1
|
Warenik-Bany M, Mikolajczyk S, Pajurek M, Malagocki P, Maszewski S, Reichert M. Dioxin and PCB levels in sea trout with ulcerative disease syndrome. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107336. [PMID: 40174437 DOI: 10.1016/j.aquatox.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
This paper reports concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) in fish with symptoms of ulcerative disease syndrome (UDS) and in healthy fish collected from the Słupia River in northwestern Poland. Altogether 174 samples from sea trout were analyzed using an isotope dilution technique with high-resolution gas chromatography coupled with high-resolution mass spectrometry. The levels determined in material collected from healthy and diseased fish did not raise concerns for human health. All results were below the maximum permitted levels established in European Commission Regulation No 2023/915. However, considering instead fish health, dioxins and PCBs could have a negative effect at the levels detected. The highest concentration of dioxins and dioxin-like PCBs (DL- PCBs) was found in diseased sea trout muscles and was 6.19 pg World Health Organization Toxic Equivalents (WHO-TEQ) g-1 fresh weight (f.w.). The most-accumulated dioxin congeners were 2,3,7,8-tetrachlorinated dibenzofuran (TCDF) and 2,3,4,7,8-pentachlorinated dibenzofuran (PeCDF). The most abundant DL-PCBs were PCB-118 and PCB-105, and among non-dioxin like PCBs they were PCB-153, PCB-138, and PCB-101. The polluted sea trout environment and exposure to a mixture of chemical pollutants may increase the incidence of disease. The presence of dioxins and PCBs in their bodies may disrupt the functioning of their immune system. Also the time of spawning, when the fish are exhausted, may affect the increase in the incidence of UDS.
Collapse
Affiliation(s)
- Malgorzata Warenik-Bany
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | - Szczepan Mikolajczyk
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| | - Marek Pajurek
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| | - Pawel Malagocki
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| | - Sebastian Maszewski
- Department of Radiobiology, National Veterinary Research Institute, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| | - Michał Reichert
- Department of Fish Diseases, National Veterinary Research Institute 57 Partyzantow Avenue, Pulawy 24-100, Poland
| |
Collapse
|
2
|
Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC. Cognitive effects of early life exposure to PCBs in rats: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. Horm Behav 2025; 169:105697. [PMID: 39923265 PMCID: PMC11908942 DOI: 10.1016/j.yhbeh.2025.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental toxicants that disrupt hormonal and neurodevelopmental processes. Among these chemicals, polychlorinated biphenyls (PCBs) are particularly concerning due to their resistance to biodegradation and tendency to bioaccumulate. PCBs affect neurodevelopmental function and disrupt the brain's dopamine (DA) system, which is crucial for attentional, affective, and reward processing. These disruptions may contribute to the rising prevalence of DA-mediated neuropsychiatric disorders such as ADHD, depression, and substance use disorders. Notably, these behaviors are sexually dimorphic in part due to differences in sex hormones and their receptors, which are targets of estrogenic PCBs. Therefore, this study determined effects of early life PCB exposure on behaviors and neurochemistry related to potential disruption of dopaminergic signaling. Male and female Sprague Dawley rats were exposed to the PCB mixture Aroclor 1221 (A1221) or vehicle perinatally and then underwent a series of behavioral tests in adulthood, including the sucrose preference test to measure anhedonia, conditioned orienting to assess incentive-motivational phenotype, and attentional set-shifting to evaluate cognitive flexibility and response latency. Following these tests, rats were euthanized, and serum estradiol (E2), DA cells in the midbrain ventral tegmental area (VTA) and substantia nigra (SN), and gene expression from those combined midbrain nuclei were measured. Female rats exposed perinatally to A1221 exhibited decreased sucrose preference, and both male and female A1221 rats had reduced response latency in the attentional set-shifting task compared to vehicle counterparts. Conditioned orienting and serum estradiol (E2)were not affected in either sex; however, A1221-exposed rats of both sexes displayed higher TH+ cell numbers in the VTA and increased expression of dopamine receptor 1 (Drd1) in the combined midbrain nuclei. Additionally, E2 uniquely predicted behavioral outcomes and VTA DAergic cell numbers in A1221-exposed female rats, whereas DA signaling genes were predictive of behavioral outcomes in males. These data highlight sex-specific effects of A1221 on neuromolecular and behavioral phenotypes.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Cameron Schnurer
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Swati Bhamidipati
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Jahnabi Deka
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Lindsay M Thompson
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Andrea C Gore
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America.
| |
Collapse
|
3
|
Zhu M, Xiao Z, Zhang T, Lu G. Construction of interpretable ensemble learning models for predicting bioaccumulation parameters of organic chemicals in fish. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136606. [PMID: 39579709 DOI: 10.1016/j.jhazmat.2024.136606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Accurate prediction of bioaccumulation parameters is essential for assessing exposure, hazards, and risks of chemicals. However, the majority of prediction models on bioaccumulation parameters are individual models based on a single algorithm and lack model interpretation, resulting in unsatisfactory prediction accuracy due to inherent constraints of the algorithm and weak interpretability. Ensemble learning (EL) that combine multiple algorithms, coupled with SHapley Additive exPlanation (SHAP) method, may overcome the limitations. Herein, EL models were constructed for three bioaccumulation parameters using datasets covering 2496 chemicals. The EL models demonstrated superior prediction accuracy compared to both individual models developed in this study and those from previous research, achieving a coefficient of determination of up to 0.861 on the validation sets. Applicability domains were characterized using a structure-activity landscape-based (abbreviated as ADSAL) methodology. The optimal EL models, together with the ADSAL, were successfully used to predict bioaccumulation parameters for 4374 chemicals included in the Inventory of Existing Chemical Substances of China. Model interpretation using the SHAP method offered insight into key features influencing bioaccumulation potential, including hydrophobicity, water solubility, polarizability, ionization potential, weight, and volume of molecules. Overall, the study provides data and models to support the sound management and risk assessment of chemicals.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zijun Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Hilz EN, Gillette R, Thompson LM, Ton L, Pham T, Kunkel MN, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Female Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127005. [PMID: 39739409 DOI: 10.1289/ehp15621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations. OBJECTIVES We assessed consequences of both direct and ancestral exposure to EDCs over six generations, examining anxiety-like behaviors in maternal and paternal lines of female rats. We used the "two hits, three generations apart" multigenerational exposure model to explore how two distinct EDCs-the weakly estrogenic PCB mixture Aroclor 1221 (A1221) and the antiandrogenic VIN-interact on behavior across generations. We also explored serum hormones as a potential mechanism. METHODS Rats were prenatally exposed to A1221, VIN, or vehicle (DMSO) in the F1 generation, and a second exposure (same or different) was administered to the F4 generation. Anxiety-like behavior was measured in the Open Field test, Light:Dark box, and Elevated Plus Maze in the F1, F3, F4, and F6 generations. Serum concentrations of estradiol and corticosterone were analyzed. RESULTS Behavioral effects were not detectable in the F1 generation but emerged and became more robust across generations. Rats with ancestral VIN exposure demonstrated less anxiety-like behavior in the F3 paternal line in comparison with controls. Rats exposed to ancestral then prenatal A1221/VIN and VIN/A1221 had more anxiety-like behavior in the F4 maternal line, and those with two ancestral hits of VIN/VIN had more anxiety in the F6 paternal line, in comparison with controls. DISCUSSION Our findings suggest that anxiety-like behavioral phenotypes can manifest in rats following germline exposure to EDCs and that subsequent exposures across generations can intensify these effects in a lineage-dependent manner. https://doi.org/10.1289/EHP15621.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lexi Ton
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Timothy Pham
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - M Nicole Kunkel
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Hilz EN, Gillette R, Thompson LM, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Evaluating Multigenerational Anxiety-Like Behavioral Phenotypes in Male Rats Exposed to Aroclor 1221 and Vinclozolin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:127006. [PMID: 39739410 DOI: 10.1289/ehp15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
BACKGROUND Increasing evidence supports an association of endocrine-disrupting chemical (EDC) exposures with adverse biological effects in humans and wildlife. Recent studies reveal that health consequences of environmental exposures may persist or emerge across generations. This creates a dual conundrum: that we are exposed to contemporary environmental chemicals overlaid upon the inheritance of our ancestors' exposure profiles. Even when legacy EDCs are phased out, they may remain relevant due to persistence in the environment together with intergenerational inheritance of their adverse biological effects. Thus, we all possess a body burden of legacy contaminants, and we are also increasingly exposed to new generations of EDCs. OBJECTIVES We assessed the effects of direct and ancestral exposures to EDCs across six generations on anxiety-like behaviors in male rats using our "two hits, three generations apart" multigenerational EDC exposure experimental model. We investigated two classes of EDCs with distinct hormonal actions and historical use-the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221 (A1221) and the anti-androgenic fungicide vinclozolin (VIN)-in both the maternal and paternal line. We also determined if a hormonal mechanism drives these effects across generations. METHODS Rats were gestationally exposed to A1221, VIN, or vehicle [dimethyl sulfoxide (DMSO)] in the F1 generation. Three generations later, the F4 generation was given the same or a different exposure. Anxiety-like behavior was measured in the open field test, light:dark box, and elevated plus maze across generations. Serum was collected at the end of the experiment, and concentrations of estradiol and corticosterone were analyzed. RESULTS Although direct exposure did not affect behavior in F1 males, ancestral exposure to VIN decreased anxiety-like behavior in the F3 paternal line compared to vehicle. In the F4 paternal line, ancestral A1221 followed by direct exposure to VIN increased anxiety-like behavior compared to controls. In the F6 maternal line, relative to vehicle, the double ancestral hits of A1221/VIN decreased anxiety-like behavior. Serum hormones weakly predicted behavioral changes in the F4 paternal line and were modestly affected in the F4 and F6 maternal lines. DISCUSSION Our data suggest that anxiety-like behavioral phenotypes emerge transgenerationally in male rats in response to EDC exposure and that multiple hits of either the same or a different EDC can increase the impact in a lineage-specific manner. https://doi.org/10.1289/EHP15684.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Ross Gillette
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - Lindsay M Thompson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Andrea C Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC. Cognitive effects of early life exposure to PCBs: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612971. [PMID: 39314290 PMCID: PMC11419158 DOI: 10.1101/2024.09.13.612971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental toxicants that disrupt hormonal and neurodevelopmental processes. Among these chemicals, polychlorinated biphenyls (PCBs) are particularly concerning due to their resistance to biodegradation and tendency to bioaccumulate. PCBs affect neurodevelopmental function and disrupt the brain's dopamine (DA) system, which is crucial for attentional, affective, and reward processing. These disruptions may contribute to the rising prevalence of DA-mediated neuropsychiatric disorders such as ADHD, depression, and substance use disorders. Notably, these behaviors are sexually dimorphic, in part due to differences in sex hormones and their receptors, which are targets of estrogenic PCBs. Therefore, this study determined effects of early life PCB exposure on behaviors and neurochemistry related to potential disruption of dopaminergic signaling. Male and female Sprague Dawley rats were exposed to PCBs or vehicle perinatally and then underwent a series of behavioral tests, including the sucrose preference test to measure affect, conditioned orienting to assess incentive-motivational phenotype, and attentional set-shifting to evaluate cognitive flexibility and response latency. Following these tests, rats were euthanized, and we measured serum estradiol (E2), midbrain DA cells, and gene expression in the midbrain. Female rats exposed perinatally to A1221 exhibited decreased sucrose preference, and both male and female A1221 rats had reduced response latency in the attentional set-shifting task compared to vehicle counterparts. Conditioned orienting, serum estradiol (E2), and midbrain DA cell numbers were not affected in either sex; however, A1221-exposed male rats displayed higher expression of estrogen receptor alpha ( Esr1 ) in the midbrain and non-significant effects on other DA-signaling genes. Additionally, E2 uniquely predicted behavioral outcomes and DAergic cell numbers in A1221-exposed female rats, whereas DA signaling genes were predictive of behavioral outcomes in males. These data highlight sex-specific effects of A1221 on neuromolecular and behavioral phenotypes.
