1
|
Vickneswaran M, Carolan JC, Saunders M, White B. Establishing the extent of pesticide contamination in Irish agricultural soils. Heliyon 2023; 9:e19416. [PMID: 37674820 PMCID: PMC10478240 DOI: 10.1016/j.heliyon.2023.e19416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
To establish meaningful and sustainable policy directives for sustainable pesticide use in agriculture, baseline knowledge of pesticide levels in soils is required. To address this, five pesticides and one metabolite widely used in Irish agriculture and five neonicotinoid compounds pesticides were screened from soils from 25 fields. These sites represented a diversity of soil and land use types. Prothioconazole was detected in 16 of the 18 sites where it had been recently applied, with the highest maximum concentration quantified of 46 μg/kg. However, a week after application only four fields had prothioconazole concentrations above the limit of quantification (LOQ). Fluroxypyr was applied in 11 sites but was not detected above LOQ. Glyphosate and AMPA were not detected. Interestingly, neonicotinoids were detected in 96% of all sampling sites, even though they were not reported as recently applied. Excluding neonicotinoids, 60% of sites were found to contain pesticide residues of compounds that were not previously applied, with boscalid and azoxystrobin detected in 15 of the 25 sites sampled. The total number of pesticides detected in Irish soils were significantly negatively correlated with clay fraction, while average pesticide concentrations were significantly positively correlated with log Kow values. 17 fields were found to have total pesticide concentrations in excess of 0.5 μg/kg, even when recently applied pesticides were removed from calculations. Theoretical consideration of quantified pesticides determined that azoxystrobin has high leaching risk, while boscalid, which was detected but not applied, has an accumulation risk. This information provides insight into the current level of pesticide contamination in Irish agricultural soil and contributes to the European-level effort to understand potential impacts of pesticide contamination in soil.
Collapse
Affiliation(s)
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Matthew Saunders
- Department of Botany, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Blánaid White
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
2
|
Papazlatani CV, Karas PA, Lampronikou E, Karpouzas DG. Using biobeds for the treatment of fungicide-contaminated effluents from various agro-food processing industries: Microbiome responses and mobile genetic element dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153744. [PMID: 35149062 DOI: 10.1016/j.scitotenv.2022.153744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Agro-food processing industries generate large amounts of pesticide-contaminated effluents that pose a significant environmental threat if managed improperly. Biopurification systems like biobeds could be utilized for the depuration of these effluents although direct evidence for their efficiency are still lacking. We employed a column leaching experiment with pilot biobeds to (i) assess the depuration potential of biobeds against fungicide-contaminated effluents from seed-producing (carboxin, metalaxyl-M, fluxapyroxad), bulb-handling (thiabendazole, fludioxonil and chlorothalonil) and fruit-packaging (fludioxonil, imazalil) industries, (ii) to monitor microbial succession via amplicon sequencing and (iii) to determine the presence and dynamics of mobile genetic elements like intl1, IS1071, IncP-1 and IncP-1ε often associated with the transposition of pesticide-degrading genes. Biobeds could effectively retain (adsorbed but extractable with organic solvents) and dissipate (degraded and/or not extractable with organic solvents) the fungicides that were contained in the agro-industrial effluents with 93.1-99.98% removal efficiency in all cases. Lipophilic substances like fluxapyroxad were mostly retained in the biobed while more polar substances like metalaxyl-M and carboxin were mostly dissipated or showed higher leaching potential like metalaxyl-M. Biobeds supported a bacterial and fungal community that was not affected by fungicide application but showed clear temporal patterns in the different biobed horizons. This was most probably driven by the establishment of microaerophilic conditions upon water saturation of biobeds, as supported by the significant increase in the abundance of facultative or strict anaerobes like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Wastewater application did not affect the dynamics of mobile genetic elements in biobeds whose abundance (intl1, IS1071, IncP-1ε) showed significant increases with time. Our findings suggest that biobeds could effectively decontaminate fungicide-contaminated effluents produced by agro-food industries and support a rather resilient microbial community.
Collapse
Affiliation(s)
- Christina V Papazlatani
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Eleni Lampronikou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece.
| |
Collapse
|
3
|
Domínguez-Rodríguez VI, Baltierra-Trejo E, Gómez-Cruz R, Adams RH. Microbial growth in biobeds for treatment of residual pesticide in banana plantations. PeerJ 2021; 9:e12200. [PMID: 34616634 PMCID: PMC8464193 DOI: 10.7717/peerj.12200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background High doses of ethylenebisdithiocarbamate (EBDC) are used in banana production, and unused pesticide mixture (solution) is often disposed of improperly. This can result in soil and water contamination and present an undue risk to rural communities and the environment. An alternative to reduce the environmental impacts caused by pesticide residues is the biobeds treatment. It is necessary to establish if the composition of the proposed biomixtures supports microbial activity to degrade pesticides in biobeds. This research aimed to evaluate the EBDC effect on the distribution and abundance of microbial populations in polluted biomixtures . Methods For this purpose, a biomixture based on banana stem, mulch, and Fluvisol soil (50:25:25% v/v) was prepared and polluted with 1,000 mg L-1 EBDC. The response variables kinetics were determined every 14 days for three months, such as pH, organic matter, moisture, cation exchange capacity, microbial colonies, and cell counts at three depths within the experimental units. Results EBDC reduced the number of microbial colonies by 72%. Bacterial cells rapidly decreased by 69% and fungi 89% on the surface, while the decrease was gradual and steady at the middle and bottom of the biobed. The microbial populations stabilized at day 42, and the bacteria showed a total recovery on day 84, but the fungi slightly less. At the end of the experiment, the concentration of EBDC in the biomixture was 1.3-4.1 mg L-1. A correlation was found between fungal count (colonies and cells) with EBDC concentration. A replacement of the biomixture is suggested if the bacterial population becomes less than 40 × 106 CFU mL-1 and the fungal population less than 8 × 104 CFU mL-1 or if the direct cell count becomes lower than 50 × 104 cells mL-1 in bacteria and 8 × 102 cells mL-1 in fungi. Conclusion The biomixture based on banana stem supports the microbial activity necessary for the degradation of the EBDC pesticide. It was found that fungi could be used as indicators of the pollutant degradation process in the biomixtures. Microbial counts were useful to establish the mobility and degradation time of the pesticide and the effectiveness of the biomixture. Based on the results, it is appropriate to include the quantification of microbial populations to assess the effectiveness of pesticide degradation and the maturity level of the biomixture.
