1
|
Granzow BN, Repeta DJ. What Is the Molecular Weight of "High" Molecular Weight Dissolved Organic Matter? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14709-14717. [PMID: 39102585 PMCID: PMC11339928 DOI: 10.1021/acs.est.4c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The use of ultrafiltration to isolate high molecular weight dissolved organic matter (HMWDOM) from seawater is a fundamental tool in the environmental organic chemist's toolbox. Yet, important characteristics of HMWDOM relevant to its origin and cycling, such as its molecular weight distribution, remain poorly defined. We used diffusion-ordered NMR spectroscopy coupled with mixed-mode chromatography to separate and characterize two major components of marine HMWDOM: acylpolysaccharides (APS) and high molecular weight humic substances (HS). The molecular weights (MWs) of APS and HS both fell within distinct, narrow envelopes; 2.0-16 kDa for APS and 0.9-6.5 kDa for HS. In water samples from the North Pacific Ocean the average MW of both components decreased with depth through the mesopelagic. However, the minimum MW of APS was >2 kDa, well above the molecular weight cutoff of the ultrafilter, suggesting APS removal processes below 2 kDa are highly efficient. The MW distribution of APS shows only small variations with depth, while the MW distribution of HS narrowed due to removal of HMW components. Despite the narrowing of the MW distribution, the concentration of HS did not decrease with depth between 15 and 915 m. This suggests that HMW HS produced in surface waters was either degraded into lower MW compounds without significant remineralization, or that HMW HS was remineralized but replaced by an additional source of HS in the mesopelagic ocean. Based on these results, we propose potential pathways for the production and removal of these major components of HMWDOM.
Collapse
Affiliation(s)
- Benjamin N. Granzow
- Geoscience
Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, United States
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Daniel J. Repeta
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
2
|
Guan L, Cao C, Liu X, Liu Q, Qiu Y, Wang X, Yang Z, Lai H, Sun Q, Ding C, Zhu D, Kuang C, Liu X. Light and matter co-confined multi-photon lithography. Nat Commun 2024; 15:2387. [PMID: 38493192 PMCID: PMC10944545 DOI: 10.1038/s41467-024-46743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Mask-free multi-photon lithography enables the fabrication of arbitrary nanostructures low cost and more accessible than conventional lithography. A major challenge for multi-photon lithography is to achieve ultra-high precision and desirable lateral resolution due to the inevitable optical diffraction barrier and proximity effect. Here, we show a strategy, light and matter co-confined multi-photon lithography, to overcome the issues via combining photo-inhibition and chemical quenchers. We deeply explore the quenching mechanism and photoinhibition mechanism for light and matter co-confined multiphoton lithography. Besides, mathematical modeling helps us better understand that the synergy of quencher and photo-inhibition can gain a narrowest distribution of free radicals. By using light and matter co-confined multiphoton lithography, we gain a 30 nm critical dimension and 100 nm lateral resolution, which further decrease the gap with conventional lithography.
Collapse
Affiliation(s)
- Lingling Guan
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Chun Cao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- School of Mechanical Engineering, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Xi Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Qiulan Liu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Yiwei Qiu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Xiaobing Wang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Zhenyao Yang
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Huiying Lai
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Qiuyuan Sun
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Chenliang Ding
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Dazhao Zhu
- Research Center for Intelligent Chips and Devices, Zhejiang Lab, 311121, Hangzhou, China
| | - Cuifang Kuang
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| | - Xu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China.
| |
Collapse
|
3
|
Marcinek S, Galceran J, Ciglenečki I, Omanović D. A new tool for the determination of humic substances in natural waters: Pulsed voltammetry approach. Talanta 2023; 259:124547. [PMID: 37060721 DOI: 10.1016/j.talanta.2023.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Humic substances (HS) in natural waters can be determined with a new, simple and sensitive method based on their influence on the background current in a differential pulse - adsorptive cathodic stripping voltammetry. The proposed method, termed PB-HS (pulsed background - humic substances) is discussed in detail, including its application in natural samples from the Krka River estuary. The method was additionally compared with absorbance measurements as well as with the typical electrochemical HS quantification in natural waters based on HS complexation with molybdenum (Mo). A good correlation between methods was observed, with PB-HS showing slightly better sensitivity to humic compounds than classical spectrophotometry. Higher HS concentrations measured with the Mo-method may be due to the enhanced hydrophobicity reached at pH 2 that is required by the method. Advantages of the proposed PB-HS method, compared to existing voltammetric methods for HS quantification, are that it does not require any reagent addition (except buffer) and that it can be used at the natural pH of water as well as in a wide salinity range, which is crucial for its application in estuarine waters.