Collapse
|
7
|
Heo H, Park MK, Cho IG, Kim J, Shin ES, Chang YS, Choi SD. Assessment of polychlorinated naphthalenes in Korean foods: Levels, profiles, and dietary intake. Food Chem 2024; 451:139498. [PMID: 38703730 DOI: 10.1016/j.foodchem.2024.139498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Concerns about dioxin-like compounds have increased; however, the monitoring of polychlorinated naphthalenes (PCNs) in food and the assessment of dietary intake remain limited. In this study, various foods were collected from Korean markets and analyzed for PCNs. Fishery products exhibited the highest mean concentration (48.0 pg/g ww) and toxic equivalent (TEQ) (0.0185 pg-TEQ/g ww). Agricultural products were the largest contributors (35.7%) to the total dietary intake of PCNTEQ, followed by livestock products (33.6%), fishery products (20.2%), and processed foods (10.5%). The mean intake of PCNTEQ for the Korean population was 0.901 pg-TEQ/day for males and 0.601 pg-TEQ/day for females. Generally, males and younger groups had higher daily intakes of PCNTEQ, but they did not exceed the tolerable weekly intakes. Nonetheless, it is important to manage potential health risks associated with PCNs and other dioxin-like compounds by identifying major food items contributing to PCN exposure and considering age and gender differences.
Collapse
Affiliation(s)
- Hyeji Heo
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongchul Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Su Shin
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon-Seok Chang
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Frossard V, Vagnon C, Cottin N, Pin M, Santoul F, Naffrechoux E. The biological invasion of an apex predator (Silurus glanis) amplifies PCB transfer in a large lake food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166037. [PMID: 37544449 DOI: 10.1016/j.scitotenv.2023.166037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Invasive species can affect food web structure possibly modifying the transfer of pollutants in ecosystems but this facet of biological invasion remains largely unexplored. We examined how trophic and ontogenetic characteristics of the invasive European catfish could differ from its native counterpart, the Northern pike, possibly resulting in the amplification of PCB transfer to the higher trophic levels in a large lake food web. The PCB contents of catfish and pike were on average low (Ʃ7 PCBi 42.4 ± 38.6 ng g-1 ww and 37.9 ± 49.4 ng g-1 ww respectively) and dominated by PCB153 (~35 % of the PCB contamination). Only the largest pike (126 cm) slightly exceeded the European sanitary threshold of 125 ng g-1 ww Ʃ6 PCBi-NDL. Both species increased in trophic position with body size while catfish had clearly higher littoral reliance than pike indicating they exploited complementary trophic niches. PCB biomagnification was identified only for catfish (PCB153, Ʃ7 PCBi) leading to trophic magnification factor of ~5. PCB ontogenetic bioaccumulation was pervasive for catfish (PCB101, PCB118, PCB153, PCB138 and Ʃ7 PCBi) and identified for pike only regarding PCB101. The derived size accumulation factors (~1.02) indicated a size-doubling PCB contamination of ~40 cm for catfish. This finding suggested that catfish would exceed the European sanitary threshold at body size larger than 168 cm possibly constraining their commercial exploitation. Our results highlighted that the invasive catfish was a littoral-oriented apex predator occupying an alternative trophic niche as compared to pike thereby modifying the lake food web structure that resulted in an enhancement of PCB transfer to higher trophic levels. The biomagnification and ontogenetic bioaccumulation of catfish underlined the impact of this biological invasion on the fate of PCB in the ecosystem. Finally, the remarkable inter-individual PCB contamination suggested variable inter-individual PCB exposure likely associated to localized hotspots of PCB contamination in the lake.
Collapse
Affiliation(s)
- Victor Frossard
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France.
| | - Chloé Vagnon
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - Nathalie Cottin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Mathieu Pin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Frédéric Santoul
- Université Toulouse 3 Paul Sabatier, EDB, 31000 Toulouse, France
| | | |
Collapse
|
9
|
Hilz EN, Gore AC. Endocrine-Disrupting Chemicals: Science and Policy. POLICY INSIGHTS FROM THE BEHAVIORAL AND BRAIN SCIENCES 2023; 10:142-150. [PMID: 39758979 PMCID: PMC11698485 DOI: 10.1177/23727322231196794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that disrupt the normal functioning of endocrine system hormones, leading to a range of adverse health effects in humans and wildlife. Exposure to EDCs is ubiquitous and occurs through contaminated food and water, air, consumer products, and transfer from parents to offspring. Effective regulation has been challenging due to a limited understanding of EDCs' complex and nonlinear dose-response relationships, as well as difficulty in attributing specific health effects to individual EDC exposures in real-world scenarios. Current EDC policies face limitations in terms of the diversity and complexity of EDCs, the lack of comprehensive testing requirements, and the need for more robust regulatory frameworks that consider cumulative and mixture effects of EDCs. Understanding these aspects is crucial for developing effective and evidence-based EDC policies that can safeguard public health and the environment.
Collapse
|
10
|
Ho QT, Frantzen S, Nilsen BM, Nøstbakken OJ, Azad AM, Duinker A, Madsen L, Bank MS. Congener-specific accumulation of persistent organic pollutants in marine fish from the Northeast Atlantic Ocean. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131758. [PMID: 37320901 DOI: 10.1016/j.jhazmat.2023.131758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Bioaccumulation of persistent organic pollutants (POPs) in marine fish may pose a health risk to human consumers. Using data from ∼8400 individuals of 15 fish species collected in the North-East Atlantic Ocean (NEAO), we assessed concentrations of individual POP congeners, including dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). POPs analyses were performed with accredited methods using high-resolution gas chromatography/high-resolution mass spectrometry, gas chromatography/tandem mass spectrometry (GC-MS/MS) and GC/MS. The results showed that POPs congener composition profiles were more influenced by fish species than by geography. However, due to long range transport from emissions at lower latitudes, lighter congeners made a larger contribution to the total POPs concentrations in the northernmost areas compared to southern regions. A model was developed to elucidate the relative effects of several factors on POPs concentrations and showed that variation among and within fish species was associated with fat content, fish size, trophic position, and latitude. For the first time, POPs concentrations were shown to increase nonlinearly with fat content, reaching an asymptotic plateau when fat content was > 10%. This study explored detailed POP congener profiles and the factors associated with POPs accumulation in commercially relevant fish harvested from the NEAO.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
11
|
Simukoko CK, Mwakalapa EB, Muzandu K, Mutoloki S, Evensen Ø, Ræder EM, Müller MB, Polder A, Lyche JL. Persistent organic pollutants (POPs) and per- and polyfluoroalkyl substances (PFASs) in liver from wild and farmed tilapia (Oreochromis niloticus) from Lake Kariba, Zambia: Levels and geographic trends and considerations in relation to environmental quality standards (EQSs). ENVIRONMENTAL RESEARCH 2023:116226. [PMID: 37247651 DOI: 10.1016/j.envres.2023.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
The current study was carried out to investigate a wide variety of persistent organic pollutants (POPs) in wild and farmed tilapia (Oreochromis niloticus) in Lake Kariba, Zambia, and assess levels of POPs in relation to Environmental Quality Standards (EQSs). Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyls (PBDEs), and perfluoroalkyl substances (PFASs) were determined in liver samples of tilapia. PFASs compounds PFOS, PFDA and PFNA were only detected in wild fish, with the highest median PFOS levels in site 1 (0.66 ng/g ww). Concentrations of POPs were in general highest in wild tilapia. The highest median ∑DDTs (93 and 81 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively 165 km and 100 km west of the fish farms. Lower DDE/DDT ratios in sites 1 and 3 may indicate relatively recent exposure to DDT. The highest median of ∑17PCBs (3.2 ng/g lw) and ∑10PBDEs (8.1 ng/g lw) were found in wild tilapia from sites 1 and 2, respectively. The dominating PCB congeners were PCB-118, -138, -153 and -180 and for PBDEs, BDE-47, -154, and -209. In 78% of wild fish and 8% of farmed fish ∑6PBDE concentrations were above EQSbiota limits set by the EU. This warrants further studies.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway; Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Eliezer Brown Mwakalapa
- Department of Natural Sciences, Mbeya University of Science and Technology, P. O. Box 131, Mbeya, Tanzania
| | - Kaampwe Muzandu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, P. O. Box 32379 Lusaka, Zambia
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Erik Magnus Ræder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Mette Bjørge Müller
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway.
