-harvest fruit preservation or speeding up fruit maturation.
Collapse
Affiliation(s)
- Gwilherm Brisou
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Gautier Semences, Eyragues, France
| | - Sophie J M Piquerez
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Silvia Minoia
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Filomena Carriero
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448.2, Metaponto, MT, Italy
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| |
Collapse
|
16
|
An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun 2021; 12:5832. [PMID: 34611160 PMCID: PMC8492687 DOI: 10.1038/s41467-021-26123-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals. Considerable genetic variation exists in maize ear size and kernel number. Here the authors show that variation in a gene encoding an ethylene biosynthetic enzyme impacts ear length, flower fertility and kernel yield suggesting an important role for ethylene signaling during inflorescence development.
Collapse
|
17
|
Jiang D, Li G, Chen G, Lei J, Cao B, Chen C. Genome-Wide Identification and Expression Profiling of 2OGD Superfamily Genes from Three Brassica Plants. Genes (Basel) 2021; 12:genes12091399. [PMID: 34573381 PMCID: PMC8465909 DOI: 10.3390/genes12091399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD) superfamily is the second largest enzyme family in the plant genome, and its members are involved in various oxygenation and hydroxylation reactions. Due to their important biochemical significance in metabolism, a systematic analysis of the plant 2OGD genes family is necessary. Here, we identified 160, 179, and 337 putative 2OGDs from Brassica rapa, Brassica oleracea, and Brassica napus. According to their gene structure, domain, phylogenetic features, function, and previous studies, we also divided 676 2OGDs into three subfamilies: DOXA, DOXB, and DOXC. Additionally, homologous and phylogenetic comparisons of three subfamily genes provided valuable insight into the evolutionary characteristics of the 2OGD genes from Brassica plants. Expression profiles derived from the transcriptome and Genevestigator database exhibited distinct expression patterns of the At2OGD, Br2OGD, and Bo2OGD genes in different developmental stages, tissues, or anatomical parts. Some 2OGD genes showed high expression levels in various tissues, such as callus, seed, silique, and root tissues, while other 2OGD genes were expressed at very low levels in other tissues. Analysis of six Bo2OGD genes in different tissues by qRT-PCR indicated that these genes are involved in the metabolism of gibberellin, which in turn regulates plant growth and development. Our working system analysed 2OGD gene families of three Brassica plants and laid the foundation for further study of their functional characterization.
Collapse
Affiliation(s)
- Ding Jiang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
- Guangzhou Institute of Agriculture Science, Guangzhou 510335, China;
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou 510335, China;
| | - Guoju Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Jianjun Lei
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Bihao Cao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (D.J.); (G.C.); (J.L.); (B.C.)
- Correspondence:
| |
Collapse
|
18
|
Wang ZH, Yan N, Luo X, Guo SS, Xue SQ, Liu JQ, Zhang SS, Zheng LW, Zhang JZ, Guo DP. Role of Long Noncoding RNAs ZlMSTRG.11348 and UeMSTRG.02678 in Temperature-Dependent Culm Swelling in Zizania latifolia. Int J Mol Sci 2021; 22:ijms22116020. [PMID: 34199611 PMCID: PMC8199642 DOI: 10.3390/ijms22116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Temperature influences the physiological processes and ecology of both hosts and endophytes; however, it remains unclear how long noncoding RNAs (lncRNAs) modulate the consequences of temperature-dependent changes in host-pathogen interactions. To explore the role of lncRNAs in culm gall formation induced by the smut fungus Ustilago esculenta in Zizania latifolia, we employed RNA sequencing to identify lncRNAs and their potential cis-targets in Z. latifolia and U. esculenta under different temperatures. In Z. latifolia and U. esculenta, we identified 3194 and 173 lncRNAs as well as 126 and four potential target genes for differentially expressed lncRNAs, respectively. Further function and expression analysis revealed that lncRNA ZlMSTRG.11348 regulates amino acid metabolism in Z. latifolia and lncRNA UeMSTRG.02678 regulates amino acid transport in U. esculenta. The plant defence response was also found to be regulated by lncRNAs and suppressed in Z. latifolia infected with U. esculenta grown at 25 °C, which may result from the expression of effector genes in U. esculenta. Moreover, in Z. latifolia infected with U. esculenta, the expression of genes related to phytohormones was altered under different temperatures. Our results demonstrate that lncRNAs are important components of the regulatory networks in plant-microbe-environment interactions, and may play a part in regulating culm swelling in Z. latifolia plants.