Collapse
Affiliation(s)
- Saša Marcinek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Josep Galceran
- Departament de Química - Universitat de Lleida and AGROTECNIO-CERCA, Av Rovira Roure 191, 25198, Lleida, Catalonia, Spain
| | - Irena Ciglenečki
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Dario Omanović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Zhu Y, Xu G, Wang X, Ji X, Jia X, Sun L, Gu X, Xie X. Passive sampling of chlorophenols in water and soils using diffusive gradients in thin films based on β-cyclodextrin polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150739. [PMID: 34619202 DOI: 10.1016/j.scitotenv.2021.150739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous β-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 μg cm-2, 98.82 μg cm-2, 95.69 μg cm-2 and 98.91 μg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.
Collapse
Affiliation(s)
- Yuanting Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Xun Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
5
|
Capillary method and molecular dynamics study of the diffusion and molecular structures of vanadium(IV)-ligand complexes. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Gaulier C, Zhou C, Gao Y, Guo W, Reichstädter M, Ma T, Baeyens W, Billon G. Investigation on trace metal speciation and distribution in the Scheldt estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143827. [PMID: 33257074 DOI: 10.1016/j.scitotenv.2020.143827] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
The biogeochemical behavior of Cd, Co, Cr, Cu, Ni and Pb along the historically polluted Scheldt estuary (Belgium - The Netherlands) was investigated in this study. As never studied before in this area, labile trace metals were measured using the passive sampling technique of Diffusive Gradients in Thin-films (DGT), while total dissolved and particulate trace metal concentrations were assessed using classic active sampling techniques. This dual approach allowed us to highlight the variations of trace metal speciation and distribution in the estuarine surface waters, considering environmental and physicochemical gradients along the transect. The large data set obtained was then compared with literature data of historical measurements along the Scheldt (from 1980 until now), but also from other estuaries. As emphasized by our results, trace metal mobility and partitioning along the Scheldt estuary was mainly driven by biogeochemical reactions which were strongly influenced by gradients of specific estuarine physico-chemical parameters, such as salinity, turbidity, temperature and so on. Hence, all species of trace metals displayed a non-conservative behavior. More precisely, dissolved labile fractions of trace metals showed higher levels in the middle estuary, where many solubilization and remobilization processes occurred due to turbulent mixing mechanisms and an increasing salinity. Our study confirmed the decreasing trend historically observed for particulate metals along the Scheldt, as well as the rising concentrations recorded for dissolved trace metals which might also lead to an increase of their labile fraction measured by the DGT. Finally, these preliminary results suggested that a more regular monitoring of labile metal along the Scheldt estuary is essential to have an in-depth understanding of trace metal speciation and to review bioavailability of trace metals within estuarine ecosystems.
Collapse
Affiliation(s)
- Camille Gaulier
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; LASIRE CNRS UMR 8516, Université de Lille, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Wei Guo
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Marek Reichstädter
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Brno University of Technology, Faculty of Chemistry, Purkynova 118, Brno 62100, Czech Republic
| | - Tianhui Ma
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gabriel Billon
- LASIRE CNRS UMR 8516, Université de Lille, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
8
|
Chang X, Shi J, Wang H. Spatial modeling and dynamics of organic matter biodegradation in the absence or presence of bacterivorous grazing. Math Biosci 2020; 331:108501. [PMID: 33166582 DOI: 10.1016/j.mbs.2020.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Biodegradation is a pivotal natural process for elemental recycling and preservation of an ecosystem. Mechanistic modeling of biodegradation has to keep track of chemical elements via stoichiometric theory, under which we propose and analyze a spatial movement model in the absence or presence of bacterivorous grazing. Sensitivity analysis shows that the organic matter degradation rate is most sensitive to the grazer's death rate when the grazer is present and most sensitive to the bacterial death rate when the grazer is absent. Therefore, these two death rates are chosen as the primary parameters in the conditions of most mathematical theorems. The existence, stability and persistence of solutions are proven by applying linear stability analysis, local and global bifurcation theory, and the abstract persistence theory. Through numerical simulations, we obtain the transient and asymptotic dynamics and explore the effects of all parameters on the organic matter decomposition. Grazers either facilitate biodegradation or has no impact on biodegradation, which resolves the "decomposition-facilitation paradox" in the spatial context.
Collapse
Affiliation(s)
- Xiaoyuan Chang
- Department of Mathematics, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, PR China
| | - Junping Shi
- Department of Mathematics, William & Mary, Williamsburg, VA, 23187-8795, USA.