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P. O. Box 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
12
|
Falahudin D, Hukom FD, Arifin Z, Dirhamsyah D, Peristiwady T, Sudaryanto A, Iwata M, Hoang AQ, Watanabe I, Takahashi S. First insight into accumulation of characteristics and tissue distribution of PCBs, PBDEs, and other BFRs in the living Indonesian coelacanth (Latimeria menadoensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49368-49380. [PMID: 36764992 DOI: 10.1007/s11356-023-25716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
Persistent organic pollutants, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other brominated flame retardants, were detected in the liver, muscle, and ovary tissues of the Indonesian coelacanth (Latimeria menadoensis) incidentally caught around Gangga Island, North Sulawesi Province, Indonesia, on November 5, 2014. Concentrations of total PCBs (209 congeners, 300-2600 ng g-1 lipid weight) in all tissues showed higher than those of PBDEs (41 congeners, 3.9-6.3 ng g-1 lw) and BTBPE (1.1-3.6 ng g-1 lw). The tissue-specific PCB and PBDE profiles were likely due to differences in the lipid composition. Toxic equivalent (TEQ) values of dioxin-like PCBs in coelacanth tissues were lower than the benchmark values for early-life fish. However, compared with the data reported for deep-sea fishes in the Pacific and Indian Oceans, the relatively high concentrations of PCBs detected in this study raise concerns regarding Indonesian coelacanth conservation and habitat conditions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Dirham Dirhamsyah
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Teguh Peristiwady
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong, 15314, Banten, Indonesia
| | - Masamitsu Iwata
- Aquamarine Fukushima, Marine Science Museum, 50 Tatsumi-Cho, Onahama, Iwaki, Fukushima, 971-8101, Japan
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
13
|
Eglite E, Mohm C, Dierking J. Stable isotope analysis in food web research: Systematic review and a vision for the future for the Baltic Sea macro-region. AMBIO 2023; 52:319-338. [PMID: 36269552 PMCID: PMC9589642 DOI: 10.1007/s13280-022-01785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Food web research provides essential insights into ecosystem functioning, but practical applications in ecosystem-based management are hampered by a current lack of knowledge synthesis. To address this gap, we provide the first systematic review of ecological studies applying stable isotope analysis, a pivotal method in food web research, in the heavily anthropogenically impacted Baltic Sea macro-region. We identified a thriving research field, with 164 publications advancing a broad range of fundamental and applied research topics, but also found structural shortcomings limiting ecosystem-level understanding. We argue that enhanced collaboration and integration, including the systematic submission of Baltic Sea primary datasets to stable isotope databases, would help to overcome many of the current shortcomings, unify the scattered knowledge base, and promote future food web research and science-based resource management. The effort undertaken here demonstrates the value of macro-regional synthesis, in enhancing access to existing data and supporting strategic planning of research agendas.
Collapse
Affiliation(s)
- Elvita Eglite
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907 USA
| | - Clarissa Mohm
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Jan Dierking
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
14
|
Valters K, Olsson A, Viksne J, Rubene L, Bergman Å. Concentration dynamics of polychlorinated biphenyls and organochlorine pesticides in blood of growing Grey heron (Ardea cinerea) chicks in the wild. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119330. [PMID: 35483485 DOI: 10.1016/j.envpol.2022.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Organochlorine contaminants (OCs) - organochlorine pesticides (OCPs) and industrial products and byproducts - are included in different monitoring programmes and surveys, involving various animal species. Fish-eating birds are suitable indicator species for OCs. Adult birds may be difficult to capture, but chicks can be sampled more easily. Blood of birds is a potentially suitable non-destructive matrix for analysis, as OC levels in blood reflect their concentrations in the body. The study was aimed at investigating how age of fast-growing Grey heron (Ardea cinerea) chicks affects contaminant levels in their blood and thus how important is sampling at exact age for biomonitoring purposes. In 1999 on Lake Engure in Latvia whole blood samples of heron chicks were collected at three different time points, with seven and nine days in between the first and second and second and third sampling points, respectively. Twenty-two chicks were sampled at all three times. In total, 102 samples were analysed for 19 polychlorinated biphenyl (PCB) congeners, DDT metabolites - DDE and DDD, hexachlorobenzene (HCB), α-, β-, γ-hexachlorocyclohexane (HCH), and trans-nonachlor. Total PCB concentrations averaged around 2000 ng/g dry extracted matter (EM). DDE was the dominant individual contaminant (ca. 800 ng/g EM), followed by CB-153, -138, and -118. Most of the other analysed OCs were below 100 ng/g EM. No significant (p > 0.05) differences in OC concentrations were found between the three sampling occasions, except for trans-nonachlor. This means that blood can safely be sampled for biomonitoring purposes during the 17 days' time window. The analysed legacy contaminants may serve as model substances for other persistent organic pollutants.
Collapse
Affiliation(s)
- Karlis Valters
- Institute of Energy Systems and Environment, Riga Technical University, Azenes Iela 12/1, LV-1048, Riga, Latvia.
| | - Anders Olsson
- Sahlgrenska University Hospital, Blå Stråket 5, SE-413 45, Gothenburg, Sweden
| | - Janis Viksne
- Laboratory of Ornithology, Institute of Biology, Miera Iela 3, LV-2169, Salaspils, Latvia
| | - Liga Rubene
- State Ltd. "Latvian Environment, Geology and Meteorology Centre", Maskavas Street 165, Riga, LV-1019, Latvia
| | - Åke Bergman
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
15
|
Jordan-Ward R, von Hippel FA, Zheng G, Salamova A, Dillon D, Gologergen J, Immingan T, Dominguez E, Miller P, Carpenter D, Postlethwait JH, Byrne S, Buck CL. Elevated mercury and PCB concentrations in Dolly Varden (Salvelinus malma) collected near a formerly used defense site on Sivuqaq, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154067. [PMID: 35217049 PMCID: PMC9078153 DOI: 10.1016/j.scitotenv.2022.154067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 04/13/2023]
Abstract
Environmental pollution causes adverse health effects in many organisms and contributes to health disparities for Arctic communities that depend on subsistence foods, including the Yupik residents of Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq's proximity to Russia made it a strategic location for U.S. military defense sites during the Cold War. Two radar surveillance stations were installed on Sivuqaq, including at the Northeast Cape. High levels of persistent organic pollutants and toxic metals continue to leach from the Northeast Cape formerly used defense (FUD) site despite remediation efforts. We quantified total mercury (Hg) and polychlorinated biphenyl (PCB) concentrations, and carbon and nitrogen stable isotope signatures, in skin and muscle samples from Dolly Varden (Salvelinus malma), an important subsistence species. We found that Hg and PCB concentrations significantly differed across locations, with the highest concentrations found in fish collected near the FUD site. We found that 89% of fish collected from near the FUD site had Hg concentrations that exceeded the U.S. Environmental Protection Agency's (EPA) unlimited Hg-contaminated fish consumption screening level for subsistence fishers (0.049 μg/g). All fish sampled near the FUD site exceeded the EPA's PCB guidelines for cancer risk for unrestricted human consumption (0.0015 μg/g ww). Both Hg and PCB concentrations had a significant negative correlation with δ13C when sites receiving input from the FUD site were included in the analysis, but these relationships were insignificant when input sites were excluded. δ15N had a significant negative correlation with Hg concentration, but not with PCB concentration. These results suggest that the Northeast Cape FUD site remains a point source of Hg and PCB pollution and contributes to higher concentrations in resident fish, including subsistence species. Moreover, elevated Hg and PCB levels in fish near the FUD site may pose a health risk for Sivuqaq residents.
Collapse
Affiliation(s)
- Renee Jordan-Ward
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Frank A von Hippel
- Department of Community, Environment and Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave., P.O. Box 245210, Tucson, AZ 85724, USA.
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Jesse Gologergen
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Tiffany Immingan
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - Elliott Dominguez
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, 1225 E. International Airport Road, Suite 220, Anchorage, AK 99518, USA
| | - David Carpenter
- Institute for Health and the Environment, University at Albany, 5 University Place, Rensselaer, NY 12144, USA
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Samuel Byrne
- Middlebury College, Department of Biology and Global Health Program, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
Babichuk N, Sarkar A, Mulay S, Knight J, Bautista JJ, Young CJ. Polybrominated Diphenyl Ethers (PBDEs) in Marine Fish and Dietary Exposure in Newfoundland. ECOHEALTH 2022; 19:99-113. [PMID: 35471683 DOI: 10.1007/s10393-022-01582-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Presence of PBDEs tested in 127 liver samples from Atlantic Cod (Gadus morhua) and Turbot (Scophthalmus Maximus) and 80 adult participants from two rural Newfoundland communities. Seafood consumption was measured through a validated seafood consumption questionnaire. PBDEs (-28, -47, -99, -156, and -209) were found in all fish liver samples, and PBB-153 and PBDEs-28, -47, -99, -100, -153 were identified as the most prominent congeners from the participants' serum samples. Cod was the most frequently consumed species in the seafood consumption survey. PBB-153 was higher amongst older (> 50 years age) participants (p < 0.0001), however, no PBDE congeners were significantly different by age. PBB-153 (p = 0.001), PBDE-153 (p = 0.006), and 5PBDE (p = 0.008) levels were significantly higher in males. The study shows that the marine ecosystem around Newfoundland has been contaminated by PBDEs, and that rural coastal residents are potentially exposed to these contaminants through local seafood consumption.
Collapse
Affiliation(s)
- Nicole Babichuk
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.
| | - Shree Mulay
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - John Knight
- Primary Healthcare Research Unit, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | - Cora J Young
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
17
|
Mikolajczyk S, Warenik-Bany M, Pajurek M. PCDD/Fs and PCBs in Baltic fish - Recent data, risk for consumers. MARINE POLLUTION BULLETIN 2021; 171:112763. [PMID: 34332355 DOI: 10.1016/j.marpolbul.2021.112763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
This study determines the levels of PCDD/Fs and PCBs in Baltic fish caught in ICES areas 24, 25, and 26, and the related risk for fish consumers in relation to the newly established Tolerable Weekly Intake dose (TWI) (2 pg WHO-TEQ kg --1 body weight). The total PCDD/F/DL-PCBs toxic equivalents in the fish muscle ranged from 0.12 to 10.34 pg WHO-TEQ g - -1 wet weight. Salmon muscles contained the highest average concentration and cod the lowest, below 0.5 pg WHO-TEQ g - -1 wet weight of total TEQ. The average intake of PCDD/F/DL-PCBs (portion of fish 200 g) was 91-2420% of the TWI for children, and 30-799% of the TWI for adults. It appears that despite the decreased levels of PCDD/F and PCBs in Baltic fish, in relation to the newly established TWI dose, this decrease is not enough to make the Baltic fish safe for frequent consumers.
