1
|
Chen S, Zhao Z, Li L, Cui F. Comparison of UV/PS and VUV/PS as ultrafiltration pretreatment: Performance, mechanisms, DBPs formation and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174457. [PMID: 38969137 DOI: 10.1016/j.scitotenv.2024.174457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Ultrafiltration (UF) is widely used in drinking water plants, nevertheless, it still encounters challenges stemming from inevitable membrane fouling caused by natural organic matter (NOM). Herein, this work applied VUV/PS as UF membrane pretreatment and used UV/PS for comparison. VUV/PS system exhibited superior ability in removing NOM compared to UV/PS system. HO and SO4- played crucial roles in the degradation. [SO4-]ss was notably higher than [HO]ss in the systems, yet HO was of greater significance. [HO]ss and [SO4-]ss in the VUV/PS process were remarkably higher than those in the UV/PS process, due to the function of 185 nm photons. VUV/PS pretreatment basically recovered flux and effectively reduced fouling resistance, with better performance than UV/PS. Fouling mechanism was dominated by multiple mechanisms after UV/PS pretreatment, whereas it was transformed into pore blockage after VUV/PS pretreatment. Moreover, the UF effluent quality after VUV/PS pretreatment outperformed that of UV/PS but fell short of that without pretreatment, possibly due to the generation of abundant low MW substances under the action of HO and SO4-. After chlorine disinfection, UV/PS and VUV/PS pretreatments increased the DBPs production and cytotoxicity. Specifically, oxidant PS affected the membrane surface morphology and fouling behaviors, and had no obvious effect on interception performance and mechanical properties. In actual water treatment, VUV/PS and UV/PS pretreatments exhibited excellent performance in alleviating membrane fouling, improving water quality, and reducing DBPs formation and acute toxicity.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Li Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
2
|
Huang S, Liu H, Wei K, Zhang L, Ma X, Li Q, Li X, Dietrich AM. Impact of ozonation on disinfection byproducts formation from phenylalanine during chlorination. J Environ Sci (China) 2024; 144:199-211. [PMID: 38802231 DOI: 10.1016/j.jes.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 05/29/2024]
Abstract
As a strong oxidizing agent, ozone is used in some water treatment facilities for disinfection, taste and odor control, and removal of organic micropollutants. Phenylalanine (Phe) was used as the target amino acid to comprehensively investigate variability of disinfection byproducts (DBPs) formation during chlorine disinfection and residual chlorine conditions subsequent to ozonation. The results showed that subsequent to ozonation, the typical regulated and unregulated DBPs formation potential (DBPsFP), including trichloromethane (TCM), dichloroacetonitrile (DCAN), chloral hydrate (CH), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and trichloroacetamide (TCAcAm) increased substantially, by 2.4, 3.3, 5.6, 1.2, 2.5, and 6.0 times, respectively, compared with only chlorination. Ozonation also significantly increased the DBPs yield under a 2 day simulated residual chlorine condition that mimicked the water distribution system. DBPs formations followed pseudo first order kinetics. The formation rates of DBPs in the first 6 hr were higher for TCM (0.214 hr-1), DCAN (0.244 hr-1), CH (0.105 hr-1), TCAcAm (0.234 hr-1), DCAA (0.375 hr-1) and TCAA (0.190 hr-1) than thereafter. The peak DBPsFP of TCM, DCAN, CH, TCAcAm, DCAA, and TCAA were obtained when that ozonation time was set at 5-15 min. Ozonation times > 30 min increased the mineralization of Phe and decreased the formation of DBPs upon chlorination. Increasing bromine ion (Br-) concentration increased production of bromine- DBPs and decreased chlorine-DBPs formation by 59.3%-92.2% . Higher ozone dosages and slight alkaline favored to reduce DBP formation and cytotoxicity. The ozonation conditions should be optimized for all application purposes including DBPs reduction.
Collapse
Affiliation(s)
- Sinong Huang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hongwei Liu
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kunming Wei
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Liang Zhang
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blackburg, VA 24061, USA
| |
Collapse
|
3
|
Wu Y, Wang Q, Yang K, Xie Q, Wang G, Ma X, Pan J, Xia Q, Wagner WD, Zhang Y, Liu X, Wang C, Wang Z. Ultrasonication-Boosted Resorcinol-Formaldehyde Resin Nanoparticle Bromine Fixation and Corresponding Upgraded Aquatic Applications. Chemistry 2024:e202402403. [PMID: 39198977 DOI: 10.1002/chem.202402403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Bromine (Br2) and related species removal from water systems are rather complicated due to the complicated chemistry instability, and materials with high Br2 removal rate and efficiency, along with stimuli/apparatus suitable for highly corrosive environments, are necessary. Ultrasonication as a non-destructive process is especially suitable in scenarios where conventional stir apparatus is not applicable, such as highly corrosive environments. Considering the validity nature of Br2 and combining the advantages of ultrasonic with a highly stable Br2 fixation method through aromatic polymer nanoparticles, we demonstrate highly efficient acoustic-aided Br2 removal in aqueous solutions with two times capacity compared to the non-treated sample. Related aquatic applications are also proposed for the materials to be cost-effective, including silver (Ag) recovery, recyclable MnO2-mediated Br2 deep removal, and aqueous zinc anode modification. The coupled novel-material-based processes motivate the strategic design of water purification with high-safety and sustainable industrial procedures and post-value-added utilizations.
Collapse
Affiliation(s)
- Yutong Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qianhui Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Keke Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guotao Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xinxi Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiancheng Xia
- School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wayko D Wagner
- Tippie College of Business, University of Iowa, Iowa City, Iowa, 52245, USA
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiang Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhoulu Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Han J, Zhai H, Zhang X, Liu J, Sharma VK. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. WATER RESEARCH 2024; 250:121039. [PMID: 38142503 DOI: 10.1016/j.watres.2023.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| |
Collapse
|
5
|
Koley S, Dash S, Khwairakpam M, Kalamdhad AS. Perspectives and understanding on the occurrence, toxicity and abatement technologies of disinfection by-products in drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119770. [PMID: 38096765 DOI: 10.1016/j.jenvman.2023.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Disinfection by-products (DBPs) are one of the significant emerging contaminants that have caught the attention of researchers worldwide due to their pervasiveness. Their presence in drinking water, even in shallow concentrations (in levels of parts per billion), poses considerable health risks. Therefore, it is crucial to understand their kinetics to understand better their formation and persistence in the water supply systems. This manuscript demonstrates different aspects of research carried out on DBPs in the past. A systematic approach was adopted for the bibliographical research that started with choosing appropriate keywords and identifying the most relevant manuscripts through the screening process. This follows a quantitative assessment of the extracted literature sample, which included the most productive and influential journal sources, the most widely used keywords, the most influential authors active in the research domain, the most cited articles, and the countries most actively engaged in the research field. Critical observations on the literature sample led to the qualitative assessment, wherein the past and current research trends were observed and reported. Finally, we identified the essential gaps in the available literature, which further led to recommending the course ahead in the research domain. This study will prove fruitful for young and established researchers who are or wish to work in this emerging field of research.
Collapse
Affiliation(s)
- Sumona Koley
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Siddhant Dash
- Department of Civil Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, 522502, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Meena Khwairakpam
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ajay S Kalamdhad
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
6
|
Qadafi M, Rosmalina RT, Pitoi MM, Wulan DR. Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. CHEMOSPHERE 2023; 316:137817. [PMID: 36640978 DOI: 10.1016/j.chemosphere.2023.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
This review discusses disinfection by-products' (DBPs) potential precursors, formation, and toxicity, alongside available research on the treatment of DBPs in Southeast Asian countries' water sources. Although natural organic matter (NOM) in the form of humic and fulvic acids is the major precursor of DBPs formation, the presence of anthropogenic organic matter (AOM) also plays essential roles during disinfection using chlorine. NOM has been observed in water sources in Southeast Asian countries, with a relatively high concentration in peat-influenced water sources and a relatively low concentration in non-peat-influenced water sources. Similarly, AOMs, such as microplastics, pharmaceuticals, pesticides, and endocrine-disrupting chemicals (EDCs), have also been detected in water sources in Southeast Asian countries. Although studies regarding DBPs in Southeast Asian countries are available, they focus on regulated DBPs. Here, the formation potential of unregulated DBPs is also discussed. In addition, the toxicity associated with extreme DBPs' formation potential, as well as the effectiveness of treatments such as conventional coagulation, filtration, adsorption, and ozonation in reducing DBPs' formation potential in Southeast Asian sources of water, is also analyzed.