Collapse
Affiliation(s)
| | - Eduardo Baltierra-Trejo
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.,Catédras CONACyT, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rodolfo Gómez-Cruz
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Randy H Adams
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| |
Collapse
|
4
|
Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. ENVIRONMENTS 2021. [DOI: 10.3390/environments8040032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The management of large volumes of organic residues generated in different livestock, urban, agricultural and industrial activities is a topic of environmental and social interest. The high organic matter content of these residues means that their application as soil organic amendments in agriculture is considered one of the more sustainable options, as it could solve the problem of the accumulation of uncontrolled wastes while improving soil quality and avoiding its irreversible degradation. However, the behavior of pesticides applied to increase crop yields could be modified in the presence of these amendments in the soil. This review article addresses how the adsorption–desorption, dissipation and leaching of pesticides in soils is affected by different organic residues usually applied as organic amendments. Based on the results reported from laboratory studies, the influence on these processes has been evaluated of multiple factors related to organic residues (e.g., origin, nature, composition, rates, and incubation time of the amended soils), pesticides (e.g., with different use, structure, characteristics, and application method), and soils with different physicochemical properties. Future perspectives on this topic are also included for highlighting the need to extend these laboratory studies to field and modelling scale to better assess and predict pesticide fate in amended soil scenarios.
Collapse
|
5
|
Acosta-Sánchez A, Soto-Garita C, Masís-Mora M, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Impaired pesticide removal and detoxification by biomixtures during the simulated pesticide application cycle of a tropical agricultural system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110460. [PMID: 32199216 DOI: 10.1016/j.ecoenv.2020.110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.
Collapse
Affiliation(s)
- Alejandra Acosta-Sánchez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Claudio Soto-Garita
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
6
|
Papazlatani CV, Karas PA, Tucat G, Karpouzas DG. Expanding the use of biobeds: Degradation and adsorption of pesticides contained in effluents from seed-coating, bulb disinfestation and fruit-packaging activities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109221. [PMID: 31310935 DOI: 10.1016/j.jenvman.2019.06.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Agro-food industries that use pesticides constitute significant point sources for the contamination of natural water resources. Despite that, little is known about the treatment of their pesticide-contaminated effluents. Biobeds could be a possible solution for the depuration of these effluents. In this context, we explored the degradation and adsorption of pesticides used in seed-coating (carboxin (CBX), metalaxyl-M (MET-M), fluxapyroxad (FLX), fludioxonil (FLD)), bulb-dipping (chlorothalonil (CHT), thiabendazole (TBZ), FLD) and fruit-packaging activities (FLD) in a biomixture, used as biobed packing material, and in soil. The degradation of pesticides was tested individually and in mixtures relevant to their industrial use, while FLD was also tested at different concentrations (10, 20, and 150 mg kg-1) representing its use in the different industries. CBX, FLD, and CHT, when applied individually, and all other pesticides when applied in mixtures, degraded more rapidly in biomixture than in soil. In most cases pesticides application in mixtures retarded their degradation. This was more pronounced in soil than in biomixture, especially for MET-M and FLD. CHT had the most prominent inhibitory effect on the degradation of TBZ and FLD. FLD degradation showed a dose-dependent pattern (DT50 42.4 days at 10 mg kg-1 and 107.6 days at 150 mg kg-1). All pesticides showed higher adsorption affinity in the biomixture (Kf = 3.23-123.3 g mL-1) compared to soil (Kf = 1.15-31.2 g mL-1). We provide initial evidence for the potential of the tested biomixture to remove pesticides contained in effluents produced by different agro-industrial activities. Tests in full-scale biobeds packed with this biomixture will unravel their full depuration potential for the treatment of these agro-industrial effluents.
Collapse
Affiliation(s)
- Christina V Papazlatani
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - Guillermo Tucat
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-CONICET, Camino de la Carrindanga km 7, (8000), Bahía Blanca, Argentina
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
7
|
Masís-Mora M, Lizano-Fallas V, Tortella G, Beita-Sandí W, Rodríguez-Rodríguez CE. Removal of triazines, triazoles and organophophates in biomixtures and application of a biopurification system for the treatment of laboratory wastewaters. CHEMOSPHERE 2019; 233:733-743. [PMID: 31200133 DOI: 10.1016/j.chemosphere.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Biopurification systems (BPS) have been barely explored for removing complex mixtures of pesticides. In this study, the potential of a biomixture to remove simultaneously a mixture of herbicides (triazines), fungicides (triazoles) and insecticides (organophosphates) is presented. Also, a BPS using the same biomixture was used for treating a pesticide testing laboratory wastewater containing a mixture of 38 compounds. Ecotoxicological assays were conducted on the BPS elutriates to investigate the mixture detoxification. A mixture (concentrations of 4-8 mg kg-1) run in small-scale biomixture systems (SSB) for 128 d showed 59.3% removal of triazines, 68.5% of organophosphates and no elimination of triazoles. The treatment of the laboratory wastewater (individual concentrations range: 0.0036-0.25 mg kg-1) in the pilot-scale BPS for 281 d resulted in the elimination pattern of organophosphates (90.0%) > triazoles (73.4%) > carbamates (71.3%) > triazines (54.3%). Complete detoxification towards Daphnia magna and partial detoxification in Lactuca sativa seeds germination occurred in the BPS. Although the pesticide mixture complexity is higher in the BPS, the lower concentrations found in this matrix, could explain removal differences between SSB and BPS and the apparent inhibition in the elimination of carbamates and some triazines observed in the latter. These findings suggest that disposal of pesticide-containing laboratory-wastewater should be done in separate containers, according to chemical groups before their treatment in separate BPS, in order to reduce treatment periods. Monitoring the treatment process in the BPS with a battery of ecotoxicological tests is strongly recommended.
Collapse
Affiliation(s)
- Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Gonzalo Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Temuco, Chile
| | - Wilson Beita-Sandí
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
8
|
Kumari A, Singh N, Ramakrishnan B. Parameters affecting azoxystrobin and imidacloprid degradation in biobed substrates in the North Indian tropical environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:843-857. [PMID: 31271332 DOI: 10.1080/03601234.2019.1633857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study reports degradation of azoxystrobin (AZOXY) and imidacloprid (IMIDA) in the rice straw (RS)/corn cob (CC) and peat (P)/compost (C)-based biomixtures. The effect of biomixture preconditioning (10 days incubation prior to pesticide application), pesticide concentration and moisture content was evaluated. Results suggested that conditioning of biomixture greatly affected IMIDA degradation where half-life (t1/2) was reduced by 5-9 times. This was attributed to higher microbial biomass carbon content and dehydrogenase activity in the conditioned biomixtures. Pesticide application in the conditioned biomixture did not show any negative impact on soil microbial parameters. Both pesticides degraded at faster rate in the rice straw-based biomixtures than in the corn cob-based biomixtures. Degradation slowed down with increase in initial concentration of pesticides in biomixture and 1.6-3.0 (AZOXY) and 2.4-3.6 (IMIDA) times increase in t1/2 values was observed. The moisture content of biomixture showed positive effect on degradation which increased when moisture content was increased from 60 to 80% water holding capacity. The effect was significant for IMIDA degradation in the corn cob-based biomixtures and AZOXY degradation in the peat biomixtures. The rice straw-based biomixtures were better in degrading AZOXY and IMIDA and can be used in biopurification systems.