Collapse
Affiliation(s)
- Zheng-Hong Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Xi Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Sai-Sai Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shu-Qin Xue
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jiang-Qiong Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Shen-Shen Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Li-Wen Zheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
| | - Jing-Ze Zhang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| | - De-Ping Guo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.-H.W.); (X.L.); (S.-S.G.); (S.-Q.X.); (J.-Q.L.); (S.-S.Z.); (L.-W.Z.)
- Correspondence: (J.-Z.Z.); (D.-P.G.); Tel.: +86-571-88982796 (D.-P.G.)
| |
Collapse
|
19
|
Oliveira TDR, Aragão VPM, Moharana KC, Fedosejevs E, do Amaral FP, Sousa KR, Thelen JJ, Venâncio TM, Silveira V, Santa-Catarina C. Light spectra affect the in vitro shoot development of Cedrela fissilis Vell. (Meliaceae) by changing the protein profile and polyamine contents. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140529. [PMID: 32853775 DOI: 10.1016/j.bbapap.2020.140529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.
Collapse
Affiliation(s)
- Tadeu Dos Reis Oliveira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Victor Paulo Mesquita Aragão
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Kanhu Charan Moharana
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Eric Fedosejevs
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Fernanda Plucani do Amaral
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Kariane Rodrigues Sousa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil
| | - Jay J Thelen
- University of Missouri, Department of Biochemistry, Christopher S. Bond Life Sciences Center, 65211, Columbia, MO, USA
| | - Thiago Motta Venâncio
- UENF, CBB, Laboratório de Química e Função de Proteínas e Peptídeos, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- UENF, CBB, Laboratório de Biotecnologia (LBT), Campos dos Goytacazes, RJ, Brazil; UENF, Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Campos dos Goytacazes, RJ, Brazil
| | - Claudete Santa-Catarina
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Av. Alberto Lamego 2000, 28013-602, Campos Dos Goytacazes, RJ, Brazil.
| |
Collapse
|
20
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
21
|
A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin. Nat Commun 2020; 11:2143. [PMID: 32358569 PMCID: PMC7195466 DOI: 10.1038/s41467-020-16068-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Allosteric regulation is protein activation by effector binding at a site other than the active site. Here, we show via X-ray structural analysis of gibberellin 2-oxidase 3 (GA2ox3), and auxin dioxygenase (DAO), that such a mechanism maintains hormonal homeostasis in plants. Both enzymes form multimers by interacting via GA4 and indole-3-acetic acid (IAA) at their binding interface. Via further functional analyses we reveal that multimerization of these enzymes gradually proceeds with increasing GA4 and IAA concentrations; multimerized enzymes have higher specific activities than monomer forms, a system that should favour the maintenance of homeostasis for these phytohormones. Molecular dynamic analysis suggests a possible mechanism underlying increased GA2ox3 activity by multimerization-GA4 in the interface of oligomerized GA2ox3s may be able to enter the active site with a low energy barrier. In summary, homeostatic systems for maintaining GA and IAA levels, based on a common allosteric mechanism, appear to have developed independently.
Collapse
|
22
|
Lin Y, Stańczak A, Manchev Y, Straganz GD, Visser SP. Can a Mononuclear Iron(III)‐Superoxo Active Site Catalyze the Decarboxylation of Dodecanoic Acid in UndA to Produce Biofuels? Chemistry 2019; 26:2233-2242. [DOI: 10.1002/chem.201903783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yen‐Ting Lin
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Agnieszka Stańczak
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
- Faculty of ChemistrySilesian University of Technology ks. Marcina Strzody 9 44-100 Gliwice Poland
- Tunneling Group, Biotechnology CentreSilesian University of Technology ul. Krzywoustego 8 44–100 Gliwice Poland
| | - Yulian Manchev
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| | - Grit D. Straganz
- Graz University of TechnologyInstitute of Biochemistry Petergasse 12 8010 Graz Austria
| | - Sam P. Visser
- The Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical ScienceThe University of, Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
23
|
Fournier E, Tachon S, Fowler NJ, Gerbaud G, Mansuelle P, Dorlet P, de Visser SP, Belle V, Simaan AJ, Martinho M. The Hunt for the Closed Conformation of the Fruit-Ripening Enzyme 1-Aminocyclopropane-1-carboxylic Oxidase: A Combined Electron Paramagnetic Resonance and Molecular Dynamics Study. Chemistry 2019; 25:13766-13776. [PMID: 31424584 DOI: 10.1002/chem.201903003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Indexed: 01/04/2023]
Abstract
1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.