Collapse
Affiliation(s)
- Muammar Qadafi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| | - Raden Tina Rosmalina
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Mariska M Pitoi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia
| | - Diana Rahayuning Wulan
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Jalan Sangkuriang, Bandung, 40135, Indonesia.
| |
Collapse
|
7
|
Li J, Song Y, Jiang J, Yang T, Cao Y. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159908. [PMID: 36336058 DOI: 10.1016/j.scitotenv.2022.159908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Natural organic matter (NOM), as a ubiquitous component in aqueous environments, has raised continuous scientific concerns due to its role as an organic precursor to disinfection by-products (DBPs) in the subsequent chlorination process. Selective oxidants, including ozone (O3), chlorine dioxide (ClO2), permanganate (Mn(VII)), and ferrate (Fe(VI)) are widely used in the preoxidation stage in drinking water treatment. The selective reactivity of those oxidants toward NOM is expected to alternate NOM properties and consequently DBP formation in postchlorination. Despite extensive studies on the interactions of NOM with selective oxidants, there is currently a lack of an overview of this area. To fill this gap, this study presents the current knowledge of the modification of NOM properties by selective oxidants and its impact on DBP formation in postchlorination. The NOM property changes in three aspects, including bulk property (e.g., total organic carbon, ultraviolet absorbance), fractional constituent (e.g., molecular size, hydrophilicity/hydrophobicity), and elemental composition (e.g., functional group) by the four selective oxidants (i.e., O3, ClO2, Mn(VII), and Fe(VI)) were discussed. Thereafter, the impacts of alteration of NOM properties by those selective oxidants on DBP formation in the subsequent chlorination were summarized, wherein the key influencing factors were discussed. Finally, the future perspectives in this area were forwarded, which highlighted the significance of process optimization, the attention to the less studied but more toxic DBPs, and the need for the identification of unknown DBPs. This review presented a state-of-the-art knowledge pool of the fate of NOM in oxidation and chlorination processes, promoted our understanding of the relationship between NOM properties and DBP formation, and identified further research needs in this area.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, China.
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ying Cao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhang XY, Du Y, Lu Y, Wang WL, Wu QY. Characteristics of the formation and toxicity index of nine newly identified brominated disinfection byproducts during wastewater ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153924. [PMID: 35182650 DOI: 10.1016/j.scitotenv.2022.153924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Ozonation plays an important role in wastewater treatment for reuse. However, the toxicity of wastewater treated with ozone considerably increases with bromide (Br-) concentration >100 μg/L. Nine newly identified brominated disinfection byproducts (Br-DBPs) that are highly toxic in ozonated Br--containing wastewater were found in our recent work, including 2-bromostyrene, 1-bromo-1-phenylethylene, 2-bromobenzaldehyde, 3-bromobenzaldehyde, 4-bromobenzaldehyde, 2-bromophenylacetonitrile, 3-bromophenylacetonitrile, 4-bromophenylacetonitrile, and 2,4,6-tribromophenol. In the present study, the formation and calculated toxicity index of the nine newly identified Br-DBPs were evaluated. The correlations between the water quality index and the formation of nine Br-DBPs were also analyzed. With the increase of ozone dosage, the concentrations of bromostyrenes, 3-bromobenzaldehyde, 4-bromobenzaldehyde, 2-bromophenylacetonitrile, and 2,4,6-tribromophenyl in the ozonated samples gradually increased. With the increase of Br- concentration, the concentrations of bromostyrene, 2-bromobenzaldehyde, and 2,4,6-tribromophenol gradually increased. With the increase of NH4+ concentration, the concentrations of bromophenylacetonitriles gradually increased. Among the nine Br-DBPs, the bromophenylacetonitriles and 2,4,6-tribromophenol contributed the most to the cytotoxicity index, 2,4,6-tribromophenol and bromostyrenes contributed the most to the genotoxicity index, and bromophenylacetonitriles and bromostyrenes contributed the most to the oxidative damage index. The dissolved organic carbon levels strongly correlated with the formation of 3-bromophenylacetonitrile and 4-bromophenylacetonitrile, and the fluorescence I-V region intensity integral was correlated with the formation of 4-bromobenzaldehyde and 2,4,6-tribromophenol. The results of the present study clarified the formation potential of the nine widely existing newly identified Br-DBPs, confirmed the high calculated toxicity indices, and are of great value for future research on Br-DBPs.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, PR China
| | - Yao Lu
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wen-Long Wang
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- State Environment Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
9
|
Phan LT, Schaar H, Saracevic E, Krampe J, Kreuzinger N. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152466. [PMID: 34952079 DOI: 10.1016/j.scitotenv.2021.152466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The present work aimed to study the effect of ozonation on the organic sum parameters linked to enhanced biodegradability. Laboratory experiments were conducted with the effluent of four Austrian urban wastewater treatment plants with low food to microorganism ratios and different matrix characteristics. Biochemical oxygen demand over 5 days (BOD5) was measured before ozonation and after application of different specific ozone doses (Dspec) (0.4, 0.6 and 0.8 g O3/g DOC). Other investigated organic parameters comprised chemical oxygen demand (COD), dissolved organic carbon (DOC), UV absorption at 254 nm (UV254), which are parameters that are applied in routine wastewater analysis. Carbamazepine and benzotriazole were measured as reference micropollutants. The results showed a dose-dependent increase in biological activity after ozonation; this increase was linked to the enhanced biodegradability of substances that are recalcitrant to biodegradation in conventional activated sludge treatment. The highest relative change was determined for BOD5, which already occurred between 0 and 0.4 g O3/g DOC for all samples. Increasing the Dspec to 0.6 and 0.8 g O3/g DOC resulted in a less pronounced increase. DOC was not substantially decreased after ozonation, which was consistent with a low reported degree of mineralization, while partial oxidation led to a quantifiable decrease in COD (7 to 17%). Delta UV254 and the decline in specific UV absorption after ozonation clearly correlated with Dspec. In contrast, for COD and biodegradable DOC (BDOC), a clear dose-response pattern was identified only after exposure to BOD5 measurement. Indications for improved biodegradability were further supported by the rise in the BOD5/COD ratio. The results indicated that subsequent biological processes have a higher degradation potential after ozonation. The further reduction in biodegradable organic carbon emission by the combination of ozonation and biological post treatment represents another step towards sustainable water resource management in addition to micropollutant abatement.
Collapse
Affiliation(s)
- Lam Thanh Phan
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Viet Nam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Heidemarie Schaar
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria.
| | - Ernis Saracevic
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| | - Jörg Krampe
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| | - Norbert Kreuzinger
- TU Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/226-1, 1040 Vienna, Austria
| |
Collapse
|
10
|
Permanganate/Bisulfite Pre-Oxidation of Natural Organic Matter Enhances Nitrogenous Disinfection By-Products Formation during Subsequent Chlorination. WATER 2022. [DOI: 10.3390/w14030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The permanganate/bisulfite (PM/BS) process is a novel oxidation process, which can degrade micropollutants within several seconds. As natural organic matter (NOM) ubiquitously exists in an aquatic environment, the PM/BS process will inevitably react with NOM, which may impact the disinfection-by-products (DBPs) formation during subsequent chlorination. This study investigated the effect of PM/BS pre-oxidation of NOM on DBP formation. It was found that TOC removal reached a plateau when the molar ratio of PM to BS was 1:5. Increasing ratios of PM to BS decreased the intensity and area of fluorescence spectroscopy. PM and BS doses, pre-oxidation time, pH of solutions and concentration of Br− impacted the formation potential of various DBPs. PM/BS pre-oxidation decreased the formation of TCM while increasing the yields of N-DBPs, thus increasing the risk of water quality. Calculated toxicity analysis showed that a general increase in CTI was observed with PM/BS pre-oxidation, indicating that PM/BS pre-oxidation had a negative effect on risk control of overall cytotoxicity. Although the PM/BS process could accelerate the degradation of micropollutants, the elevated DBPs formation, especially highly toxic N-DBPs, needs enough attention to control water-quality risk.
Collapse
|
11
|
Mao Y, Zhang W, Qi S, Yang H, Xie YF. Kinetics and mechanism of haloacetaldehyde formation from the reaction of acetaldehyde and chlorine. CHEMOSPHERE 2021; 283:131253. [PMID: 34157622 DOI: 10.1016/j.chemosphere.2021.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Haloacetaldehydes (HALs) are the third prevalent group of disinfection by-products (DBPs) by weight in drinking water, and their cytotoxicity and genotoxicity are higher than regulated DBPs. In order to understand their formation mechanism during chlorination and ozonation-chlorination, this study examined the reaction kinetics of chloral hydrate (CH), dichloroacetaldehyde (DCA), chloroacetaldehyde (CA) and acetaldehyde by chlorine at different pH values and chlorine doses. The results showed that the reaction rate constants increased with pH and chlorine dose, except that the degradation of CH would not be affected by the presence of free chlorine. At the same pH and chlorine dose, the half-lives of CH, DCA, CA and acetaldehyde were in the order of CH > acetaldehyde ≫ DCA > CA. A kinetic model used to predict the formation of HALs and chloroform during chlorination of acetaldehyde was developed, and the predicted data fitted well with the measured data. As pre-ozonation could oxidize natural organic matter to acetaldehydes, the concentration of acetaldehyde formed after pre-ozonation was used to calculate the HAL yields during ozonation-chlorination by the kinetic model, which fitted the experimental results well. The kinetic model elucidated that the formation mechanism of HALs was a stepwise substitution process on the α-hydrogen of acetaldehyde during chlorination.
