1
|
Antonioli L, Armuzzi A, Fantini MC, Fornai M. JAK inhibitors: an evidence-based choice of the most appropriate molecule. Front Pharmacol 2024; 15:1494901. [PMID: 39559737 PMCID: PMC11570808 DOI: 10.3389/fphar.2024.1494901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
Janus kinase inhibitors (JAKis) represent a fundamental therapeutic tool for the treatment of patients with immune-mediated inflammatory diseases. Although JAKis are often considered a homogeneous class of drugs whose members are thought to be largely interchangeable, there are significant differences in their efficacy and safety profiles. This narrative review analyzes the pharmacokinetic and pharmacodynamic differences among JAKIs, highlighting their clinical relevance based on the most recent available evidence. The article aims to provide rheumatologists, gastroenterologists and dermatologists with practical guidance for choosing the most appropriate JAKi for each patient, given the lack of evidence-based recommendations on this topic, to improve clinical outcomes. Due to its preferential action on JAK1, intestinal metabolization and proven absence of impact on male fertility, filgotinib may be characterized by an improved benefit/risk ratio compared with other less selective JAKis.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Massimo C. Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Gastroenterology Unit, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Guleken Z, Aday A, Bayrak AG, Hindilerden İY, Nalçacı M, Cebulski J, Depciuch J. Relationship between amide ratio assessed by Fourier-transform infrared spectroscopy: A biomarker candidate for polycythemia vera disease. JOURNAL OF BIOPHOTONICS 2024; 17:e202400162. [PMID: 38978265 DOI: 10.1002/jbio.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.
Collapse
Affiliation(s)
- Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey
| | - Aynur Aday
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşe Gül Bayrak
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - İpek Yönal Hindilerden
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Meliha Nalçacı
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Krakow, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
4
|
Li D, Shan S, Mao X, Zhao Y, Chen B, Xiong Q, Pan D, Huang S. CS12192, a novel JAK3/JAK1/TBK1 inhibitor, attenuates autoimmune dermatoses in murine models. Immunopharmacol Immunotoxicol 2024:1-9. [PMID: 38918174 DOI: 10.1080/08923973.2024.2373223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Autoimmune dermatosis (AID) occurs when the body's immune system attacks skin or tissue, leading to various types of skin disorders or injuries. Recent studies show that Janus kinases (JAKs) play critical roles in autoimmune diseases including AID by regulating multiple cytokine signaling pathways. CS12192, a novel JAK3/JAK1/TBK1 inhibitor, has been reported to exert ameliorative effects in rheumatoid arthritis. However, the efficacy of CS12192 on AID is undetermined. This study aims to investigate the therapeutic efficacy of CS12192 on psoriasis (PSO), systemic lupus erythematosus (SLE) and atopic dermatitis (AD) in mouse models. METHODS Interleukin-23 (IL-23)-induced PSO model, spontaneous SLE model of MRL/MpJ-Faslpr/J (MRL/lpr) mice, and oxazolone (OXA) and dinitrochlorobenzene (DNCB)-induced murine AD models were used for the evaluation of curative effects of CS12192, respectively. The skin lesion, biochemical parameters, ear thickness, ear weight and histopathology were assessed accordingly. RESULTS In PSO model, mice treated with CS12192 show reduced ear thickness and ear weight as compared with vehicle. In SLE model, CS12192 ameliorates cutaneous parameters such as lymphadenectasis and skin lesion but not systematic parameters such as proteinuria concentration and score, serum dsDNA and BUN concentration. In AD models, CS12192 dose-dependently improves ear swelling and reduces histological scores, exerting equivalent efficacy with baricitinib, a marketed JAK1/JAK2 inhibitor. CONCLUSION Our findings suggest that the novel JAK3/JAK1/TBK1 inhibitor CS12192 is potentially to alleviate autoimmune dermatosis.
Collapse
Affiliation(s)
- Dan Li
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Song Shan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| | - Xuhua Mao
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Yiru Zhao
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Beizhong Chen
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Qiuyun Xiong
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
| | - Desi Pan
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| | - Shengjian Huang
- Chengdu Chipscreen Pharmaceutical Ltd, Chengdu, Sichuan, China
- Shenzhen Chipscreen Biosciences Co., Ltd, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Tsuchiya H, Ota M, Takahashi H, Hatano H, Ogawa M, Nakajima S, Yoshihara R, Okamura T, Sumitomo S, Fujio K. Epigenetic targets of Janus kinase inhibitors are linked to genetic risks of rheumatoid arthritis. Inflamm Regen 2024; 44:29. [PMID: 38831367 PMCID: PMC11149281 DOI: 10.1186/s41232-024-00337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Current strategies that target cytokines (e.g., tumor necrosis factor (TNF)-α), or signaling molecules (e.g., Janus kinase (JAK)) have advanced the management for allergies and autoimmune diseases. Nevertheless, the molecular mechanism that underpins its clinical efficacy have largely remained elusive, especially in the local tissue environment. Here, we aimed to identify the genetic, epigenetic, and immunological targets of JAK inhibitors (JAKis), focusing on their effects on synovial fibroblasts (SFs), the major local effectors associated with destructive joint inflammation in rheumatoid arthritis (RA). METHODS SFs were activated by cytokines related to inflammation in RA, and were treated with three types of JAKis or a TNF-α inhibitor (TNFi). Dynamic changes in transcriptome and chromatin accessibility were profiled across samples to identify drug targets. Furthermore, the putative targets were validated using luciferase assays and clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing. RESULTS We found that both JAKis and the TNFi targeted the inflammatory module including IL6. Conversely, specific gene signatures that were preferentially inhibited by either of the drug classes were identified. Strikingly, RA risk enhancers for CD40 and TRAF1 were distinctively regulated by JAKis and the TNFi. We performed luciferase assays and CRISPR-based genome editing, and successfully fine-mapped the single causal variants in these loci, rs6074022-CD40 and rs7021049-TRAF1. CONCLUSIONS JAKis and the TNFi had a direct impact on different RA risk enhancers, and we identified nucleotide-resolution targets for both drugs. Distinctive targets of clinically effective drugs could be useful for tailoring the application of these drugs and future design of more efficient treatment strategies.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Haruka Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Megumi Ogawa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Sotaro Nakajima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Risa Yoshihara
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Horesh ME, Martin-Fernandez M, Gruber C, Buta S, Le Voyer T, Puzenat E, Lesmana H, Wu Y, Richardson A, Stein D, Hodeib S, Youssef M, Kurowski JA, Feuille E, Pedroza LA, Fuleihan RL, Haseley A, Hovnanian A, Quartier P, Rosain J, Davis G, Mullan D, Stewart O, Patel R, Lee AE, Rubinstein R, Ewald L, Maheshwari N, Rahming V, Chinn IK, Lupski JR, Orange JS, Sancho-Shimizu V, Casanova JL, Abul-Husn NS, Itan Y, Milner JD, Bustamante J, Bogunovic D. Individuals with JAK1 variants are affected by syndromic features encompassing autoimmunity, atopy, colitis, and dermatitis. J Exp Med 2024; 221:e20232387. [PMID: 38563820 PMCID: PMC10986756 DOI: 10.1084/jem.20232387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Inborn errors of immunity lead to autoimmunity, inflammation, allergy, infection, and/or malignancy. Disease-causing JAK1 gain-of-function (GoF) mutations are considered exceedingly rare and have been identified in only four families. Here, we use forward and reverse genetics to identify 59 individuals harboring one of four heterozygous JAK1 variants. In vitro and ex vivo analysis of these variants revealed hyperactive baseline and cytokine-induced STAT phosphorylation and interferon-stimulated gene (ISG) levels compared with wild-type JAK1. A systematic review of electronic health records from the BioME Biobank revealed increased likelihood of clinical presentation with autoimmunity, atopy, colitis, and/or dermatitis in JAK1 variant-positive individuals. Finally, treatment of one affected patient with severe atopic dermatitis using the JAK1/JAK2-selective inhibitor, baricitinib, resulted in clinically significant improvement. These findings suggest that individually rare JAK1 GoF variants may underlie an emerging syndrome with more common presentations of autoimmune and inflammatory disease (JAACD syndrome). More broadly, individuals who present with such conditions may benefit from genetic testing for the presence of JAK1 GoF variants.