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
| |
Collapse
|
9
|
Ren S, Tan F, Wang Y, Zhao H, Zhang Y, Zhai M, Chen J, Wang X. In situ measurement of synthetic musks in wastewaters using diffusive gradients in thin film technique. WATER RESEARCH 2020; 185:116239. [PMID: 32739702 DOI: 10.1016/j.watres.2020.116239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Synthetic musks (SMs) are used extensively in household and personal care products and have acted significant concerns due to their environmental impacts and potential health effects. Here, we present a passive sampling approach based on diffusive gradients in thin films (DGT) for in situ measurement of SMs in urban wastewaters. XAD-2 binding gel, which has a rapid binding rate and high elution efficiency, was used in DGT device for the accumulation of six polycyclic musks and three nitro musks. The diffusion coefficients (D and DNL) of the SMs through agarose gel without and with a nylon filter membrane were 3.37-4.49 and 1.48-4.41 ×10-6cm2 s-1. The filter membrane caused an ~3 h lag phase and slowed the diffusion rates of the SMs through the diffusive phase. Solution pH (4.30-8.92), ionic strength (0.0001-0.5 M) and dissolved organic matter (0-20 mg L-1) showed no obvious influence on uptake of the SMs in DGT. The measured average SM concentrations in the effluent of wastewater treatment plants ranged from 0.45-696 ng/L for DGT deployment, without obvious membrane biofouling, and they were comparable to the concentrations determined by grab sampling. These results confirmed that the present method is reliable and convenient for in situ measurement of semivolatile hydrophobic SMs in complicated waters and is an available tool to investigate the environmental behaviors of SMs in the environment.
Collapse
Affiliation(s)
- Suyu Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiwen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingyan Zhai
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaochun Wang
- Anshan Normal University, Department of Chemistry & Life Science, Anshan 114005, China.
| |
Collapse
|
10
|
Cindrić AM, Marcinek S, Garnier C, Salaün P, Cukrov N, Oursel B, Lenoble V, Omanović D. Evaluation of diffusive gradients in thin films (DGT) technique for speciation of trace metals in estuarine waters - A multimethodological approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137784. [PMID: 32172124 DOI: 10.1016/j.scitotenv.2020.137784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Understanding the potential bioavailability of trace metals (TM) in marine systems is of prime importance to implement adapted regulations and efficiently protect our coastal and estuarine waters. In this study Diffusive Gradients in Thin films (DGT) technique with two different pore size was used to evaluate the potentially bioavailable fractions (DGT-labile) of Cd, Co, Cu, Ni, Pb and Zn at various depths of a highly stratified estuary (the Krka River estuary, Croatia) both in winter and summer. DGT-labile concentrations were compared to (1) total dissolved concentrations, (2) concentrations of labile species measured by anodic stripping voltammetry (ASV-labile) for Cu and (3) concentrations derived by chemical speciation modelling. High correlation between dissolved and DGT-labile concentrations was found for all metals, except for Zn where contamination problems prevented reliable conclusions. Percentages of DGT-labile fractions over total dissolved concentrations were (AVG ± SD): 92 ± 3%, 64 ± 2%, 23 ± 5%, 61 ± 3% and 57 ± 6% for Cd, Pb, Cu, Ni and Co, respectively. No significant difference was found between trace metal concentrations measured with an open pore and restricted pore devices, implying the predominance of kinetically labile metal complexes smaller than 1 nm. For Cu, ASV-labile and DGT labile concentrations were highly correlated (0.97) with ASV-labile concentration being around 35% lower than that of the DGT-labile. Modelling of chemical speciation reliably predicted dynamic (free, inorganic and part of organic complexes) concentration of Cd, whereas dynamic concentrations of Cu and Pb were underestimated by 32% and 65%, respectively. In view of the relative simplicity of DGT devices, they are well suited for the monitoring effort of coastal waters, informing on potentially bioavailable concentrations of TM and thereby, helping to achieve good environmental status of coastal waters, as stipulated within the EU Water Framework Directive.
Collapse
Affiliation(s)
- Ana-Marija Cindrić
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Saša Marcinek
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Pascal Salaün
- Department of Earth and Ocean Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3GP, UK
| | - Neven Cukrov
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia
| | - Benjamin Oursel
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Dario Omanović
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
11
|
Lin JJ, Kristensen TB, Calderón SM, Malila J, Prisle NL. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:271-284. [PMID: 31912080 DOI: 10.1039/c9em00426b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical processes and time scales underlying the evolution of surface tension in atmospheric solution droplets are largely unaccounted for in present models describing cloud droplet formation. Adsorption of surface-active molecules at the surface of a solution droplet depresses the droplet surface tension but also depletes solute from the droplet bulk, which have opposing and sometimes canceling effects in cloud droplet formation. In this work, we study the effect of time-evolving surface tension for cloud droplet activation of particles composed of Nordic Aquatic Fulvic Acid (NAFA) mixed with sodium chloride (NaCl). We model the formation of cloud droplets using Köhler theory with surface tension depression and bulk/surface partitioning evaluated from two different thermodynamic surface models. Continuous ternary parameterizations were constructed from surface tension measurements of macroscopic droplets at different time steps after the formation of a droplet surface. The predicted results are compared to previous measurements of mixed NAFA-NaCl cloud condensation nuclei (CCN) activity and a bulk solution model that does not take the NAFA bulk/surface partitioning equilibrium into account. Whereas the bulk model shows a trend in cloud droplet formation following that of macroscopic surface tension depression with time, the variation with time essentially disappears when bulk/surface partitioning is taken explicitly into account during droplet activation. For all equilibrium time steps considered, the effect of surface tension depression in the NAFA-NaCl system is counteracted by the depletion of solute from the finite-sized droplet bulk phase. Our study highlights that a comprehensive data set is necessary to obtain continuous parameterizations of surface tension and other solution properties required to fully account for the bulk/surface partitioning in growing droplets. To our knowledge, no similar data set currently exists for other aqueous organic systems of atmospheric interest. Additional work is necessary to deconvolve the effects of bulk/surface partitioning in the context of time-evolution on cloud droplet activation and to determine whether the results presented here can be further generalized.
