1
|
Zhao L, Murrieta MF, Padilla JA, Lanzalaco S, Cabot PL, Sirés I. Bimetallic FeCu-MOF derivatives as heterogeneous catalysts with enhanced stability for electro-Fenton degradation of lisinopril. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176110. [PMID: 39265676 DOI: 10.1016/j.scitotenv.2024.176110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
A bimetallic FeCu/NC core-shell catalyst, consisting in nanoparticles where zero-valent Fe and Cu atoms, slightly oxidized on their surface, are encapsulated by carbon has been successfully prepared by modifying the synthesis route of MIL(Fe)-88B. FeCu/NC possessed well-balanced textural and electrochemical properties. According to voltammetric responses, in-situ Fe(III) reduction to Fe(II) by low-valent Cu was feasible, whereas the high double-layer capacitance confirmed the presence of a great number of electroactive sites that was essential for continuous H2O2 activation to •OH via Fenton's reaction. Electrochemical impedance and distribution of relaxation times (DRT) analysis informed about the strong leaching resistance of FeCu/NC. To validate the promising features of this catalyst, the advanced oxidation of the antihypertensive lisinopril (LSN) was investigated for the first time. The heterogeneous electro-Fenton (HEF) treatment of 16.1 mg L-1 LSN solutions was carried out in a DSA/air-diffusion cell. At pH 3, complete degradation was achieved within 6 min using only 0.05 g L-1 FeCu/NC; at near-neutral pH, 100 % removal was also feasible even in actual urban wastewater, requiring 60-75 min. The FeCu/NC catalyst demonstrated high stability, still maintaining 86.5 % of degradation efficiency after 5 cycles and undergoing low iron leaching. It outperformed the monometallic (Fe/NC and Cu/NC) catalysts, which is explained by the Cu(0)/Cu(I)-catalyzed Fe(II) regeneration mechanism that maintains the Fenton's cycle. LC-MS/MS analysis allowed the identification of two main primary LSN by-products. It can then be concluded that the FeCu/NC-based HEF process merits to be further scaled up for wastewater treatment.
Collapse
Affiliation(s)
- Lele Zhao
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María F Murrieta
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José A Padilla
- DIOPMA, Departament de Ciència de Materials i Química Física, Secció de Ciència de Materials, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Departament d'Enginyeria Mecànica, Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Pere L Cabot
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Zhao Y, Wang Y, Ren J, Gong W, Nie X, Peng Y, Li J, Duan C. Atorvastatin causes developmental and behavioral toxicity in yellowstripe goby (Mugilogobius chulae) embryos/larvae via disrupting lipid metabolism and autophagy processes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106909. [PMID: 38593744 DOI: 10.1016/j.aquatox.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Atorvastatin (ATV) is one of the most commonly prescribed lipid-lowering drugs detected frequently in the environment due to its high use and low degradation rate. However, the toxic effects of residual ATV in the aquatic environment on non-target organisms and its toxic mechanisms are still largely unknown. In the present study, embryos of a native estuarine benthic fish, Mugilogobius chulae, were employed to investigate the developmental and behavioral toxic effects of ATV including environmentally relevant concentrations. The aim of this study was to provide a scientific basis for ecological risk assessment of ATV in the aquatic environment by investigating the changes of biological endpoints at multiple levels in M. chulae embryos/larvae. The results showed that ATV had significantly lethal and teratogenic effects on M. chulae embryos/larvae and caused abnormal changes in developmental parameters including hatch rate, body length, heart rate, and spontaneous movement. ATV exposure caused oxidative stress in M. chulae embryos/larvae subsequently inhibited autophagy and activated apoptosis, leading to abnormal developmental processes and behavioral changes in M. chulae embryos/larvae. The disruptions of lipid metabolism, autophagy, and apoptosis in M. chulae embryos/larvae caused by ATV exposure may pose a potential ecological risk at the population level.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Sandré F, Moilleron R, Morin C, Garrigue-Antar L. Comprehensive analysis of a widely pharmaceutical, furosemide, and its degradation products in aquatic systems: Occurrence, fate, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123799. [PMID: 38527585 DOI: 10.1016/j.envpol.2024.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Many pharmaceutical compounds end up in the environment due to incomplete removal by wastewater treatment plants (WWTPs). Some compounds are sometimes present in significant concentrations and therefore represent a risk to the aquatic environment. Furosemide is one of the most widely used drugs in the world. Considered as an essential drug by the World Health Organization, this powerful loop diuretic is used extensively to treat hypertension, heart and kidney failure and many other purposes. However, this important consumption also results in a significant release of furosemide in wastewater and in the receiving environment where concentrations of a few hundred ng/L to several thousand have been found in the literature, making furosemide a compound of great concern. Also, during its transport in wastewater systems and WWTPs, furosemide can be degraded by various processes resulting in the production of more than 74 by-products. Furosemide may therefore present a significant risk to ecosystem health due not only to its direct cytotoxic, genotoxic and hepatotoxic effects in animals, but also indirectly through its transformation products, which are poorly characterized. Many articles classify furosemide as a priority pollutant according to its occurrence in the environment, its persistence, its elimination by WWTPs, its toxicity and ecotoxicity. Here, we present a state-of-the-art review of this emerging pollutant of interest, tracking it, from its consumption to its fate in the aquatic environment. Discussion points include the occurrence of furosemide in various matrices, the efficiency of many processes for the degradation of furosemide, the subsequent production of degradation products following these treatments, as well as their toxicity.