Collapse
Affiliation(s)
- Eugénie Fournier
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France.,Aix Marseille Univ, CNRS, BIP, Marseille, France
| | - Sybille Tachon
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | - Nicholas J Fowler
- Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Pascal Mansuelle
- CNRS, FR3479 Institut de Microbiologie de la Méditerranée, Plateforme Protéomique, Marseille Protéomique (MaP), IBiSA labeled, Aix Marseille Univ, Marseille, France
| | | | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of, Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - A Jalila Simaan
- Aix Marseille Univ, Centrale Marseille, CNRS, iSm2, Marseille, France
| | | |
Collapse
|
24
|
Ghattas W, Dubosclard V, Tachon S, Beaumet M, Guillot R, Réglier M, Simaan AJ, Mahy J. Cu
II
‐Containing 1‐Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angew Chem Int Ed Engl 2019; 58:14605-14609. [DOI: 10.1002/anie.201909407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Virginie Dubosclard
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Sybille Tachon
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - Morane Beaumet
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Marius Réglier
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - A. Jalila Simaan
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - Jean‐Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| |
Collapse
|
25
|
Ghattas W, Dubosclard V, Tachon S, Beaumet M, Guillot R, Réglier M, Simaan AJ, Mahy J. Cu
II
‐Containing 1‐Aminocyclopropane Carboxylic Acid Oxidase Is an Efficient Stereospecific Diels–Alderase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Virginie Dubosclard
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Sybille Tachon
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - Morane Beaumet
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| | - Marius Réglier
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - A. Jalila Simaan
- Institut des Sciences Moléculaires de Marseille (iSm2), UMR 7313 CNRS – Aix Marseille Univ Centrale Marseille Marseille 13013 Cedex France
| | - Jean‐Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS – Univ Paris Sud Université Paris-Saclay Orsay 91405 Cedex France
| |
Collapse
|
26
|
Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep 2019; 35:721-734. [PMID: 29488530 DOI: 10.1039/c7np00060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: up to 2018 2-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis. Conserved structural features among 2ODOs has provided a basis for continued investigation into their mechanisms, and recent structural work is expected to illuminate intriguing reactions such as that of 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). Phylogenetic radiation among this superfamily combined with neo- and subfunctionalization has enabled recruitment to highly specialized pathways, including those yielding medicines, flavours, dyes, poisons, and compounds important for plant-environment interactions. Catalytic versatility of 2ODOs in plants and across broader taxa continues to inspire biochemists tasked with the discovery of new enzymes. This highlight article summarizes recent reports up to 2018 of 2ODOs within plant metabolism. Furthermore, the respective contributions of 2ODOs and other oxidases to natural product biosynthesis are discussed as a framework for continued discovery.