Collapse
Affiliation(s)
- Jack J Lin
- Nano and Molecular Systems Research Unit, University of Oulu, P. O. Box 3000, Oulu, FI-90014, Finland.
| | | | - Silvia M Calderón
- Nano and Molecular Systems Research Unit, University of Oulu, P. O. Box 3000, Oulu, FI-90014, Finland.
| | - Jussi Malila
- Nano and Molecular Systems Research Unit, University of Oulu, P. O. Box 3000, Oulu, FI-90014, Finland.
| | - Nønne L Prisle
- Nano and Molecular Systems Research Unit, University of Oulu, P. O. Box 3000, Oulu, FI-90014, Finland.
| |
Collapse
|
12
|
Peng W, Li X, Lin M, Gui H, Xiang H, Zhao Q, Fan W. Biosafety of cadmium contaminated sediments after treated by indigenous sulfate reducing bacteria: Based on biotic experiments and DGT technique. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121439. [PMID: 31640935 DOI: 10.1016/j.jhazmat.2019.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Sulfate reducing bacteria (SRB) biostabilization has attracted particular attention due to its ability to prevent and control heavy metal pollution. In this study, biotic experiments (immobilisation test of Daphnia (D.) magna, germination experiment of cucumber seeds, and in vitro experiment using gut juices of Sipunculus (S.) nudus) and diffusive gradients in thin films (DGT) technique were performed to investigate the biosafety of cadmium (Cd) contaminated sediments after being treated by indigenous SRB. Results showed that SRB treatment reduced Cd bioaccessibility of sediment to S. nudus, Cd levels in the overlying water and Cd bioavailability to D. magna. However, the treatment increased the biotoxicity of overlying water due to significant reduction in the root length and germination index of cucumber seeds. DGT results confirmed that SRB treatment increased Cd stability in sediment, and reduced its release from the sediment into the overlying water. The biotoxicity of overlying water was not caused by Cd, but possibly by the added culture medium, SRB itself, or its metabolites. More attention is required to assess the safety of SRB treatment when it is used to remediate environmental matrix contaminated by heavy metals.
Collapse
Affiliation(s)
- Weihua Peng
- School of Space and Environment, Beihang University, Beijing 100191, PR China; National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Manli Lin
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; School of Resources and Civil Engineering, Suzhou University, Suzhou 234000, PR China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, Suzhou University, Suzhou 234000, PR China
| | - Huidong Xiang
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
13
|
Gao Y, Zhou C, Gaulier C, Bratkic A, Galceran J, Puy J, Zhang H, Leermakers M, Baeyens W. Labile trace metal concentration measurements in marine environments: From coastal to open ocean areas. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Strivens J, Hayman N, Johnston R, Rosen G. Effects of Dissolved Organic Carbon on Copper Toxicity to Embryos of Mytilus galloprovincialis as Measured by Diffusive Gradient in Thin Films. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1029-1034. [PMID: 30840314 DOI: 10.1002/etc.4404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Diffusive gradient in thin films (DGT) potentially better quantifies bioavailable copper (Cu) in seawater. Laboratory exposure of DGTs and Mytilus galloprovincialis embryos at varying concentrations of dissolved organic carbon and Cu were performed to resolve the degree to which mimicry of toxicity buffering occurs in passive sampler quantification. The results provide preliminary median effect concentrations (EC50s) ranging from 4.8 to 11.5 µg/L as CDGT Cu over the span of 0.896 to 8.36 mg/L DOC. Environ Toxicol Chem 2019;00:1-6. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
| | - Nicholas Hayman
- Space and Naval Warfare Systems Center Pacific, San Diego, California, USA
| | - Robert Johnston
- Puget Sound Naval Shipyard & Intermediate Maintenance Facility, Bremerton, Washington, USA
| | - Gunther Rosen
- Space and Naval Warfare Systems Center Pacific, San Diego, California, USA
| |
Collapse
|
15
|
Bai H, Wei S, Jiang Z, He M, Ye B, Liu G. Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:1-9. [PMID: 30292970 DOI: 10.1016/j.ecoenv.2018.09.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Humic acid (HA) has a major influence on the environmental fate of metal ions due to its heterogeneity in chemical compositions, structure and functional groups. In this study, we investigated the effect of humic acid (HA) with different molecular weight (Mw) on the bioavailability of Pb for a representative algae-Chlorella pyrenoidosa. The results showed that HA with larger Mw had stronger inhibitory effects on the bioavailability of Pb to algae, and the biosorption capacity of Pb decreased with increasing Mw, which is in accordance with the variations of complexation capacities of Pb for HA fraction. In addition, we found that HA with Mw lower than 10 kDa could increase the biosorption capacity of Pb. The considerable differences among the Mw fractions on Pb biosorption were mainly attributed to their properties and corresponding complexation capacities. Phenolic groups were responsible for the variations of binding capacities among different Mw fractions, and it could also better explain the bioaccumulation of Pb to the membranes of algae. By using NICA-Donnan model, we found that over 60% of Pb ions were bound by HAs through specific binding, and the formation of Pb-HAs complex were non-bioavailable to algae, which was proved by the considerably decreasing percentage of internalized Pb. This study provided further insight into the bioavailability of Pb to algae as influenced by the complexation of HA with metal ion such as Pb.