Collapse
Affiliation(s)
- Yuqin Mao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Wen Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Hongwei Yang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Yuefeng F Xie
- School of Environment, Tsinghua University, Beijing, 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA17057, USA
| |
Collapse
|
12
|
Qadafi M, Notodarmojo S, Zevi Y. Performance of microbubble ozonation on treated tropical peat water: Effects on THM4 and HAA5 precursor formation based on DOM hydrophobicity fractions. CHEMOSPHERE 2021; 279:130642. [PMID: 34134426 DOI: 10.1016/j.chemosphere.2021.130642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
The hydrophobicity properties of dissolved organic matter (DOM) found in tropical peat water has an impact on the formation of carcinogenic DBPs such as trihalomethanes-4 (THM4) and haloacetic acids-5 (HAA5). This study was conducted to determine the effect of microbubble ozonation on changes in DOM fraction and its effect on the formation of THM4 and HAA5. Alum coagulation and activated carbon adsorption were carried out to reduce the DOM concentration before microbubble ozonation. Microbubble ozonation was carried out at acidic (pH 5.5), neutral (pH 7) and alkaline (pH 8.5) conditions to determine the effect of pH. Coagulation and adsorption of activated carbon were successful in reducing the presence of the hydrophobic acid fraction (HPOA) in peat water completely, but the transphilic (TPH), charged hydrophilic (HPIC) and neutral hydrophilic (HPIN) fractions remained in the water. Microbubble ozonation succeeded in decreasing the presence of TPH fraction but increased the formation of HPIC and HPIN. The degradation of the TPH fraction resulted in reduced formation of chlorinated THM4 and HAA5 (C-THM4 and C-HAA5). On the other hand, the formation of HPIC and HPIN fractions increased the formation of brominated THM4 and HAA5 (B-THM4 and B-HAA5) after the final chlorination process.
Collapse
Affiliation(s)
- Muammar Qadafi
- Environmental Engineering Program, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia.
| | - Suprihanto Notodarmojo
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia; Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jalan. Ganesha 10, Bandung, 40132, Indonesia
| | - Yuniati Zevi
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia; Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jalan. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
13
|
Sciuto EL, Laganà P, Filice S, Scalese S, Libertino S, Corso D, Faro G, Coniglio MA. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assessment. Microorganisms 2021; 9:577. [PMID: 33799845 PMCID: PMC8001549 DOI: 10.3390/microorganisms9030577] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
Legionella is able to remain in water as free-living planktonic bacteria or to grow within biofilms that adhere to the pipes. It is also able to enter amoebas or to switch into a viable but not culturable (VBNC) state, which contributes to its resistance to harsh conditions and hinders its detection in water. Factors regulating Legionella growth, such as environmental conditions, type and concentration of available organic and inorganic nutrients, presence of protozoa, spatial location of microorganisms, metal plumbing components, and associated corrosion products are important for Legionella survival and growth. Finally, water treatment and distribution conditions may affect each of these factors. A deeper comprehension of Legionella interactions in water distribution systems with the environmental conditions is needed for better control of the colonization. To this purpose, the implementation of water management plans is the main prevention measure against Legionella. A water management program requires coordination among building managers, health care providers, and Public Health professionals. The review reports a comprehensive view of the state of the art and the promising perspectives of both monitoring and disinfection methods against Legionella in water, focusing on the main current challenges concerning the Public Health sector.
Collapse
Affiliation(s)
- Emanuele Luigi Sciuto
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
| | - Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Messina, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica 3p, AOU ‘G. Martino, Via C. Valeria, s.n.c., 98125 Messina, Italy;
| | - Simona Filice
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Silvia Scalese
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Sebania Libertino
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Domenico Corso
- Istituto per la Microelettronica e Microsistemi–Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy; (S.F.); (S.S.); (S.L.); (D.C.)
| | - Giuseppina Faro
- Azienda Sanitaria Provinciale di Catania, Via S. Maria La Grande 5, 95124 Catania, Italy;
| | - Maria Anna Coniglio
- Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via Sofia 78, 95123 Catania, Italy;
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Catania, Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Sofia 87, 95123 Catania, Italy
| |
Collapse
|
14
|
Qadafi M, Notodarmojo S, Zevi Y. Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141540. [PMID: 32791420 DOI: 10.1016/j.scitotenv.2020.141540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The high concentrations of dissolved organic matter (DOM), chloride, and bromide in tropical peat water have a significant impact on the formation of carcinogenic disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs), especially during the chlorination process. Therefore, other pretreatment methods to effectively remove these harmful substances in the water during treatment are needed. The aim of this study was to determine the effects of microbubble pre-ozonation pH on the reduction of THM4 and HAA5 formed during the peat water treatment process and to determine the best conditions for microbubble pre-ozonation to reduce the formation of these two classes of DBPs. The microbubble pre-ozonation was conducted at a pH of 5.5, 7, and 8.5. Furthermore, the primary treatments applied after this pretreatment were coagulation and activated carbon adsorption before post-chlorine disinfection. The coagulation process using aluminum sulfate and activated carbon adsorption succeeded in reducing the formation of THM4 after chlorination, to a level below USEPA standards, but the concentration of HAA5 was still high. However, the use of microbubble pre-ozonation significantly reduced the formation of both classes of compounds during the chlorination process of the peat water. Also, the concentration of THM4 increased during the pre-ozonation process in all pH conditions, but HAA5 decreased except in alkaline state. Furthermore, the ideal conditions for microbubble pre-ozonation on peat water were at pH 7 (neutral) after 30 min, with the total THM4 concentration at 33.73 ± 0.40 μg/L, and that of HAA5 at 49.89 ± 0.09 μg/L, falling below the USEPA standard.
Collapse
Affiliation(s)
- Muammar Qadafi
- Environmental Engineering Program, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia.
| | - Suprihanto Notodarmojo
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Yuniati Zevi
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
15
|
Laflamme O, Sérodes JB, Simard S, Legay C, Dorea C, Rodriguez MJ. Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. CHEMOSPHERE 2020; 260:127660. [PMID: 32758783 DOI: 10.1016/j.chemosphere.2020.127660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and the fate of 18 ozonation by-products (OBPs) (17 different aldehydes and bromate) were studied over one year in two Canadian drinking water systems. This is the first and only study reporting the occurrence of all these non-halogenated aldehydes (NON-HALs) and haloacetaldehydes (HALs) simultaneously, based on the multi-point monitoring of water in full-scale conditions from source to distribution network. In general, the application of both post-ozonation and liquid chlorine contributed to the formation of OBPs (aldehydes and bromate). NON-HALs were present in higher concentrations than HALs. Formaldehyde, acetaldehyde, glyoxal and methylglyoxal were the most common forms of NON-HALs in the two water systems that were studied. Chloral hydrate (CH), the hydrated form of trichloroacetaldehyde, was the most dominant HAL observed. The nature of the organic matter and the water temperature proved to be important parameters for explaining the variability of aldehydes. Summer and autumn (warm seasons) were more favorable for the formation of chloral hydrate and bromate. The highest concentrations of NON-HALs were observed in spring.
Collapse
Affiliation(s)
- Olivier Laflamme
- Department of Civil and Water Engineering, Université Laval, Quebec City, QUE, Canada.
| | - Jean-B Sérodes
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Sabrina Simard
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Christelle Legay
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada
| | - Caetano Dorea
- Department of Civil Engineering, University of Victoria, Victoria, BC, Canada
| | - Manuel J Rodriguez
- Department of Urban and Landuse Planning, Université Laval, Quebec City, QUE, Canada.
| |
Collapse
|
16
|
Bernat-Quesada F, Álvaro M, García H, Navalón S. Impact of chlorination and pre-ozonation on disinfection by-products formation from aqueous suspensions of cyanobacteria: Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis. WATER RESEARCH 2020; 183:116070. [PMID: 32622236 DOI: 10.1016/j.watres.2020.116070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The influence of the pre-ozonization on the formation of disinfection by-products (DBPs) upon chlorination for fresh waters containing three common cyanobacteria, namely Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis at 10,000 cells/mL is reported. Specifically, the formation carbonaceous-DBPs (C-DBPs) (trihalomethanes (THMs), haloacetic acids (HAAs) and haloketones (HKs)) and nitrogenous-DBPs (N-DBP) (haloacetonitriles (HAN) and trichloronitromethane (TCNM)) has been determined as a function of the pH (6.5 or 8.0 and bromide ion concentration (300 μg/L). The main C-DBPs were THMs and HAAs with negligible formation of HKs accompanied by minor amounts of HANs in the absence of TCNM. Pre-ozonation of the aqueous cyanobacteria suspensions does not allow a control over all the DBPs. In fact, pre-ozonation increases THM formation and generates TCNM, has low influence on HAAs and only decreases the formation of HANs. The overall conclusion of this work is that pre-ozonation of waters containing a relatively low concentration of common fresh water cyanobacteria is not an appropriate process to decrease DBP formation from chlorine. Cyanobacteria removal from raw water before chlorination or ozonation should reduce DBP formation.