Collapse
Affiliation(s)
- Michael E. Horesh
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Eve Puzenat
- Department of Dermatology and INSERM 1098, University of Bourgogne-Franche Comté, Besançon, France
| | - Harry Lesmana
- Genomic Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, OH, USA
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Stein
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie Hodeib
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Imperial College London, Centre for Paediatrics and Child Health, London, UK
| | - Mariam Youssef
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, NY, USA
| | - Jacob A. Kurowski
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, OH, USA
| | | | - Luis A. Pedroza
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ramsay L. Fuleihan
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexandria Haseley
- Center for Personalized Genetic Healthcare, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alain Hovnanian
- Imagine Institute, University of Paris, Paris, France
- Laboratory of Genetic Skin Diseases, INSERM U1163, Paris, France
| | - Pierre Quartier
- Université Paris-Cité, Paris, France
- Paediatric Hematology-Immunology and Rheumatology Unit, Hopital Necker-Enfants Malades, Assistance Publique-Hopitaux de Paris, Paris, Fance
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Georgina Davis
- Department of Immunology, Derriford Hospital, Plymouth, UK
| | - Daniel Mullan
- Department of Immunology, Derriford Hospital, Plymouth, UK
| | - O’Jay Stewart
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roosheel Patel
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angelica E. Lee
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Rubinstein
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leyla Ewald
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikhil Maheshwari
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ivan K. Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Immunology, Allergy, and Retrovirology, Texas Children’s Hospital, Houston, TX, USA
| | - James R. Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jordan S. Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Imperial College London, Centre for Paediatrics and Child Health, London, UK
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New Yor, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Noura S. Abul-Husn
- Department of Medicine, Division of Genomic Medicine, Icahn School of Medicine at Mount Sinai, Institute for Genomic Health, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D. Milner
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Rheumatology, Columbia University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
9
|
Lahera A, Vela-Martín L, Fernández-Navarro P, Llamas P, López-Lorenzo JL, Cornago J, Santos J, Fernández-Piqueras J, Villa-Morales M. The JAK3 Q988P mutation reveals oncogenic potential and resistance to ruxolitinib. Mol Carcinog 2024; 63:5-10. [PMID: 37712558 DOI: 10.1002/mc.23632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) arises from the malignant transformation of T-cell progenitors at various differentiation stages. Given that patients who relapse have a dismal prognosis, there is an urgent need to identify the molecular alterations that are present in such patients and promote leukemogenesis to implement personalized therapies with higher efficacy and fewer adverse effects. In the present manuscript, we identified the JAK3Q988P mutation in a T-ALL patient who did not achieve a durable response after the conventional treatment and whose tumor cells at relapse presented constitutive activation of the JAK/STAT pathway. Although JAK3Q988P has been previously identified in T-ALL patients from different studies, the functional consequences exerted by this mutation remain unexplored. Through the combination of different hematopoietic cellular models, we functionally characterize JAK3Q988P as an oncogenic mutation that contributes to leukemogenesis. Notably, JAK3Q988P not only promotes constitutive activation of the JAK/STAT pathway in the absence of cytokines and growth factors, as is the case for other JAK3 mutations that have been functionally characterized as oncogenic, but also functions independently of JAK1 and IL2RG, resulting in high oncogenic potential as well as resistance to ruxolitinib. Our results indicate that ruxolitinib may not be efficient for future patients bearing the JAK3Q988P mutation who instead may obtain greater benefits from treatments involving other pharmacological inhibitors such as tofacitinib.
Collapse
Affiliation(s)
- Antonio Lahera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Laura Vela-Martín
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Pablo Fernández-Navarro
- Division of Cancer and Environmental Epidemiology, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
- Division of Epidemiology and Control of Chronic Diseases, Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Llamas
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José L López-Lorenzo
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Cornago
- Division of Hematology and Hemotherapy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Santos
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| | - María Villa-Morales
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Division of Genetics and Genomics, IIS Fundación Jiménez Díaz, Madrid, Spain
- Division of Genome Dynamics and Function, Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
10
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
11
|
Komagamine M, Komatsu N, Ling R, Okamoto K, Tianshu S, Matsuda K, Takeuchi T, Kaneko Y, Takayanagi H. Effect of JAK inhibitors on the three forms of bone damage in autoimmune arthritis: joint erosion, periarticular osteopenia, and systemic bone loss. Inflamm Regen 2023; 43:44. [PMID: 37726797 PMCID: PMC10507845 DOI: 10.1186/s41232-023-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The types of bone damage in rheumatoid arthritis (RA) include joint erosion, periarticular osteoporosis, and systemic osteoporosis. Janus kinase (JAK) inhibitors ameliorate inflammation and joint erosion in RA, but their effect on the three types of bone loss have not been reportedly explored in depth. We aimed to clarify how JAK inhibitors influence the various types of bone loss in arthritis by modulating osteoclastic bone resorption and/or osteoblastic bone formation. METHODS Collagen-induced arthritis (CIA) mice were treated with a JAK inhibitor after the onset of arthritis. Micro-computed tomography (μCT) and histological analyses (bone morphometric analyses) on the erosive calcaneocuboid joint, periarticular bone (distal femur or proximal tibia), and vertebrae were performed. The effect of four different JAK inhibitors on osteoclastogenesis under various conditions was examined in vitro. RESULTS The JAK inhibitor ameliorated joint erosion, periarticular osteopenia and systemic bone loss. It reduced the osteoclast number in all the three types of bone damage. The JAK inhibitor enhanced osteoblastic bone formation in the calcaneus distal to inflammatory synovium in the calcaneocuboid joints, periarticular region of the tibia and vertebrae, but not the inflamed calcaneocuboid joint. All the JAK inhibitors suppressed osteoclastogenesis in vitro to a similar extent in the presence of osteoblastic cells. Most of the JAK inhibitors abrogated the suppressive effect of Th1 cells on osteoclastogenesis by inhibiting IFN-γ signaling in osteoclast precursor cells, while a JAK inhibitor did not affect this effect due to less ability to inhibit IFN-γ signaling. CONCLUSIONS The JAK inhibitor suppressed joint erosion mainly by inhibiting osteoclastogenesis, while it ameliorated periarticular osteopenia and systemic bone loss by both inhibiting osteoclastogenesis and promoting osteoblastogenesis. These results indicate that the effect of JAK inhibitors on osteoclastogenesis and osteoblastogenesis depends on the bone damage type and the affected bone area. In vitro studies suggest that while JAK inhibitors inhibit osteoclastic bone resorption, their effects on osteoclastogenesis in inflammatory environments vary depending on the cytokine milieu, JAK selectivity and cytokine signaling specificity. The findings reported here should contribute to the strategic use of antirheumatic drugs against structural damages in RA.
Collapse
Affiliation(s)
- Masatsugu Komagamine
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Rui Ling
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shi Tianshu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Matsuda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Saitama Medical University, Saitama, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Keaton JM, Workman BG, Xie L, Paulson JR. Analog-sensitive Cdk1 as a tool to study mitotic exit: protein phosphatase 1 is required downstream from Cdk1 inactivation in budding yeast. Chromosome Res 2023; 31:27. [PMID: 37690059 DOI: 10.1007/s10577-023-09736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
We show that specific inactivation of the protein kinase Cdk1/cyclin B (Cdc28/Clb2) triggers exit from mitosis in the budding yeast Saccharomyces cerevisiae. Cells carrying the allele cdc28-as1, which makes Cdk1 (Cdc28) uniquely sensitive to the ATP analog 1NM-PP1, were arrested with spindle poisons and then treated with 1NM-PP1 to inhibit Cdk1. This caused the cells to leave mitosis and enter G1-phase as shown by initiation of rebudding (without cytokinesis), induction of mating projections ("shmoos") by α-factor, stabilization of Sic1, and degradation of Clb2. It is known that Cdk1 must be inactivated for cells to exit mitosis, but our results show that inactivation of Cdk1 is not only necessary but also sufficient to initiate the transition from mitosis to G1-phase. This result suggests a system in which to test requirements for particular gene products downstream from Cdk1 inactivation, for example, by combining cdc28-as1 with conditional mutations in the genes of interest. Using this approach, we demonstrate that protein phosphatase 1 (PPase1; Glc7 in S. cerevisiae) is required for mitotic exit and reestablishment of interphase following Cdk1 inactivation. This system could be used to test the need for other protein phosphatases downstream from Cdk1 inactivation, such as PPase 2A and Cdc14, and it could be combined with phosphoproteomics to gain information about the substrates that the various phosphatases act upon during mitotic exit.
Collapse
Affiliation(s)
- Jason M Keaton
- Acacia Safety Consulting, Inc, P.O. Box 342603, Milwaukee, WI, 53234, USA
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA
| | - Benjamin G Workman
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA
| | - Linfeng Xie
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA
| | - James R Paulson
- Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, 54901, USA.
| |
Collapse
|
13
|
Bachus H, McLaughlin E, Lewis C, Papillion AM, Benveniste EN, Hill DD, Rosenberg AF, Ballesteros-Tato A, León B. IL-6 prevents Th2 cell polarization by promoting SOCS3-dependent suppression of IL-2 signaling. Cell Mol Immunol 2023; 20:651-665. [PMID: 37046042 PMCID: PMC10229632 DOI: 10.1038/s41423-023-01012-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Defective interleukin-6 (IL-6) signaling has been associated with Th2 bias and elevated IgE levels. However, the underlying mechanism by which IL-6 prevents the development of Th2-driven diseases remains unknown. Using a model of house dust mite (HDM)-induced Th2 cell differentiation and allergic airway inflammation, we showed that IL-6 signaling in allergen-specific T cells was required to prevent Th2 cell differentiation and the subsequent IgE response and allergic inflammation. Th2 cell lineage commitment required strong sustained IL-2 signaling. We found that IL-6 turned off IL-2 signaling during early T-cell activation and thus inhibited Th2 priming. Mechanistically, IL-6-driven inhibition of IL-2 signaling in responding T cells was mediated by upregulation of Suppressor Of Cytokine Signaling 3 (SOCS3). This mechanism could be mimicked by pharmacological Janus Kinase-1 (JAK1) inhibition. Collectively, our results identify an unrecognized mechanism that prevents the development of unwanted Th2 cell responses and associated diseases and outline potential preventive interventions.
Collapse
Affiliation(s)
- Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erin McLaughlin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Crystal Lewis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber M Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Alexion Pharmaceuticals, Inc., New Haven, CT, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dave Durell Hill
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Abstract
The JAK signaling pathway plays a major role in the immunopathology of autoimmune diseases, including inflammatory bowel disease. JAK enzymes provide novel targets for rapidly effective inflammatory bowel disease therapy, particularly in ulcerative colitis. Upadacitinib is a targeted JAK1 inhibitor. In multiple phase III clinical trials, upadacitinib has demonstrated significant improvement in clinical and endoscopic outcomes and quality of life for patients with moderate-to-severe ulcerative colitis. In this drug evaluation we describe the role of the JAK signaling pathway in ulcerative colitis, the mechanism of action of upadacitinib and the current clinical evidence for its use in ulcerative colitis; we also review its safety and tolerability, including for special populations.