Collapse
Affiliation(s)
- Szczepan Mikolajczyk
- Radiobiology Department, National Veterinary Research Institute, NRL for halogenated POPs (PCDD/Fs, PCBs and PBDE) in food and feed, 57 Partyzantow Avenue, 24-100 Pulawy, Poland.
| | - Malgorzata Warenik-Bany
- Radiobiology Department, National Veterinary Research Institute, NRL for halogenated POPs (PCDD/Fs, PCBs and PBDE) in food and feed, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| | - Marek Pajurek
- Radiobiology Department, National Veterinary Research Institute, NRL for halogenated POPs (PCDD/Fs, PCBs and PBDE) in food and feed, 57 Partyzantow Avenue, 24-100 Pulawy, Poland
| |
Collapse
|
18
|
Choi M, Lee IS. Decreases in Concentrations and Human Dietary Intakes of Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in Korean Seafood Between 2005 and 2017. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:199-209. [PMID: 34081169 DOI: 10.1007/s00244-021-00860-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were measured in 23 seafood species widely consumed by the Korean population in the periods of 2005-2007, 2010-2011, and 2015-2017. The Σ82PCB (sum of 82 PCB congeners) and Σ19PBDE (sum of 19 PBDE congeners) concentrations in the seafood samples of 2015-2017 were 0.06-6.69 ng/g wet weight and 0.01-1.60 ng/g wet weight, respectively. The Σ82PCB and Σ19PBDE concentrations in the samples were significantly correlated. Elevated PCB and PBDE concentrations were found in fatty fish, such as herring, mackerel, and tuna. The current human intakes of PCBs and PBDEs were much lower than the tolerable daily intake or lowest observed adverse effect level. The levels and human dietary intakes of PCBs and PBDEs in the 2015-2017 survey showed decreases of 17-73% and 57-86%, respectively, compared with those in 2005-2007 and 2010-2011 surveys. This indicates that global bans on PCBs and PBDEs have been effective, and their levels and human exposure to them have been gradually declining.
Collapse
Affiliation(s)
- Minkyu Choi
- South Sea Fisheries Institute, National Institute of Fisheries Science (NIFS), Yeo-Su, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Institute, NIFS, Tong-Yeong, Republic of Korea.
| |
Collapse
|
19
|
Nasri A, Allouche M, Hannachi A, Barhoumi B, Wahbi A, Harrath AH, Mahmoudi E, Beyrem H, Boufahja F. Ecotoxicity of polybrominated diphenyl ether (BDE-47) on a meiobenthic community with special emphasis on nematodes: Taxonomic and trophic diversity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116727. [PMID: 33640809 DOI: 10.1016/j.envpol.2021.116727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The response taxonomic and trophic of meiobenthic organisms, especially marine nematodes to polybrominated diphenyl ether (BDE-47) was studied using a community from Bizerte lagoon (Nord-East Tunisia). Four concentrations of BDE-47 [D1 (2.5 μg/kg dw), D2 (25 μg/kg dw), D3 (50 μg/kg dw), and D4 (100 μg/kg dw)] were applied, and responses were determined 30 days after exposure. Species abundance and all univariate indices were significantly affected in all treated microcosms compared to the control. The non-parametric cluster based on species abundance separated the nematode population into two groups: control + all treated microcosms. After grouping nematode species according to their trophic diversity, their abundance showed differential responses. The non-metric multi-dimensional scaling analysis and cumulative k-dominance based on the abundance of trophic groups abundances reflected significant separation between the control microcosm and each treatment condition. The correspondence analysis 2D plot generated from nematode species and trophic groups abundance showed the control microcosm was dominated by microvores, represented by two species of Terschellingia. However, when treated with the highest concentration of BDE-47, the community was occupied by the resistant trophic groups of facultative predators and epigrowth feeders represented by Metoncholaimus pristiurus and Paracomesoma dubium, respectively.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia.
| | - Mohamed Allouche
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia
| | - Amel Hannachi
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia
| | - Badreddine Barhoumi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Aymen Wahbi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ezzeddine Mahmoudi
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia
| | - Fehmi Boufahja
- Laboratory of Environment Biomonitoring, University of Carthage, Faculty of Sciences of Bizerta (FSB), 7021, Zarzouna, Bizerta, Tunisia
| |
Collapse
|
20
|
Tavoloni T, Stecconi T, Galarini R, Bacchiocchi S, Dörr AJM, Elia AC, Giannotti M, Siracusa M, Stramenga A, Piersanti A. BFRs (PBDEs and HBCDs) in freshwater species from Lake Trasimeno (Italy): The singular case of HBCDs in red swamp crayfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143585. [PMID: 33213903 DOI: 10.1016/j.scitotenv.2020.143585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Eighty-six samples belonging to five different species (crucian carp, Carassius carassius; European perch, Perca fluviatilis; tench, Tinca tinca; eel, Anguilla anguilla; red swamp crayfish, Procambarus clarkii) collected from Lake Trasimeno (Italy) were analyzed to assess polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) contamination. The Trasimeno is the largest Italian peninsular lake located in Umbria (Central Italy), in a rural area with low anthropogenic impact. All the samples were analyzed by an in-house developed analytical procedure involving a single sample preparation with dual detection: Gas- and Liquid-Chromatography coupled to tandem Mass Spectrometry (GC-MS/MS for PBDEs and LC-MS/MS for HBCDs). BFRs levels in crucian carp, tench and European perch were negligible and mostly below quantification limits (LOQs). In eel, the species with the higher fat content, PBDE sum (15 congeners) ranged from 0.269 to 0.916 ng/g w.w. BDE-47, -100 and -154 accounted for roughly 57%, 16% and 11% of the PBDE sum, respectively, while BDE-99 (usually one of the most abundant congeners in biota), only for 3%. HBCDs (sum of α-, β-, γ-isomers) were found between 0.157 and 1.14 ng/g w.w. with α- as predominant isomer (92% of the sum), followed by γ- (5%) and β- (2%). Peculiar was the contamination in red swamp crayfish characterized by negligible PBDEs and very high HBCDs levels with a singular contamination pattern. In female pools (n = 9) the mean HBCDs sum was 0.150 ng/g w.w., while in males higher concentrations were measured (mean = 2.77 ng/g w.w.). A significant correlation seems to exist between the contamination level and the seasonal cycle only in male crayfish. Interestingly, among the HBCDs, the γ-isomer was the highest (67% of the total) while α- contributes only for 20%.
Collapse
Affiliation(s)
- Tamara Tavoloni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Tommaso Stecconi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy.
| | - Simone Bacchiocchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | | | - Antonia Concetta Elia
- University of Perugia, Department of Chemistry, Biology and Biotechnology, 06123 Perugia, Italy.
| | - Massimiliano Giannotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Melania Siracusa
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Stramenga
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| |
Collapse
|
21
|
Tao L, Zhang Y, Wu JP, Wu SK, Liu Y, Zeng YH, Luo XJ, Mai BX. Biomagnification of PBDEs and alternative brominated flame retardants in a predatory fish: Using fatty acid signature as a primer. ENVIRONMENT INTERNATIONAL 2019; 127:226-232. [PMID: 30928846 DOI: 10.1016/j.envint.2019.03.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Information on biomagnification of alternative brominated flame retardants (ABFRs) is limited and results are inconclusive, due in part to uncertainty in the understanding of predator/prey relationships. In the present study, a predatory fish, Channa argus, and several forage fish species were obtained from an ABFR contaminated site. The predator/prey relationships were identified based on fatty acid (FA) signatures in the predator and prey. Biomagnification factors (BMFs) for several ABFRs including decabromodiphenyl ethane (DBDPE), 1,2‑bis(2,4,6‑tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), and pentabromoethylbenzene (PBEB) were estimated based on the identified predator/prey relationships. The results showed that crucian carp was the main prey of C. argus, contributing to 71%-100% to its total diet. The mean BMFs for DBDPE, BTBPE, and HBB were 0.06, 0.40, and 0.91, respectively, indicating trophic dilution of these ABFRs. However, biomagnification of PBT and PBEB, with BMFs of 2.09 and 2.13, respectively, was observed. The BMFs for PBT, PBEB and HBB were comparable to or even higher than those for some polybrominated diphenyl ether (PBDE) congeners estimated in the same individual predator, indicating that these emerging pollutants may pose significant environmental risks. The BMFs for ABFRs and PBDEs were significantly and negatively correlated to the log KOWs of these chemicals, suggesting that the biomagnification of these chemicals was depressed due to their superhydrophobic nature.
Collapse
Affiliation(s)
- Lin Tao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- Scientific Institute of Pearl River Water Resources Protection, Monitoring Center of Pearl River Valley Aquatic Environment, Guangzhou 510611, China
| | - Jiang-Ping Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China.
| | - Si-Kang Wu
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
22
|
Díaz-Jaramillo M, Laitano MV, Gonzalez M, Miglioranza KSB. Spatio-temporal trends and body size differences of OCPs and PCBs in Laeonereis culveri (Polychaeta: Nereididae) from Southwest Atlantic estuaries. MARINE POLLUTION BULLETIN 2018; 136:107-113. [PMID: 30509791 DOI: 10.1016/j.marpolbul.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Southwest Atlantic (SWA) estuaries have been historically impacted by industrial and agricultural activities that represent an important source of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Intraspecific differences in OCPs and PCBs levels were evaluated in the benthic polychaete Laeonereis culveri from SWA estuaries (Samborombón; Mar Chiquita; Quequén Grande and Bahía Blanca) at different spatio-temporal scales. Regarding inter- and intra-estuarine spatial comparisons polychaetes showed significant differences in OCPs/PCBs levels (p < 0.05) being DDTs, endosulfan, penta- and hexa-CBs homologues the most representative compounds. Intra-estuarine comparisons also showed significant differences in terms of seasonality and body size (p < 0.05). OCPs/PCBs concentrations were negatively correlated with animal weight, but this covariable was not relevant on differences observed. OCPs/PCBs levels in polychaetes showed strong relationships with those of sediments, being suitable for estuarine biomonitoring studies. Seasonal and body-size differences found in OCPs and PCBs levels in tissues reveal the importance of these factors for intra-estuarine monitoring.