Collapse
Affiliation(s)
- Francisco Bernat-Quesada
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain
| | - Mercedes Álvaro
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain
| | - Hermenegildo García
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain; Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Av. De los Naranjos s/n, 46022, Valencia, Spain.
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022, Valencia, Spain.
| |
Collapse
|
17
|
Hossain MS, Mollah MYA, Susan MABH, Islam MM. Role of in situ electrogenerated reactive oxygen species towards degradation of organic dye in aqueous solution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Lin Q, Dong F, Miao Y, Li C, Fei W. Removal of disinfection by-products and their precursors during drinking water treatment processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:698-705. [PMID: 31643120 DOI: 10.1002/wer.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the control efficiency of a wide variety of disinfection by-products (DBPs) (including trihalomethanes [THMs], haloacetic acids [HAAs], haloacetonitiles [HANs], haloketones [HKs], haloaldehydes [Has], and trihalonitromethanes [THNMs]) with different drinking water treatment processes including pre-ozonation, coagulation-sedimentation, sand filtration, and ozone combined with biological activated carbon (O3 -BAC) advanced treatment processes. The assessment of the treatment efficiency regarding the removal of organic matter was measured by the excitation emission matrix (EEM) spectra. There was a superior efficiency in reducing the formation of DBPs and their precursors by different drinking water treatment processes. Though some DBPs such as THMs could be promoted by ozonation, these by-products from ozonation could be degraded by the following BAC filtration process. In addition, the organic matter from the aromaticity, fulvic acid-like, protein, and soluble microbial by-products-like regions could be further degraded by the O3 -BAC treatment. PRACTITIONER POINTS: A wide variety of DBPs in different drinking water treatment processes was investigated. The treatment efficiency regarding the removal of organic matter was measured. Some DBPs such as THMs and HAAs could be increased by ozonation. The removal percentage of nitrogen precursors and organic carbon would be increased by BAC filtration.
Collapse
Affiliation(s)
- Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Yunxia Miao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Weicheng Fei
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Wang W, Xie YF, Tang HL. The haloacetic acid leap in effluent of a biologically active carbon filter experiencing a disinfectant switch. CHEMOSPHERE 2020; 244:125435. [PMID: 31812063 DOI: 10.1016/j.chemosphere.2019.125435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Water utilities must disinfect their water despite the formation of carcinogenic disinfection byproducts (DBPs) such as haloacetic acids (HAAs) upon chlorination. Although employment of a biologically active carbon (BAC) filtration process is able to reduce the HAA level preventively by removing the HAA precursors and correctively by removing the already-formed HAAs, this research reported an HAA leap in a bench-scale BAC filter effluent upon a disinfectant switch from chlorine to chloramine, posing a pressure of meeting the stringent HAA regulations. The HAA6 (sum of six HAAs) tripled from a 5 μg/L base level to a maximum of 17 μg/L during progressive switches with 3 chloramine doses at 5, 25, and 50 mg/L. Dichloroacetic acid (DCAA) accounted for the majority of the leap, which also influenced the bromine substitution factor during the HAA formation. Filtration of distilled water using heat-deactivated media evidenced slight HAA desorption and suggested potential roles of soluble microbial products from biofilms as new HAA precursors for a real BAC filter experiencing a disinfectant switch.
Collapse
Affiliation(s)
- Wendong Wang
- Department of Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuefeng F Xie
- Environmental Programs, Penn State Harrisburg, Middletown, 17057, PA, USA
| | - H Larry Tang
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, 15705, PA, USA.
| |
Collapse
|
21
|
Kozari A, Paloglou A, Voutsa D. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134449. [PMID: 31639540 DOI: 10.1016/j.scitotenv.2019.134449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the formation potential of emerging DBPs (haloacetonitriles, halonitromethanes and halopropanones) during ozonation and ozonation/hydrogen peroxide treatment and subsequent chlorination of sewage effluent under various experimental conditions. Estimation of possible risk due to DBPs by calculation of cytotoxicity and genotoxicity was attempted. The studied DBPs showed different formation behavior during chlorination, with maximum yields within 0.5-48 h. Maximum cytotoxicity and genotoxicity was observed after 4 h of chlorination with dibromoacetonitrile being the major contributor. Ozonation and O3/H2O2 treatment resulted in increase of trichloronitromethane followed by a decline at higher doses, and reduction of haloacetonitriles. High ozone doses reduced cytotoxicity and genotoxicity of treated effluents. The presence of bromide shifted to bromo-DBPs formation and enhanced both cytotoxicity and genotoxicity. Particulate fraction in effluents significantly contributed to the formation of DBPs and consequently to the their toxicity.
Collapse
Affiliation(s)
- A Kozari
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - A Paloglou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - D Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.
| |
Collapse
|
22
|
Mao Y, Qi S, Zhao E, Yang H, Xie YF. Mechanism of ozonation enhanced formation of haloacetaldehydes during subsequent chlorination. CHEMOSPHERE 2019; 236:124361. [PMID: 31325823 DOI: 10.1016/j.chemosphere.2019.124361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products of great health concern. A bench-scale study was performed to investigate the formation and speciation of HAs in raw and treated waters after chlorination and ozonation-chlorination. Pre-ozonation resulted in enhanced HA formation during subsequent chlorination, and the HA yields from ozonation-chlorination were 1.66 and 1.63 times higher than that from chlorination of raw and treated waters. The mechanism about the increase of HA formation during ozonation-chlorination was systematically investigated in this study. The results showed that acetaldehyde formed after ozonation was the dominant precursor for the enhanced HA formation during subsequent chlorination. Increase in pH and chlorine dose increased HA formation during acetaldehyde chlorination. Based on the kinetic studies on the HA formation during acetaldehyde chlorination and the HA stabilities with and without free chlorine, it was found that chlorine was incorporated into the α-hydrogen in acetaldehyde to form a sequence of mono-, di- and tri-chloroacetaldehyde. During this process, these three chlorinated acetaldehydes would also undergo base-catalyzed hydrolysis through decarburization and dehalogenation pathways. This study elucidated that acetaldehyde formed after ozonation resulted in the increase of HA formation during subsequent chlorination. This study also revealed the formation pathway of HA during chlorination of acetaldehyde, which would help to minimize HA formation at drinking water plants.
Collapse
Affiliation(s)
- Yuqin Mao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shengqi Qi
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongwei Yang
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Yuefeng F Xie
- School of Environment, Tsinghua University, Beijing, 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA, 17057, USA
| |
Collapse
|
23
|
Bhuvaneshwari M, Eltzov E, Veltman B, Shapiro O, Sadhasivam G, Borisover M. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. WATER RESEARCH 2019; 164:114910. [PMID: 31382150 DOI: 10.1016/j.watres.2019.114910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorination and ozonation of various waters may be associated with the formation of toxic disinfection byproducts (DBPs) and cause health risks to humans. Monitoring the toxicity of chlorinated and ozonated water and identification of different toxicity mechanisms are therefore required. This study is one of its kind to examine the toxic effects of chlorinated and ozonated wastewater effluents on three genetically modified bioluminescent bacteria, in comparison to the naturally isolated cyanobacteria, Spirulina strains as test systems. Three different secondary wastewater effluents were collected from treatment plants, chlorinated using sodium hypochlorite (at 1 and 10 mg L-1 of chlorine) or treated using 3-4 mg L-1 of ozone at different contact times. As compared to cyanobacterial Spirulina sp., the genetically modified bacteria enhancing bioluminescence at the presence of stress agents demonstrated greater sensitivity to the toxicity induction and have also provided mechanism-specific responses associated with genotoxicity, cytotoxicity and reactive oxygen species (ROS) generation in wastewater effluents. Effects of effluent chlorination time and chlorine concentration revealed by means of bioluminescent bacteria suggest the formation of genotoxic and cytotoxic DBPs followed with their possible disappearance at longer times. Ozonation could degrade genotoxic compounds in some effluents, but the cytotoxic potential of wastewater effluents may certainly increase with ozonation time. No induction of ROS-related toxicity was detected in either chlorinated or ozonated wastewater effluents. UV absorbance- and fluorescence emission-based spectroscopic characteristics may be variously correlated with changes in genotoxicity in ozonated effluents, however, no associations were obtained in chlorinated wastewater effluents. The bacterial response to the developed mechanism-specific toxicity differs among wastewater effluents, reflecting variability in effluent compositions.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Israel.
| | - Orr Shapiro
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Giji Sadhasivam
- Institute of Postharvest and Food Science, Department of Food Quality and Safety, Agricultural Research Organization, The Volcani Center, Israel.
| | - Mikhail Borisover
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Israel.