Collapse
Affiliation(s)
- J M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - P J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
27
|
Chemical Modification of 1-Aminocyclopropane Carboxylic Acid (ACC) Oxidase: Cysteine Mutational Analysis, Characterization, and Bioconjugation with a Nitroxide Spin Label. Mol Biotechnol 2019; 61:650-662. [DOI: 10.1007/s12033-019-00191-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Xue J, Lu J, Lai W. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation. Phys Chem Chem Phys 2019; 21:9957-9968. [PMID: 31041955 DOI: 10.1039/c9cp00794f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ethylene-forming enzyme (EFE) is a unique member of the Fe(ii)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases. It converts 2OG into ethylene plus three CO2 molecules (ethylene-forming reaction) and also catalyzes the C5 hydroxylation of l-arginine coupled to the oxidative decarboxylation of 2OG (l-Arg hydroxylation reaction). To uncover the mechanisms of the dual transformations by EFE, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out. Based on the results, a branched mechanism was proposed. An FeII-peroxysuccinate complex with a dissociated CO2 generated through the nucleophilic attack of the superoxo moiety of the Fe-O2 species on the keto carbon of 2OG is the key common intermediate in both reactions. A competition between the subsequent CO2 insertion (a key step in the ethylene-forming pathway) and the O-O bond cleavage (leading to the formation of succinate) governs the product selectivity. The calculated reaction barriers suggested that the CO2 insertion is favored over the O-O bond cleavage. This is consistent with the product preference observed in experiments. By comparison with the results of AsqJ (an Fe/2OG oxygenase that leads to substrate oxidation exclusively), the protein environment was found to be crucial for the selectivity. Further calculations demonstrated that the local electric field of the protein environment in EFE promotes ethylene formation by acting as a charge template, exemplifying the importance of the electrostatic interaction in enzyme catalysis. These findings offer mechanistic insights into the EFE catalysis and provide important clues for better understanding the unique ethylene-forming capability of EFE compared with other Fe/2OG oxygenases.
Collapse
Affiliation(s)
- Junqin Xue
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | | | | |
Collapse
|
30
|
Ruduś I, Cembrowska-Lech D, Jaworska A, Kępczyński J. Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR 1 or GA 3. PLANTA 2019; 249:719-738. [PMID: 30370496 DOI: 10.1007/s00425-018-3032-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/19/2018] [Indexed: 05/07/2023]
Abstract
Germination of primary dormant wild oat caused by KAR1 or GA3 is associated with ACC accumulation and increased ethylene production shortly before radicle protrusion as a result of the non-transcriptional and transcriptional activation of ACS and ACO enzymes, respectively. Response to both compounds involves the modulation of ethylene sensitivity through ethylene receptor genes. Harvested Avena fatua caryopses are primary dormant and, therefore, germinated poorly at 20 °C. Karrikin 1 (KAR1), which action probably requires endogenous gibberellins (GAs), and gibberellin A3 (GA3) was found to induce dormant caryopses to germinate. The stimulatory effects were accompanied by the activation of the ethylene biosynthesis pathway and depended on undisturbed ethylene perception. KAR1 and GA3 promoted 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation during coleorhizae emergence and ethylene production shortly prior to the radicle protrusion, which resulted from the enhanced activity of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). The inhibitor of ACS adversely affected beneficial impacts of both KAR1 and GA3 on A. fatua caryopses germination, while the inhibitor of ACO more efficiently impeded the GA3 effect. The inhibitors of ethylene action markedly lowered germination in response to KAR1 and GA3. Gene expression studies preceded by the identification of several genes related to ethylene biosynthesis (AfACS6, AfACO1, and AfACO5) and perception (AfERS1b, AfERS1c, AfERS2, AfETR2, AfETR3, and AfETR4) provided further evidence for the engagement of ethylene in KAR1 and GA3 induced germination of A. fatua caryopses. Both AfACO1 and AfACO5 were upregulated, whereas AfACS6 remained unaffected by the treatment. This suggests the existence of different regulatory mechanisms of enzymatic activity, transcriptional for ACO and non-transcriptional for ACS. During imbibition in water, AfERS1b was stronger expressed than other receptor genes. In the presence of KAR1 or GA3, the expression of AfETR3 was substantially induced. Differential expression of ethylene receptor genes implies the modulation of caryopses sensitivity adjusted to ethylene availability and suggests the functional diversification of individual receptors.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Anna Jaworska
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Jan Kępczyński
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
31
|
Polko JK, Kieber JJ. 1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. FRONTIERS IN PLANT SCIENCE 2019; 10:1602. [PMID: 31921251 PMCID: PMC6915048 DOI: 10.3389/fpls.2019.01602] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
1-Aminocyclopropane 1-carboxylic acid (ACC) is the direct precursor of the plant hormone ethylene. ACC is synthesized from S-adenosyl-L-methionine (SAM) by ACC synthases (ACSs) and subsequently oxidized to ethylene by ACC oxidases (ACOs). Exogenous ACC application has been used as a proxy for ethylene in numerous studies as it is readily converted by nearly all plant tissues to ethylene. However, in recent years, a growing body of evidence suggests that ACC plays a signaling role independent of the biosynthesis. In this review, we briefly summarize our current knowledge of ACC as an ethylene precursor, and present new findings with regards to the post-translational modifications of ACS proteins and to ACC transport. We also summarize the role of ACC in regulating plant development, and its involvement in cell wall signaling, guard mother cell division, and pathogen virulence.