Collapse
Affiliation(s)
- M Díaz-Jaramillo
- Instituto de Investigaciones Marinas y Costeras, FCEyN, UNMdP-CONICET, CC1260, 7600 Mar del Plata, Argentina.
| | - M V Laitano
- Instituto de Investigaciones Marinas y Costeras, FCEyN, UNMdP-CONICET, CC1260, 7600 Mar del Plata, Argentina
| | - M Gonzalez
- Instituto de Investigaciones Marinas y Costeras, FCEyN, UNMdP-CONICET, CC1260, 7600 Mar del Plata, Argentina
| | - K S B Miglioranza
- Instituto de Investigaciones Marinas y Costeras, FCEyN, UNMdP-CONICET, CC1260, 7600 Mar del Plata, Argentina
| |
Collapse
|
23
|
Romero-Romero S, Herrero L, Fernández M, Gómara B, Acuña JL. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:589-597. [PMID: 28672247 DOI: 10.1016/j.scitotenv.2017.06.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ15N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ15N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain.
| | - Laura Herrero
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mario Fernández
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Belén Gómara
- Department of Instrumental Analysis and Environmental Chemistry, Institute of General Organic Chemistry, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Luis Acuña
- Área de Ecología, Dpto. de Biología de Organismos y Sistemas, Universidad de Oviedo, Catedrático Rodrigo Uría s/n, 33071 Oviedo, Asturias, Spain
| |
Collapse
|
24
|
Zhu Y, Tan YQ, Leung LK. Exposure to 2,2',4,4'-tetrabromodiphenyl ether at late gestation modulates placental signaling molecules in the mouse model. CHEMOSPHERE 2017; 181:289-295. [PMID: 28448910 DOI: 10.1016/j.chemosphere.2017.04.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants generally employed in manufacturing household items. Surface water may remove and carry these chemicals to the drainage upon disposal of the items, and ultimately the chemicals enter our food chain. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a PBDE congener commonly found in contaminated seafood. The placenta is the site of nutrient exchange and is responsible for reproductive hormone secretion during pregnancy. In the present study, pregnant ICR mice were given p.o. daily doses of BDE-47 at 0, 0.36, 3.6, 36 mg/kg for 4 days (from E13.5 to E16.5). Compared to the control group, increased rates of stillborn and low birth weight were observed in mice treated with 36 mg BDE-47/kg. Plasma testosterone and progesterone levels were reduced in mice treated with 36 mg BDE-47/kg. In addition, the group treated with 3.6 mg/kg of BDE-47 displayed decreased growth hormone (Gh) peptide expression in the placental tissue extracted at E17.5. As this peptide stimulates growth, the expression pattern might suggest compromised fetal development. Further analysis indicated that mitogen-activated protein kinases (MAPK) were activated in the placental tissue of the BDE-47-treatment groups. The activation of these signaling molecules might affect the hormonal and other physiological functions in the tissue.
Collapse
Affiliation(s)
- Yun Zhu
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
25
|
Ji X, Ding J, Xie X, Cheng Y, Huang Y, Qin L, Han C. Pollution Status and Human Exposure of Decabromodiphenyl Ether (BDE-209) in China. ACS OMEGA 2017; 2:3333-3348. [PMID: 30023692 PMCID: PMC6044870 DOI: 10.1021/acsomega.7b00559] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 05/26/2023]
Abstract
Decabromodiphenyl ether (BDE-209/decaBDE) is a high-production-volume brominated flame retardant in China, where the decaBDE commercial mixture is manufactured in Laizhou Bay, Shandong Province, even after the prohibition of penta- and octaBDE mixtures. The demand for flame retardants produced in China has been increasing in recent years as China not only produces electronic devices but also has numerous electronic waste (e-waste) recycling regions, which receive e-wastes from both domestic and foreign sources. High concentrations of BDE-209 have been observed in biotic and abiotic media in each of the different areas, especially within the decaBDE manufacturers and e-waste recycling areas. BDE-209 has been viewed as toxic and bioaccumulative because it might debrominate to less brominated polybrominated diphenyl ethers (PBDEs) (lower molecular weight and hydrophobicity), which are more readily absorbed by organisms. The highest concentration of PBDEs in dust within urban areas reached 40 236 ng g-1 in the Pearl River Delta, and BDE-209 contributed the greatest proportion to the total PBDEs (95.1%). Moreover, the maximum hazard quotient was found for toddlers (0.703) for BDE-209, which was close to 1. This suggests that exposure to BDE-209 might lead to increased potential for adverse effects and organ harm (e.g., the lungs) through inhalation, dust ingestion, and dermal absorption, especially for the group of toddlers compared to others. In daily food and human tissues, the amount of BDE-209 was also extensively detected. However, the toxicity and adverse effect of BDE-209 to humans are still not clear; thus, further studies are required to better assess the toxicological effects and exposure scenarios, a more enhanced environmental policy for ecological risks regarding BDE-209 and its debrominated byproducts in China.
Collapse
Affiliation(s)
- Xiaowen Ji
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Jue Ding
- College
of the Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xianchuan Xie
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Cheng
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Huang
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Long Qin
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Chao Han
- State
Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing 210008, P. R. China
| |
Collapse
|
26
|
Markowski VP, Miller-Rhodes P, Cheung R, Goeke C, Pecoraro V, Cohen G, Small DJ. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether. Neurotoxicol Teratol 2017; 63:51-59. [PMID: 28764964 DOI: 10.1016/j.ntt.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022]
Abstract
Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion.
Collapse
Affiliation(s)
- Vincent P Markowski
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States.
| | - Patrick Miller-Rhodes
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Randy Cheung
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Calla Goeke
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Vincent Pecoraro
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Gideon Cohen
- Department of Psychology, State University of New York at Geneseo, Geneseo, NY 14454, United States
| | - Deena J Small
- Department of Biochemistry, University of New England, Biddeford, ME 04005, United States
| |
Collapse
|
27
|
Zhu Y, Tan YQ, Wang CC, Leung LK. The flame retardant 2,2',4,4'-Tetrabromodiphenyl ether enhances the expression of corticotropin-releasing hormone in the placental cell model JEG-3. CHEMOSPHERE 2017; 174:499-505. [PMID: 28189027 DOI: 10.1016/j.chemosphere.2017.01.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are chemicals used as flame retardants in household products. After disposing of these items, PBDEs leach from the products by surface water. BDE-47 is a PBDE congener commonly isolated from contaminated food and is the most studied isomer. The placenta is the major source of hormones during pregnancy, and an elevated level of corticotrophin-releasing hormone (CRH) is associated with premature delivery. In the present study, we examined changes in the placental CRH expression under BDE-47 exposure in the JEG-3 cell model system. These placental cells are derived from human choriocarcinoma. Our result showed that this pollutant induced the CRH mRNA expression at 0.5 nM or above in the cells. A similar trend was observed when CRH peptide was determined by Western analysis in the cell lysates. As previous studies have shown the importance of signal transduction pathways in the gene regulation, the status of some protein kinases in the present study was investigated. The phosphorylated PKCα, JNK, and P38 were increased by the toxicant treatment, and administering the specific inhibitors could counteract the induced CRH expression. It appeared that the signaling transduction pathway of PKC was a significant contributor in the transcriptional regulation. Further study by using Electrophoretic Mobility Shift Assay suggested that AP-2 was the ultimate DNA-binding element for the initiation of gene transcription. Because an untimely increased CRH may compromise fetal development and induce preterm birth, the present study suggested that endocrine changes in pregnancy should be taken into consideration in the next assessment.
Collapse
Affiliation(s)
- Yun Zhu
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
28
|
Thellmann P, Kuch B, Wurm K, Köhler HR, Triebskorn R. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany). ENVIRONMENTAL SCIENCES EUROPE 2017; 29:10. [PMID: 28316899 PMCID: PMC5339324 DOI: 10.1186/s12302-017-0108-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. RESULTS The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. CONCLUSIONS Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances originating from waste waters and traffic which still should be taken seriously, particularly with regard to the impairment of fish health at both investigated field sites. Since the Argen is a tributary of Lake Constance, our results call for a management plan to ensure and improve the river's ecological stability.
Collapse
Affiliation(s)
- Paul Thellmann
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Animal Physiological Ecology, Institute for Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076 Germany
| | - Bertram Kuch
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Karl Wurm
- Gewässerökologisches Labor Starzach, Tulpenstr. 4, 72181 Starzach, Germany
| | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology, Blumenstr. 13, 72108 Rottenburg, Germany
| |
Collapse
|
29
|
He W, Chen Y, Yang C, Liu W, Kong X, Qin N, He Q, Xu F. Optimized Multiresidue Analysis of Organic Contaminants of Priority Concern in a Daily Consumed Fish (Grass Carp). JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:9294024. [PMID: 28348919 PMCID: PMC5350539 DOI: 10.1155/2017/9294024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
The organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs), are of priority concern because of their persistence, toxicity, and long-distance transportation in global environment. Their residues in a daily consumed fish (grass carp) pose potential threat to human health and aquatic ecosystems. The present study optimized an analytical protocol of microwave-assisted extraction (MAE), lip-removal by gel permeation chromatography (GPC), cleanup by solid phase cartridge (SC) or adsorption chromatography column (CC), and gas chromatography-mass spectrometry (GC/MS). Besides traditional statistical parameters, some indicators were calculated to judge the performances of extraction by various methods. The optimization experiment showed that n-hexane/acetone was the best MEA extraction solvent; an optimal fraction time of 10-39 min could simultaneously elute all the target chemicals in a single GPC run. Both CC and SC showed good recoveries. However, CC performed better than SC (p < 0.05) for OCPs, and SC performed better than CC for PBDEs (p < 0.05). We also emphasized the limitations and advantages of SC and CC and finally proposed SC as the promising cleanup method because of its low-cost materials, time-saving steps, being free of manual filling, and operation by automated SPE system.