| |
Collapse
|
24
|
Gassie LW, Englehardt JD, Brinkman NE, Garland J, Perera MK. Ozone-UV net-zero water wash station for remote emergency response healthcare units: Design, operation, and results. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2019; 6:1971-1984. [PMID: 32665859 PMCID: PMC7359887 DOI: 10.1039/c9ew00126c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because disease pandemics can accelerate rapidly in areas with limited clean-water access, a portable greywater reuse system may be useful to provide wash water at emergency health care units. In this study, a novel fed-batch (hybrid continuous-batch flow) net-zero water (NZW), or nearly closed-loop, reuse system comprising screening, 5 μm filter, and ozone-UV advanced oxidation was designed, constructed, and tested for performance with simulated and actual human showers. Water quality was tested for compliance with US drinking water standards, total organic carbon < 0.5 mg/L, and pathogen inactivation including 12 log10 virus, 10 log10 protozoa, and 9 log10 bacteria as has been recommended for direct potable reuse. Energy, operation, and maintenance requirements were also evaluated, along with the system's capacity to handle shock events such as unintentional contamination with urine. Design goals were achieved without the addition of GAC point-of-use filter, except compliance with bromate and nitrate drinking water standards, which were met only for temporary use of up to three years per person. A capacity of 32 showers/day at 1920 W continuous power is projected, without generation of potentially-infectious concentrate. To avoid the further increase in system weight and energy demand needed to address urine input, future integrated urine diversion and collection, and system drain-and-fill following detection of urine in recycled water by electrical conductivity, are suggested for the field unit. Field testing is recommended. Further research should focus on potential need for bromate/nitrate mitigation, and longer-term study of microbiological inactivation.
Collapse
Affiliation(s)
- Lucien W Gassie
- University of Miami. 1251 Memorial Drive, Coral Gables, FL 33146
| | | | - Nichole E Brinkman
- US Environmental Protection Agency. 26 W Martin Luther King Drive Cincinnati, OH 45268
| | - Jay Garland
- US Environmental Protection Agency. 26 W Martin Luther King Drive Cincinnati, OH 45268
| | | |
Collapse
|
25
|
Ekowati Y, Ferrero G, Farré MJ, Kennedy MD, Buttiglieri G. Application of UVOX Redox ® for swimming pool water treatment: Microbial inactivation, disinfection byproduct formation and micropollutant removal. CHEMOSPHERE 2019; 220:176-184. [PMID: 30583210 DOI: 10.1016/j.chemosphere.2018.12.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Alternative disinfection technologies may overcome some of the limitations of conventional treatment applied in swimming pools: chlorine-resistant pathogens (e.g. Cryptosporidium oocysts and Giardia cysts) and the formation of chlorinated disinfection byproducts. In this paper, results of full scale validation of an alternative disinfection technology UVOX Redox® (hereinafter referred to as UVOX) that combines ozonation and UV irradiation are presented. The performance was assessed in terms of microbial inactivation, disinfection byproduct formation and micropollutant removal. UVOX was able to achieve 1.4-2.7 log inactivation of Bacillus subtilis spores at water flows between 20 and 76 m³/h. Lower formation of trichloromethane and dichloroacetic acid was observed with UVOX followed by chlorination when compared to chlorination alone. However, due to the use of ozone and the presence of bromide in the pool water, the formation of trihalomethanes and haloacetic acids shifted to more brominated byproducts. Chlorine alone was able to remove the target micropollutants: acetaminophen, atenolol, caffeine, carbamazepine, estrone, estradiol, and venlafaxine (>97% removal) after 24 h, with the exception of ibuprofen (60% removal). The application of UVOX in chlorinated water enhanced the removal of ibuprofen. The application of UVOX could lower the usage of chlorine to the level that provides an adequate residual disinfection effect.
Collapse
Affiliation(s)
- Yuli Ekowati
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands.
| | - Giuliana Ferrero
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain
| | - Maria D Kennedy
- IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - Gianluigi Buttiglieri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, c/ Emili Grahit 101, E17003, Girona, Spain
| |
Collapse
|
26
|
Im D, Nakada N, Fukuma Y, Tanaka H. Effects of the inclusion of biological activated carbon on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration for water reclamation. CHEMOSPHERE 2019; 220:20-27. [PMID: 30579170 DOI: 10.1016/j.chemosphere.2018.12.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
We investigated the effects of the inclusion of biological activated carbon (BAC) on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration (O3 + PACl + CMF) for treating secondary effluent. Inclusion of BAC between ozonation and coagulation reduced membrane permeability. The normalized flux decreased to 90% of the initial value after 305 h of operation in O3 + PACl + CMF, while it decreased to 20% in combined process of ozonation, BAC, coagulation and ceramic membrane filtration. BAC not only decreased residual ozone that is helpful to mitigate ceramic membrane fouling, but also released microorganisms. In addition, BAC doubled the integrated fluorescence intensity of soluble microbial products (SMP), which cause irreversible fouling. The SMP produced and accumulated by microorganisms on the BAC bed likely flowed into the BAC effluent with the microorganisms. The proportion of SMP in the extracted foulant increased from 25% without BAC to 31% with BAC. Moreover, the inclusion of BAC nearly doubled the concentration of protein in the extracted foulant to 13 g/m2 and quadrupled that of carbohydrate to 6 g/m2. BAC was effective in improving the quality of ceramic membrane permeates and reducing health risk associated with formaldehyde and N-nitrosodimethylamine. However, the release of SMP from BAC accelerated membrane fouling in subsequent ceramic membrane filtration.
Collapse
Affiliation(s)
- Dongbum Im
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Yasuyuki Fukuma
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
27
|
Rubio-Clemente A, Chica E, Peñuela G. Total coliform inactivation in natural water by UV/H 2O 2, UV/US, and UV/US/H 2O 2 systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4462-4473. [PMID: 30324379 DOI: 10.1007/s11356-018-3297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The presence of pathogens in drinking water can seriously affect human health. Therefore, water disinfection is needed, but conventional processes, such as chlorination, result in the production of dangerous disinfection by-products. In this regard, an alternative solution to tackle the problem of bacterial pollution may be the application of advanced oxidation processes. In this work, the inactivation of total coliforms, naturally present in a Colombian surface water by means of UV/H2O2, UV/US, and the UV/US/H2O2 advanced oxidation processes, was investigated. Under the investigated conditions, complete bacterial inactivation (detection limit equal to 1 CFU 100 mL-1) was found within 5 min of treatment by UV/H2O2 and UV/US/H2O2 systems. UV/US oxidation process also resulted in total bacterial load elimination, but after 15 min of treatment. Bacterial reactivation after 24 h and 48 h in the dark was measured and no subsequent regrowth was observed. This phenomenon could be attributed to the high oxidation capacity of the evaluated oxidation systems. However, the process resulting in the highest oxidation potential at the lowest operating cost, in terms of energy consumption, was UV/H2O2 system. Therefore, UV/H2O2 advanced oxidation system can be used for disinfection purposes, enabling drinking water production meeting the requirements of regulated parameters in terms of water quality, without incurring extremely high energy costs. Nonetheless, further researches are required for minimizing the associated electric costs.
Collapse
Affiliation(s)
- Ainhoa Rubio-Clemente
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia UCAM, Avenida de los Jerónimos, s/n., Murcia, Spain.
- Grupo GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia.
- Facultad de Ingeniería, Tecnológico de Antioquia-Institución Universitaria TdeA, Calle 78b No. 72A-220, Medellín, Colombia.
| | - Edwin Chica
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| | - Gustavo Peñuela
- Grupo GDCON, Facultad de Ingeniería, Sede de Investigaciones Universitarias (SIU), Universidad de Antioquia UdeA, Calle 70, No. 52-21, Medellín, Colombia
| |
Collapse
|
28
|
Huang KZ, Xie YF, Tang HL. Formation of disinfection by-products under influence of shale gas produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:744-751. [PMID: 30092531 DOI: 10.1016/j.scitotenv.2018.08.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Accidental spills and surface discharges of shale gas produced water could contaminate water resources and generate health concerns. The study explored the formation and speciation of disinfection by-products (DBPs) during chlorination of natural waters under the influence of shale gas produced water. Results showed the presence of produced water as low as 0.005% changed the DBP profile measurably. A shift to a more bromine substitution direction for the formation of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles was illustrated by exploring the individual DBP species levels, bromine substitution factors, and DBP species fractions, and the effect was attributable to the introduction of bromide from produced water. The ratio of dichloroacetic and trichloroacetic acids also increased, which was likely affected by different bromination degrees at elevated bromide concentrations. Increasing blend ratios of produced water enhanced the formation of DBPs, especially the brominated species, while such negative effects could be alleviated by pre-treating the produced water with ozone/air stripping to remove bromide. The study advances understandings about the impacts of produced water spills or surface discharges regarding potential violation of Stage 2 DBP rules at drinking water treatment facilities.