Collapse
|
32
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
33
|
Rahaman R, Munshi S, Paine TK. Bio-inspired Oxidation of 1-Aminocarboxylic Acids by a Nonheme Iron(II) Complex: Mimicking the Activity of 1-Aminocyclopropane-1-carboxylic Acid Oxidase. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rubina Rahaman
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A&2B Raja S. C. Mullick Road 700032 Jadavpur, Kolkata India
| | - Sandip Munshi
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A&2B Raja S. C. Mullick Road 700032 Jadavpur, Kolkata India
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A&2B Raja S. C. Mullick Road 700032 Jadavpur, Kolkata India
| |
Collapse
|
34
|
Singh N, Bhatla SC. Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. PLANT SIGNALING & BEHAVIOR 2018; 13:e1473683. [PMID: 29939832 PMCID: PMC6103280 DOI: 10.1080/15592324.2018.1473683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) is established as a modulator of various developmental processes in plants through its interaction with multiple enzymatic and non-enzymatic biomolecules. Lateral root (LR) induction and extension in sunflower (Helianthus annuus L.) has been observed to be governed by a probable crosstalk between NO and ethylene biosynthesizing enzyme-ACC oxidase. NaCl (120 mM) stress not only lowers LR induction but also reduces their extension growth. Quenching of endogenous NO by raising seedlings in presence of 40 µM hemoglobin in the growth medium does not affect LR induction but lowers their extension growth. NaCl stress and NO depletion have additive effects on the enhancement of ACC oxidase activity, leading to enhanced ethylene biosynthesis. Role of NO has been further confirmed by raising sunflower seedlings in the presence of 20-60 µM of two NO donors, sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA). LR extension growth was higher with DETA than SNP as NO donor at 40 µM. Iron-deficiency also promoted LR proliferation. It also significantly lowered ACC oxidase activity in the seedling roots in response to salt stress. Based on the present findings it is proposed that salt stress-mediated LR proliferation is regulated by NO through its binding with ACC oxidase (an iron-containing enzyme). This results in the formation of a stable ternary complex (ACC-ACC oxidase-NO) which leads to the reduction in ethylene biosynthesis. Lesser availability of ethylene consequently brings about enhanced LR formation.
Collapse
Affiliation(s)
- Neha Singh
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-India
| | - Sathish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi-India
| |
Collapse
|
35
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
36
|
Sun X, Li Y, He W, Ji C, Xia P, Wang Y, Du S, Li H, Raikhel N, Xiao J, Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun 2017; 8:15758. [PMID: 28604689 PMCID: PMC5472784 DOI: 10.1038/ncomms15758] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.
Collapse
Affiliation(s)
- Xiangzhong Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaxin Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenrong He
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixue Xia
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yichuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongjiang Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
37
|
El Bakkali-Tahéri N, Tachon S, Orio M, Bertaina S, Martinho M, Robert V, Réglier M, Tron T, Dorlet P, Simaan AJ. Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches. Arch Biochem Biophys 2017; 623-624:31-41. [DOI: 10.1016/j.abb.2017.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023]
|
38
|
Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proc Natl Acad Sci U S A 2017; 114:4667-4672. [PMID: 28420789 DOI: 10.1073/pnas.1617760114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.
Collapse
|
39
|
Kal S, Que L. Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 2017; 22:339-365. [PMID: 28074299 DOI: 10.1007/s00775-016-1431-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions. Activated dioxygen-derived species involved in the enzyme mechanisms include iron(III)-superoxo, iron(III)-peroxo, and high-valent iron(IV)-oxo intermediates. In this article, we highlight the major crystallographic, spectroscopic, and mechanistic advances of the past 20 years that have significantly enhanced our understanding of the mechanisms of O2 activation and the key roles played by iron-based oxidants.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
40
|
Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J. Use of ferrous iron by metallo-β-lactamases. J Inorg Biochem 2016; 163:185-193. [PMID: 27498591 PMCID: PMC5108564 DOI: 10.1016/j.jinorgbio.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs.