Collapse
Affiliation(s)
- Anu Kumari
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
9
|
Lescano MR, Pizzul L, Castillo MDP, Zalazar CS. Glyphosate and aminomethylphosphonic acid degradation in biomixtures based on alfalfa straw, wheat stubble and river waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:451-457. [PMID: 30245269 DOI: 10.1016/j.jenvman.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/24/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The aim of the work was to evaluate novel biomixtures for their use on biopurification systems (BPS) in Argentina also called biobeds. Glyphosate and aminomethylphosphonic acid (AMPA) degradation was evaluated on biomixtures containing local materials: alfalfa straw (As), wheat stubble (Ws), river waste (Rw) and soil. Glyphosate, AMPA concentrations and biological activity were followed with time. Soil was used as control. Glyphosate initial concentration was 1000 mg kg-1. Glyphosate disappeared almost completely after 63 days in all tested biomixtures. For Ws, WsRw and AsRw glyphosate degradation was around 99% and for As 85%. The biomixture Ws showed the highest glyphosate degradation rate. In all cases AMPA was formed and degraded to concentrations between 60 and 100 mg kg-1. In the control with only soil, glyphosate was degraded 53% and AMPA concentration at the end of the test was 438 mg kg-1. We conclude that alfalfa straw, wheat stubble and river waste are local materials that can be used in the preparation of biomixtures since they showed higher glyphosate degradation capacity and less AMPA accumulation compared to the soil alone. Also, the presence of river waste did enhance the water retention capacity.
Collapse
Affiliation(s)
- M R Lescano
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina
| | - L Pizzul
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - M D P Castillo
- RISE- Research Institutes of Sweden, Uppsala, S-750 07, Sweden
| | - C S Zalazar
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), 3000, Santa Fe, Argentina; Dep. Medioambiente, FICH-UNL, Ciudad Universitaria, 3000, Santa Fe, Argentina.
| |
Collapse
|
10
|
Kumari A, Mandal A, Singh N. Kinetics and isotherm modeling of azoxystrobin and imidacloprid retention in biomixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 54:118-128. [PMID: 30285549 DOI: 10.1080/03601234.2018.1507230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The paper reports the kinetics and adsorption isotherm modeling for imidacloprid (IMIDA) and azoxystrobin (AZOXY) in rice straw (RS)/corn cob (CC) and peat (P)/compost (C) based biomixtures. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intraparticle diffusion models were used to describe the kinetics. The adsorption data were subjected to the Langmuir and the Freundlich isotherms. Results (r2Adj values) suggested that the modified Elovich model was the best suited to explain the kinetics of IMIDA sorption while different models explained AZOXY sorption kinetics in different biomixtures (PFO in RS + C and RS + P; PSO in CC + P and Elovich in CC + C). Biomixtures varied in their capacity to adsorb both pesticides and the adsorption coefficient (Kd) values were 116.8-369.24 (AZOXY) and 24.2-293.4 (IMIDA). The Freundlich isotherm better explained the sorption of both pesticides. Comparison analysis of linear and nonlinear method for estimating the Freundlich adsorption constants was made. In general, r2Adj values were higher for the nonlinear fit (AZOXY = 0.938-0.982; IMIDA = 0.91-0.970) than the linear fit (AZOXY = 0.886-0.993; IMIDA = 0.870-0.974) suggesting that the nonlinear Freundlich equation better explained the sorption. The rice straw-based biomixtures performed better in adsorbing both the pesticides and can be used in bio-purification systems.
Collapse
Affiliation(s)
- Anu Kumari
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Abhishek Mandal
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Neera Singh
- a Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| |
Collapse
|
11
|
Góngora-Echeverría VR, Quintal-Franco C, Arena-Ortiz ML, Giácoman-Vallejos G, Ponce-Caballero C. Identification of microbial species present in a pesticide dissipation process in biobed systems using typical substrates from southeastern Mexico as a biomixture at a laboratory scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:528-538. [PMID: 29453182 DOI: 10.1016/j.scitotenv.2018.02.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Biobed systems are an important option to control point pollution in agricultural areas. Substrates used and microbial diversity present in a biomixture perform an essential function in pesticide dissipation. In this study, the effects of soil (50% of volume/volume [V/V] proportion for all biomixtures) and four soil-based biomixtures (miniaturized biobeds; addition of novel substrates from southeastern Mexico) on dissipation of high concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, carbofuran, diazinon, and glyphosate and on microbial diversity in biomixtures were evaluated. Small residual amounts of all pesticides at 20 (<2%) and 41 (<1%) days were observed; however, the lowest efficiency rates were observed in soil. Glyphosate was the only pesticide that completely dissipated in soil and biomixtures. Archaea, bacteria, and fungi were identified in biobeds, with bacteria being the most diverse microorganisms according to the identified species. The presence of white-rot fungi (normally related to pesticide degradation in biomixtures) was observed. Effects of the pesticide type and of biomixtures on pesticide dissipation were significant (P<0.05); however, only the effect of biomixtures on microbial diversity was significant (P<0.05); microbial diversity and richness had a significant effect on the residual amount of pesticides (P<0.05). Microbial diversity in terms of phyla was directly related to physicochemical parameters such as organic matter, lignin, water-holding capacity, and pH of soil and biomixtures.
Collapse
Affiliation(s)
- Virgilio R Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico.
| | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - María Leticia Arena-Ortiz
- Laboratorio de Estudios Ecogenómicos, Unidad de Ciencias y Tecnología de la UNAM en Yucatán, Parque Científico y Tecnológico de Yucatán, Carretera Sierra Papacal-Chuburná Puerto Km 5.1, 97302 Mérida, Yucatán, Mexico
| | - Germán Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán; Av. Industrias no Contaminantes por Anillo Periférico Norte s/n, Apdo, Postal 150 Cordemex, Cd., Mérida, Yucatán, Mexico
| |
Collapse
|
12
|
Romeh AAA. Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:21-31. [PMID: 29107244 DOI: 10.1016/j.pestbp.2016.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 06/07/2023]
Abstract
Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H2O2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin.
Collapse
Affiliation(s)
- Ahmed Ali Ali Romeh
- Plant Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
13
|
Lizano-Fallas V, Masís-Mora M, Espinoza-Villalobos D, Lizano-Brenes M, Rodríguez-Rodríguez CE. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. CHEMOSPHERE 2017; 182:106-113. [PMID: 28494353 DOI: 10.1016/j.chemosphere.2017.04.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to <1 TU in 20 d) towards Daphnia magna in the biomixture and soil, and slower in the bioaugmented biomixture, coinciding with pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix.