Collapse
Affiliation(s)
- Kuan Z Huang
- Environmental Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Yuefeng F Xie
- Environmental Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Hao L Tang
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA 15705, USA.
| |
Collapse
|
29
|
Cheema WA, Andersen HR, Kaarsholm KMS. Improved DBP elimination from swimming pool water by continuous combined UV and ozone treatment. WATER RESEARCH 2018; 147:214-222. [PMID: 30312794 DOI: 10.1016/j.watres.2018.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Chlorine is the most frequently used disinfectant and oxidant for maintaining swimming pool water quality; however, it reacts continuously with dissolved organic matter to produce disinfection by-products (DBPs), which are a health risk for pool users. UV treatment is used widely to remove chloramines, which are the most prevalent group of DBPs, albeit chloro-organic DBP concentrations often increase during post-UV chlorination. In this work, UV and ozone treatments were investigated as additional technologies to eliminate DBP formation and their precursors. Batch experiments were conducted under controlled conditions, using realistic UV and ozone dosages and real pool water samples collected from a public swimming pool. A gradual increase in all investigated DBP concentrations and predicted toxicity was observed during chlorination after repeated UV treatments, and concentrations of certain DBPs also increased during post-ozone chlorination. Based on ozone and chlorine's similar reactivity, ozone was used directly after UV treatment to decrease the induction of DBP formation. Most DBP concentrations decreased during repeated combined treatments. It was also observed that DBP formed by post-ozone chlorination was removed by photolysis, thereby indicating synergy between the treatments. Repeated treatments using realistic UV and ozone dosages predicted that water quality will improve as a result of continuous combined UV and ozone treatments.
Collapse
Affiliation(s)
- Waqas A Cheema
- National University of Sciences & Technology, H-12 Islamabad, 44000, Pakistan; Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Kamilla M S Kaarsholm
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
30
|
Young TR, Li W, Guo A, Korshin GV, Dodd MC. Characterization of disinfection byproduct formation and associated changes to dissolved organic matter during solar photolysis of free available chlorine. WATER RESEARCH 2018; 146:318-327. [PMID: 30316167 DOI: 10.1016/j.watres.2018.09.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Solar irradiation of chlorine-containing waters enhances inactivation of chlorine-resistant pathogens (e.g., Cryptosporidium oocysts), through in situ formation of ozone, hydroxyl radical, and other reactive species during photolysis of free available chlorine (FAC) at UVB-UVA wavelengths of solar light (290-400 nm). However, corresponding effects on regulated disinfection byproduct (DBP) formation and associated dissolved organic matter (DOM) properties remain unclear. In this work, when compared to dark chlorination, sunlight-driven FAC photolysis over a range of conditions was found to yield higher DBP levels, depletion of DOM chromophores and fluorophores, preferential removal of phenolic groups versus carboxylic acid groups, and degradation of larger humic substances to smaller molecular weight compounds. Control experiments showed that increased DBP levels were not due to direct DOM photolysis and subsequent dark reactions with FAC, but to co-exposure of DOM to FAC and reactive species (e.g., O3, HO•, Cl•, Cl2•-, ClO•) generated by FAC photolysis. Because solar chlorine photolysis can enable inactivation of chlorine-resistant pathogens at far lower CTFAC values than chlorination alone, the increases in DBP formation inherent to this approach can likely be offset to some extent by the ability to operate at significantly decreased CTFAC. Nonetheless, these findings demonstrate that applications of solar chlorine photolysis will require careful attention to potential impacts on DBP formation.
Collapse
Affiliation(s)
- Tessora R Young
- Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Alan Guo
- Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Gregory V Korshin
- Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Michael C Dodd
- Dept. of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Wang Y, Yu G, Deng S, Huang J, Wang B. The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. CHEMOSPHERE 2018; 208:640-654. [PMID: 29894965 DOI: 10.1016/j.chemosphere.2018.05.095] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The electro-peroxone (E-peroxone) process is an emerging electrochemical advanced oxidation process (EAOP) that combines ozonation with in situ cathodic hydrogen peroxide (H2O2) production to drive the peroxone reaction for water and wastewater treatment. Over the past several years, the E-peroxone process has quickly emerged as a promising EAOP for the abatement of emerging contaminants (ECs) in water. Because of the enhanced ozone (O3) transformation to hydroxyl radicals (OH) by electro-generated H2O2, the E-peroxone process can considerably increase the efficiency and decrease the energy demand for the abatement of ozone-resistant ECs compared with conventional ozonation. Meanwhile, the E-peroxone process can substantially mitigate the formation of bromate during the treatment of bromide-containing water, which has been a major concern of conventional ozonation for water treatment. Hence, by simply installing electrodes in ozone contactors, the E-peroxone process can remarkably enhance the performance of water and wastewater treatment in various aspects. Compared with other ozone-based AOPs such as the conventional peroxone (O3/H2O2) and UV/O3 processes, the E-peroxone process also represents a more convenient, cost-effective, energy-efficient, and safer option for EC abatements. This paper reviews recent research of the E-peroxone process, with focus on the abatement of ECs in real water matrices. The fundamental reaction mechanisms that are essential to the understanding, design, and operation of the E-peroxone process are described. The abatement of various ECs in natural water and wastewater by the E-peroxone process are critically reviewed. The challenges in scaling-up the E-peroxone process and integrating it in water and wastewater treatment trains for practical applications are discussed.
Collapse
Affiliation(s)
- Yujue Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Mao Y, Guo D, Yao W, Wang X, Yang H, Xie YF, Komarneni S, Yu G, Wang Y. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination. WATER RESEARCH 2018; 130:322-332. [PMID: 29247948 DOI: 10.1016/j.watres.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H2O2) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O3) to hydroxyl radicals (OH) by electro-generated H2O2, the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO3-) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation.
Collapse
Affiliation(s)
- Yuqin Mao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weikun Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Material Research Institute, 205 MRL Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Performance of combined ozonation, coagulation and ceramic membrane process for water reclamation: Effects and mechanism of ozonation on virus coagulation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. SUSTAINABILITY 2017. [DOI: 10.3390/su10010086] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Guilherme S, Rodriguez MJ. Models for estimation of the presence of non-regulated disinfection by-products in small drinking water systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:577. [PMID: 29063230 DOI: 10.1007/s10661-017-6296-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Among all the organic disinfection by-products (DBPs), only trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated in drinking water, while most DBPs are not. Very little information exists on the occurrence of non-regulated DBPs, particularly in small water systems (SWS). Paradoxically, SWS are more vulnerable to DBPs because of a low capacity to implement adequate treatment technologies to remove DBP precursors. Since DBP analyses are expensive, usually SWS have difficulties to implement a rigorous characterization of these contaminants. The purpose of this study was to estimate non-regulated DBP levels in SWS from easy measurements of relevant parameters regularly monitored. Since no information on non-regulated DBPs in SWS was available, a sampling program was carried out in 25 SWS in two provinces of Canada. Five DBP families were investigated: THMs, HAAs, haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs). Multivariate linear mixed regression models were developed to estimate HAN, HK, and HNM levels from water quality characteristics in the water treatment plant, concentrations of regulated DBPs, and residual disinfectant levels. The models obtained have a good explanatory capacity since R 2 varies from 0.77 to 0.91 according to compounds and conditions for application (season and type of treatment). Model validation with an independent database suggested their ability for generalization in similar SWS in North America.
Collapse
Affiliation(s)
- Stéphanie Guilherme
- École supérieure d'aménagement du territoire et développement régional (ESAD), Université Laval, 1624 Pavillon Savard, Québec, G1K 7P4, Canada
| | - Manuel J Rodriguez
- École supérieure d'aménagement du territoire et développement régional (ESAD), Université Laval, 1624 Pavillon Savard, Québec, G1K 7P4, Canada.
| |
Collapse
|
36
|
Deeudomwongsa P, Phattarapattamawong S, Andrew Lin KY. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors. CHEMOSPHERE 2017; 184:1215-1222. [PMID: 28672704 DOI: 10.1016/j.chemosphere.2017.06.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/14/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to remove regulated DBP precursors by using ozonation and peroxone process (H2O2/O3). Regarding formation potentials of trihalomethanes (THMs) and haloacetic acids (HAAs), the role of chloride in chlorination and ozonation/peroxone processes was revealed. The organic compounds in water samples from rapid sand filtration preferably yielded the THM formation potentials, rather than HAAs. Ozonation with the typical applied doses (1-5 mg L-1) was ineffective for removals of THM and HAA precursors. The peroxone process only decreased the formation potentials of THMs. The reduction of THMs by the peroxone process resulted from decreases in either chloroform or dibromochloromethane. However, the limitation was found in the H2O2/O3 ratios of 2.0-3.0. The removals of HAA precursors were much more difficult than that of THM precursors by ozonation and peroxone processes. The oxidation of organic compounds was able to promote the HAA formations. Ozonation with the typical ozone doses increased the chloroform formations, while decreases in bromide-containing THMs occurred. Effect of ozonation on changes in HAAs speciation was unclear. The peroxone process likely promoted the dichloroacetic acids and trichloroacetic acids. The presence of chloride (1-5 g L-1) highly enhanced the THM and HAA formation potentials. NaCl addition greatly increased the bromide-containing THMs, while the chloroform decreased. For HAAs, the presence of chloride promoted the bromide-containing HAAs and monochloroacetic acids. The presence of chloride played a role as a promotor for strong chlorinating agents in chlorination, rather than as a scavenger in ozonation and peroxone processes.