Collapse
Affiliation(s)
| | | | - Anna M Rydzik
- Chemistry Research Laboratory, Oxford, United Kingdom
| | | | | | | | - Jürgen Brem
- Chemistry Research Laboratory, Oxford, United Kingdom.
| |
Collapse
|
41
|
Chen H, Sun J, Li S, Cui Q, Zhang H, Xin F, Wang H, Lin T, Gao D, Wang S, Li X, Wang D, Zhang Z, Xu Z, Huang S. An ACC Oxidase Gene Essential for Cucumber Carpel Development. MOLECULAR PLANT 2016; 9:1315-1327. [PMID: 27403533 DOI: 10.1016/j.molp.2016.06.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2023]
Abstract
Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.
Collapse
Affiliation(s)
- Huiming Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jinjing Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingzhi Cui
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huimin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fengjiao Xin
- Institute of Agricultural Product Processing, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huaisong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Lin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Dongli Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shenhao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Li
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhihong Xu
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Sanwen Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
42
|
LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:6301-6. [PMID: 27194725 DOI: 10.1073/pnas.1601729113] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.
Collapse
|
43
|
Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Curr Opin Chem Biol 2016; 31:126-35. [PMID: 27015291 PMCID: PMC4879150 DOI: 10.1016/j.cbpa.2016.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Current evidence for iron-oxo reactive intermediates is reviewed. In crystallo intermediates detected in a native extradiol dioxygenase reaction. Carotenoid cleavage dioxygenases catalyse strigolactone biosynthesis. Identification of plant cysteine oxidases involved in the plant hypoxic response. Applications of enzyme manipulation to plant biology and agriculture are discussed.
Non-heme iron-dependent oxygenases catalyse the incorporation of O2 into a wide range of biological molecules and use diverse strategies to activate their substrates. Recent kinetic studies, including in crystallo, have provided experimental support for some of the intermediates used by different subclasses of this enzyme family. Plant non-heme iron-dependent oxygenases have diverse and important biological roles, including in growth signalling, stress responses and secondary metabolism. Recently identified roles include in strigolactone biosynthesis, O-demethylation in morphine biosynthesis and regulating the stability of hypoxia-responsive transcription factors. We discuss current structural and mechanistic understanding of plant non-heme iron oxygenases, and how their chemical/genetic manipulation could have agricultural benefit, for example, for improved yield, stress tolerance or herbicide development.
Collapse
|
44
|
Sallmann M, Limberg C. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes. Acc Chem Res 2015; 48:2734-43. [PMID: 26305516 DOI: 10.1021/acs.accounts.5b00148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear, O2-activating nonheme iron enzymes are a fascinating class of metalloproteines, capable of realizing the most different reactions, ranging from C-H activation, via O atom transfer to C-C bond cleavage, in the course of O2 activation. They can lead us the way to achieve similar reactions with comparable efficiency and selectivity in chemical laboratories, which would be highly desirable aiming at accessing value-added products or to achieve degradation of unwanted compounds. Hence, these enyzmes motivate attempts to construct artificial low-molecular weight analogues, mimicking structural or functional characteristics. Such models can, for instance, provide insights about which of the features inherent to an active site are essential and guarantee the enzyme function, and from this kind of information the minimal requirements for a biomimetic or bioinspired complex that may be applied in catalysis can be derived. On the other hand, they can contribute to an understanding of the enzyme functioning. In order to create such replicates, it is important to faithfully mimic the surroundings of the iron centers in their active sites. Most of them feature two histidine residues and one carboxylate donor, while a few exhibit a deceptively simple (His)3Fe active site. For the simulation of these, the trispyrazolyl borate ligand (Tp) particularly offers itself, as the facial arrangement of three pyrazole donors is reminiscent of the three histidine-derived imidazole donors. The focus of this Account will be on bioinorganic/biomimetic research from our laboratory utilizing Tp ligands to develop molecular models for (i) two representatives of the (His)3Fe-enzyme family, namely, the cysteine dioxygenase (CDO) and acetyl acetone dioxygenase (Dke1), (ii) a related but less well-explored variant of the CDO-the 2-aminoethanethiol dioxygenase-as well as (iii) the 2-His-1-carboxylate representative 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). The CDO catalyzes the dioxygenation of cysteine with O2 to give cysteine sulfinic acid, which could be mimicked at TpFe units in a realistic manner. Furthermore, the successful dioxygenation of 2-aminoethanethiol at the same complex metal fragments lends further support to the hypothesis that the active sites of CDO and the one of 2-aminoethanethiol dioxygenase, whose structure is unknown, are quite similar. Dke1 is capable of cleaving diketones and ketoesters to give the corresponding carboxylic acids and α-keto aldehydes, and Tp-based models have achieved comparable C-C bond cleavage reactions. The ACCO develops ethylene from ACC in the course of oxidation, and recently this has been achieved the first time for a TpFe model, too.