Collapse
Affiliation(s)
- Ariel A Jordan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Dr Higgins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Gastroenterology & Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Keaton JM, Workman BG, Xie L, Paulson JR. Exit from Mitosis in Budding Yeast: Protein Phosphatase 1 is Required Downstream from Cdk1 Inactivation. RESEARCH SQUARE 2023:rs.3.rs-2787001. [PMID: 37090579 PMCID: PMC10120774 DOI: 10.21203/rs.3.rs-2787001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We show that inactivation of the protein kinase Cdk1/Cyclin B (Cdc28/Clb 2 in the budding yeast Saccharomyces cerevisiae ) is not only necessary for cells to leave mitosis, as is well known, but also sufficient to trigger mitotic exit. Cells carrying the mutation cdc28-as1 , which makes Cdc28 (Cdk1) uniquely sensitive to the ATP analog 1NM-PP1, were arrested with spindle poisons and then treated with 1NM-PP1 to inhibit Cdk1. This treatment caused the cells to exit mitosis and enter G1-phase as shown by initiation of rebudding (without cytokinesis), production of "shmoos" (when α-factor was present), stabilization of Sic1, and degradation of Clb2. This result provides a system in which to test whether particular gene products are required downstream from Cdk1 inactivation in exit from mitosis. In this system, the mutation cdc28-as1 is combined with a conditional mutation in the gene of interest. Using this approach, we demonstrate that Protein Phosphatase 1 (PPase1; Glc7 in S. cerevisiae ) is required for reestablishment of G1-phase following Cdk1 inactivation. This system could be used to test whether other protein phosphatases are also needed downstream from Cdk1 inactivation, and it could be combined with phosphoproteomics to gain information about the substrates those phosphatases act on during mitotic exit.
Collapse
|
16
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
17
|
Thoma G, Duthaler RO, Waelchli R, Hauchard A, Bruno S, Strittmatter-Keller U, Orjuela Leon A, Viebrock S, Aichholz R, Beltz K, Grove K, Hoque S, Rudewicz PJ, Zerwes HG. Discovery and Characterization of the Topical Soft JAK Inhibitor CEE321 for Atopic Dermatitis. J Med Chem 2023; 66:2161-2168. [PMID: 36657024 DOI: 10.1021/acs.jmedchem.2c01977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The JAK kinases JAK1, JAK2, JAK3, and TYK2 play key roles in cytokine signaling. Activation of the JAK/STAT pathways is linked to many diseases involving the immune system, including atopic dermatitis. As systemic JAK inhibitor pharmacology is associated with side effects, topical administration to the skin has been considered to locally restrict the site of action. Several orally bioavailable JAK inhibitors repurposed for topical use have been recently approved or are in clinical development. Here, we disclose our clinical candidate CEE321, which is a potent pan JAK inhibitor in enzyme and cellular assays. In contrast to repurposed oral drugs, CEE321 does not display high potency in blood and has a high clearance in vivo. Therefore, we consider CEE321 to be a "soft drug". When applied topically to human skin that was stimulated with the cytokines IL4 and IL13 ex vivo, CEE321 potently inhibited biomarkers relevant to atopic dermatitis.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Rudolf O Duthaler
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Rudolf Waelchli
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Alice Hauchard
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Sandro Bruno
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Ulrike Strittmatter-Keller
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Anette Orjuela Leon
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Sabine Viebrock
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Reiner Aichholz
- PK Sciences, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Karen Beltz
- PK Sciences, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Kerri Grove
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Shaila Hoque
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Patrick J Rudewicz
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Hans-Guenter Zerwes
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
18
|
Zhou S, Mao W, Su Y, Zheng X, Qian W, Shen M, Shan N, Li Y, Wang D, Wu S, Sun T, Mu L. Identification of TUL01101: A Novel Potent and Selective JAK1 Inhibitor for the Treatment of Rheumatoid Arthritis. J Med Chem 2022; 65:16716-16740. [PMID: 36512734 DOI: 10.1021/acs.jmedchem.2c01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Janus kinase 1 (JAK1) is a potential target for the treatment of rheumatoid arthritis (RA). In this study, the introduction of a spiro ring with a difluoro-substituted cyclopropionamide resulted in the identification of TUL01101 (compound 36) based on a triazolo[1,5-a]pyridine core of filgotinib. It showed excellent potency on JAK1 with an IC50 value of 3 nM and exhibited more than 12-fold selectivity for JAK2 and TYK2. Whole blood assay also demonstrated the high activity and selectivity (37-fold for JAK2). At the same time, TUL01101 also demonstrated excellent metabolic stability and pharmacokinetics (PK) profiles were assayed in three species (mouse, rat, and dog). Moreover, it has been validated for effective activity in the treatment of RA both in collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) models, with low dose and low toxicity. Now, TUL01101 has progressed into phase I clinical trials.
Collapse
Affiliation(s)
- Shuhao Zhou
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Weiwei Mao
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Yuan Su
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Xuejian Zheng
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Wenyuan Qian
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Meiyue Shen
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Ningli Shan
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Yaoshuang Li
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Degang Wang
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Shouting Wu
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, P. R. China
| | - Liwei Mu
- Zhuhai United Laboratories Co., Ltd., NO.12 Jialian Road, Tanzhou Township, Zhongshan, Guangdong 528467, P. R. China
| |
Collapse
|
19
|
Kavanagh ME, Horning BD, Khattri R, Roy N, Lu JP, Whitby LR, Ye E, Brannon JC, Parker A, Chick JM, Eissler CL, Wong AJ, Rodriguez JL, Rodiles S, Masuda K, Teijaro JR, Simon GM, Patricelli MP, Cravatt BF. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat Chem Biol 2022; 18:1388-1398. [PMID: 36097295 PMCID: PMC7614775 DOI: 10.1038/s41589-022-01098-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elva Ye
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | | | | | | | | | | | | | - Kim Masuda
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA, USA
| | | | | | | |
Collapse
|
20
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
21
|
Dai Z, Sezin T, Chang Y, Lee EY, Wang EHC, Christiano AM. Induction of T cell exhaustion by JAK1/3 inhibition in the treatment of alopecia areata. Front Immunol 2022; 13:955038. [PMID: 36203601 PMCID: PMC9531018 DOI: 10.3389/fimmu.2022.955038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alopecia areata (AA) is an autoimmune disease caused by T cell-mediated destruction of the hair follicle (HF). Therefore, approaches that effectively disrupt pathogenic T cell responses are predicted to have therapeutic benefit for AA treatment. T cells rely on the duality of T cell receptor (TCR) and gamma chain (γc) cytokine signaling for their development, activation, and peripheral homeostasis. Ifidancitinib is a potent and selective next-generation JAK1/3 inhibitor predicted to disrupt γc cytokine signaling. We found that Ifidancitinib robustly induced hair regrowth in AA-affected C3H/HeJ mice when fed with Ifidancitinib in chow diets. Skin taken from Ifidancitinib-treated mice showed significantly decreased AA-associated inflammation. CD44+CD62L- CD8+ T effector/memory cells, which are associated with the pathogenesis of AA, were significantly decreased in the peripheral lymphoid organs in Ifidancitinib-treated mice. We observed high expression of co-inhibitory receptors PD-1 on effector/memory CD8+ T cells, together with decreased IFN-γ production in Ifidancitinib-treated mice. Furthermore, we found that γc cytokines regulated T cell exhaustion. Taken together, our data indicate that selective induction of T cell exhaustion using a JAK inhibitor may offer a mechanistic explanation for the success of this treatment strategy in the reversal of autoimmune diseases such as AA.
Collapse
Affiliation(s)
- Zhenpeng Dai
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Tanya Sezin
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuqian Chang
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Eunice Y. Lee
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Angela M. Christiano
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
- *Correspondence: Angela M. Christiano,
| |
Collapse
|
22
|
Valli A, Kuuliala K, Virtanen A, Kuuliala A, Palmroth M, Peltomaa R, Vidqvist KL, Leirisalo-Repo M, Silvennoinen O, Isomäki P. Tofacitinib treatment modulates the levels of several inflammation-related plasma proteins in rheumatoid arthritis and baseline levels of soluble biomarkers associate with the treatment response. Clin Exp Immunol 2022; 210:141-150. [PMID: 36124688 PMCID: PMC9750823 DOI: 10.1093/cei/uxac085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023] Open
Abstract
The data on the effects of tofacitinib on soluble proteins in patients with rheumatoid arthritis (RA) is currently very limited. We analyzed how tofacitinib treatment and thus inhibition of the Janus kinase-signal transducer and activation of transcription pathway affects the in vivo levels of inflammation-related plasma proteins in RA patients. In this study, 16 patients with active RA [28-joint disease activity score (DAS28) >3.2] despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) started tofacitinib treatment 5 mg twice daily. Levels of 92 inflammation-related plasma proteins were determined by proximity extension assay at baseline and at 3 months. Tofacitinib treatment for 3 months, in csDMARD background, decreased the mean DAS28 from 4.4 to 2.6 (P < 0.001). Marked (>20%) and statistically significant (P < 0.05) changes were found in the levels of 21 proteins, 18 of which decreased and 3 increased. Of these proteins, 17 are directly involved in inflammatory responses or in the cellular response to cytokines. The highest (>50%) decrease was observed for interleukin-6 (IL-6), C-X-C motif chemokine ligand 1, matrix metalloproteinase-1, and AXIN1. Higher baseline levels of IL-6 and lower levels of C-C motif chemokine 11 and Delta and Notch-like epidermal growth factor-related receptors were associated with DAS28 improvement. Our results indicate that tofacitinib downregulates several proinflammatory plasma proteins that may contribute to the clinical efficacy of tofacitinib. In addition, soluble biomarkers may predict the treatment response to tofacitinib.