Collapse
Affiliation(s)
- Wei He
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yanru Chen
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Yang
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxiu Liu
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiangzhen Kong
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Ning Qin
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qishuang He
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Environmental Characteristics of Polybrominated Diphenyl Ethers in Marine System, with Emphasis on Marine Organisms and Sediments. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1317232. [PMID: 27999788 PMCID: PMC5143782 DOI: 10.1155/2016/1317232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/18/2016] [Indexed: 12/05/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs), due to their widespread usage as flame retardants and their lipophilicity and persistence, have become ubiquitous in the environment. It is urgent to understand the environmental characteristics of PBDEs in marine system, but they have attracted little attention. We summarize the available data and analyze the regional distributions, controlling factors, and congener patterns of PBDEs in marine and associated environmental matrixes worldwide. Based on meta-analysis, after separating the estuarial sites from the marine sites, ignoring the extraordinary sample sites such as those located just near the point source, the PBDE concentration levels are still in the same order of magnitude from global scale. Despite Principal Component Analysis, the congener patterns of sediments are predominant with the heavy brominated congeners (BDE-209 contributing over 75% to the total load) while the biota abound with the light ones (BDE-47, BDE-99, and BDE-100 taking about 80%). The ratio between BDE-99 and BDE-100 for the lower trophic-level species often turns to be greater than 1, while for those higher species the ratio may be below 1, and some species feed mainly on the crustaceans and zooplankton seems to have a higher ratio value. The data of the PBDEs in marine system are currently limited; thus, data gaps are identified as well.
Collapse
|
31
|
Le DQ, Takada H, Yamashita R, Mizukawa K, Hosoda J, Tuyet DA. Temporal and spatial changes in persistent organic pollutants in Vietnamese coastal waters detected from plastic resin pellets. MARINE POLLUTION BULLETIN 2016; 109:320-324. [PMID: 27262498 DOI: 10.1016/j.marpolbul.2016.05.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
Plastic resin pellets collected at Minh Chau island and Ba Lat estuary between 2007 and 2014 in Vietnam were analyzed for dichloro-diphenyl-trichloroethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs). The study was carried out as part of the International Pellet Watch program for monitoring the global distribution of persistent organic pollutants (POPs). Higher levels of DDTs compared to PCBs indicated agricultural inputs rather than industrial discharges in the region. Most POP concentrations on both beaches decreased over the period, with the exception of HCH isomers. Though the concentration of DDTs showed a drastic decline on both beaches between 2007/2008 and 2014, DDTs accounted for 60-80% of total DDTs, suggesting that there is still a fresh input of these chemicals in the region. This study strongly recommends further investigations to track temporal and spatial patterns of POP levels in the marine environment using plastic resin pellets.
Collapse
Affiliation(s)
- Dung Quang Le
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; School of Biotechnology, International University, Vietnam National University HCM, Quarter 6, Linh Trung, Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Rei Yamashita
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junki Hosoda
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Dao Anh Tuyet
- Institute of Marine Environment and Resources, Vietnamese Academy of Science and Technology, 246 Danang, Haiphong, Vietnam
| |
Collapse
|
32
|
Anna S, Sofia B, Christina R, Magnus B. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1042-9. [PMID: 27222376 DOI: 10.1039/c6em00163g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis.
Collapse
Affiliation(s)
- Sobek Anna
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Bejgarn Sofia
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Rudén Christina
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| | - Breitholtz Magnus
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
33
|
Shao M, Tao P, Wang M, Jia H, Li YF. Trophic magnification of polybrominated diphenyl ethers in the marine food web from coastal area of Bohai Bay, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:379-385. [PMID: 26942685 DOI: 10.1016/j.envpol.2016.02.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Trophic transfer of polybrominated diphenyl ethers (PBDEs) in aquatic ecosystems is an important criterion for assessing their environmental risk. This study analyzed 13 PBDEs in marine organisms collected from coastal area of Bohai Bay, China. The concentrations of total PBDEs (Σ13PBDEs) ranged from 12 ± 1.1 ng/g wet weight (ww) to 230 ± 54 ng/g ww depending on species. BDE-47 was the predominant compound, with a mean abundance of 20.21 ± 12.97% of total PBDEs. Stable isotopic ratios of carbon (δ(13)C) and nitrogen (δ(15)N) were analyzed to determine the food web structure and trophic level respectively. Trophic magnification factors (TMFs) of PBDEs were assessed as the slope of lipid equivalent concentrations regressed against trophic levels. Significant positive relationships were found for Σ13PBDEs and eight PBDE congeners (BDE-28, BDE-47, BDE-49, BDE-66, BDE-85, BDE-99, BDE-100 and BDE-154). Monte-Carlo simulations showed that the probabilities of TMF >1 were 100% for Σ13PBDEs, BDE-47, BDE-85, BDE-99 and BDE-100, 99% for DE-28, BDE-49, BDE-66 and BDE-154, 94% for BDE-153, and 35% for BDE-17.
Collapse
Affiliation(s)
- Mihua Shao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ping Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Man Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Hongliang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yi-Fan Li
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
34
|
Eichbaum K, Brinkmann M, Nuesser L, Buchinger S, Reifferscheid G, Codling G, Jones P, Giesy JP, Hecker M, Hollert H. Bioanalytical and instrumental screening of the uptake of sediment-borne, dioxin-like compounds in roach (Rutilus rutilus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12060-12074. [PMID: 26965276 DOI: 10.1007/s11356-016-6377-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
To examine the uptake of dioxin-like compounds (DLCs), common roaches (Rutilus rutilus) were exposed for 28 days to differently contaminated sediments from two major European rivers in a purpose-built facility. Dietary transfer of DLCs was investigated by exposing fish to sediments inoculated or non-inoculated with black worms (Lumbriculus variegatus). Dioxin-like polychlorinated biphenyls (DL-PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), measured via high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) in sediments and whole fish, were used to calculate toxicity equivalent quotients (TEQs). TEQs were compared with biological toxicity equivalent quotients (BEQs) determined via the 7-ethoxyresorufin-O-deethylase (EROD) assay, performed with mammalian (H4IIE) and fish (RTL-W1) liver cell lines. TEQs and BEQs indicated an uptake of sediment-borne DLCs by roach, which was independent of sediment contamination levels, but rather reflected sediment-specific characteristics. For most sediment treatments, DLC uptake did not increase with time. Highest congener-specific uptake (DL-PCB 123) was 10-fold compared to control. Exposure to worm-inoculated sediment of highest overall DLC contamination caused a 2-fold (TEQ and H4IIE BEQ) greater uptake of DLCs by fish compared to the respective non-inoculated treatment. H4IIE cells showed the greatest sensitivity (0.37 ± 0.25 pM TCDD) and the strongest correlation with TEQs (r (2) = 0.79), hence, they seem to be best suited for DLC screening of sediments and biota, amended by compound-specific instrumental analysis if required.
Collapse
Affiliation(s)
- Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Leonie Nuesser
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Sebastian Buchinger
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Georg Reifferscheid
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Garry Codling
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Paul Jones
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - John P Giesy
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, People's Republic of China
| | - Markus Hecker
- School of the Environment and Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- Key Laboratory of Yangtze River Environment of Education Ministry of China, College of Environmental Science and Engineering, Tongji University, Shanghai, China.
- College of Resources and Environmental Science, Chongqing University, Chongqing, China.
- School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
35
|
Dahlberg AK, Bignert A, Legradi J, Legler J, Asplund L. Anthropogenic and naturally produced brominated substances in Baltic herring (Clupea harengus membras) from two sites in the Baltic Sea. CHEMOSPHERE 2016; 144:2408-2414. [PMID: 26613358 DOI: 10.1016/j.chemosphere.2015.10.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/23/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
In the eutrophicated Baltic Sea, several naturally produced hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been found in marine biota. OH-PBDEs are toxic to adult and developing zebrafish and shown to be potent disruptors of oxidative phosphorylation (OXPHOS). Disturbed OXPHOS can result in altered energy metabolism and weight loss. In herring, the concentration of OH-PBDEs (i.e. 2'-OH-BDE68 and 6-OH-BDE47) has increased during the period 1980-2010 in the Baltic Proper. Over the same time period, the condition and fat content in Baltic herring have decreased. Given the toxicity and increasing trends of OH-PBDEs in Baltic herring it is important to further assess the exposure to OH-PBDEs in Baltic herring. In this study, the concentrations of OH-PBDEs and related brominated substances i.e. polybrominated phenols (PBPs), polybrominated anisoles (PBAs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and polybrominated diphenyl ethers (PBDEs) were measured in herring sampled in the northern Baltic Proper (Askö, n = 12) and the southern Bothnian Sea (Ängskärsklubb, n = 12). The geometric mean (GM) concentrations (ng/g l.w.) at Askö and Ängskärsklubb were; Σ2PBPs: 4.3 and 9.6, Σ(2)PBAs: 34 and 20, Σ(6)OH-PBDEs: 9.4 and 10, Σ(7)MeO-PBDEs: 42 and 150, Σ(6)PBDEs: 54 and 27, respectively. 6-OH-BDE47 dominated the OH-PBDE profile and comprised 87% (Askö) and 91% (Ängskärsklubb) of the ΣOH-PBDEs. At Ängskärsklubb the mean concentration of ΣMeO-PBDEs (150 ng/g l.w.) was 15 times higher than ΣOH-PBDEs. As other fish species are known to metabolically transform MeO-PBDEs to OH-PBDEs, high levels of MeO-PBDEs can be of concern as a precursor for more toxic OH-PBDEs in herring and their roe.