Collapse
Affiliation(s)
- Hongcheng Bai
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China.
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China
| | - Mingjing He
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, China; China Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, China
| | - Biying Ye
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| | - Gaoyun Liu
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Comparison of different speciation techniques to measure Zn availability in hydroponic media. Anal Chim Acta 2018; 1035:32-43. [DOI: 10.1016/j.aca.2018.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022]
|
17
|
Shi W, Fang X, Wu X, Zhang G, Que W, Li F. Alteration of bioaccumulation mechanisms of Cu by microalgae in the presence of natural fulvic acids. CHEMOSPHERE 2018; 211:717-725. [PMID: 30099156 DOI: 10.1016/j.chemosphere.2018.07.200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
The impact of natural fulvic acids (FAs) on the toxicity and bioaccumulation of Cu by Chlorella pyrenoidosa was studied. FAs extracted from Taihu Lake were separated into three fractions using dialysis bags: F1 (<500 Da), F2 (500-1000 Da) and F3 (>1000 Da). The results showed that the F3 fraction with a larger molecular weight contained less acidic groups and unsaturated aliphatic structures than F1 and F2, and it showed stronger alleviation of the toxicity of Cu to algae. In the presence of F1∼F3, the bioaccumulation curve of Cu in algae intersected with the straight line in the binary system of Cu-algae at approximately 5.3 × 10-3-6.0 × 10-3 mM of Cu equilibrium concentration, showing an inhibition of bioaccumulation of Cu in lower concentrations but an enhancement in higher Cu concentrations. The ratio of {Cu}ads/{Cu}int was used to clarify the transformation mechanism on adsorption; the transition interval occurred at a ratio of 3.5-4.4. This ratio indicated a shift from a mechanism of slow trending to equilibrium to a mechanism with rapid increase, which may be due to the bridging action of Cu to form a ternary complex of FA-Cu-algae and the occurrence of multilayer adsorption. The promotion order of F1> F3> F2 was consistent with percentages of the carboxyl group in total acidic functional groups in the FAs. This research is helpful for improving the accuracy of present models for the prediction of heavy metal risks in aqueous environments.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoman Fang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingfei Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weiyan Que
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
18
|
In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Sci Rep 2018; 8:16125. [PMID: 30382139 PMCID: PMC6208410 DOI: 10.1038/s41598-018-34465-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/17/2018] [Indexed: 11/09/2022] Open
Abstract
In this first in situ study of the dynamic availability of phytoplankton micronutrients, a SeaExplorer glider was combined with Diffusive Gradients in Thin Films and deployed in the Mediterranean Sea. On the basis of their labile metal complex pools, we discovered that Fe and Co can be potentially limiting and Cu co-limiting to diatom growth, contrary to the generally accepted view that phosphorus (phosphate) is the growth limiting element in the Mediterranean Sea. For flagellates and picoplankton, phosphorus remains the main element limiting growth. Our in situ measurements showed that organic complexes of Fe and Cu (>98% of total dissolved concentration), dissociate slower than inorganic complexes of Co, Cd and Ni (>99% of total dissolved concentration being free ions and inorganic complexes). This strengthens the potential growth limiting effect of Fe and Cu versus phosphate, which is present as a free ion and, thus, directly available for plankton.