Collapse
Affiliation(s)
- Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - David Espinoza-Villalobos
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michelle Lizano-Brenes
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
14
|
Diez MC, Elgueta S, Rubilar O, Tortella GR, Schalchli H, Bornhardt C, Gallardo F. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere. Biodegradation 2017; 28:395-412. [PMID: 28780760 DOI: 10.1007/s10532-017-9804-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.
Collapse
Affiliation(s)
- M C Diez
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile. .,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile.
| | - S Elgueta
- Chemical Science and Natural Resource Department, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - G R Tortella
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - H Schalchli
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - C Bornhardt
- Chemical Engineering Department, Universidad de La Frontera, Temuco, Chile.,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F Gallardo
- Chemical Science and Natural Resource Department, Universidad de La Frontera, Temuco, Chile.,Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Marín-Benito JM, Herrero-Hernández E, Rodríguez-Cruz MS, Arienzo M, Sánchez-Martín MJ. Study of processes influencing bioavailability of pesticides in wood-soil systems: Effect of different factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:454-462. [PMID: 28213322 DOI: 10.1016/j.ecoenv.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Lignocellulosic wastes and by-products containing lignin are now available in large amounts from forestry and industrial activities, and could be promising organic materials for the biosorption of pesticides by soils in order to reduce point-source pollution. Adding these materials to soil requires understanding the process of pesticide sorption-desorption by wood-soils, as sorption capacity could increase, with changes in pesticide bioavailability and final fate. The objective of this work was to study the effect that pine and oak wood added to soils had on the sorption/desorption of the pesticides linuron, alachlor, and metalaxyl. Experiments were conducted with two sandy loam and sandy clay soils each amended with two wood doses (5% and 50%) after different incubation times (0, 5 and 12 months). A low wood dose (5%) had no significant impact on the sorption (Kf) of alachlor, but Kf increased for linuron (up to 5.4-1.7 times) and metalaxyl (up to 4.4 and 8.6 times) in all wood-soil systems. The results were not significantly different after different incubation times. The desorption results indicated that wood decreases the sorption irreversibility of alachlor, and increases that of linuron and metalaxyl, with a varying effect of the wood-soil incubation time. The addition of a high wood dose to soil (50%) was more significant for increasing the sorption of all the pesticides, and the sorbed amounts remaining after desorption (>49% for linuron, >33% for alachlor and >6% for metalaxyl), although there was no apparent discrimination between the two types of woods. The role of the nature of the organic carbón (Koc values) for sorption was evidenced for alachlor and metalaxyl, but not for linuron. These outcomes are of interest for extending wood application to soil as a barrier for avoiding environmental risk by point-source pollution due to the use and management of pesticides in farming systems.
Collapse
Affiliation(s)
- J M Marín-Benito
- Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - E Herrero-Hernández
- Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M S Rodríguez-Cruz
- Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M Arienzo
- Department of Hearth Science, Environment and Resources, University of Naples Federico II, Largo San Marcellino 10, 80138 Naples, Italy
| | - M J Sánchez-Martín
- Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
16
|
Góngora-Echeverría VR, Martin-Laurent F, Quintal-Franco C, Giácoman-Vallejos G, Ponce-Caballero C. Agricultural effluent treatment in biobed systems using novel substrates from southeastern Mexico: the relationship with physicochemical parameters of biomixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9741-9753. [PMID: 28251537 DOI: 10.1007/s11356-017-8643-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Misuse of pesticides in farming activities leads to contamination of drinking water sources and is responsible for animal and human health problems. The biobeds are practicable option to minimize contamination by pesticides during preparation, use and washing of equipment for pesticide treatments. This research aimed at testing substrate mixtures to optimize biobed efficiency to remove pesticides under the climate of the Yucatan (México). Agricultural soil and 11 mixtures adding vegetable compost, sisal pulp, corn stover and seaweed were tested under controlled conditions. Each biomixture was exposed to a mixture of five pesticides (2,4-diclorophenoxyacetic acid "2,4-D" [1.08 mg cm-3], atrazine [2.50 mg cm-3], carbofuran [0.23 mg cm-3], diazinon [0.34 mg cm-3], and glyphosate [0.36 mg cm-3]) in a period of 41 days. Monitoring of the dissipation of pesticide residues showed that pesticides were quickly dissipated in soil at microcosm level experiment, while at two critical times of 20 and 41 days, all mixtures of substrates (biomixtures) were efficient in dissipation of high concentrations of pesticide in a short time (>99%). Time, biomixture and type of pesticide were shown to be the main parameters influencing pesticide dissipation (P < 0.05). Several other physicochemical parameters of the biomixtures, such as organic matter (OM), lignin, water holding capacity (WHC), and pH, were also significant on pesticide dissipation (P < 0.05), being pH the most significant.
Collapse
Affiliation(s)
- Virgilio René Góngora-Echeverría
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico.
| | | | - Carlos Quintal-Franco
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| | - German Giácoman-Vallejos
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico
| | - Carmen Ponce-Caballero
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes por Anillo Periférico Norte s/n. Apdo. Postal 150 Cordemex. Cd, Mérida, Yucatán, Mexico.
| |
Collapse
|
17
|
Karas PA, Perruchon C, Karanasios E, Papadopoulou ES, Manthou E, Sitra S, Ehaliotis C, Karpouzas DG. Integrated biodepuration of pesticide-contaminated wastewaters from the fruit-packaging industry using biobeds: Bioaugmentation, risk assessment and optimized management. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:635-644. [PMID: 27501880 DOI: 10.1016/j.jhazmat.2016.07.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/02/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Wastewaters from fruit-packaging plants contain high loads of toxic and persistent pesticides and should be treated on site. We evaluated the depuration performance of five pilot biobeds against those effluents. In addition we tested bioaugmentation with bacterial inocula as a strategy for optimization of their depuration capacity. Finally we determined the composition and functional dynamics of the microbial community via q-PCR. Practical issues were also addressed including the risk associated with the direct environmental disposal of biobed-treated effluents and decontamination methods for the spent packing material. Biobeds showed high depuration capacity (>99.5%) against all pesticides with bioaugmentation maximizing their depuration performance against the persistent fungicide thiabendazole (TBZ). This was followed by a significant increase in the abundance of bacteria, fungi and of catabolic genes of aromatic compounds catA and pcaH. Bioaugmentation was the most potent decontamination method for spent packing material with composting being an effective alternative. Risk assessment based on practical scenarios (pome and citrus fruit-packaging plants) and the depuration performance of the pilot biobeds showed that discharge of the treated effluents into an 0.1-ha disposal site did not entail an environmental risk, except for TBZ-containing effluents where a larger disposal area (0.2ha) or bioaugmentation alleviated the risk.