Collapse
Affiliation(s)
- Fidji Sandré
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Régis Moilleron
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Christophe Morin
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France; IUT - Sénart Fontainebleau, 36 Rue Georges Charpak, 77567, Lieusaint, France
| | | |
Collapse
|
4
|
Olvera-Vargas H, Selvam S, Veer R, García-Rodríguez O, Mutnuri S, Lefebvre O. A sustainable activated carbon fiber/TiO 2 cathode for the photoelectro-Fenton treatment of pharmaceutical pollutant enalapril. CHEMOSPHERE 2024; 353:141492. [PMID: 38387665 DOI: 10.1016/j.chemosphere.2024.141492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
In this work, a TiO2-decorated electrode was fabricated by dip coating activated carbon fibers (ACF) with TiO2, which were then used as a cathode for the photoelectro-Fenton (PEF) treatment of the pharmaceutical enalapril, an angiotensin-converting enzyme inhibitor that has been detected in several waterways. The TiO2 coating was found to principally improve the electrocatalytic properties of ACF for H2O2 production via the 2-e- O2 reduction, in turn increasing enalapril degradation by PEF. The effect of the current density on the mineralization of enalapril was evaluated and the highest TOC removal yield (80.5% in 3 h) was obtained at 8.33 mA cm-2, in the presence of 0.5 mmol L-1 of Fe2+ catalyst. Under those conditions, enalapril was totally removed within the first 10 min of treatment with a rate constant k = 0.472 min-1. In contrast, uncoated ACF only achieved 60% of TOC removal in 3 h at 8.33 mA cm-2. A degradation pathway for enalapril mineralization is proposed, based on the degradation by-products identified during treatment. Overall, the results demonstrate the promises of TiO2 cathodes for PEF, a strategy that has often been overlooked in favor of photoelectrocatalysis (PEC) based on TiO2-modified photoanodes.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
| | - Suthan Selvam
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Rishikesh Veer
- Water Sanitation and Hygiene Laboratory, BITS Pilani, KK Birla Goa Campus, NH 17 B, Zuarinagar, Goa, 403726, India
| | - Orlando García-Rodríguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore
| | - Srikanth Mutnuri
- Water Sanitation and Hygiene Laboratory, BITS Pilani, KK Birla Goa Campus, NH 17 B, Zuarinagar, Goa, 403726, India
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, #02-03, T-Lab Building 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
5
|
Zhang ZF, Fan YY, Lu XM, Min XZ, Ma WL, Liu LY, Li YF, Li WL. Seasonal patterns, fate and ecological risk assessment of pharmaceutical compounds in a wastewater treatment plant with Bacillus bio-reactor treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120732. [PMID: 38560954 DOI: 10.1016/j.jenvman.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.