Collapse
|
19
|
Wang B, Liu C, Chen Y, Dong F, Chen S, Zhang D, Zhu J. Structural characteristics, analytical techniques and interactions with organic contaminants of dissolved organic matter derived from crop straw: a critical review. RSC Adv 2018; 8:36927-36938. [PMID: 35558903 PMCID: PMC9089241 DOI: 10.1039/c8ra06978f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in an ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Advances in environment geochemistry in the past two decades have improved our knowledge about the genesis, composition, and structure of DOM, and its effect on the environment. Application of analytical technology, for example UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR) spectroscopy, and three-dimensional fluorescence spectroscopy (3D-EEM) have resulted in these advances. At present, crop straw, as a part of energy development strategy, is mainly used for soil amendment, fodder, fertilizer and industrial materials. Moreover, the fermentation and decomposition of straw should be also promoted for ecological agriculture. However, few studies have focused on the structural properties of DOM derived from crop straw in farmland soil. In this article, DOM derived from crop straw, which is abbreviated to "CDOM", presents active physicochemical properties that can affect the migration and bioavailability of organic contaminants (OCs) in terrestrial ecosystems. The objectives of this review paper are: (i) to discuss the structural characteristics, analytical techniques and interactions between CDOM and OCs in farmland soil; (ii) to present a critical analysis of the impact of CDOM on the physicochemical transformation and transport of OCs in farmland soils; (iii) to provide the perspectives in future research. Therefore, the findings obtained from this study can be utilized to evaluate the relations of interactions between CDOM and OCs in agricultural soils, in order to support some suggestions for future development in agricultural waste recycling, buffering of organic pollution, and the effect on the global carbon cycle.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology Sichuan 621010 PR China
| | - Chang Liu
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology Sichuan 621010 PR China
| | - Yuwei Chen
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Department of Chemistry and Biochemistry, Laurentian University Sudbury P3E 2C6 Canada
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology Sichuan 621010 PR China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology Sichuan 621010 PR China
| | - Di Zhang
- Faculty of Environment Science and Engineering, Kunming University of Science and Technology Yunnan 650500 PR China +86 15887215550
| | - Jingping Zhu
- School of Environment and Resource, Southwest University of Science and Technology Sichuan 621010 PR China +86 816 2419018 +86 816 2419018
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology Sichuan 621010 PR China
| |
Collapse
|
20
|
Martin JD, Frost PC, Hintelmann H, Newman K, Paterson MJ, Hayhurst L, Rennie MD, Xenopoulos MA, Yargeau V, Metcalfe CD. Accumulation of Silver in Yellow Perch ( Perca flavescens) and Northern Pike ( Esox lucius) From a Lake Dosed with Nanosilver. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11114-11122. [PMID: 30179475 DOI: 10.1021/acs.est.8b03146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A total of 15 kg of silver nanoparticles (AgNPs) was added continuously over two ice-free field seasons to a boreal lake (i.e., Lake 222) at the IISD Experimental Lakes Area in Canada. We monitored the accumulation of silver (Ag) in the tissues of yellow perch ( Perca flavescens) and northern pike ( Esox lucius) exposed to the AgNPs under environmentally relevant conditions. The greatest accumulation was observed in the liver tissues of pike, and a single pike sampled in the second year of additions had the highest concentration observed in liver of 5.1 micrograms per gram of wet weight. However, the Ag concentrations in gill and muscle tissue of both pike and perch did not exceed 0.35 micrograms per gram of wet weight. Following additions of AgNP, the Ag residues in fish tissues declined, with a half-life of Ag in pike liver of 119 days. Monitoring using passive sampling devices and single-particle inductively coupled plasma mass spectrometry during the AgNP addition phase confirmed that Ag nanoparticles were present in the water column and that estimated mean concentrations of Ag increased over time to a maximum of 11.5 μg/L. These data indicate that both a forage fish and a piscivorous fish accumulated Ag in a natural lake ecosystem dosed with AgNPs, leading to Ag concentrations in some tissues of the piscivorous species that were 3 orders of magnitude greater than the concentrations in the water.
Collapse
Affiliation(s)
| | - Paul C Frost
- Department of Biology , Trent University , Peterborough , Ontario K9L 0G2 , Canada
| | | | | | - Michael J Paterson
- International Institute for Sustainable Development , Winnipeg , Manitoba R3B 0T4 , Canada
| | - Lauren Hayhurst
- Department of Biology , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Michael D Rennie
- International Institute for Sustainable Development , Winnipeg , Manitoba R3B 0T4 , Canada
- Department of Biology , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | | | - Viviane Yargeau
- Department of Chemical Engineering , McGill University , Montreal , Quebec H3A 0C5 , Canada
| | | |
Collapse
|
21
|
Metcalfe CD, Sultana T, Martin J, Newman K, Helm P, Kleywegt S, Shen L, Yargeau V. Silver near municipal wastewater discharges into western Lake Ontario, Canada. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:555. [PMID: 30151718 DOI: 10.1007/s10661-018-6922-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Because of the widespread use of silver nanoparticles in commercial products, discharges of municipal wastewater may be a point source of silver in the aquatic environment. We monitored two sites in western Lake Ontario impacted by discharges from wastewater treatment plants serving the City of Toronto. Concentrations of silver were elevated in bottom sediments and suspended sediments collected at the two sites. We also deployed two types of passive samplers in the water column at the two sites, the newly developed Carbon Nanotube Integrative Samplers for monitoring "CNIS-labile" silver and Diffusive Gradient in Thin Film samplers for monitoring "DGT-labile" silver. Results from these passive samplers indicated that the concentrations of silver at the two sites were either below detection limits or were in the ng/L range. In laboratory experiments where the sediments were re-suspended in Milli-Q water, a small proportion of the silver (i.e., < 25%) was labile and partitioned as colloidal or dissolved silver into the liquid phase after agitation. Nanoparticles tentatively identified as silver nanoparticles were detected by single-particle ICP-MS in suspension after agitation of both suspended and bottom sediments. Therefore, there is a need to assess whether silver species, including silver nanoparticles are transported from wastewater treatment plants into sediments in the aquatic environment. This study is unique in focusing on the in situ distribution of silver in natural waters and in sediments that are potentially impacted by urban sources of nanoparticles.