Collapse
Affiliation(s)
- Atte Valli
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ritva Peltomaa
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Marjatta Leirisalo-Repo
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Tampere, Finland,Institute of Biotechnology, HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Isomäki
- Correspondence: Pia Isomäki, Department of Internal Medicine, Centre for Rheumatic Diseases, Tampere University Hospital, P.O. Box, 2000, FI-33521 Tampere, Finland.
| |
Collapse
|
23
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
24
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
25
|
Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Front Pharmacol 2022; 13:837369. [PMID: 35529449 PMCID: PMC9068899 DOI: 10.3389/fphar.2022.837369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2022] [Indexed: 01/06/2023] Open
Abstract
JAK1 plays a significant role in the intracellular signaling by interacting with cytokine receptors in different types of cells and is linked to the pathogenesis of various cancers and in the pathology of the immune system. In this study, ligand-based pharmacophore modeling combined with virtual screening and molecular docking methods was incorporated to identify the potent and selective lead compounds for JAK1. Initially, the ligand-based pharmacophore models were generated using a set of 52 JAK1 inhibitors named C-2 methyl/hydroxyethyl imidazopyrrolopyridines derivatives. Twenty-seven pharmacophore models with five and six pharmacophore features were generated and validated using potency and selectivity validation methods. During potency validation, the Guner-Henry score was calculated to check the accuracy of the generated models, whereas in selectivity validation, the pharmacophore models that are capable of identifying selective JAK1 inhibitors were evaluated. Based on the validation results, the best pharmacophore models ADHRRR, DDHRRR, DDRRR, DPRRR, DHRRR, ADRRR, DDHRR, and ADPRR were selected and taken for virtual screening against the Maybridge, Asinex, Chemdiv, Enamine, Lifechemicals, and Zinc database to identify the new molecules with novel scaffold that can bind to JAK1. A total of 4,265 hits were identified from screening and checked for acceptable drug-like properties. A total of 2,856 hits were selected after ADME predictions and taken for Glide molecular docking to assess the accurate binding modes of the lead candidates. Ninety molecules were shortlisted based on binding energy and H-bond interactions with the important residues of JAK1. The docking results were authenticated by calculating binding free energy for protein–ligand complexes using the MM-GBSA calculation and induced fit docking methods. Subsequently, the cross-docking approach was carried out to recognize the selective JAK1 lead compounds. Finally, top five lead compounds that were potent and selective against JAK1 were selected and validated using molecular dynamics simulation. Besides, the density functional theory study was also carried out for the selected leads. Through various computational studies, we observed good potency and selectivity of these lead compounds when compared with the drug ruxolitinib. Compounds such as T5923555 and T5923531 were found to be the best and can be further validated using in vitro and in vivo methods.
Collapse
Affiliation(s)
- Sathya Babu
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Santhosh Kumar Nagarajan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Sruthy Sathish
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Pondicherry, India
| | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea
- *Correspondence: Thirumurthy Madhavan, ; Honglae Sohn,
| | - Thirumurthy Madhavan
- Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
- *Correspondence: Thirumurthy Madhavan, ; Honglae Sohn,
| |
Collapse
|
26
|
Liao HJ, Tzen JTC. The Potential Role of Phenolic Acids from Salvia miltiorrhiza and Cynara scolymus and Their Derivatives as JAK Inhibitors: An In Silico Study. Int J Mol Sci 2022; 23:4033. [PMID: 35409393 PMCID: PMC8999973 DOI: 10.3390/ijms23074033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022] Open
Abstract
JAK inhibition is a new strategy for treating autoimmune and inflammatory diseases. Previous studies have shown the immunoregulatory and anti-inflammatory effects of Salvia miltiorrhiza and Cynara scolymus and suggest that the bioactivity of their phenolic acids involves the JAK-STAT pathway, but it is unclear whether these effects occur through JAK inhibition. The JAK binding affinities obtained by docking Rosmarinic acid (RosA), Salvianolic acid A (SalA), Salvianolic acid C (SalC), Lithospermic acid, Salvianolic acid B and Cynarin (CY) to JAK (PDB: 6DBN) with AutoDock Vina are -8.8, -9.8, -10.7, -10.0, -10.3 and -9.7 kcal/mol, respectively. Their predicted configurations enable hydrogen bonding with the hinge region and N- and C-terminal lobes of the JAK kinase domain. The benzofuran core of SalC, the compound with the greatest binding affinity, sits near Leu959, such as Tofacitinib's pyrrolopyrimidine. A SalC derivative with a binding affinity of -12.2 kcal/mol was designed while maintaining this relationship. The docking results show follow-up studies of these phenolic acids as JAK inhibitors may be indicated. Furthermore, derivatives of SalC, RosA, CY and SalA can yield better binding affinity or bioavailability scores, indicating that their structures may be suitable as scaffolds for the design of new JAK inhibitors.
Collapse
Affiliation(s)
- Hui-Jun Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan;
| | | |
Collapse
|
27
|
Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science 2022; 376:163-169. [PMID: 35271300 PMCID: PMC9306331 DOI: 10.1126/science.abn8933] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus Kinases (JAKs). We report the 3.6-Å resolution cryo-EM structure of full-length JAK1 complexed with a cytokine receptor intracellular Box1/Box2 domain, captured as an activated homodimer bearing the Val→Phe (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit whose dimerization is mediated by close-packed pseudokinase (PK) domains. The oncogenic VF mutation lies within the core of the JAK1 PK dimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The C-terminal tyrosine kinase domains are poised to phosphorylate the receptor STAT-recruiting motifs projecting from the overhanging FERM-SH2 domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals new opportunities for selective therapeutic targeting of oncogenic JAK signaling.
Collapse
Affiliation(s)
- Caleb R Glassman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Sekine Y, Kikkawa K, Witthuhn BA, Kashiwakura JI, Muromoto R, Kitai Y, Fujimuro M, Oritani K, Matsuda T. A novel intramolecular negative regulation of mouse Jak3 activity by tyrosine 820. Int Immunol 2022; 34:303-312. [PMID: 35192696 DOI: 10.1093/intimm/dxac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma (γ) chain-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced STAT5 tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to Jak3 WT. These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3-mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuna Kikkawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Bruce A Witthuhn
- Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, MN, USA
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, 4-3 Kouzunomori, Narita, Chiba, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Garufi C, Maclean M, Gadina M, Spinelli FR. Affecting the effectors: JAK inhibitors modulation of immune cell numbers and functions in patients with rheumatoid arthritis. Expert Rev Clin Immunol 2022; 18:309-319. [PMID: 35168456 DOI: 10.1080/1744666x.2022.2042254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The Janus kinase family includes four members - JAK1, JAK2, JAK3, TYK2 that are selectively associated with type I and II cytokine receptors. Jak-inhibitors (Jakinibs) are a new class of drugs for treating inflammatory diseases. Five Jakinibs are currently available for Rheumatoid Arthritis (RA): tofacitinib, baricitinib, upadacitinib, filgotinib and peficitinib. Considering the role of cytokines and growth factors in immune cell survival and activation, the anti-proliferative and suppressive effects of Jakinibs on these cells are predictable. AREAS COVERED This review summarizes Jakinibs' effects of on immune populations in vitro and in vivo. In vitro, Jakinibs affected T and B lymphocytes, monocytes, neutrophils and dendritic cell proliferation. T helper, B cell differentiation and cytokine secretion was impaired. Accordingly, changes in the number of lymphocytes, natural killer (NK) cells and neutrophils have been reported during the randomized clinical trials with all the Jakinibs, reverting after drug withdrawal. EXPERT OPINION In vitro and in vivo studies showed that the numbers and the function of immune cells are influenced by Jakinibs. Nonetheless, their effects do not seem to represent a major safety issue as these changes do not correlate with the onset of serious infection despite the increased rates of herpes zoster reactivation.
Collapse
Affiliation(s)
- Cristina Garufi
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| | - Mary Maclean
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italia
| |
Collapse
|
30
|
Kim W, Lee SM, Jeong PH, Jung JH, Kim YC. Synthesis and structure-activity relationship studies of 1,5-isomers of triazole-pyrrolopyrimidine as selective Janus kinase 1 (JAK1) inhibitors. Bioorg Med Chem Lett 2022; 55:128451. [PMID: 34774741 DOI: 10.1016/j.bmcl.2021.128451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 11/02/2022]
Abstract
JAK inhibitors have been considered as useful targets for the treatment of related diseases. However, first-generation JAK inhibitors have side effects such as anemia, thrombocytopenia, neutropenia and headaches which have been suggested to result from high JAK2 inhibition. Second-generation JAK inhibitors with more specific JAK isozyme inhibition have been studied to eliminate these adverse effects. In this study, novel 4-(1,5- or 2,5-triazole)-pyrrolopyrimidine derivatives with aromatic moieties were synthesized as JAK1 inhibitors, and an in vitro enzyme assay was used to evaluate the JAK inhibitory effects. Among these JAK1 inhibitors, the compound 23a showed an IC50 level of 72 nM, as well as being selective against other JAKs by 12 times or more: the results of molecular docking studies suggested that the high JAK1 selectivity resulted from a key interaction between the iodine atom of compound 23a and His-885 of hJAK1.