Collapse
Affiliation(s)
- Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Ying-Ying Fan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Xi-Ze Min
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Wadsworth Center, New York State Department of Health, Albany, NY, 12237, United States.
| |
Collapse
|
6
|
Zhao Y, Duan C, Zhang H, Gong W, Wang Y, Ren J, Nie X, Li J. Response of lipid metabolism, energy supply, and cell fate in yellowstripe goby (Mugilogobius chulae) exposed to environmentally relevant concentrations atorvastatin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122991. [PMID: 37995957 DOI: 10.1016/j.envpol.2023.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The usage of typical pharmaceuticals and personal care products (PPCPs) such as cardiovascular and lipid-modulating drugs in clinical care accounts for the largest share of pharmaceutical consumption in most countries. Atorvastatin (ATV), one of the most commonly used lipid-lowering drugs, is frequently detected with lower concentrations in aquatic environments owing to its wide application, low removal, and degradation rates. However, the adverse effects of ATV on non-target aquatic organisms, especially the molecular mechanisms behind the toxic effects, still remain unclear. Therefore, this study investigated the potentially toxic effects of ATV exposure (including environmental concentrations) on yellowstripe goby (Mugilogobius chulae) and addressed the multi-dimensional responses. The results showed that ATV caused typical hepatotoxicity to M. chulae. ATV interfered with lipid metabolism by blocking fatty acid β-oxidation and led to the over-consumption of lipids. Thus, the exposed organism was obliged to alter the energy supply patterns and substrates utilization pathways to keep the normal energy supply. In addition, the higher concentration of ATV exposure caused oxidative stress to the organism. Subsequently, M. chulae triggered the autophagy and apoptosis processes with the help of key stress-related transcriptional regulators FOXOs and Sestrins to degrade the damaged organelles and proteins to maintain intracellular homeostasis.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| |
Collapse
|
7
|
Matijević G, Babić S, Maršavelski A, Stipaničev D, Repec S, Čož-Rakovac R, Klobučar G. Estimating risk of cardiovascular pharmaceuticals in freshwaters using zebrafish embryotoxicity test - statins threat revealed. CHEMOSPHERE 2023; 313:137574. [PMID: 36528155 DOI: 10.1016/j.chemosphere.2022.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular pharmaceuticals (CVPs) are globally present in inland waters and have also been found in the sediment and plasma of fish from the Sava River, Croatia. Based on the previous research, CVPs amiodarone (AMI), ramipril (RAM), simvastatin (SIM), and verapamil (VER) have been selected for this study. Their effect has been investigated, individually and in a mixture, on the development of the zebrafish embryo Danio rerio (Hamilton, 1822) within the first 96 h of development. Upon exposure to environmentally relevant concentrations of tested CVPs (0.1, 1, and 10 μg/L) zebrafish survival and development as apparent from observed morphological abnormalities, heartbeat rates and changes in behavior, hatching success, larval length and oxidative stress level were monitored. The CVP causing the highest mortality and pathological changes was SIM (1 and 10 μg/L), which corresponds well with the observed effects during zebrafish exposure to CVPs' mixtures (4 and 40 μg/L). All pharmaceuticals affected cardiac function and decreased heart rate. SIM (1 μg/L), VER and RAM (10 μg/L) decreased larval length, while induced oxidative stress was recorded in the SIM- and VER-exposed specimens. Behavioral alterations of zebrafish were observed only in AMI-treated group (10 μg/L). Our amino acid sequence comparison and structural and docking analysis showed a highly conserved binding site between human and zebrafish HMG-CoA reductase for SIM and its main metabolite simvastatin acid. Using these ecotoxicological bioassays on a zebrafish model with particular emphasis on sublethal endpoints, the risk of CVPs, especially statins, for fish in inland waters has been identified.
Collapse
Affiliation(s)
- Gabrijela Matijević
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Göran Klobučar
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov Trg 6, Zagreb, Croatia.
| |
Collapse
|
8
|
Photocatalytic Activity of the V 2O 5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process. Molecules 2023; 28:molecules28020655. [PMID: 36677711 PMCID: PMC9863256 DOI: 10.3390/molecules28020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10−65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it.