Collapse
Affiliation(s)
- Chris D Metcalfe
- Water Quality Centre, Trent University, Peterborough, ON, Canada.
| | - Tamanna Sultana
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Jonathan Martin
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Karla Newman
- Water Quality Centre, Trent University, Peterborough, ON, Canada
| | - Paul Helm
- Ontario Ministry of Environment and Climate Change, Toronto, ON, Canada
| | - Sonya Kleywegt
- Ontario Ministry of Environment and Climate Change, Toronto, ON, Canada
| | - Li Shen
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Glycerol-enhanced microwave heating for ultra-rapid effective remediation of marine sediments highly contaminated with hydrocarbons. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abusallout I, Hua G. Characterization of dissolved organic carbon leached from a woodchip bioreactor. CHEMOSPHERE 2017; 183:36-43. [PMID: 28531557 DOI: 10.1016/j.chemosphere.2017.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Woodchip bioreactors are increasingly being applied to remove nitrate from agricultural subsurface drainage. However, dissolved organic carbon (DOC) released from woodchips may negatively affect the aquatic ecosystems and drinking water supplies. The objective of this study was to evaluate the leaching characteristics, disinfection byproduct (DBP) formation potentials, and treatability of DOC derived from a laboratory woodchip bioreactor. Initial flush of woodchips resulted in the release of high organic content from woodchips. The DOC concentration in the bioreactor effluent decreased rapidly from 71.8 to 20.7 mg/L during the first week of operation, and then gradually decreased to 3.0 mg/L after 240 days of operation under a hydraulic retention time of 24 h. A recycled steel chip filter removed an average of 44.2% of the DOC in the bioreactor effluent. Hydrophobic carbons and organic compounds with molecular weight of 10-100 KDa were the most abundant organic fractions in the DOC released from woodchips. These two DOC fractions were also the most important precursors to the formation of total organic halogen (TOX) during chlorination and chloramination. The TOX yields of woodchip DOC were similar to those of Suwannee River Fulvic Acid, suggesting that organic compounds released from woodchips have great potentials for DBP formation. Alum and polyaluminium chloride were more effective at removing woodchip DOC than ferric chloride during coagulation. Drinking water treatment plants may need to adjust coagulant types and doses in order to remove woodchip DOC in the source water to reduce the DBP formation potential.
Collapse
Affiliation(s)
- Ibrahim Abusallout
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
24
|
Menegário AA, Yabuki LNM, Luko KS, Williams PN, Blackburn DM. Use of diffusive gradient in thin films for in situ measurements: A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters. Anal Chim Acta 2017; 983:54-66. [DOI: 10.1016/j.aca.2017.06.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022]
|
25
|
Song G, Luo T, Dong L, Liu Q. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression. ACTA ACUST UNITED AC 2017; 50:e5403. [PMID: 28678913 PMCID: PMC5496150 DOI: 10.1590/1414-431x20175403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.
Collapse
Affiliation(s)
- G Song
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - T Luo
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - L Dong
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Q Liu
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
26
|
Shi W, Jin Z, Hu S, Fang X, Li F. Dissolved organic matter affects the bioaccumulation of copper and lead in Chlorella pyrenoidosa: A case of long-term exposure. CHEMOSPHERE 2017; 174:447-455. [PMID: 28187391 DOI: 10.1016/j.chemosphere.2017.01.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
This study evaluated the impact of dissolved organic matter (DOM) of varying molecule weights (MWs) on long-term exposure to Cu and Pb in Chlorella pyrenoidosa. Citric acid, fulvic acid, and humic acid, in the order of increasing MWs, were selected to represent DOM. The results showed that DOM with larger MWs had stronger inhibitory effects on the bioavailability of Cu to algae. However, the biosorption isotherm of Pb in the presence of DOM was different: as Pb equilibrium concentration increased, the biosorption capacity increased sharply to a maximum, then decreased. The maximum values ranged between 0.186 and 0.398 mmol g-1, as the solution DOM concentration and MW changed, exhibiting a stoichiometric relationship between DOM, Pb and algae. The ternary complex of Pb-DOM-alga formed in a limited Pb concentration range, and increased the percentage of internalized Pb. This research helps to understand the role of DOM in metal uptake in phytoplankton.