Collapse
Affiliation(s)
- Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | | | - Evangelia S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Elena Manthou
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Stefania Sitra
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Constantinos Ehaliotis
- Agricultural University of Athens, Department of Natural Resources and Agricultural Engineering, Laboratory of Soils and Agricultural Chemistry, 75 IeraOdos Str., 11855 Athens, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece.
| |
Collapse
|
18
|
Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. TOXICS 2016; 4:toxics4030017. [PMID: 29051422 PMCID: PMC5606655 DOI: 10.3390/toxics4030017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
Intensive crop production involves a high consumption of pesticides. This is a cause of major environmental concern because the presence of pesticides in water is becoming increasingly common. Physicochemical methods based on soil modification with organic residues have been developed to enhance the immobilization and/or degradation of pesticides in agricultural soils, which may control both the diffuse and the point pollution of soils and waters. This review summarizes the influence of spent mushroom substrate (SMS) on the environmental fate of pesticides when both are simultaneously applied in agriculture. The processes of adsorption, leaching and dissipation of these compounds in SMS-amended soils were evaluated at laboratory and field scale. Relationships were established between the experimental parameters obtained and the properties of the soils, the SMS, and the pesticides in order to determine the effect that the application of SMS in agricultural soils has on the environmental impact of pesticides. Accordingly, this review highlights the use of SMS as a strategy for the prevention and/or control of soil and water contamination by pesticides to strike a balance between agricultural development and the use of these compounds.
Collapse
|
19
|
Chin-Pampillo JS, Masís-Mora M, Ruiz-Hidalgo K, Carazo-Rojas E, Rodríguez-Rodríguez CE. Removal of carbofuran is not affected by co-application of chlorpyrifos in a coconut fiber/compost based biomixture after aging or pre-exposure. J Environ Sci (China) 2016; 46:182-189. [PMID: 27521950 DOI: 10.1016/j.jes.2015.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 06/06/2023]
Abstract
Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed.
Collapse
Affiliation(s)
| | - Mario Masís-Mora
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Karla Ruiz-Hidalgo
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | | |
Collapse
|
20
|
Development of analytical methodologies to assess recalcitrant pesticide bioremediation in biobeds at laboratory scale. Talanta 2016; 153:17-22. [DOI: 10.1016/j.talanta.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
|
21
|
Pinto AP, Rodrigues SC, Caldeira AT, Teixeira DM. Exploring the potential of novel biomixtures and Lentinula edodes fungus for the degradation of selected pesticides. Evaluation for use in biobed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1372-1381. [PMID: 26479911 DOI: 10.1016/j.scitotenv.2015.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
An approach to reduce the contamination of water sources with pesticides is the use of biopurificaction systems. The active core of these systems is the biomixture. The composition of biomixtures depends on the availability of local agro-industrial wastes and design should be adapted to every region. In Portugal, cork processing is generally regarded as environmentally friendly and would be interesting to find applications for its industry residues. In this work the potential use of different substrates in biomixtures, as cork (CBX); cork and straw, coat pine and LECA (Light Expanded Clay Aggregates), was tested on the degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation strategies using the white-rot fungus Lentinula edodes inoculated into the CBX, was also assessed. The results obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. Furthermore, higher degradation of all the pesticides was achieved by use of bioaugmented biomixtures. Indeed, the biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, revelling that these white-rot fungi might be a suitable fungus for being used as inoculum sources in on-farm sustainable biopurification system, in order to increase its degradation efficiency. After 120 days, maximum degradation of terbuthylazine, difenoconazole, diflufenican and pendimethalin, of bioaugmented CBX, was 89.9%, 75.0%, 65.0% and 99.4%, respectively.. The dominant metabolic route of terbuthylazine in biomixtures inoculated with L. edodes EL1 proceeded mainly via hydroxylation, towards production of terbuthylazine-hydroxy-2 metabolite. Finally, sorption process to cork by pesticides proved to be a reversible process, working cork as a mitigating factor reducing the toxicity to microorganisms in the biomixture, especially in the early stages.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, Évora University, Portugal.
| | - S C Rodrigues
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A T Caldeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| | - D M Teixeira
- Chemistry Department of Science and Technology School, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; HERCULES Laboratory, Évora University, Portugal
| |
Collapse
|
22
|
Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo-Rojas E, Rodríguez-Rodríguez CE. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19184-19193. [PMID: 26250812 DOI: 10.1007/s11356-015-5093-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.
Collapse
Affiliation(s)
- Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Karla Ruiz-Hidalgo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
23
|
Karas P, Metsoviti A, Zisis V, Ehaliotis C, Omirou M, Papadopoulou ES, Menkissoglou-Spiroudi U, Manta S, Komiotis D, Karpouzas DG. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:129-139. [PMID: 26042894 DOI: 10.1016/j.scitotenv.2015.05.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides.
Collapse
Affiliation(s)
- Panagiotis Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Aria Metsoviti
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Vasileios Zisis
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Constantinos Ehaliotis
- Agricultural University of Athens, Department of Natural Resources and Agricultural Engineering, Laboratory of Soils and Agricultural Chemistry, 75 Iera Odos Str., 11855 Athens, Greece
| | | | - Evangelia S Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece; Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Pesticide Science, Thessaloniki 54124, Greece
| | - Urania Menkissoglou-Spiroudi
- Aristotle University of Thessaloniki, Faculty of Agriculture, Forestry and Natural Environment, Laboratory of Pesticide Science, Thessaloniki 54124, Greece
| | - Stella Manta
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Dimitri Komiotis
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aiolou, 41221 Larissa, Greece.
| |
Collapse
|
24
|
Chin-Pampillo JS, Ruiz-Hidalgo K, Masís-Mora M, Carazo-Rojas E, Rodríguez-Rodríguez CE. Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9839-9848. [PMID: 25647489 DOI: 10.1007/s11356-015-4130-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
A biomixture constitutes the active core of the on-farm biopurification systems, employed for the detoxification of pesticide-containing wastewaters. As biomixtures should be prepared considering the available local materials, the present work aimed to evaluate the performance of ten different biomixtures elaborated with by-products from local farming, in the degradation of the insecticide/nematicide carbofuran (CFN), in order to identify suitable autochthonous biomixtures to be used in the tropics. Five different lignocellulosic materials mixed with either compost or peat and soil were employed in the preparation of the biomixtures. The comprehensive evaluation of the biomixtures included removal of the parent compound, formation of transformation products, mineralization of radiolabeled CFN, and determination of the residual toxicity of the process. Detoxification capacity of the matrices was high, and compost-based biomixtures showed better performance than peat-based biomixtures. CFN removal over 98.5% was achieved within 16 days (eight out of ten biomixtures), with half-lives below 5 days in most of the cases. 3-Hydroxycarbofuran and 3-ketocarbofuran were found as transformation products at very low concentrations suggesting their further degradation. Mineralization of CFN was also achieved after 64 days (2.9 to 15.1%); several biomixtures presented higher mineralization than the soil itself. Acute toxicity determinations with Daphnia magna revealed a marked detoxification in the matrices at the end of the process; low residual toxicity was observed only in two of the peat-based biomixtures. Overall best efficiency was achieved with the biomixture composed of coconut fiber-compost-soil; however, results suggest that in the case of unavailability of coconut fiber, other biomixtures may be employed with similar performance.