Collapse
Affiliation(s)
- WooChan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sun-Mi Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Pyeong-Hwa Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jae-Hoon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Center for AI-Applied High Efficiency Drug Discovery (AHEDD), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
31
|
Daza-Cajigal V, Albuquerque AS, Young DF, Ciancanelli MJ, Moulding D, Angulo I, Jeanne-Julien V, Rosain J, Minskaia E, Casanova JL, Boisson-Dupuis S, Bustamante J, Randall RE, McHugh TD, Thrasher AJ, Burns SO. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front Immunol 2022; 13:888427. [PMID: 36159783 PMCID: PMC9501714 DOI: 10.3389/fimmu.2022.888427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/β and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Research Unit, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States
| | - Dale Moulding
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom
| | - Ivan Angulo
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Ekaterina Minskaia
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Timothy D McHugh
- Research Department of Infection, University College London Centre for Clinical Microbiology, London, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom.,Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
32
|
Moskowitz AJ, Ghione P, Jacobsen E, Ruan J, Schatz JH, Noor S, Myskowski P, Vardhana S, Ganesan N, Hancock H, Davey T, Perez L, Ryu S, Santarosa A, Dowd J, Obadi O, Pomerantz L, Yi N, Sohail S, Galasso N, Neuman R, Liotta B, Blouin W, Baik J, Geyer MB, Noy A, Straus D, Kumar P, Dogan A, Hollmann T, Drill E, Rademaker J, Schoder H, Inghirami G, Weinstock DM, Horwitz SM. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood 2021; 138:2828-2837. [PMID: 34653242 PMCID: PMC8718625 DOI: 10.1182/blood.2021013379] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Signaling through JAK1 and/or JAK2 is common among tumor and nontumor cells within peripheral T-cell lymphoma (PTCL). No oral therapies are approved for PTCL, and better treatments for relapsed/refractory disease are urgently needed. We conducted a phase 2 study of the JAK1/2 inhibitor ruxolitinib for patients with relapsed/refractory PTCL (n = 45) or mycosis fungoides (MF) (n = 7). Patients enrolled onto 1 of 3 biomarker-defined cohorts: (1) activating JAK and/or STAT mutations, (2) ≥30% pSTAT3 expression among tumor cells by immunohistochemistry, or (3) neither or insufficient tissue to assess. Patients received ruxolitinib 20 mg PO twice daily until progression and were assessed for response after cycles 2 and 5 and every 3 cycles thereafter. The primary endpoint was clinical benefit rate (CBR), defined as the combination of complete response, partial response (PR), and stable disease lasting at least 6 months. Only 1 of 7 patients with MF had CBR (ongoing PR > 18 months). CBR among the PTCL cases (n = 45) in cohorts 1, 2, and 3 were 53%, 45%, and 13% (cohorts 1 & 2 vs 3, P = .02), respectively. Eight patients had CBR > 12 months (5 ongoing), including 4 of 5 patients with T-cell large granular lymphocytic leukemia. In an exploratory analysis using multiplex immunofluorescence, expression of phosphorylated S6, a marker of PI3 kinase or mitogen-activated protein kinase activation, in <25% of tumor cells was associated with response to ruxolitinib (P = .05). Our findings indicate that ruxolitinib is active across various PTCL subtypes and support a precision therapy approach to JAK/STAT inhibition in patients with PTCL. This trial was registered at www.clincialtrials.gov as #NCT02974647.
Collapse
Affiliation(s)
- Alison J Moskowitz
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - Paola Ghione
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Lymphoma Service, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Eric Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jia Ruan
- Lymphoma Service, Weill Cornell Medical Center, New York, NY
| | - Jonathan H Schatz
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL; and
| | | | | | - Santosha Vardhana
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - Nivetha Ganesan
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Helen Hancock
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Theresa Davey
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Leslie Perez
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sunyoung Ryu
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alayna Santarosa
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jack Dowd
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Obadi Obadi
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Lauren Pomerantz
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nancy Yi
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Samia Sohail
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Natasha Galasso
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rachel Neuman
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Brielle Liotta
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - William Blouin
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | | - Ariela Noy
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | - David Straus
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| | | | | | | | | | | | - Heiko Schoder
- Department of Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Steven M Horwitz
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical Center, New York, NY
| |
Collapse
|
33
|
Palmroth M, Kuuliala K, Peltomaa R, Virtanen A, Kuuliala A, Kurttila A, Kinnunen A, Leirisalo-Repo M, Silvennoinen O, Isomäki P. Tofacitinib Suppresses Several JAK-STAT Pathways in Rheumatoid Arthritis In Vivo and Baseline Signaling Profile Associates With Treatment Response. Front Immunol 2021; 12:738481. [PMID: 34630419 PMCID: PMC8498592 DOI: 10.3389/fimmu.2021.738481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Current knowledge on the actions of tofacitinib on cytokine signaling pathways in rheumatoid arthritis (RA) is based on in vitro studies. Our study is the first to examine the effects of tofacitinib treatment on Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathways in vivo in patients with RA. Methods Sixteen patients with active RA, despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), received tofacitinib 5 mg twice daily for three months. Levels of constitutive and cytokine-induced phosphorylated STATs in peripheral blood monocytes, T cells and B cells were measured by flow cytometry at baseline and three-month visits. mRNA expression of JAKs, STATs and suppressors of cytokine signaling (SOCS) were measured from peripheral blood mononuclear cells (PBMCs) by quantitative PCR. Association of baseline signaling profile with treatment response was also investigated. Results Tofacitinib, in csDMARDs background, decreased median disease activity score (DAS28) from 4.4 to 2.6 (p < 0.001). Tofacitinib treatment significantly decreased cytokine-induced phosphorylation of all JAK-STAT pathways studied. However, the magnitude of the inhibitory effect depended on the cytokine and cell type studied, varying from 10% to 73% inhibition following 3-month treatment with tofacitinib. In general, strongest inhibition by tofacitinib was observed with STAT phosphorylations induced by cytokines signaling through the common-γ-chain cytokine receptor in T cells, while lowest inhibition was demonstrated for IL-10 -induced STAT3 phosphorylation in monocytes. Constitutive STAT1, STAT3, STAT4 and STAT5 phosphorylation in monocytes and/or T cells was also downregulated by tofacitinib. Tofacitinib treatment downregulated the expression of several JAK-STAT pathway components in PBMCs, SOCSs showing the strongest downregulation. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response. Conclusions Tofacitinib suppresses multiple JAK-STAT pathways in cytokine and cell population specific manner in RA patients in vivo. Besides directly inhibiting JAK activation, tofacitinib downregulates the expression of JAK-STAT pathway components. This may modulate the effects of tofacitinib on JAK-STAT pathway activation in vivo and explain some of the differential findings between the current study and previous in vitro studies. Finally, baseline immunological markers associate with the treatment response to tofacitinib.
Collapse
Affiliation(s)
- Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ritva Peltomaa
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Kinnunen
- Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
| | - Marjatta Leirisalo-Repo
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Isomäki
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
34
|
Richez C, Truchetet ME. Evaluating filgotinib for the treatment of rheumatoid arthritis. Expert Opin Pharmacother 2021; 22:2435-2444. [PMID: 34402699 DOI: 10.1080/14656566.2021.1967929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Despite the availability of an extensive armamentarium, rheumatoid arthritis (RA) remains a therapeutic challenge for rheumatologists. Janus kinase inhibitors (JAKi) are an emerging class of targeted therapies. The number of JAKi has been growing and to date, filgotinib is the latest JAKi to be approved for use in RA. AREAS COVERED This review focuses on the pharmacodynamics, pharmacokinetics, efficacy and safety of filgotinib in patients with RA. EXPERT OPINION Filgotinib is an oral targeted synthetic disease-modifying antirheumatic drug (DMARD) that specifically inhibits JAKi. Filgotinib monotherapy, or a combination regimen with conventional synthetic (cs) DMARDs, has demonstrated efficacy in decreasing disease activity, with a well-managed safety profile in patients with early RA naive to DMARDs, and in RA that does not adequately respond to csDMARDs and/or biologic DMARDs. The selective inhibition of JAK1 may confer an improved safety profile, but further study is required as a potential testicular toxicity has been suggested. Filgotinib offers several advantages: oral administration, rapidity of action, efficacy as monotherapy, and demonstrated activity in difficult to treat RA. However, the placement of filgotinib in the therapeutic arsenal for RA may be influenced by the ongoing collection of long-term safety data from JAKi as a class.
Collapse
Affiliation(s)
- Christophe Richez
- Département de Rhumatologie, CHU de Bordeaux, Hôpital Pellegrin, Bordeaux, France.,UMR-CNRS 5164, ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
| | - Marie-Elise Truchetet
- Département de Rhumatologie, CHU de Bordeaux, Hôpital Pellegrin, Bordeaux, France.,UMR-CNRS 5164, ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Herbaux C, Kornauth C, Poulain S, Chong SJF, Collins MC, Valentin R, Hackett L, Tournilhac O, Lemonnier F, Dupuis J, Daniel A, Tomowiak C, Laribi K, Renaud L, Roos-Weil D, Rossi C, Van Den Neste E, Leyronnas C, Merabet F, Malfuson JV, Tiab M, Ysebaert L, Ng S, Morschhauser F, Staber PB, Davids MS. BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia. Blood 2021; 137:3495-3506. [PMID: 33598678 DOI: 10.1182/blood.2020007303] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Conventional therapies for patients with T-cell prolymphocytic leukemia (T-PLL), such as cytotoxic chemotherapy and alemtuzumab, have limited efficacy and considerable toxicity. Several novel agent classes have demonstrated preclinical activity in T-PLL, including inhibitors of the JAK/STAT and T-cell receptor pathways, as well as histone deacetylase (HDAC) inhibitors. Recently, the BCL-2 inhibitor venetoclax also showed some clinical activity in T-PLL. We sought to characterize functional apoptotic dependencies in T-PLL to identify a novel combination therapy in this disease. Twenty-four samples from patients with primary T-PLL were studied by using BH3 profiling, a functional assay to assess the propensity of a cell to undergo apoptosis (priming) and the relative dependence of a cell on different antiapoptotic proteins. Primary T-PLL cells had a relatively low level of priming for apoptosis and predominantly depended on BCL-2 and MCL-1 proteins for survival. Selective pharmacologic inhibition of BCL-2 or MCL-1 induced cell death in primary T-PLL cells. Targeting the JAK/STAT pathway with the JAK1/2 inhibitor ruxolitinib or HDAC with belinostat both independently increased dependence on BCL-2 but not MCL-1, thereby sensitizing T-PLL cells to venetoclax. Based on these results, we treated 2 patients with refractory T-PLL with a combination of venetoclax and ruxolitinib. We observed a deep response in JAK3-mutated T-PLL and a stabilization of the nonmutated disease. Our functional, precision-medicine-based approach identified inhibitors of HDAC and the JAK/STAT pathway as promising combination partners for venetoclax, warranting a clinical exploration of such combinations in T-PLL.