Collapse
|
9
|
Jovanoski Kostić A, Kanas N, Rajić V, Sharma A, Bhattacharya SS, Armaković S, Savanović MM, Armaković SJ. Evaluation of Photocatalytic Performance of Nano-Sized Sr 0.9La 0.1TiO 3 and Sr 0.25Ca 0.25Na 0.25Pr 0.25TiO 3 Ceramic Powders for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4193. [PMID: 36500815 PMCID: PMC9736647 DOI: 10.3390/nano12234193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Water pollution is a significant issue nowadays. Among the many different technologies for water purification, photocatalysis is a very promising and environment-friendly approach. In this study, the photocatalytic activity of Sr0.9La0.1TiO3 (SLTO) and Sr0.25Ca0.25Na0.25Pr0.25TiO3 (SCNPTO) nano-sized powders were evaluated by degradation of pindolol in water. Pindolol is almost entirely insoluble in water due to its lipophilic properties. The synthesis of the SCNPTO was performed using the reverse co-precipitation method using nitrate precursors, whereas the SLTO was produced by spray pyrolysis (CerPoTech, Trondheim Norway). The phase purity of the synthesized powders was validated by XRD, while HR-SEM revealed particle sizes between 50 and 70 nm. The obtained SLTO and SCNPTO powders were agglomerated but had relatively similar specific surface areas of about 27.6 m2 g-1 and 34.0 m2 g-1, respectively. The energy band gaps of the SCNPTO and SLTO were calculated (DFT) to be about 2.69 eV and 3.05 eV, respectively. The photocatalytic performances of the materials were examined by removing the pindolol from the polluted water under simulated solar irradiation (SSI), UV-LED irradiation, and UV irradiation. Ultra-fast liquid chromatography was used to monitor the kinetics of the pindolol degradation with diode array detection (UFLC-DAD). The SLTO removed 68%, 94%, and 100% of the pindolol after 240 min under SSI, UV-LED, and UV irradiation, respectively. A similar but slightly lower photocatalytic activity was obtained with the SCNPTO under identical conditions, resulting in 65%, 84%, and 93% degradation of the pindolol, respectively. Chemical oxygen demand measurements showed high mineralization of the investigated mixtures under UV-LED and UV irradiation.
Collapse
Affiliation(s)
- Aleksandra Jovanoski Kostić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
| | - Nikola Kanas
- University of Novi Sad, Institute BioSense, 21000 Novi Sad, Serbia
| | - Vladimir Rajić
- University of Belgrade, INS Vinča, Department of Atomic Physics, 11000 Belgrade, Serbia
| | - Annu Sharma
- Nanofunctional Materials Technology Centre, Department of MME, IIT Madras, Chennai 600001, India
| | | | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Maria M. Savanović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Sanja J. Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Separation Method in Biological and Environmental Analysis. Molecules 2022; 27:molecules27092880. [PMID: 35566233 PMCID: PMC9104958 DOI: 10.3390/molecules27092880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-blockers are antihypertensive drugs and can be abused by athletes in some sport competitions; it is therefore necessary to monitor beta-blocker levels in biological samples. In addition, beta-blocker levels in environmental samples need to be monitored to determine whether there are contaminants from the activities of the pharmaceutical industry. Several extraction methods have been developed to separate beta-blocker drugs in a sample, one of which is molecularly imprinted polymer solid-phase extraction (MIP-SPE). MIPs have some advantages, including good selectivity, high affinity, ease of synthesis, and low cost. This review provides an overview of the polymerization methods for synthesizing MIPs of beta-blocker groups. The methods that are still widely used to synthesize MIPs for beta-blockers are the bulk polymerization method and the precipitation polymerization method. MIPs for beta-blockers still need further development, especially since many types of beta-blockers have not been used as templates in the MIP synthesis process and modification of the MIP sorbent is required, to obtain high throughput analysis.
Collapse
|
11
|
Gonçalves NPF, Iezzi L, Belay MH, Dulio V, Alygizakis N, Dal Bello F, Medana C, Calza P. Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149547. [PMID: 34391152 DOI: 10.1016/j.scitotenv.2021.149547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Aliskiren was selected as a compound of potential concern among a suspect screening list of more than 40,000 substances on a basis of high occurrence, potential risk and the absence of information about its environmental fate. This study investigated the photoinduced degradation of aliskiren in river water samples spiked at trace levels exposed to simulated sunlight. A half-life time of 24 h was observed with both direct and indirect photolysis playing a role on pollutant degradation. Its photo-induced transformation involved the formation of six transformation products (TPs), elucidated by LC-HRMS - resulted from the drug hydroxylation, oxidation and moieties loss with subsequent cyclization structurally. The retrospective suspected analysis performed on a total of 754 environmental matrices evidenced the environmental occurrence of aliskiren and two TPs in surface waters (river and seawater), fresh water, sediments and biota. In silico bioassays suggested that aliskiren degradation undergoes thought the formation of TPs with distinct toxicity comparing with the parent compound.