Collapse
Affiliation(s)
- Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | | | | | | |
Collapse
|
25
|
Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Briceño G, Parra L, Diez MC. Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. CHEMOSPHERE 2013; 93:1084-1093. [PMID: 23806487 DOI: 10.1016/j.chemosphere.2013.05.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/26/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
The impact of repeated carbendazim (CARB) applications on the extent of CARB dissipation, the microbial diversity, the community level physiological profile (CLPP), and the enzymatic activity within the biomixture of an on-farm biopurification system was evaluated. After three successive CARB applications, the CARB dissipation efficiency was high; the efficiency of dissipation was 87%, 94% and 96% after each application, respectively. Although microbial enzymatic activity was affected significantly by CARB application, it could recover after each CARB pulse. Likewise, the numbers of cultivable bacteria, fungi and actinomycetes (as measured in CFUs) were slightly affected by the addition of CARB, but the inhibitory effect of the pesticide application was temporary. Denaturing gradient gel electrophoresis (DGGE) and Biolog Ecoplate assays demonstrated that the microbial populations remained relatively stable over time when compared to the control. The results obtained herein therefore demonstrate the high dissipation capacity of this biomixture and highlight the microbiological robustness of this biological system.
Collapse
Affiliation(s)
- G R Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tortella GR, Mella-Herrera RA, Sousa DZ, Rubilar O, Acuña JJ, Briceño G, Diez MC. Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:459-467. [PMID: 23811367 DOI: 10.1016/j.jhazmat.2013.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
The effects of repeated atrazine application (40 mg a.i.kg(-1)) on its degradation, microbial communities and enzyme activities were studied in a peat based biomixture composed by straw, soil and peat in the volumetric proportions of 2:1:1 that can be used in on-farm biopurification system. Atrazine removal efficiency was high (96%, 78% and 96%) after each atrazine application and did not show a lag phase. Microbial enzyme activities were reduced significantly with atrazine application but rapidly recovered. Microbial diversity obtained by BiologEcoplate was similar after the first and second atrazine application. However, an inhibitory effect was observed after the third application. After each atrazine application, culturable fungi were reduced, but rapidly recovered without significant changes in culturable bacteria and actinomycetes compared to the control. Denaturing gradient gel electrophoresis (DGGE) patterns demonstrated that microbial community structure remained relatively stable in time when compared to the controls. In conclusion, our results demonstrated that after successive ATZ applications, the peat based biomixture had a good degradation capacity. Moreover, microbiological assays demonstrated the robustness of the peat based biomixture from a microbiological point of view to support pesticide degradation.
Collapse
Affiliation(s)
- G R Tortella
- Nucleo Científico Tecnológico en Biorecursos, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | | | | | | | | | | | | |
Collapse
|
27
|
Karanasios EC, Tsiropoulos NG, Karpouzas DG. Quantitative and qualitative differences in the metabolism of pesticides in biobed substrates and soil. CHEMOSPHERE 2013; 93:20-28. [PMID: 23689095 DOI: 10.1016/j.chemosphere.2013.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
Biobed substrates commonly exhibit high degradation capacity. However, degradation does not always lead to detoxification and information on the metabolic pathways of pesticides in biobeds is scarce. We studied the degradation and metabolism of three pesticides in selected biomixtures and soil. Biomixtures stimulated degradation of terbuthylazine and metribuzin, whereas chlorpyrifos degraded faster in soil. The latter was attributed to the lipophilicity of chlorpyrifos which increased adsorption and limited biodegradation in organic-rich biomixtures. Although the same metabolites were detected in all substrates, qualitative and quantitative differences in the metabolic routes of pesticides in the various substrates were observed. Chlorpyrifos was hydrolyzed to 3,5,6-tricholorpyridinol (TCP) which was further degraded only in compost-biomixture CBX1. Metabolism of terbuthylazine in compost biomixtures (BX) and soil resulted in the formation of desethyl-terbuthylazine (DES) which was fully degraded only in the compost-biomixture CBX2, whereas peat-based biomixture (OBX) promoted the hydroxylation of terbuthylazine. Desamino- (DA) (dominant) and diketo- (DK) metribuzin appear as intermediate metabolites in all substrates and were further transformed to desamino-diketo-metribuzin (DADK) which was fully degraded only in compost-biomixture GSBX. Overall, lower amounts of metabolites were accumulated in biomixtures compared to soil stressing the higher depuration efficiency of biobeds.
Collapse
Affiliation(s)
- Evangelos C Karanasios
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Volos 38446, Greece.
| | | | | |
Collapse
|
28
|
Urrutia C, Rubilar O, Tortella GR, Diez MC. Degradation of pesticide mixture on modified matrix of a biopurification system with alternatives lignocellulosic wastes. CHEMOSPHERE 2013; 92:1361-1366. [PMID: 23746365 DOI: 10.1016/j.chemosphere.2013.04.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
The biobed systems were designed to retain and to degrade pesticides through the properties of a biomixture composed of straw (ST), topsoil and peat (PT) 2:1:1 v/v. The ST is the main substrate in the biomixture, as it allows the proliferation of fungi that promotes pesticide degradation. The use of readily available components in the biomixture is an important aspect to build a biobed. Therefore, potential use of readily available wastes as barley husk (BH), sawdust (SW) and oat husk (OH), as total or partial substitutes of ST were tested in pesticide degradation studies. Metabolite formation and the biological activities were also evaluated. Biomixture composed of OH was highly efficient in pesticide degradation, with t½ values of 28.6, 58.9 and 26.8 d for atrazine (ATZ), chlorpyrifos (CHL) and isoproturon (ISP). On the other hand, comparable for degrading capacities with the ST based biomixture were obtained with SW and BH, but only as partial replacement. Contrarily, high t½ values (more than 100 d) were obtained in biomixtures with total substitution of ST by SW or BH. Metabolite formation was observed in all biomixtures tested, but without clear formation patterns. Moreover, high and stable biological activity was observed in the biomixtures composed of OH. Therefore, our results demonstrated that ST can be partial or totally replaced by OH in the biomixture allowing an efficient degradation of pesticide mixture. However, it is recommended that ST can be only partially replaced by BH and SW in the biomixture to allow efficient pesticide degradation.