Collapse
Affiliation(s)
- Popta Deeudomwongsa
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand; Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Thailand.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
37
|
Liu Z, Chen W, Yu H, Tao H, Xu H, Yu J, Gu Y, Wan Z. Effects of pre-oxidation and adsorption on haloacetonitrile and trichloronitromethane formation during subsequent chlorination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21836-21845. [PMID: 28776295 DOI: 10.1007/s11356-017-9843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
In this study, the effects of pre-oxidants permanganate (PM), persulfate (PS), hydrogen peroxide (PO), and ozone (OZ)) and/or adsorption on pseudoboemite-chitosan shell magnetic nanoparticles (ACMNs) on haloacetonitrile (HAN) and trichloronitromethane (TCNM) formation from aspartic acid (Asp; positive charge) and/or histidine (His; negative charge) were compared. Asp and His apparently do not interact in aqueous solution during chlorination. Asp and/or His can undergo partially oxidation by PM, but are recalcitrant to direct oxidation by PS and PO. Pre-oxidation with OZ decreases the formation of HANs but increases the formation of TCNM. ACMN prefers to adsorb Asp over His in the competitive sorption of coexisting Asp and His because of attractive electrostatic interactions. The rank order for the effect of the pre-oxidants and ACMN adsorption on dichloroacetonitrile and trichloroacetonitrile formation is OZ and ACMN adsorption > PM and ACMN adsorption > PS and ACMN adsorption > PO and ACMN adsorption; that for the effect of the pre-oxidants and ACMN adsorption on TCNM formation is PM and ACMN adsorption > PS and ACMN adsorption > PO and ACMN adsorption > OZ and ACMN adsorption. The favored adsorption of Asp over His by ACMN is weakened by pre-oxidation.
Collapse
Affiliation(s)
- Zhigang Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Ningbo Water Supply Co., Ltd., Ningbo, 315041, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Hu Yu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingjing Yu
- Ningbo Water Supply Co., Ltd., Ningbo, 315041, China
| | - Yanmei Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhen Wan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
38
|
Yaman FB, Çakmakcı M, Yüksel E, Özen İ, Gengeç E. Removal of micropollutants from Sakarya River water by ozone and membrane processes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:438. [PMID: 28785883 DOI: 10.1007/s10661-017-6128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The removal of some pollutants in the Sakarya River was investigated in this study. Sakarya River located in Turkey flows from the northeast of Afyonkarahisar City to the Black Sea. Nineteen different micropollutants including trihalomethanes (THMs), haloacetic acids (HAAs), endocrine disrupting compound (EDC) and pharmaceuticals personal care product (PPCP) groups, and water quality parameters such as dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm wavelength (UV254), hardness, and conductivity values were examined. To remove the micropollutants and improve the water quality, the treatment was performed with ozone, microfiltration (MF), and ultra-filtration (UF) membranes. The highest treatment efficiency was obtained with 1 mg/L ozone dosage and UP005 UF membrane. The trihalomethan formation potential (THMFP) and haloacetic acid formation potential (HAAFP) decreased with ozone + membrane at a concentration of 79 and 75%, respectively. After the treatment with ozone + membrane, the concentration of the micropollutants in the EDC and PPCP group remained below the detection limit. It was found that by using only membrane and only ozone, the maximum DOC removal efficiency achieved was 46 and 18%, respectively; and with ozone + membrane, this efficiency increased up to 82%. The results from the High-Pressure Size Exclusion Chromatography (HPSEC) analyses pointed that the substances with high molecular weight were converted into substances with low molecular weight after the treatment. The Fourier Transform Infrared (FTIR) analysis results showed that the aromatic and aliphatic functional groups in water changed after the treatment with ozone and that the peak values decreased more after the ozone + membrane treatment.
Collapse
Affiliation(s)
- Fatma Büşra Yaman
- Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Mehmet Çakmakcı
- Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Ebubekir Yüksel
- Department of Environmental Engineering, Gebze Technical University, Istanbul, Turkey
| | - İsmail Özen
- Department of Environmental Engineering, Gebze Technical University, Istanbul, Turkey
| | - Erhan Gengeç
- Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
39
|
Samios SA, Golfinopoulos SK, Andrzejewski P, Świetlik J. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:979-985. [PMID: 28541794 DOI: 10.1080/10934529.2017.1324710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Samples from the two main watersheds that provide Athens Water Supply and Sewerage Company (AWSSC) with raw water were examined for Dissolved Organic Carbon (DOC) and for their molecular weight distribution (MWD). In addition, water samples from water treatment plants (WTPs) and from the water supply network were examined for trihalomethane (THMs) levels. The main purpose of this study was to reveal the molecular composition of natural organic matter (NOM) and identify the individual differences between NOM from the two main Athens watersheds. High-performance size exclusion chromatography (HPSEC), a relatively simple technique, was applied to determine different NOM fractions' composition according to molecular weight. Various THM levels in the supply network of Athens are illustrated as a result of the different reservoirs' water qualities, and a suggestion for a limited application of chlorine dioxide is made in order to minimize THM formation.
Collapse
Affiliation(s)
- Stelios A Samios
- a Department of Coordination and Control , Athens Water Supply and Sewerage Company (AWSSC SA.) , Athens , Greece
| | - Spyros K Golfinopoulos
- b Department of Financial & Management Engineering , University of Aegean , Chios , Greece
| | - Przemyslaw Andrzejewski
- c Faculty of Chemistry, Department of Water Treatment Technology , Adam Mickiewicz University , Poznan , Poland
| | - Joanna Świetlik
- c Faculty of Chemistry, Department of Water Treatment Technology , Adam Mickiewicz University , Poznan , Poland
| |
Collapse
|
40
|
Kolb C, Francis RA, VanBriesen JM. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk. J Environ Sci (China) 2017; 58:191-207. [PMID: 28774609 DOI: 10.1016/j.jes.2017.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation. The regulated surrogate measures are intended to protect against not only the species they directly represent, but also against unregulated DBPs that are not routinely measured. Surrogates that do not incorporate effects of increasing bromide may not adequately capture human health risk associated with drinking water when source water bromide is elevated. The present study analyzes trihalomethanes (THMs), measured as TTHM, with varying source water bromide concentrations, and assesses its correlation with brominated THM, TTHM risk and species-specific THM concentrations and associated risk. Alternative potential surrogates are evaluated to assess their ability to capture THM risk under different source water bromide concentration conditions. The results of the present study indicate that TTHM does not adequately capture risk of the regulated species when source water bromide concentrations are elevated, and thus would also likely be an inadequate surrogate for many unregulated brominated species. Alternative surrogate measures, including THM3 and the bromodichloromethane concentration, are more robust surrogates for species-specific THM risk at varying source water bromide concentrations.
Collapse
Affiliation(s)
- Chelsea Kolb
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Royce A Francis
- Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Papageorgiou A, Stylianou SK, Kaffes P, Zouboulis AI, Voutsa D. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter - Possible implications on the formation of ozonation by-products. CHEMOSPHERE 2017; 170:33-40. [PMID: 27974269 DOI: 10.1016/j.chemosphere.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate possible implications of natural and wastewater derived organic matter in river water that is subsequently used following treatment for drinking purposes. River water was subjected to lab-scale ozonation experiments under different ozone doses (0.1, 0.4, 0.8, 1.0 and 2.0 mgO3/mgC) and contact times (1, 3, 5, 8 and 10 min). Mixtures of river water with humic acids or wastewaters (sewage wastewater and secondary effluents) at different proportions were also ozonated. Dissolved organic carbon and biodegradable dissolved organic carbon concentrations as well as spectroscopic characteristics (UV absorbance and fluorescence intensities) of different types of dissolved organic matter and possible changes due to the ozonation treatment are presented. River water, humic substances and wastewater exhibited distinct spectroscopic characteristics that could serve for pollution source tracing. Wastewater impacted surface water results in higher formation of carbonyl compounds. However, the formation yield (μg/mgC) of wastewaters was lower than that of surface water possibly due to different composition of wastewater derived organic matter and the presence of scavengers, which may limit the oxidative efficiency of ozone.