Collapse
Affiliation(s)
| | - Lucia Iezzi
- Department of Chemistry, University of Turin, Torino, Italy
| | - Masho H Belay
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Calza
- Department of Chemistry, University of Turin, Torino, Italy.
| |
Collapse
|
12
|
Castro G, Ramil M, Cela R, Rodríguez I. Assessment of UV combined with free chlorine for removal of valsartan acid from water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143173. [PMID: 33139010 DOI: 10.1016/j.scitotenv.2020.143173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Valsartan acid (VALA) is a persistent and mobile pollutant, ubiquitously distributed in the aquatic environment. Herein, we assessed the efficiency of UV/free chlorine for the removal of this pollutant. Degradation experiments were performed using different water samples, considering several pH values and concentrations of inorganic anions. Time-course of VALA was measured by injection of different reaction time aliquots in a liquid chromatography (LC) triple quadrupole (QqQ) mass spectrometry (MS) system, whilst the study of potential transformation products (TPs) was evaluated by LC combined with a hybrid quadrupole time-of-flight (QTOF) MS system. Formation of volatile disinfection by-products (DBPs) was investigated by gas chromatography (GC) with TOF-MS detection. Compared to free chlorine treatment and UV photolysis, the combination of both parameters significantly enhanced the degradability of VALA. At neutral pH, UV/free chlorine was also more effective than UV/H2O2 to remove VALA from spiked water solutions. Three TPs of VALA were tentatively identified by LC-QTOF-MS, although only one was stable in the UV/free chlorine media. As regards volatile DBPs, the formation of chloroform, dichloroacetonitrile, di- and trichloroacetic acid was noticed. The mass yield of DBPs formation from VALA varied from 0.3% (dichloroacetonitrile) to 1.1% (chloroform). The efficiency of UV/free chlorine was first investigated in spiked solutions with increasing complexities: ultrapure, river and treated wastewater. Thereafter, the feasibility of reducing VALA levels in polluted river water was demonstrated.
Collapse
Affiliation(s)
- G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Zhang K, Zhao Y, Fent K. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: Occurrence, ecotoxicity and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138770. [PMID: 32361434 DOI: 10.1016/j.scitotenv.2020.138770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular drugs and lipid regulating agents have emerged as major groups of environmental contaminants over the past decades. However, knowledge about their occurrence in freshwaters and their ecotoxicity is still limited. Here, we critically summarize the presence of 82 cardiovascular drugs and lipid regulating agents at a global-scale and represent their effects on aquatic organisms. Only about 71% of these pharmaceuticals in use have been analyzed for their residues in aquatic ecosystems and only about 24% for their effects. When detected in surface waters, they occurred at concentrations of dozens to hundreds of ng/L. In wastewaters, they reached up to several μg/L. Effects of cardiovascular drugs and lipid regulating agents have been extensively studied in fish and a few in invertebrates, such as Daphnia magna and mussels. These pharmaceuticals affect cardiac physiology, lipid metabolism, growth and reproduction. Besides, effects on spermatogenesis and neurobehavior are observed. Environmental risks are associated with beta-blockers propranolol, metoprolol, and lipid lowering agents bezafibrate and atorvastatin, where adverse effects (biochemical and transcriptional) occurred partially at surface water concentrations. In some cases, reproductive effects occurred at environmentally relevant concentrations. This review summarizes the state of the art on the occurrence of cardiovascular drugs and lipid regulating agents at a global-scale and highlights their risks to fish. Further research is needed to include more subtle changes on heart function and to explore non-investigated drugs. Their occurrence in freshwaters and impact on a diverse array of aquatic organisms are particularly needed to fully assess their environmental hazards and risks.