Collapse
Affiliation(s)
- C Urrutia
- Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile
| | | | | | | |
Collapse
|
29
|
Marinozzi M, Coppola L, Monaci E, Karpouzas DG, Papadopoulou E, Menkissoglu-Spiroudi U, Vischetti C. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2546-2555. [PMID: 22965543 DOI: 10.1007/s11356-012-1165-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Biopurification systems (BPS) have been introduced to minimise the risk for point source contamination of natural water resources by pesticides. Their depuration efficiency relies mostly on the high biodegradation of their packing substrate (biomixture). Despite that, little is known regarding the interactions between biomixture microflora and pesticides, especially fungicides which are expected to have a higher impact on the microbial community. This study reports the dissipation of the fungicides azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC), commonly used in vineyards, in a biomixture composed of pruning residues and straw used in vineyard BPS. The impact of fungicides on the microbial community was also studied via microbial biomass carbon, basal respiration and phospholipid fatty acid analysis. AZX dissipated faster (t1/2 = 30.1 days) than PC (t1/2 = 99.0 days) and FL (t1/2 = 115.5 days). Fungicides differently affected the microbial community. PC showed the highest adverse effect on both the size and the activity of the biomixture microflora. A significant change in the structure of the microbial community was noted for PC and FL, and it was attributed to a rapid inhibition of the fungal fraction while bacteria showed a delayed response which was attributed to indirect effects by the late proliferation of fungi. All effects observed were transitory and a full recovery of microbial indices was observed 60 days post-application. Overall, no clear link between pesticide persistence and microbial responses was observed stressing the complex nature of interactions between pesticides in microflora in BPS.
Collapse
Affiliation(s)
- Maria Marinozzi
- Department of Agricultural, Food and Environmental Sciences, Universita' Politecnica delle Marche, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Karanasios E, Papadi-Psyllou A, Karpouzas DG, Tsiropoulos NG. Optimization of biomixture composition and water management for maximum pesticide dissipation in peat-free biobeds. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1787-1795. [PMID: 23128736 DOI: 10.2134/jeq2012.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomixture composition and water management are key factors controlling biobeds performance. Although compost-biomixtures (BXs) possess high degradation efficiency, their low water-holding capacity compared with peat-biomixtures (OBX) limits their use. Thus, appropriate water management is required to optimize their performance. The dissipation capacity of selected BXs compared with OBXs was assessed in a column study under two water managements not differing in their total water load but in the intensity and frequency of water addition. Results showed that the less frequent application of large water volumes (water management scenario I) facilitated pesticide leaching (0.001-10.4% of initially applied), compared with the frequent application of low water volumes (water management scenario II) where leaching losses were always <1%. Water management affected differently the dissipation performance of substrates: OBX outperformed BXs under water management scenario I, whereas the grape marc compost-biomixture (BX1) was superior at water management scenario II. Substitution of grape marc compost (C1) with olive leaves compost (C2) or of straw with corn cobs or grape stalks reduced the dissipation capacity of BX1. Mass balance analysis revealed that the high dissipation capacity of OBX was mostly attributable to its high ability to retain rather than degrade pesticides, whereas the exact opposite was seen for BX1. Overall, our findings suggest that BXs-biobeds could treat large wastewater volumes under appropriate water management that extends the contact period between pesticides and BXs, thus exploiting their high biodegradation capacity.
Collapse
|
31
|
Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:402-410. [PMID: 22878100 DOI: 10.1016/j.scitotenv.2012.07.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 05/27/2023]
Abstract
Contamination of waters by xenobiotic compounds such as pesticides presents a serious environmental problem with substantial levels of pesticides now contaminating European water resources. The aim of this work was to evaluate the ability of the fungi Fusarium oxysporum, Aspergillus oryzae, Lentinula edodes, Penicillium brevicompactum and Lecanicillium saksenae, for the biodegradation of the pesticides terbuthylazine, difenoconazole and pendimethalin in batch liquid cultures. These pesticides are common soil and water contaminants and terbuthylazine is considered the most persistent triazine herbicide in surface environments. P. brevicompactum and L. saksenae were achieved by enrichment, isolation and screening of fungi capable to metabolize the pesticides studied. The isolates were obtained from two pesticide-primed materials (soil and biomixture). Despite the relatively high persistence of terbuthylazine, the results obtained in this work showed that the fungi species studied have a high capability of biotransformation of this xenobiotic, comparatively the results obtained in other similar studies. The highest removal percentage of terbuthylazine from liquid medium was achieved with A. oryzae (~80%), although the major biodegradation has been reached with P. brevicompactum. The higher ability of P. brevicompactum to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination with the herbicide. L. saksenae could remove 99.5% of the available pendimethalin in batch liquid cultures. L. edodes proved to be a fungus with a high potential for biodegradation of pesticides, especially difenoconazole and pendimethalin. Furthermore, the metabolite desethyl-terbuthylazine was detected in L. edodes liquid culture medium, indicating terbuthylazine biodegradation by this fungus. The fungi strains investigated could prove to be valuable as active pesticide-degrading microorganisms, increasing the efficiency of biopurification systems containing wastewaters contaminated with the xenobiotics studied or compounds with similar intrinsic characteristics.
Collapse
Affiliation(s)
- A P Pinto
- Chemistry Department, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| | | | | | | | | | | | | |
Collapse
|
32
|
Karanasios E, Tsiropoulos NG, Karpouzas DG. On-farm biopurification systems for the depuration of pesticide wastewaters: recent biotechnological advances and future perspectives. Biodegradation 2012; 23:787-802. [PMID: 23054187 DOI: 10.1007/s10532-012-9571-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/27/2012] [Indexed: 11/29/2022]
Abstract
Point source contamination of natural water resources by pesticides constitutes a serious problem and on-farm biopurification systems (BPS) were introduced to resolve it. This paper reviews the processes and parameters controlling BPS depuration efficiency and reports on recent biotechnological advances which have been used for enhancing BPS performance. Biomixture composition and water management are the two factors which either individually or through their interactions control the depuration performance of BPS. Which process (biodegradation or adsorption) will dominate pesticides dissipation in BPS depends on biomixture composition and the physicochemical properties of the pesticides. Biotechnological interventions such as augmentation with pesticide-degrading microbes or pesticide-primed matrices have resulted in enhanced biodegradation performance of BPS. Despite all these advancement in BPS research, there are still several issues which should be resolved to facilitate their full implementation. Safe handling and disposal of the spent biomixture is a key practical issue which needs further research. The use of BPS for the depuration of wastewaters from post-farm activities such as postharvest treatment of fruits should be a priority research issue considering the lack of alternative treatment systems. However, the key point hampering optimization of BPS is the lack of fundamental knowledge on BPS microbiology. The use of advanced molecular and biochemical methods in BPS would shed light into this issue in the future.