Collapse
Affiliation(s)
- Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- "CANcer Heterogeneity, Plasticity and Resistance to THERapies (CANTHER)," INSERM 1277, Centre National de la Recherche Scientifique (CNRS) 9020, Unité Mixte de Recherche en Santé (UMRS) 12, University of Lille, Lille, France
- Department of Blood Diseases, Centre Hospitalier Université (CHU) de Lille, Lille, France
| | - Christoph Kornauth
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stéphanie Poulain
- "CANcer Heterogeneity, Plasticity and Resistance to THERapies (CANTHER)," INSERM 1277, Centre National de la Recherche Scientifique (CNRS) 9020, Unité Mixte de Recherche en Santé (UMRS) 12, University of Lille, Lille, France
- Hematology Laboratory, Biology and Pathology Center, CHU de Lille, Lille, France
| | - Stephen J F Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mary C Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Liam Hackett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Olivier Tournilhac
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), Department of Clinical Hematology and Cellular Therapy, CHU, EA7453, Université Clermont Auvergne, Clermont Ferrand, France
| | - François Lemonnier
- Lymphoid Malignancies Unit, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jehan Dupuis
- Lymphoid Malignancies Unit, Henri Mondor University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Adrien Daniel
- Department of Blood Diseases, Centre Hospitalier Université (CHU) de Lille, Lille, France
| | - Cecile Tomowiak
- Hematology, Poitiers University Hospital, INSERM Clinical Investigation Center (CIC) 1402, Poitiers, France
| | - Kamel Laribi
- Department of Hematology, Centre Hospitalier Du Mans, Le Mans, France
| | - Loïc Renaud
- Department of Blood Diseases, Centre Hospitalier Université (CHU) de Lille, Lille, France
| | - Damien Roos-Weil
- Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Cedric Rossi
- Department of Hematology, CHU Dijon, Dijon, France
| | - Eric Van Den Neste
- Department of Hematology, Saint-Luc University Hospital, Brussels, Belgium
| | | | - Fatiha Merabet
- Department of Hematology and Oncology, Hôpital André Mignot, Le Chesnay, France
| | | | - Mourad Tiab
- University Hospital, La Roche-sur-Yon, France; and
| | - Loïc Ysebaert
- Service d'Hématologie, Institut Universitaire du Cancer Toulouse-Oncopôle, Toulouse, France
| | - Samuel Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Franck Morschhauser
- Department of Blood Diseases, Centre Hospitalier Université (CHU) de Lille, Lille, France
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
36
|
Zhang N, Zhang C, Zeng Z, Zhang J, Du S, Bao C, Wang Z. Preclinical Characterization of the Selective JAK1 Inhibitor LW402 for Treatment of Rheumatoid Arthritis. J Inflamm Res 2021; 14:2133-2147. [PMID: 34054304 PMCID: PMC8153205 DOI: 10.2147/jir.s301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Research on JAK family members as therapeutic targets for autoimmune diseases has brought tofacitinib and baricitinib into clinical for the treatment of rheumatoid arthritis and other autoimmune diseases. Despite the potent efficacy of these first-generation JAK inhibitors, their broad-spectrum JAK inhibition and adverse events warrant development of a JAK1-specific inhibitor to improve their safety profile. METHODS In this study, we characterized a JAK1-specific inhibitor, LW402, on biochemical and human whole-blood assays. We further evaluated the therapeutic efficacy of LW402 in a rat adjuvant-induced arthritis (rAIA) model and a mouse collagen-induced arthritis (mCIA) model. The safety of LW402 was evaluated in both SpragueDawley rats and cynomolgus monkeys. RESULTS LW402 exhibited potent nanomolar activity against JAK1 and showed a 45-fold selectivity for inhibition of JAK1- over JAK2-dependent signaling induced by either IL6 or GM-CSF in human whole-blood assays. In the rAIA model, oral dosing of LW402 resulted in a dose-dependent improvement in disease symptoms, including reduction in paw swelling, marked reduction in the inflammatory-cell infiltration to synovial tissue, and protection of articular cartilage and bone from damage. The therapeutic efficacy of LW402 correlated well with the plasma exposure of LW402 and the extent of pSTAT3 inhibition in white blood cells. LW402 also effectively eased disease symptoms in the mCIA model. Toxicity studies in the Sprague Dawley rats and cynomolgus monkeys established a ≥5x therapeutic window for LW402 as drug exposures of toxicity study NOAEL dose and pharmacology study ED50 dose were compared. CONCLUSION We developed a novel JAK1-specific inhibitor LW402 with potent efficacy in rAIA and mCIA models. We established a good safety profile for LW402 in toxicity studies, and the overall superiority of LW402 should translated well to the clinical setting for the treatment of RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Ning Zhang
- Longwood Biopharmaceuticals, Shanghai, People’s Republic of China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zhihong Zeng
- Longwood Biopharmaceuticals, Shanghai, People’s Republic of China
| | - Jiyong Zhang
- Longwood Biopharmaceuticals, Shanghai, People’s Republic of China
| | - Shengnan Du
- Longwood Biopharmaceuticals, Shanghai, People’s Republic of China
| | - Chunde Bao
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhe Wang
- Longwood Biopharmaceuticals, Shanghai, People’s Republic of China
| |
Collapse
|
37
|
Remenyi J, Naik RJ, Wang J, Razsolkov M, Verano A, Cai Q, Tan L, Toth R, Raggett S, Baillie C, Traynor R, Hastie CJ, Gray NS, Arthur JSC. Generation of a chemical genetic model for JAK3. Sci Rep 2021; 11:10093. [PMID: 33980892 PMCID: PMC8115619 DOI: 10.1038/s41598-021-89356-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
Janus Kinases (JAKs) have emerged as an important drug target for the treatment of a number of immune disorders due to the central role that they play in cytokine signalling. 4 isoforms of JAKs exist in mammalian cells and the ideal isoform profile of a JAK inhibitor has been the subject of much debate. JAK3 has been proposed as an ideal target due to its expression being largely restricted to the immune system and its requirement for signalling by cytokine receptors using the common γ-chain. Unlike other JAKs, JAK3 possesses a cysteine in its ATP binding pocket and this has allowed the design of isoform selective covalent JAK3 inhibitors targeting this residue. We report here that mutating this cysteine to serine does not prevent JAK3 catalytic activity but does greatly increase the IC50 for covalent JAK3 inhibitors. Mice with a Cys905Ser knockin mutation in the endogenous JAK3 gene are viable and show no apparent welfare issues. Cells from these mice show normal STAT phosphorylation in response to JAK3 dependent cytokines but are resistant to the effects of covalent JAK3 inhibitors. These mice therefore provide a chemical-genetic model to study JAK3 function.
Collapse
Affiliation(s)
- Judit Remenyi
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Rangeetha Jayaprakash Naik
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Momchil Razsolkov
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK
| | - Alyssa Verano
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Quan Cai
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Rachel Toth
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Samantha Raggett
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Carla Baillie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Ryan Traynor
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - C James Hastie
- MRC PPU Reagents and Services, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
38
|
Harris C, Cummings JRF. JAK1 inhibition and inflammatory bowel disease. Rheumatology (Oxford) 2021; 60:ii45-ii51. [PMID: 33950226 PMCID: PMC8098109 DOI: 10.1093/rheumatology/keaa896] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Primary non-response and secondary loss of response remain a significant issue with the currently available treatment options for a significant proportion of patients with inflammatory bowel disease (IBD). There are multiple unmet needs in the IBD treatment algorithm and new treatment options are required. As our understanding of the pathogenesis of IBD evolves, new therapeutic targets are being identified. The JAK-STAT pathway has been extensively studied. Tofacitinib, a JAK1 inhibitor, is now licensed for use in the induction and maintenance of ulcerative colitis and there are a large number of molecules currently under investigation. These new small molecule drugs (SMDs) will challenge current treatment pathways at a time when clinical therapeutic outcomes are rapidly evolving and becoming more ambitious. This is a review of the current JAK1 inhibitors in IBD including the current evidence from clinical trials.
Collapse
Affiliation(s)
- Clare Harris
- Department of Gastroenterology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - J R Fraser Cummings
- Department of Gastroenterology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
39
|
Dai Z, Chen J, Chang Y, Christiano AM. Selective inhibition of JAK3 signaling is sufficient to reverse alopecia areata. JCI Insight 2021; 6:142205. [PMID: 33830087 PMCID: PMC8119218 DOI: 10.1172/jci.insight.142205] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) are key intracellular mediators in the signal transduction of many cytokines and growth factors. Common γ chain cytokines and interferon-γ that use the JAK/STAT pathway to induce biological responses have been implicated in the pathogenesis of alopecia areata (AA), a T cell-mediated autoimmune disease of the hair follicle. We previously showed that therapeutic targeting of JAK/STAT pathways using the first-generation JAK1/2 inhibitor, ruxolitinib, and the pan-JAK inhibitor, tofacitinib, was highly effective in the treatment of human AA, as well as prevention and reversal of AA in the C3H/HeJ mouse model. To better define the role of individual JAKs in the pathogenesis of AA, in this study, we tested and compared the efficacy of several next-generation JAK-selective inhibitors in the C3H/HeJ mouse model of AA, using both systemic and topical delivery. We found that JAK1-selective inhibitors as well as JAK3-selective inhibitors robustly induced hair regrowth and decreased AA-associated inflammation, whereas several JAK2-selective inhibitors failed to restore hair growth in treated C3H/HeJ mice with AA. Unlike JAK1, which is broadly expressed in many tissues, JAK3 expression is largely restricted to hematopoietic cells. Our study demonstrates inhibiting JAK3 signaling is sufficient to prevent and reverse disease in the preclinical model of AA.