Collapse
Affiliation(s)
- Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| |
Collapse
|
14
|
Koçoğlu ES, Sözüdoğru O, Komesli OT, Yılmaz AE, Er EÖ, Bakırdere S. Sensitive Determination of Selected Drug Active Compounds in Wastewater Matrices by LC-QTOF-MS/MS after Vortex Assisted Binary Solvents Dispersive Liquid-Liquid Microextraction. CHEM LETT 2020. [DOI: 10.1246/cl.200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- E. Seda Koçoğlu
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Turkey
| | - Onur Sözüdoğru
- Atatürk University, Department of Environmental Engineering, 25240 Erzurum, Turkey
| | - Okan T. Komesli
- Atatürk University, Department of Environmental Engineering, 25240 Erzurum, Turkey
| | - Alper E. Yılmaz
- Atatürk University, Department of Environmental Engineering, 25240 Erzurum, Turkey
| | - Elif Öztürk Er
- Yıldız Technical University, Department of Chemical Engineering, 34220 İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220 İstanbul, Turkey
| |
Collapse
|
15
|
Identification of Aquifer Recharge Sources as the Origin of Emerging Contaminants in Intensive Agricultural Areas. La Plana de Castellón, Spain. WATER 2020. [DOI: 10.3390/w12030731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In urban, industrial, and agricultural areas, a vast array of contaminants may be found because they are introduced into the aquifers by different recharge sources. The emerging contaminants (ECs) correspond to unregulated contaminants, which may be candidates for future regulation depending on the results of research into their potential effects on health and on monitoring data regarding their occurrence. ECs frequently found in wastewater, such as acetaminophen, carbamazepine, primidone, and sulfamethoxazole, may be good indicators of the introduction of the reclaimed water to the aquifers. The resistance of the ECs to removal in wastewater treatment plants (WWTPs) causes them to be appropriate sewage markers. Plana de Castellón (Spain) is a coastal area that has been characterized by intensive citrus agriculture since the 1970s. Traditionally, in the southern sector of Plana de Castellón, 100% of irrigation water comes from groundwater. In recent years, local farmers have been using a mixture of groundwater and reclaimed water from wastewater treatment plants (WWTPs) to irrigate the citrus. The aims of the present study were: (i) to assess the occurrences, spatial distributions, and concentrations of selected ECs, including 32 antibiotics, 8 UV filters, and 2 nonsteroidal anti-inflammatory drugs, in groundwater in a common agricultural context; (ii) to identify the recharge (pollution) sources acting as the origin of the ECs, and (iii) to suggest ECs as indicators of reclaimed water arrival in detrital heterogeneous aquifers. The obtained data provided relevant information for the management of water resources and elucidated the fate and behavior of emerging contaminants in similar contexts.
Collapse
|
16
|
Godoy AA, Domingues I, de Carvalho LB, Oliveira ÁC, de Jesus Azevedo CC, Taparo JM, Assano PK, Mori V, de Almeida Vergara Hidalgo V, Nogueira AJA, Kummrow F. Assessment of the ecotoxicity of the pharmaceuticals bisoprolol, sotalol, and ranitidine using standard and behavioral endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5469-5481. [PMID: 31853849 DOI: 10.1007/s11356-019-07322-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The pharmaceuticals bisoprolol (BIS), sotalol (SOT), and ranitidine (RAN) are among the most consumed pharmaceuticals worldwide and are frequently detected in different aquatic ecosystems. However, very few ecotoxicity data are available in the literature for them. To help fill these data gaps, toxicity tests with the algae Raphidocelis subcapitata, the macrophyte Lemna minor, the cnidarian Hydra attenuata, the crustacean Daphnia similis, and the fish Danio rerio were performed for assessing the ecotoxicity of these pharmaceuticals. Standard, as well as non-standard endpoint, was evaluated, including the locomotor behavior of D. rerio larvae. Results obtained for SOT and RAN showed that acute adverse effects are not expected to occur on aquatic organisms at the concentrations at which these pharmaceuticals are usually found in fresh surface waters. On the other hand, BIS was classified as hazardous to the environment in the acute III category. Locomotor behavior of D. rerio larvae was not affected by BIS and RAN. A disturbance on the total swimming distance at the dark cycle was observed only for larvae exposed to the highest test concentration of 500 mg L-1 of SOT. D. similis reproduction was affected by BIS with an EC10 of 3.6 (0.1-34.0) mg L-1. A risk quotient (RQ) of 0.04 was calculated for BIS in fresh surface water, considering a worst-case scenario. To the best of our knowledge, this study presents the first chronic toxicity data with BIS on non-target organisms.