Collapse
Affiliation(s)
- Alexandros Papageorgiou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece.
| | - Stylianos K Stylianou
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Pavlos Kaffes
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Anastasios I Zouboulis
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| |
Collapse
|
42
|
Wei C, Zhang F, Hu Y, Feng C, Wu H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AbstractThe widespread applications of ozone technologies are established on the basis of large-scale manufacture of ozone generator and chemical reactivity of ozone. It is hence necessary to summarize the principles of ozone generation and to analyze the physicochemical properties of ozone, which are of fundamental significance to indicate its technical developments and practical applications. This review presents a summary concerning ozone generation mechanisms, the physicochemical properties of ozone, as well as the applications of ozone in water treatment. Ozone can be produced by phosphorus contact, silent discharge, photochemical reactions, and electrochemical reactions, principally proceeding by the reaction of oxygen atom with oxygen molecule. There are side reactions to the generation of ozone, however, which are responsible for ozone depletion including thermal decomposition and quenching reactions by reactive species. The solubility of ozone in water is much higher than that of oxygen, suggesting that it may be reliably applied in water and wastewater treatment. Based on the resonance structures of ozone, one oxygen atom in ozone molecule is electron-deficient displaying electrophilic property, whereas one oxygen atom is electron-rich holding nucleophilic property. The superior chemical reactivity of ozone can also be indirectly revealed by radical-mediated reactions initiated from homogenous and heterogeneous catalytic decomposition of ozone. Owing to the reliable generation of ozone and its robust reactive properties, it is worthy to thoroughly elaborate the applications of ozone reaction in drinking water disinfection and pre- or post-treatment of industrial wastewater including cyanide wastewater, coking wastewater, dyeing wastewater, and municipal wastewater. The structural characteristics of ozone reactors and energy requirement of applied technologies are evaluated. In addition, future directions concerning the development of ozone generation, ozone reactivity, and industrial wastewater ozonation have been proposed.
Collapse
|
43
|
Liu D, Wang X, Xie YF, Tang HL. Effect of capacitive deionization on disinfection by-product precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:19-25. [PMID: 27285792 DOI: 10.1016/j.scitotenv.2016.05.219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Formation of brominated disinfection by-products (DBPs) from bromide and natural organic matter upon chlorination imposes health risks to drinking water users. In this study, capacitive deionization (CDI) was evaluated as a potential process for DBP precursor removal. Synthetic humic acid and bromide containing saline water was used as model water prior to CDI treatment. Batch experiments were conducted at cell voltages of 0.6-, 0.9-, and 1.2V to study the influence of CDI on the ratio of bromide and dissolved organic carbon, bromine substitution factor, and DBP formation potential (FP). Results showed beneficial aspects of CDI on reducing the levels of these parameters. A maximum DBPFP removal from 1510 to 1160μg/L was observed at the cell voltage of 0.6V. For the removed DBPFP, electro-adsorption played a greater role than physical adsorption. However, it is also noted that there could be electrochemical oxidations that led to reduction of humic content and formation of new dichloroacetic acid precursors at high cell voltages. Because of the potential of CDI on reducing health risks from the formation of less brominated DBPs upon subsequent chlorination, it can be considered as a potential technology for DBP control in drinking water treatment.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, Pennsylvania State University, Middletown, PA 17057, USA
| | - Hao L Tang
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China; Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA 15705, USA.
| |
Collapse
|
44
|
Mao YQ, Wang XM, Guo XF, Yang HW, Xie YF. Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment. CHEMOSPHERE 2016; 159:378-384. [PMID: 27318452 DOI: 10.1016/j.chemosphere.2016.05.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products (DBPs) of great health concern. In this study, their formation and speciation during chlorination were investigated for raw and process waters collected at three O3-biological activated carbon (BAC) advanced drinking water treatment plants. The results showed that all HA formation potentials (HAFPs) were highly enhanced whenever ozone was applied before or after conventional treatment. Sand filtration and BAC filtration could substantially reduce HAFPs. Trihalomethanes (THMs) were also measured to better understand the role of HAs in DBPs. Very different from HAFPs, THMFPs kept decreasing with the progress of treatment steps, which was mainly attributed to the different precursors for HAs and THMs. Brominated HAs were detected in bromide-containing waters. Chloral hydrate (CH) contributed from 25% to 48% to the total HAs formed in waters containing 100-150 μg L(-1) bromide, indicating the wide existence of other HAs after chlorination besides CH production. In addition, bromide incorporation factor (BIF) in HAs and THMs increased with the progress of treatment steps and the BIF values of THMs were generally higher than those of HAs. The BAC filtration following ozonation could significantly reduce HA precursors produced from ozonation but without complete removal. The brominated HAFPs in the outflow of BAC were still higher than their levels in the raw water. As a result, O3-BAC combined treatment was effective at controlling the total HAs, whereas it should be cautious for waters with high bromide levels.
Collapse
Affiliation(s)
- Yu-Qin Mao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xian-Fen Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
45
|
Wang X, Zhou B, Yang H, Wang X, Xie Y. Effect of oxidation on nitro-based pharmaceutical degradation and trichloronitromethane formation. CHEMOSPHERE 2016; 146:154-161. [PMID: 26714298 DOI: 10.1016/j.chemosphere.2015.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Nitro-based compounds are the direct precursors of trichloronitromethane during chlorination disinfection. Two nitro-based pharmaceuticals ranitidine and nizatidine were selected as model compounds to assess the effect of oxidation on the removal of nitro-based pharmaceuticals, as well as the reduction of their trichloronitromethane formation potentials (TCNMFPs). The four oxidants were ozone (O3), chlorine (Cl2), chlorine dioxide (ClO2) and potassium permanganate (KMnO4). The changes in pharmaceuticals and their TCNMFPs during oxidation using various oxidants and dosages were quantified. The relationships between oxidation product structures and TCNMFP changes were also analyzed. The results showed that oxidation with Cl2 and KMnO4 were more effective than ClO2 and O3 in removing the nitro-based pharmaceuticals. Meanwhile, decreased TCNMFPs by KMnO4 oxidation but increased TCNMFPs by Cl2, ClO2 and O3 oxidation were observed. The results of product analysis indicated that chlorine transfer products had higher TCNMFPs, while oxygen transfer products made little contribution to TCNMFPs after oxidation. In addition, one possible reaction pathway leading TCNMFP increase was that chloro-nitromethane or nitromethane, which was a better TCNM precursor, formed when double bond was attacked by oxidants.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Environmental Engineering, School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Department of Environmental Engineering, School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hongwei Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaomao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuefeng Xie
- School of Environment, Tsinghua University, Beijing 100084, China; Civil and Environmental Engineering Programs, Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
46
|
Sadrnourmohamadi M, Gorczyca B. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water. WATER RESEARCH 2015; 73:171-180. [PMID: 25659964 DOI: 10.1016/j.watres.2015.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the effect of ozone as a stand-alone and coagulation aid on the removal of dissolved organic carbon (DOC) from the water with a high level of DOC (13.8 mgL(-1)) and calcium hardness (270 mgL(-1)) CaCO3. Natural water collected from the Assiniboine River (Manitoba, Canada) was used in this study. Effectiveness of ozone treatment was evaluated by measurement of DOC, DOC fractions, UV254, and trihalomethane formation potential (THMFP). Additionally, zeta potential and dissolved calcium concentration were measured to discern the mechanism of ozone reactions. Results indicated that 0.8 mg O3/mg DOC ozone stand-alone can cause up to 86% UV254 reduction and up to 27% DOC reduction. DOC fractionation results showed that ozone can change the composition of DOC in the water samples, converting the hydrophobic fractions into hydrophilic ones and resulting in the reduction of THMFP. Also, ozone caused a decrease in particle stability and dissolved calcium concentration. These simultaneous ozonation effects caused improved water flocculation and enhanced removal of DOC. This resulted in reduction of the coagulant dosage when ozone doses higher than 0.2 mg O3/mg DOC were applied prior to coagulation with ferric sulfate. Also, pre-ozonation-coagulation process achieved preferential THMFP removal for all of the ozone doses tested (0-0.8 mg O3/mg DOC), leading to a lower specific THMFP in pre-ozonated-coagulated waters than in the corresponding ozonated waters.
Collapse
Affiliation(s)
- Mehrnaz Sadrnourmohamadi
- Department of Civil Engineering, University of Manitoba, 15 Gillson Street, EITC E1-386, Winnipeg, Manitoba, R3T 5V6 Canada.
| | - Beata Gorczyca
- Department of Civil Engineering, University of Manitoba, 15 Gillson Street, EITC E1-386, Winnipeg, Manitoba, R3T 5V6 Canada
| |
Collapse
|
47
|
Wang P, Zheng JY, Zhang D, Kang YS. Selective construction of junctions on different facets of BiVO4 for enhancing photo-activity. NEW J CHEM 2015. [DOI: 10.1039/c5nj01836f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of p–n and m–s junctions over BiVO4 results in an additional effect for improving photo-activity.
Collapse
Affiliation(s)
- Peng Wang
- Korea Center for Artificial Photosynthesis and Department of Chemistry
- Sogang University
- Seoul 121-742
- Korea
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling
| | - Jin You Zheng
- Korea Center for Artificial Photosynthesis and Department of Chemistry
- Sogang University
- Seoul 121-742
- Korea
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling
- Institute of Oceanology
- Chinese Academy of Sciences
- Qingdao 266071
- China
| | - Young Soo Kang
- Korea Center for Artificial Photosynthesis and Department of Chemistry
- Sogang University
- Seoul 121-742
- Korea
| |
Collapse
|