Collapse
Affiliation(s)
| | | | | | - Angela M. Christiano
- Department of Dermatology and
- Department of Genetics and Development, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
40
|
Traves PG, Murray B, Campigotto F, Galien R, Meng A, Di Paolo JA. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann Rheum Dis 2021; 80:865-875. [PMID: 33741556 PMCID: PMC8237188 DOI: 10.1136/annrheumdis-2020-219012] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/16/2023]
Abstract
Objective Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. Methods In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. Results JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. Conclusion Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.
Collapse
Affiliation(s)
- Paqui G Traves
- Inflammation Biology, Gilead Sciences, Foster City, California, USA
| | - Bernard Murray
- Drug Metabolism, Gilead Sciences, Foster City, California, USA
| | | | - René Galien
- Translational Research, Galapagos SASU, Romainville, France
| | - Amy Meng
- Clinical Pharmacology, Gilead Sciences, Foster City, California, USA
| | - Julie A Di Paolo
- External Innovation, Gilead Sciences, Foster City, California, USA
| |
Collapse
|
41
|
Wang X, Zhao XY. Transcription Factors Associated With IL-15 Cytokine Signaling During NK Cell Development. Front Immunol 2021; 12:610789. [PMID: 33815365 PMCID: PMC8013977 DOI: 10.3389/fimmu.2021.610789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes primarily involved in innate immunity and possess important functional properties in anti-viral and anti-tumor responses; thus, these cells have broad potential for clinical utilization. NK cells originate from hematopoietic stem cells (HSCs) through the following two independent and continuous processes: early commitment from HSCs to IL-15-responsive NK cell progenitors (NKPs) and subsequent differentiation into mature NK cells in response to IL-15. IL-15 is the most important cytokine for NK cell development, is produced by both hematopoietic and nonhematopoietic cells, and functions through a distinct delivery process termed transpresentation. Upon being transpresented to NK cells, IL-15 contributes to NK cell development via the activation of several downstream signaling pathways, including the Ras-MEK-MAPK, JAK-STAT5, and PI3K-ATK-mTOR pathways. Nonetheless, the exact role of IL-15 in NK cell development has not been discussed in a consecutive and comprehensive manner. Here, we review current knowledge about the indispensable role of IL-15 in NK cell development and address which cells produce IL-15 to support NK cell development and when IL-15 exerts its function during multiple developmental stages. Specifically, we highlight how IL-15 supports NK cell development by elucidating the distinct transpresentation of IL-15 to NK cells and revealing the downstream target of IL-15 signaling during NK cell development.
Collapse
Affiliation(s)
- Xiang Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
42
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
43
|
Jaramillo S, Hennemann H, Horak P, Teleanu V, Heilig CE, Hutter B, Stenzinger A, Glimm H, Goeppert B, Müller‐Tidow C, Fröhling S, Schönland S, Schlenk RF. Ruxolitinib is effective in the treatment of a patient with refractory T-ALL. EJHAEM 2021; 2:139-142. [PMID: 35846099 PMCID: PMC9175749 DOI: 10.1002/jha2.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/08/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive T-cell malignancy. Chemotherapy alone cures only 25-45% of the cases, thus, novel treatment agents and strategies are urgently needed. We assessed the efficacy of ruxolitinib in a patient with a cutaneous relapse after allogeneic blood cell transplantation of a refractory T-ALL with a Janus kinase 3 (JAK3) mutation. In this case report, we were able to show the potential benefit of the JAK inhibitor ruxolitinib in JAK3-mutated refractory T-ALL and emphasize the importance of integrating molecular markers in current treatment decision making for patients with T-ALL.
Collapse
Affiliation(s)
- Sonia Jaramillo
- Department of HematologyOncology, and RheumatologyHeidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Hannah Hennemann
- Department of HematologyOncology, and RheumatologyHeidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Peter Horak
- Division of Translational Medical OncologyNational Center for Tumor Diseases (NCT) Heidelberg, and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Veronica Teleanu
- Division of Translational Medical OncologyNational Center for Tumor Diseases (NCT) Heidelberg, and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Christoph E. Heilig
- Division of Translational Medical OncologyNational Center for Tumor Diseases (NCT) Heidelberg, and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Barbara Hutter
- Computational Oncology, Molecular Diagnostics ProgramNCT and DKFZHeidelbergGermany
- Division of Applied BioinformaticsDKFZHeidelbergGermany
| | - Albrecht Stenzinger
- Institute of PathologyUniversity of HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| | - Hanno Glimm
- Department of Translational Medical OncologyNCT Dresden, Dresden, and DKFZHeidelbergGermany
- Center for Personalized OncologyNCT Dresden and University Hospital Carl Gustav Carus DresdenTechnical University of DresdenDresdenGermany
- Translational Functional Cancer GenomicsNCT and DKFZHeidelbergGermany
| | | | - Carsten Müller‐Tidow
- Department of HematologyOncology, and RheumatologyHeidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Stefan Fröhling
- Division of Translational Medical OncologyNational Center for Tumor Diseases (NCT) Heidelberg, and German Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| | - Stefan Schönland
- Department of HematologyOncology, and RheumatologyHeidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Richard F. Schlenk
- Department of HematologyOncology, and RheumatologyHeidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
- NCT‐Trial CenterNCT HeidelbergDKFZ and Heidelberg University HospitalHeidelbergGermany
| |
Collapse
|
44
|
Ge T, Jhala G, Fynch S, Akazawa S, Litwak S, Pappas EG, Catterall T, Vakil I, Long AJ, Olson LM, Krishnamurthy B, Kay TW, Thomas HE. The JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse Autoimmune Diabetes in NOD Mice. Front Immunol 2020; 11:588543. [PMID: 33343569 PMCID: PMC7746546 DOI: 10.3389/fimmu.2020.588543] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 01/31/2023] Open
Abstract
Cytokines that signal through the JAK-STAT pathway, such as interferon-γ (IFN-γ) and common γ chain cytokines, contribute to the destruction of insulin-secreting β cells by CD8+ T cells in type 1 diabetes (T1D). We previously showed that JAK1/JAK2 inhibitors reversed autoimmune insulitis in non-obese diabetic (NOD) mice and also blocked IFN-γ mediated MHC class I upregulation on β cells. Blocking interferons on their own does not prevent diabetes in knockout NOD mice, so we tested whether JAK inhibitor action on signaling downstream of common γ chain cytokines, including IL-2, IL-7 IL-15, and IL-21, may also affect the progression of diabetes in NOD mice. Common γ chain cytokines activate JAK1 and JAK3 to regulate T cell proliferation. We used a JAK1-selective inhibitor, ABT 317, to better understand the specific role of JAK1 signaling in autoimmune diabetes. ABT 317 reduced IL-21, IL-2, IL-15 and IL-7 signaling in T cells and IFN-γ signaling in β cells, but ABT 317 did not affect GM-CSF signaling in granulocytes. When given in vivo to NOD mice, ABT 317 reduced CD8+ T cell proliferation as well as the number of KLRG+ effector and CD44hiCD62Llo effector memory CD8+ T cells in spleen. ABT 317 also prevented MHC class I upregulation on β cells. Newly diagnosed diabetes was reversed in 94% NOD mice treated twice daily with ABT 317 while still on treatment at 40 days and 44% remained normoglycemic after a further 60 days from discontinuing the drug. Our results indicate that ABT 317 blocks common γ chain cytokines in lymphocytes and interferons in lymphocytes and β cells and are thus more effective against diabetes pathogenesis than IFN-γ receptor deficiency alone. Our studies suggest use of this class of drug for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Stacey Fynch
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Sara Litwak
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Ishan Vakil
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andrew J Long
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Lisa M Olson
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
45
|
Rummelt C, Gorantla SP, Meggendorfer M, Charlet A, Endres C, Döhner K, Heidel FH, Fischer T, Haferlach T, Duyster J, von Bubnoff N. Activating JAK-mutations confer resistance to FLT3 kinase inhibitors in FLT3-ITD positive AML in vitro and in vivo. Leukemia 2020; 35:2017-2029. [PMID: 33149267 DOI: 10.1038/s41375-020-01077-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway. Knockdown of JAK1, or treatment with a JAK inhibitor, resensitized cells to FLT3 inhibition. Out of 136 patients with FLT3-ITD mutated AML and exposed to FLT3 inhibitor, we found seven different JAK family mutations in six of the cases (4.4%), including five bona fide, activating mutations. Except for one patient, the JAK mutations occurred de novo (n = 4) or displayed increasing variant allele frequency after exposure to FLT3 TKI (n = 1). In vitro each of the five activating variants were found to induce resistance to FLT3-ITD inhibition, which was then overcome by dual FLT3/JAK inhibition. In conclusion, our data characterize a novel mechanism of resistance to FLT3-ITD inhibition and may offer a potential therapy, using dual JAK and FLT3 inhibition.