Collapse
Affiliation(s)
- Anna-Karin Dahlberg
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Bignert
- Contaminant Research Group, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Jessica Legradi
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Lillemor Asplund
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
36
|
Koglin S, Kammann U, Eichbaum K, Reininghaus M, Eisner B, Wiseman S, Hecker M, Buchinger S, Reifferscheid G, Hollert H, Brinkmann M. Toward understanding the impacts of sediment contamination on a native fish species: transcriptional effects, EROD activity, and biliary PAH metabolites. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:28. [PMID: 28003950 PMCID: PMC5136570 DOI: 10.1186/s12302-016-0096-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/27/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Both frequency and intensity of flood events are expected to increase as a result of global climate change in the upcoming decades, potentially resulting in increased re-suspension of sediments in fluvial systems. Contamination of these re-suspended sediments with legacy contaminants, including dioxins and dioxin-like compounds (DLCs), as well as polycyclic aromatic hydrocarbons (PAHs) is of great ecotoxicological concern. DLCs, and to some extent also PAHs, exhibit their toxicity through activation of the aryl hydrocarbon receptor (AhR). However, interactions of DLCs with pathways other than those known to be mediated through the AhR are not fully understood to date. METHODS This study aimed to investigate molecular and biochemical effects in roach (Rutilus rutilus) during a 10 days exposure to suspensions of three natural sediments that differed in the level of DLC contamination. Concentrations of biliary PAH metabolites and hepatic 7-ethoxyresorufin-O-deethylase activity were quantified in exposed fish. Furthermore, the abundance of transcripts of several genes related to energy metabolism, response to oxidative stress, and apoptosis, as well as cytochrome P450 1A (cyp1a) was quantified. RESULTS Biliary PAH metabolites and activation of the AhR were confirmed as suitable early warning biomarkers of exposure to suspended sediments containing DLCs and PAHs that corresponded well with analytically determined concentrations of those contaminants. Although the abundances of transcripts of superoxide dismutase (sod), protein kinase c delta (pkcd), and ATP-binding cassette transporter c9 (abcc9) were altered by the treatment compared with unexposed control fish, none of these showed a time- or concentration-dependent response. The abundance of transcripts of pyruvate carboxylase (pc) and transferrin variant d (tfd) remained unaltered by the treatments. CONCLUSIONS We have shown that contaminated sediments can become a risk for fish during re-suspension events (e.g., flooding and dredging). We have also demonstrated that roach, which are native to most European freshwater systems, are suitable sentinel species due to their great sensitivity and ecological relevance. Roach may be particularly suitable in future field studies to assess the toxicological concerns associated with the release of DLCs and PAHs during sediment re-suspension.
Collapse
Affiliation(s)
- Sven Koglin
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ulrike Kammann
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mathias Reininghaus
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Bryanna Eisner
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4 Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Sebastian Buchinger
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing, 400715 China
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| |
Collapse
|
37
|
Kim UJ, Jo H, Lee IS, Joo GJ, Oh JE. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. CHEMOSPHERE 2015; 137:108-114. [PMID: 26092317 DOI: 10.1016/j.chemosphere.2015.05.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
The concentrations and distributions of polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH- and MeO-BDEs) were determined in seven representative fish species from a river in the Republic of Korea. The PBDEs and their derivatives were found to be accumulated in the internal organs of the fish to different extents. PBDEs were preferentially accumulated in the internal organs rather than muscle tissue, and especially, showed increasing accumulation tendencies with increasing bromination level in liver. The OH-BDEs and MeO-BDEs were preferentially accumulated in the liver and gastrointestinal tract, respectively. MeO-BDE concentrations were found to increase according to relative trophic level, suggesting that the PBDE derivatives can be biomagnified to a greater extent than the parent PBDEs in freshwater food webs. In a comparison with the dissolved analyte concentrations in the water that were measured by using semi-permeable membrane devices, the greater uptake of non-ortho substituted MeO-BDEs by fish was observed.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute Science and Technology (KIST), 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Hyunbin Jo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - In-Seok Lee
- National Fisheries Research & Development Institute (NFRDI), 216, Gijanghaeanro, Gijang-Eup, Gijang-Gun, Busan 619-705, Republic of Korea
| | - Gea-Jae Joo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
38
|
Ali U, Syed JH, Mahmood A, Li J, Zhang G, Jones KC, Malik RN. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan. CHEMOSPHERE 2015; 134:172-180. [PMID: 25933089 DOI: 10.1016/j.chemosphere.2015.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect.
Collapse
Affiliation(s)
- Usman Ali
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jabir Hussain Syed
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Adeel Mahmood
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, PO: 45550, Pakistan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kevin C Jones
- Centre for Chemicals Management, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
39
|
Xia X, Li H, Yang Z, Zhang X, Wang H. How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4911-4920. [PMID: 25794043 DOI: 10.1021/acs.est.5b00071] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Collapse
Affiliation(s)
- Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Husheng Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaotian Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Airaksinen R, Hallikainen A, Rantakokko P, Ruokojärvi P, Vuorinen PJ, Mannio J, Kiviranta H. Levels and congener profiles of PBDEs in edible Baltic, freshwater, and farmed fish in Finland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3851-9. [PMID: 25699573 DOI: 10.1021/es505266p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fish is the major source of polybrominated diphenyl ethers (PBDEs) for Finnish consumers. To estimate the PBDE contamination in fish that Finns regularly consume as food, a large-scale sampling was undertaken in 2009-2010. Altogether 207 samples of 17 edible fish species were collected from commercially and recreationally important fishing areas in the Baltic Sea, freshwater lakes, and farming facilities. The analysis of 15 PBDE congeners was performed in an accredited testing laboratory with high-resolution gas chromatography mass spectrometry. In all of the samples, the Σ15PBDE varied between 0.029 and 73 ng/g fw. The most abundant congeners were BDE-47 (average proportion 42%), -99 (8.4%), -100 (11%), -154 (5.6%), and -209 (27%). High levels of BDE-209 were observed in the Baltic Sea, off the coast of Pori, in Baltic herring, perch, pike, and pike-perch. Overall, the PBDE levels in Baltic and freshwater fish were low. The levels in farmed whitefish were slightly higher than in wild whitefish. The reasons for the high BDE-209 levels in Baltic herring in Pori and the elevated levels of PBDEs in farmed whitefish should be investigated more thoroughly.
Collapse
Affiliation(s)
- Riikka Airaksinen
- †Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anja Hallikainen
- ‡Finnish Food Safety Authority Evira, Mustialankatu 3, FI-00790 Helsinki, Finland
| | - Panu Rantakokko
- †Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Päivi Ruokojärvi
- †Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Pekka J Vuorinen
- §Natural Resources Institute Finland (Luke), Viikinkaari 4, FI-00790 Helsinki, Finland
| | - Jaakko Mannio
- ∥Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland
| | - Hannu Kiviranta
- †Department of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| |
Collapse
|
41
|
Wild S, McLagan D, Schlabach M, Bossi R, Hawker D, Cropp R, King CK, Stark JS, Mondon J, Nash SB. An Antarctic research station as a source of brominated and perfluorinated persistent organic pollutants to the local environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:103-12. [PMID: 25478728 DOI: 10.1021/es5048232] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26-820 ng g(-1) dry weight (dw)) and PFAS levels (e.g., PFOS 3.8-2400 ng g(-1) (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71-400 ng L(-1)) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.
Collapse
Affiliation(s)
- Seanan Wild
- Environmental Futures Research Institute, Griffith School of Environment, Griffith University , 170 Kessels Road, Nathan, QLD 4111, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gevao B, Boyle EA, Aba AA, Carrasco GG, Ghadban AN, Al-Shamroukh D, Alshemmari H, Bahloul M. Polybrominated diphenyl ether concentrations in sediments from the Northern Arabian Gulf: spatial and temporal trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 491-492:148-153. [PMID: 24444513 DOI: 10.1016/j.scitotenv.2013.12.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/29/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Surficial sediment samples were obtained from 25 locations within Kuwait Bay and outside the Bay, in the Northwestern Arabian Gulf, to access recent pollution in Kuwait. The historical deposition of PBDEs to this portion of the Arabian Gulf was reconstructed by collecting a sediment core at the entrance of Kuwait Bay. The mean (and range) in concentrations of ∑11PBDEs in surficial sediments was 0.164±0.09 (0.06-0.44) pg/g dw. The concentrations measured in Kuwait Bay were generally higher than those measured in the open Gulf. When the concentrations were normalized to organic carbon, the average ∑11PBDEs concentrations measured in Kuwait Bay were seven times higher than average concentrations outside the Bay. The historical record, reconstructed from a sediment core collected at the entrance of Kuwait Bay, showed that Σ11PBDE concentrations were generally low in deeper sediment sections. The concentrations started to increase above background in the mid-1950s and increased sharply to a maximum Σ11PBDE concentration of ca 1,100 pg/g in the late 1980s. Concentrations decreased thereafter until another pulse in concentrations was observed around the early 2000 followed by a decrease in subsequent years. It is likely that the initial pulse in concentration recorded in sediments is related to inputs from the Gulf war of 1991. The penta congeners were observed throughout the length of the core although the concentrations were low. The congeners present in the Deca-PBDE technical mixture, particularly BDE 209 which is the main congener in the Deca-BDE mixture, occurred in sediment cores around the 1980s, and the concentrations increased rapidly thereafter being the most dominant congener since their first detection in sediments. The presence of nona-BDE congeners in proportions exceeding those in commercial mixtures may be suggestive of debromination of BDE 209 in sediments.