Collapse
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
45
|
Booker MA, DeLong A. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes. PLANT PHYSIOLOGY 2015; 169:42-50. [PMID: 26134162 PMCID: PMC4577410 DOI: 10.1104/pp.15.00672] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/16/2023]
Abstract
Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
46
|
Ligand-dependent oxidation of copper bound α-amino-isobutyric acid as 1-aminocyclopropane-1-carboxylic acid oxidase mimics. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Sallmann M, Oldenburg F, Braun B, Réglier M, Simaan AJ, Limberg C. Ein funktionelles Strukturmodell für die 1-Aminocyclopropan- 1-carbonsäure-Oxidase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Sallmann M, Oldenburg F, Braun B, Réglier M, Simaan AJ, Limberg C. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase. Angew Chem Int Ed Engl 2015; 54:12325-8. [PMID: 26190407 DOI: 10.1002/anie.201502529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/22/2015] [Indexed: 11/06/2022]
Abstract
The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield.
Collapse
Affiliation(s)
- Madleen Sallmann
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Fabio Oldenburg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Beatrice Braun
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg
| | - Marius Réglier
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, (France) http://ism2.univ-amu.fr/pages-bleues/index2.htm
| | - A Jalila Simaan
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, (France) http://ism2.univ-amu.fr/pages-bleues/index2.htm.
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489 Berlin (Germany) http://www.chemie.hu-berlin.de/aglimberg.
| |
Collapse
|
49
|
Kundu S. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. FRONTIERS IN PLANT SCIENCE 2015; 6:489. [PMID: 26236316 PMCID: PMC4502536 DOI: 10.3389/fpls.2015.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Can the stimulus-driven synergistic association of 2-oxoglutarate dependent dioxygenases be influenced by the kinetic parameters of binding and catalysis?In this manuscript, I posit that these indices are necessary and specific for a particular stimulus, and are key determinants of a dynamic clustering that may function to mitigate the effects of this trigger. The protein(s)/sequence(s) that comprise this group are representative of all major kingdoms of life, and catalyze a generic hydroxylation, which is, in most cases accompanied by a specialized conversion of the substrate molecule. Iron is an essential co-factor for this transformation and the response to waning levels is systemic, and mandates the simultaneous participation of molecular sensors, transporters, and signal transducers. Here, I present a proof-of-concept model, that an evolving molecular network of 2OG-dependent enzymes can maintain iron homeostasis in the cytosol of root hair cells of members of the family Gramineae by actuating a non-reductive compensatory chelation by the phytosiderophores. Regression models of empirically available kinetic data (iron and alpha-ketoglutarate) were formulated, analyzed, and compared. The results, when viewed in context of the superfamily responding as a unit, suggest that members can indeed, work together to accomplish system-level function. This is achieved by the establishment of transient metabolic conduits, wherein the flux is dictated by kinetic compatibility of the participating enzymes. The approach adopted, i.e., predictive mathematical modeling, is integral to the hypothesis-driven acquisition of experimental data points and, in association with suitable visualization aids may be utilized for exploring complex plant biochemical systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India ;
| |
Collapse
|
50
|
Kundu S. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases. FRONTIERS IN PLANT SCIENCE 2015; 6:98. [PMID: 25814993 PMCID: PMC4356072 DOI: 10.3389/fpls.2015.00098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/06/2015] [Indexed: 05/24/2023]
Abstract
Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal. This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and interpreted alongside existent kinetic data in a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that 2OG-dependent enzymes incorporate several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html).
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India e-mail: ;
| |
Collapse
|