Collapse
Affiliation(s)
- Christoph Rummelt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Anne Charlet
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Florian H Heidel
- Innere Medizin 2, Universitätsklinikum Jena, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
46
|
Gruber CN, Calis JJA, Buta S, Evrony G, Martin JC, Uhl SA, Caron R, Jarchin L, Dunkin D, Phelps R, Webb BD, Saland JM, Merad M, Orange JS, Mace EM, Rosenberg BR, Gelb BD, Bogunovic D. Complex Autoinflammatory Syndrome Unveils Fundamental Principles of JAK1 Kinase Transcriptional and Biochemical Function. Immunity 2020; 53:672-684.e11. [PMID: 32750333 PMCID: PMC7398039 DOI: 10.1016/j.immuni.2020.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Conor N Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jorg J A Calis
- Program in Immunogenomics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Center for Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilad Evrony
- Center for Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerome C Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Laboratoire d'Immunologie, Center for Immuno Monitoring Nantes-Atlantique (CIMNA), 44000 Nantes, France
| | - Skyler A Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachel Caron
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren Jarchin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Dunkin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Phelps
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bryn D Webb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jordan S Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce D Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Tarrant JM, Galien R, Li W, Goyal L, Pan Y, Hawtin R, Zhang W, Van der Aa A, Taylor PC. Filgotinib, a JAK1 Inhibitor, Modulates Disease-Related Biomarkers in Rheumatoid Arthritis: Results from Two Randomized, Controlled Phase 2b Trials. Rheumatol Ther 2020; 7:173-190. [PMID: 31912462 PMCID: PMC7021851 DOI: 10.1007/s40744-019-00192-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The Janus kinase (JAK) inhibitor therapeutic class has shown significant clinical benefit in the treatment of rheumatoid arthritis (RA). We sought to gain insight into the mode of action and immunological effects of filgotinib, a JAK1 selective inhibitor, in active RA by analyzing secreted and cell-based biomarkers key to RA pathophysiology in two phase 2b trials of filgotinib in active RA. METHODS Immune cell subsets and 34 serum biomarkers were analyzed longitudinally over 12 weeks using blood samples collected from patients with active RA receiving filgotinib (100 or 200 mg once daily) or placebo (PBO) in the two phase 2b trials (DARWIN 1, on a background of methotrexate, and DARWIN 2, as monotherapy). RESULTS Consistently across both studies, filgotinib treatment decreased multiple immune response biomarkers that have key roles in RA for immune response, and decreased markers that promote matrix degradation, angiogenesis, leukocyte adhesion, and recruitment. Filgotinib did not significantly modulate T and natural killer (NK) lymphoid subsets, but slightly increased B cell numbers after 12 weeks. Multiple correlations were observed for changes in biomarkers with disease activity score 28-CRP. MIP1β showed modest predictivity at baseline for ACR50 response at 12 weeks in the 100 mg filgotinib dose across both studies (AUROC, 0.65 and 0.67, p < 0.05). CONCLUSIONS Filgotinib regulates biomarkers from multiple pathways, indicative of direct and indirect network effects on the immune system and the stromal response. These effects were not associated with reductions of major circulating lymphoid populations. TRIAL REGISTRATION ClinicalTrials.gov, NCT01888874, NCT01894516.
Collapse
Affiliation(s)
| | | | - Wanying Li
- Gilead Sciences, Inc., Foster City, CA, USA
- MyoKardia, South San Francisco, CA, USA
| | | | - Yang Pan
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
48
|
Arcas-García A, Garcia-Prat M, Magallón-Lorenz M, Martín-Nalda A, Drechsel O, Ossowski S, Alonso L, Rivière JG, Soler-Palacín P, Colobran R, Sayós J, Martínez-Gallo M, Franco-Jarava C. The IL-2RG R328X nonsense mutation allows partial STAT-5 phosphorylation and defines a critical region involved in the leaky-SCID phenotype. Clin Exp Immunol 2020; 200:61-72. [PMID: 31799703 DOI: 10.1111/cei.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 01/10/2023] Open
Abstract
In addition to their detection in typical X-linked severe combined immunodeficiency, hypomorphic mutations in the interleukin (IL)-2 receptor common gamma chain gene (IL2RG) have been described in patients with atypical clinical and immunological phenotypes. In this leaky clinical phenotype the diagnosis is often delayed, limiting prompt therapy in these patients. Here, we report the biochemical and functional characterization of a nonsense mutation in exon 8 (p.R328X) of IL2RG in two siblings: a 4-year-old boy with lethal Epstein-Barr virus-related lymphoma and his asymptomatic 8-month-old brother with a Tlow B+ natural killer (NK)+ immunophenotype, dysgammaglobulinemia, abnormal lymphocyte proliferation and reduced levels of T cell receptor excision circles. After confirming normal IL-2RG expression (CD132) on T lymphocytes, signal transducer and activator of transcription-1 (STAT-5) phosphorylation was examined to evaluate the functionality of the common gamma chain (γc ), which showed partially preserved function. Co-immunoprecipitation experiments were performed to assess the interaction capacity of the R328X mutant with Janus kinase (JAK)3, concluding that R328X impairs JAK3 binding to γc . Here, we describe how the R328X mutation in IL-2RG may allow partial phosphorylation of STAT-5 through a JAK3-independent pathway. We identified a region of three amino acids in the γc intracellular domain that may be critical for receptor stabilization and allow this alternative signaling. Identification of the functional consequences of pathogenic IL2RG variants at the cellular level is important to enable clearer understanding of partial defects leading to leaky phenotypes.
Collapse
Affiliation(s)
- A Arcas-García
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Garcia-Prat
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Magallón-Lorenz
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - A Martín-Nalda
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - O Drechsel
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S Ossowski
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - L Alonso
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Hematopoietic Stem Cell Transplantation Unit, Pediatric Hematology and Oncology Department, Vall d'Hebron Campus Hospitalari, Barcelona, Spain
| | - J G Rivière
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - P Soler-Palacín
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - R Colobran
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - J Sayós
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - C Franco-Jarava
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
49
|
Raivola J, Haikarainen T, Silvennoinen O. Characterization of JAK1 Pseudokinase Domain in Cytokine Signaling. Cancers (Basel) 2019; 12:cancers12010078. [PMID: 31892268 PMCID: PMC7016850 DOI: 10.3390/cancers12010078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
The Janus kinase-signal transducer and activator of transcription protein (JAK-STAT) pathway mediates essential biological functions from immune responses to haematopoiesis. Deregulated JAK-STAT signaling causes myeloproliferative neoplasms, leukaemia, and lymphomas, as well as autoimmune diseases. Thereby JAKs have gained significant relevance as therapeutic targets. However, there is still a clinical need for better JAK inhibitors and novel strategies targeting regions outside the conserved kinase domain have gained interest. In-depth knowledge about the molecular details of JAK activation is required. For example, whether the function and regulation between receptors is conserved remains an open question. We used JAK-deficient cell-lines and structure-based mutagenesis to study the function of JAK1 and its pseudokinase domain (JH2) in cytokine signaling pathways that employ JAK1 with different JAK heterodimerization partner. In interleukin-2 (IL-2)-induced STAT5 activation JAK1 was dominant over JAK3 but in interferon-γ (IFNγ) and interferon-α (IFNα) signaling both JAK1 and heteromeric partner JAK2 or TYK2 were both indispensable for STAT1 activation. Moreover, IL-2 signaling was strictly dependent on both JAK1 JH1 and JH2 but in IFNγ signaling JAK1 JH2 rather than kinase activity was required for STAT1 activation. To investigate the regulatory function, we focused on two allosteric regions in JAK1 JH2, the ATP-binding pocket and the αC-helix. Mutating L633 at the αC reduced basal and cytokine induced activation of STAT in both JAK1 wild-type (WT) and constitutively activated mutant backgrounds. Moreover, biochemical characterization and comparison of JH2s let us depict differences in the JH2 ATP-binding and strengthen the hypothesis that de-stabilization of the domain disturbs the regulatory JH1-JH2 interaction. Collectively, our results bring mechanistic understanding about the function of JAK1 in different receptor complexes that likely have relevance for the design of specific JAK modulators.
Collapse
Affiliation(s)
- Juuli Raivola
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
| | - Teemu Haikarainen
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
| | - Olli Silvennoinen
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014 Helsinki, Finland
- Fimlab Laboratories, Fimlab, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
50
|
Vian L, Le MT, Gazaniga N, Kieltyka J, Liu C, Pietropaolo G, Dell'Orso S, Brooks SR, Furumoto Y, Thomas CJ, O'Shea JJ, Sciumè G, Gadina M. JAK Inhibition Differentially Affects NK Cell and ILC1 Homeostasis. Front Immunol 2019; 10:2972. [PMID: 31921209 PMCID: PMC6930870 DOI: 10.3389/fimmu.2019.02972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Janus kinase (JAK) inhibitors are widely used in the treatment of multiple autoimmune and inflammatory diseases. Immunologic and transcriptomic profiling have revealed major alterations on natural killer (NK) cell homeostasis associated with JAK inhibitions, while information on other innate lymphoid cells (ILCs) is still lacking. Herein, we observed that, in mice, the homeostatic pool of liver ILC1 was less affected by JAK inhibitors compared to the pool of NK cells present in the liver, spleen and bone marrow. JAK inhibition had overlapping effects on the transcriptome of both subsets, mainly affecting genes regulating cell cycle and apoptosis. However, the differential impact of JAK inhibition was linked to the high levels of the antiapoptotic gene Bcl2 expressed by ILC1. Our findings provide mechanistic explanations for the effects of JAK inhibitors on NK cells and ILC1 which could be of major clinically relevance.
Collapse
Affiliation(s)
- Laura Vian
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mimi T Le
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nathalia Gazaniga
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Kieltyka
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christine Liu
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Pietropaolo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Dell'Orso
- Genomic Technology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yasuko Furumoto
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States.,Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Sciumè
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|