Collapse
Affiliation(s)
- Bondi Gevao
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Edward A Boyle
- Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, USA
| | - Abdul Aziz Aba
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Gonzalo G Carrasco
- Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, 45 Carleton Street, Cambridge, MA 02142, USA
| | - Abdul Nabi Ghadban
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Dalal Al-Shamroukh
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Hassan Alshemmari
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Majed Bahloul
- Environmental Management Program, Environment and Life Sciences Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
43
|
Vorkamp K, Nielsen F, Kyhl HB, Husby S, Nielsen LB, Barington T, Andersson AM, Jensen TK. Polybrominated diphenyl ethers and perfluoroalkyl substances in serum of pregnant women: levels, correlations, and potential health implications. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:9-20. [PMID: 24435476 DOI: 10.1007/s00244-013-9988-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/30/2013] [Indexed: 05/21/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a group of flame retardants, and perfluoroalkyl substances (PFASs) were analysed in serum samples of pregnant women from Denmark to provide information about their exposure and to study indications of common exposure pathways. The main BDE congener was the fully brominated BDE-209 with a median value of 7.5 ng/g lipid (46 pg/mL; 9.8 pmol/g lipid). Other BDE congeners decreased in the order BDE-47 > BDE-99 > BDE-153. The summed concentration of tri- to hepta-BDEs was 7.7 ng/g lipid, i.e. in the higher end of previously reported concentrations from Europe, including plasma samples of pregnant Danish women. Total lipid contents were relatively low, on average 5.9 g/L (9.0 mmol/L). The main PFAS compound was perfluorooctane sulfonate with a median concentration of 8.4 ng/mL. Other PFASs decreased in the order perfluorooctanoic acid > perfluorononanoic acid > perfluorodecanoic acid > perfluorohexane sulfonate and resulted in a ΣPFAS of 12 ng/mL. Within each group, compounds were highly intercorrelated with the exception of BDE-209, which was not correlated with any of the other compounds. No correlations were found either between PFASs and PBDEs suggesting different sources of exposure and/or pharmacokinetic and metabolisation processes. PBDE and PFAS concentrations were in the range associated with adverse effects in some epidemiological studies.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Poma G, Binelli A, Volta P, Roscioli C, Guzzella L. Evaluation of spatial distribution and accumulation of novel brominated flame retardants, HBCD and PBDEs in an Italian subalpine lake using zebra mussel (Dreissena polymorpha). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9655-9664. [PMID: 24756669 DOI: 10.1007/s11356-014-2826-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Because of the reduction in the use of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), novel brominated flame retardants (NBFRs), including 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB), started to be marketed as alternatives to the banned formulations. In this study, the spatial distribution and accumulation of NBFRs, PBDEs, and HBCD in the biota have been investigated in the littoral compartment of a large and deep subalpine lake (Lake Maggiore, Northern Italy), using zebra mussel Dreissena polymorpha and roach (Rutilus rutilus) as bioindicators. To our knowledge, this is the first study reporting the contamination of NBFRs in the freshwater invertebrate D. polymorpha. Contamination of zebra mussel due to PBEB, HBB, and BTBPE was low, ranging from 0.9 to 2.9 ng/g lipid weight, from 1.1 to 2.9 ng/g l.w., and from 3.5 to 9.5 ng/g l.w., respectively. PBEB and BTBPE in roach were always below the detection limit, while the contamination of HBB ranged from < limits of detection (LOD) to 1.74 ng/g l.w., indicating a weak contamination. DBDPE was < LOD in all the considered biological samples. Finally, HBCD was detected in all organic tissues with mean concentrations up to 74.4 ng/g l.w. PBDE results, supported by principal component analysis elaboration, suggested a possible contamination due to the congeners composing the penta- and deca-BDE technical formulations, which are present in the Lake Maggiore basin. The biomagnification factor values showed that tetra- and penta-BDE biomagnified, while octa-, nona-, and deca-BDE were still bioavailable and detectable in the fish muscles, but they do not biomagnified. Considering the other BFRs, only HBCD showed a moderate biomagnification potential.
Collapse
Affiliation(s)
- Giulia Poma
- CNR-IRSA, Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy,
| | | | | | | | | |
Collapse
|
45
|
Hansson T, Baršienė J, Tjärnlund U, Åkerman G, Linderoth M, Zebühr Y, Sternbeck J, Järnberg U, Balk L. Cytological and biochemical biomarkers in adult female perch (Perca fluviatilis) in a chronically polluted gradient in the Stockholm recipient (Sweden). MARINE POLLUTION BULLETIN 2014; 81:27-40. [PMID: 24655945 DOI: 10.1016/j.marpolbul.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
By measuring a battery of cytological and biochemical biomarkers in adult female perch (Perca fluviatilis), the city of Stockholm (Sweden) was investigated as a point source of anthropogenic aquatic pollution. The investigation included both an upstream gradient, 46 km westwards through Lake Mälaren, and a downstream gradient, 84 km eastwards through the Stockholm archipelago. Indeed, there was a graded response for most of the biomarkers and for the muscle concentrations of ΣPBDE, four organotin compounds and PFOS in the perch. The results indicated severe pollution in central Stockholm, with poor health of the perch, characterised by increased frequency of micronucleated erythrocytes, altered liver apoptosis, increased liver catalase activity, decreased brain aromatase activity, and decreased liver lysosomal membrane stability. Some biomarker responses were lowest in the middle archipelago and increased again eastwards, indicating a second, partly overlapping, gradient of toxic effects from the Baltic Sea.
Collapse
Affiliation(s)
- Tomas Hansson
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden.
| | - Janina Baršienė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Ulla Tjärnlund
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| | - Gun Åkerman
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| | - Maria Linderoth
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden; Swedish Environmental Protection Agency, SE-10648 Stockholm, Sweden
| | - Yngve Zebühr
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| | - John Sternbeck
- WSP Environmental, Arenavägen 7, SE-12188 Stockholm, Sweden
| | - Ulf Järnberg
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden; Bengt Dahlgren Stockholm AB, Sickla Industriväg 6, SE-13134 Nacka, Sweden
| | - Lennart Balk
- Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
46
|
Effects of novel brominated flame retardants on steroidogenesis in primary porcine testicular cells. Toxicol Lett 2014. [DOI: 10.1016/j.toxlet.2013.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Zhao Z, Zhang L, Wu J, Fan C. Residual levels, tissue distribution and risk assessment of organochlorine pesticides (OCPs) in edible fishes from Taihu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:9265-9277. [PMID: 23729160 DOI: 10.1007/s10661-013-3249-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Tissue distribution and bioaccumulation of organochlorine pesticides (OCPs) in edible fishes collected from Taihu Lake, Cyprinus carpio (C. carpio) and Ctenopharyngodon idellus (C. idellus), were studied. OCPs were detected in all samples with hexachlorocyclohexanes (HCHs), aldrins (including aldrin, dieldrin, endrin, endrin aldehyde, and endrin ketone), heptachlors (heptachlor and heptachlor epoxide) and dichlorodiphenyltrichloroethanes (DDTs) being the predominant compounds for both fish species. Gill and gonad were found to be the dominant tissues for OCP bioaccumulation followed by liver, while muscle showed the least affinity of OCPs for both fishes. Tissue distribution indicated the exchange of contaminants between water and gill, as well as the food intake from environment were the dominant pathways for OCP bioaccumulation in gill-breathing fish, and the following tissue distribution was affected by both the physiological properties of target tissues and physicochemical characteristics of pesticides. OCP residues in fish were species-specific (45.63-1575.26 ng/g dry weight (dw) for C. idellus; 8.40-60.23 ng/g dw for C. carpio) mainly due to the growth rate of individuals as well as the metabolic capacity difference among species. HCHs and DDTs observed in fishes from Taihu Lake were comparable and moderate with other reported places in China. Human exposure risk assessment performed with the estimated daily intake values demonstrated the consumption of target fish species in Taihu Lake at present was safe.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | | | | |
Collapse
|
48
|
Torres L, Orazio CE, Peterman PH, Patiño R. Effects of dietary exposure to brominated flame retardant BDE-47 on thyroid condition, gonadal development and growth of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1115-1128. [PMID: 23334565 DOI: 10.1007/s10695-012-9768-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/31/2012] [Indexed: 06/01/2023]
Abstract
Little is known about the effects of brominated flame retardants in teleosts and some of the information currently available is inconsistent. This study examined effects of dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on thyroid condition, body mass and size, and gonadal development of zebrafish. Pubertal, 49-day-old (posthatch) fish were fed diets without BDE-47 (control) or with 1, 5 or 25 μg/g BDE-47/diet. Treatments were conducted in triplicate 30-L tanks each containing 50 zebrafish, and 15 fish per treatment (5 per tank) were sampled at days 40, 80 and 120 of exposure. Measurements were taken of body mass, standard length, head depth and head length. Sex (at 40-120 days of exposure), germ cell stage (at 40 days) and thyroid condition (at 120 days; follicular cell height, colloid depletion, angiogenesis) were histologically determined. Whole-body BDE-47 levels at study completion were within the high end of levels reported in environmentally exposed (wild) fishes. Analysis of variance was used to determine differences among treatments at each sampling time. No effects were observed on thyroid condition or germ cell stage in either sex. Reduced head length was observed in females exposed to BDE-47 at 80 days but not at 40 or 120 days. In males, no apparent effects of BDE-47 were observed at 40 and 80 days, but fish exposed to 25 μg/g had lower body mass at 120 days compared to control fish. These observations suggest that BDE-47 at environmentally relevant whole-body concentrations does not affect thyroid condition or pubertal development of zebrafish but does affect growth during the juvenile-to-adult transition, especially in males.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | | | | | | |
Collapse
|
49
|
Deribe E, Rosseland BO, Borgstrøm R, Salbu B, Gebremariam Z, Dadebo E, Skipperud L, Eklo OM. Biomagnification of DDT and its metabolites in four fish species of a tropical lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:10-18. [PMID: 23790590 DOI: 10.1016/j.ecoenv.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
The concentrations and biomagnifications of dichlorodiphenyltrichloroethane (DDT) and its metabolites were examined in four fish species (Clarias gariepinus, Oreochromis niloticus, Tilapia zillii, and Carassius auratus) from Lake Ziway, Rift Valley, Ethiopia. Paired stomach content analysis, and stable isotope ratio of nitrogen (δ(15)N, ‰) and carbon (δ(13)C, ‰) were used to study the trophic position of the fish species in the lake. 4,4'-DDE, 4,4'-DDT and 4,4'-DDD were the main DDTs identified in the fish samples, with 4,4'-DDE as the most predominant metabolite, with mean concentration ranging from 1.4 to 17.8 ng g(-1) wet weight (ww). The concentrations of DDTs found in fish from Lake Ziway were, in general lower than those found in most studies carried out in other African Lakes. However, the presence of DDT in all tissue samples collected from all fish species in the lake indicates the magnitude of the incidence. Moreover, the observed mean 4,4'-DDE to 4,4'-DDT ratio below 1 in C. auratus from Lake Ziway may suggest a recent exposure of these species to DDT, indicating that a contamination source is still present. 4,4'-DDE was found to biomagnify in the fish species of the lake, and increases with trophic level, however, the biomagnification rate was generally lower than what has been reported from other areas. Significantly higher concentrations of 4,4'-DDE were found in the top consumer fish in Lake Ziway, C. gariepinus than in O. niloticus (t=2.6, P<0.01), T. zillii (t=2.5, P<0.02) and C. auratus (t=2.2, P<0.03).
Collapse
Affiliation(s)
- Ermias Deribe
- Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, Ås, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Validation and applications of a GC-ECD method for the determination of polychlorinated biphenyls in fish and seafood. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-1064-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|