Collapse
Affiliation(s)
- Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shiyin Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoman Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
27
|
Coelho C, Parot J, Gonsior M, Nikolantonaki M, Schmitt-Kopplin P, Parlanti E, Gougeon RD. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter. Anal Bioanal Chem 2017; 409:2757-2766. [DOI: 10.1007/s00216-017-0221-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
|
28
|
Mangal V, Zhu Y, Shi YX, Guéguen C. Assessing cadmium and vanadium accumulation using diffusive gradient in thin-films (DGT) and phytoplankton in the Churchill River estuary, Manitoba. CHEMOSPHERE 2016; 163:90-98. [PMID: 27521643 DOI: 10.1016/j.chemosphere.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Diffusive gradient in thin films (DGT) and phytoplankton communities were evaluated for the measurement of Cd and V at environmentally relevant concentrations in laboratory settings and in the Churchill River estuary (Manitoba, Canada) during an annual spring melt. Despite rapid changes in hydrology and water quality, DGT samplers and intracellular Cd and V concentrations were positively correlated (0.79 < r(2) < 0.99), suggesting comparable accumulation trends between both DGT-labile and intracellular monitoring techniques. The largest accumulated concentrations of both Cd and V by DGT and phytoplankton accumulation methods were found later into the river discharge period. In controlled settings, accumulated Cd and V concentrations by the diatom Attheya septentrionalis displayed a strong correlation with metals accumulated by DGTs (r(2) > 0.99). Principal component analysis (PCA) reinforced similarities between both metal monitoring techniques and assessed how changing environmental variables during the river discharge period influenced each monitoring technique. Cd accumulation was influenced by DOC concentrations and protein-like DOM whereas ionic strength (i.e. conductivity) and humic-like DOM influenced V accumulation. The present findings suggest that (1) DGT is a versatile tool for monitoring bioaccumulation of Cd and V in highly dynamic environmental systems and (2) DOC concentration, DOM composition, conductivity, pH, and river discharge influence the bioavailability of Cd and V in estuarine and riverine waters.
Collapse
Affiliation(s)
- V Mangal
- Environmental and Life Sciences Graduate Program, Trent University, ON, Canada
| | - Y Zhu
- Environmental and Life Sciences Graduate Program, Trent University, ON, Canada
| | - Y X Shi
- Environmental and Life Sciences Graduate Program, Trent University, ON, Canada
| | - C Guéguen
- Chemistry Department, Trent University, ON, Canada.
| |
Collapse
|
29
|
Jiménez-Piedrahita M, Altier A, Cecilia J, Rey-Castro C, Galceran J, Puy J. Influence of the settling of the resin beads on diffusion gradients in thin films measurements. Anal Chim Acta 2015; 885:148-55. [PMID: 26231900 DOI: 10.1016/j.aca.2015.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022]
Abstract
Binding resin beads used in DGT (diffusion gradients in thin films) tend to settle to one side of the resin during casting. This phenomenon might be relevant for metal accumulation when partially labile complexes dominate the metal speciation, especially after recognizing the important role played by complex dissociation in the resin domain. The influence of the inhomogeneity of the binding agent distribution on metal accumulation is here assessed by numerical simulation of DGT devices with binding beads in only one half of the resin disc, as a reasonable model of the standard resin discs. Results indicate that a decrease in mass accumulation of less than 13% can arise in these inhomogeneous devices (as compared with an ideal disc with homogeneous dispersion of the resin beads) when complexes with stability constant K<10(2)m(3)mol(-1) (K<10(5)Lmol(-1)) dominate the metal speciation. The loss increases as K increases, but the percentage of mass loss always remains lower than the volume fraction of resin disc without beads. For very labile or inert complexes, the impact of the inhomogeneous distribution of binding resin beads is negligible. As kinetic dissociation constants of complexes can be estimated from the distribution of the metal accumulation in a DGT device with a stack of two resin discs, the influence of the inhomogeneity on the recovered kinetic constant is also assessed. For the cases studied, the recovered kinetic dissociation constant, kd,recovered, retains the correct order of magnitude, being related to the true kd by kd≈f(-1)kd,recovered, quite independently of K and kd values, being f the fraction of volume of the resin disc where resin beads are dispersed.
Collapse
Affiliation(s)
| | - Alexandra Altier
- Departament de Química,Universitat de Lleida and Agrotecnio, Rovira Roure 191, Lleida, 25198, Spain
| | - Joan Cecilia
- Departament de Matemàtica, Universitat de Lleida and Agrotecnio, Rovira Roure 191, 25198, Lleida, Spain
| | - Carlos Rey-Castro
- Departament de Química,Universitat de Lleida and Agrotecnio, Rovira Roure 191, Lleida, 25198, Spain
| | - Josep Galceran
- Departament de Química,Universitat de Lleida and Agrotecnio, Rovira Roure 191, Lleida, 25198, Spain
| | - Jaume Puy
- Departament de Química,Universitat de Lleida and Agrotecnio, Rovira Roure 191, Lleida, 25198, Spain.
| |
Collapse
|