Collapse
Affiliation(s)
- Evangelos Karanasios
- Department of Pesticide Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | | | | |
Collapse
|
33
|
Omirou M, Dalias P, Costa C, Papastefanou C, Dados A, Ehaliotis C, Karpouzas DG. Exploring the potential of biobeds for the depuration of pesticide-contaminated wastewaters from the citrus production chain: laboratory, column and field studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 166:31-39. [PMID: 22465978 DOI: 10.1016/j.envpol.2012.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
The high wastewater volumes produced during citrus production at pre- and post-harvest level presents serious pesticide point-source pollution for groundwater bodies. Biobeds are used for preventing such point-source pollution occurring at farm level. We explored the potential of biobeds for the depuration of wastewaters produced through the citrus production chain following a lab-to-field experimentation. The dissipation of pesticides used pre- or post-harvest was studied in compost-based biomixtures, soil, and a straw-soil mixture. A biomixture of composted grape seeds and skins (GSS-1) showed the highest dissipation capacity. In subsequent column studies, GSS-1 restricted pesticides leaching even at the highest water load (462 Lm(-3)). Ortho-phenylphenol was the most mobile compound. Studies in an on-farm biobed filled with GSS-1 showed that pesticides were fully retained and partially or fully dissipated. Overall biobeds could be a valuable solution for the depuration of wastewaters produced at pre- and post-harvest level by citrus fruit industries.
Collapse
Affiliation(s)
- M Omirou
- Agricultural Research Institute, Nicosia, Cyprus.
| | | | | | | | | | | | | |
Collapse
|
34
|
Suciu NA, Ferrari T, Ferrari F, Trevisan M, Capri E. Pesticide removal from waste spray-tank water by organoclay adsorption after field application: an approach for a formulation of cyprodinil containing antifoaming/defoaming agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1229-1236. [PMID: 22057850 DOI: 10.1007/s11356-011-0643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE Many reports on purification of water containing pesticides are based on studies using unformulated active ingredients. However, most commercial formulations contain additives/adjuvants or are manufactured using microencapsulation which may influence the purification process. Therefore, the main objective of this work was to develop and test a pilot scheme for decontaminating water containing pesticides formulated with antifoaming/defoaming agents. METHODS The Freundlich adsorption coefficients of formulation of cyprodinil, a new-generation fungicide, onto the organoclay Cloisite 20A have been determined in the laboratory in order to predict the efficiency of this organoclay in removing the fungicide from waste spray-tank water. Subsequently, the adsorption tests were repeated in the pilot system in order to test the practical operation of the purification scheme. RESULTS The laboratory adsorption tests successfully predicted the efficiency of the pilot purification system, which removed more than 96% cyprodinil over a few hours. The passing of the organoclay-cyprodinil suspension through a layer of biomass gave 100% recovery of the organoclay at the surface of the biomass after 1 week. The organoclay was composted after the treatment to try to break down the fungicide so as to allow safe disposal of the waste, but cyprodinil was not significantly dissipated after 90 days. CONCLUSION The purification scheme proved to be efficient for decontaminating water containing cyprodinil formulated with antifoaming/defoaming agents, but additional treatments for the adsorbed residues still appear to be necessary even for a moderately persistent pesticide such as cyprodinil. Furthermore, a significant conclusion of this study concerns the high influence of pesticide formulations on the process of purification of water containing these compounds, which should be taken into account when developing innovative decontamination schemes, especially for practical applications.
Collapse
Affiliation(s)
- Nicoleta A Suciu
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | | | | | | | |
Collapse
|
35
|
Marín-Benito JM, Rodríguez-Cruz MS, Andrades MS, Sánchez-Martín MJ. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:814-822. [PMID: 22565263 DOI: 10.2134/jeq2011.0437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications.
Collapse
Affiliation(s)
- Jesús M Marín-Benito
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Spain
| | | | | | | |
Collapse
|
36
|
Karanasios E, Karpouzas DG, Tsiropoulos NG. Key parameters and practices controlling pesticide degradation efficiency of biobed substrates. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:589-598. [PMID: 22494383 DOI: 10.1080/03601234.2012.665753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We studied the contribution of each of the components of a compost-based biomixture (BX), commonly used in Europe, on pesticide degradation. The impact of other key parameters including pesticide dose, temperature and repeated applications on the degradation of eight pesticides, applied as a mixture, in a BX and a peat-based biomixture (OBX) was compared and contrasted to their degradation in soil. Incubation studies showed that straw was essential in maintaining a high pesticide degradation capacity of the biomixture, whereas compost, when mixed with soil, retarded pesticide degradation. The highest rates of degradation were shown in the biomixture composed of soil/compost/straw suggesting that all three components are essential for maximum biobed performance. Increasing doses prolonged the persistence of most pesticides with biomixtures showing a higher tolerance to high pesticide dose levels compared to soil. Increasing the incubation temperature from 15 °C to 25 °C resulted in lower t(1/2) values, with biomixtures performing better than soil at the lower temperature. Repeated applications led to a decrease in the degradation rates of most pesticides in all the substrates, with the exception of iprodione and metalaxyl. Overall, our results stress the ability of biomixtures to perform better than soil under unfavorable conditions and extreme pesticide dose levels.
Collapse
Affiliation(s)
- Evangelos Karanasios
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | | |
Collapse
|
37
|
Rodríguez-Cruz MS, Ordax JM, Arienzo M, Sánchez-Martín MJ. Enhanced retention of linuron, alachlor and metalaxyl in sandy soil columns intercalated with wood barriers. CHEMOSPHERE 2011; 82:1415-1421. [PMID: 21183199 DOI: 10.1016/j.chemosphere.2010.11.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
A study has been made of the effect a reactive barrier made of pine (softwood) or oak (hardwood) wood intercalated in a sandy soil column has on the retention of linuron, alachlor and metalaxyl (pesticides with contrasting physicochemical characteristics). The leaching of pesticides has been carried out under a saturated flow regime and breakthrough curves (BTCs) have been obtained at flow rates of 1 m Lmin(-1) (all pesticides) and 3 m Lmin(-1) (linuron). The cumulative curves in the unmodified soil indicate a leaching of pesticides >80% of the total amount of compound added. After barrier intercalation, linuron leaching decreases significantly and a modification of the leaching kinetics of alachlor and metalaxyl has been observed. The theoretical R factors increased ∼2.6-3.3, 1.2-1.6-fold, and 1.4-1.7-fold and the concentration of the maximum peak decreased ∼6-12-fold, 2-4-fold and 1.2-2-fold for linuron, alachlor and metalaxyl, respectively. When considering the three pesticides, significant correlations have been found between the theoretical retardation factor (R) and the pore volume corresponding to the maximum peaks of the BTCs (r=0.77; p<0.05) or the total volume leached (r=-0.78; p<0.05). The results reveal the efficacy of reactive wood barriers to decrease the leaching of pesticides from point sources of pollution depends on the type of wood, the hydrophobicity of the pesticide and the adopted water flow rate. Pine was more effective than oak in decreasing the leaching of hydrophobic pesticide linuron or in decreasing the maximum peak concentration of the less hydrophobic pesticides in soils. Efficacy of these wood barriers was limited for the least hydrophobic pesticide metalaxyl.
Collapse
Affiliation(s)
- M S Rodríguez-Cruz
- Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-CSIC, Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | | | | | | |
Collapse
|