Collapse
Affiliation(s)
- Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11,999, Poços de Caldas, MG, 37715-400, Brazil
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luciano Bastos de Carvalho
- Faculty of Economics, Administration and Accounting at Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-905, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo (IFES) Campus Barra de São Francisco, Rua Herculano Fernandes de Jesus, 111-Irmãos Fernandes, Barra de São Francisco, ES, 29800-000, Brazil
| | - Ádria Caloto Oliveira
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Carina Cristina de Jesus Azevedo
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Jeniffer Marins Taparo
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Patrícia Kushim Assano
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Vivien Mori
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | | | | | - Fábio Kummrow
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil.
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, Diadema, SP, 09972-270, Brazil.
| |
Collapse
|
17
|
Tete VS, Nyoni H, Mamba BB, Msagati TA. Occurrence and spatial distribution of statins, fibrates and their metabolites in aquatic environments. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Ccanccapa-Cartagena A, Pico Y, Ortiz X, Reiner EJ. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:355-368. [PMID: 31207525 DOI: 10.1016/j.scitotenv.2019.06.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/18/2023]
Abstract
A single workflow based on three approaches (target, suspected and non-target screening) using liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) in data independent acquisition mode (DIA) was developed to assess the presence of emerging pollutants (EPs) in water and sediments from a Mediterranean River Basin. Identification of potential contaminants was based on mass accuracy, isotopic ratio pattern, theoretical fragmentation, and retention time using Waters UNIFI software. In the suspect screening against a library containing 2200 components, 68 contaminants were tentatively identified, 6 of which were confirmed and quantified with analytical standards. Non-target screening (NTS) required additional manual processing and the aid of an on-line database (ChemSpider) to tentatively identify compounds. Eprosartan, an antihypertensive drug not included in the library used for suspected screening, was confirmed and semi-quantified. The identification of Eprosartan proved the workflow to be functional for NTS. Target screening of 171 pesticides and 33 pharmaceuticals and personal care products (PPCPs) including the compounds confirmed using suspect (6) and non target (1) screening achieved monitoring of the most abundant contaminants from the head to the mouth of the Turia basin to establish their spatial distribution. QTOF-MS screening versatility with its high-resolution capability allows for a comprehensive assessment of EPs in the aquatic environment.
Collapse
Affiliation(s)
- Alexander Ccanccapa-Cartagena
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia, Spain; Escuela Profesional de Antropología, Universidad Nacional de San Agustín de Arequipa¡, Av. Venezuela s/n, 04000 Cercado, Arequipa, Peru.
| | - Yolanda Pico
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia, Spain
| | - Xavier Ortiz
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON M9P 3V6, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, ON M9P 3V6, Canada
| |
Collapse
|
19
|
Hossain MS, Kubec J, Grabicová K, Grabic R, Randák T, Guo W, Kouba A, Buřič M. Environmentally relevant concentrations of methamphetamine and sertraline modify the behavior and life history traits of an aquatic invertebrate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105222. [PMID: 31212248 DOI: 10.1016/j.aquatox.2019.105222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutically active compounds are major contaminants of aquatic environments that show direct and indirect effects on aquatic organisms even at low concentrations. The aim of this study was to assess the effects of the illicit drug methamphetamine and the antidepressant sertraline on clonal marbled crayfish Procambarus virginalis. Crayfish exposed to the environmentally relevant concentrations of methamphetamine of ∼1 μg L-1 did not exhibit significant differences from unexposed controls in distance moved, velocity, and activity level with or without available shelter. Sertraline-exposed (∼1 μg L-1) crayfish were significantly more active, regardless of available shelter, and moved greater distances when shelter was available, compared to control crayfish. Crayfish exposed to methamphetamine and sertraline spent significantly more time outside the shelters compared to controls. Sertraline-exposed crayfish spawned more frequently and showed higher mortality than controls. The results suggest that the low environmental concentrations of the tested compounds could alter the behavior and life history traits of crayfish, resulting in higher reproductive effort and mortality.
Collapse
Affiliation(s)
- Md Shakhawate Hossain
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Jan Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Katerina Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomas Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wei Guo
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
20
|
Castro G, Rodríguez I, Ramil M, Cela R. Selective determination of sartan drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography tandem mass spectrometry. CHEMOSPHERE 2019; 224:562-571. [PMID: 30836251 DOI: 10.1016/j.chemosphere.2019.02.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Herein, a method for the simultaneous determination of the currently prescribed sartan drugs (eprosartan, EPR; olmesartan, OLM; losartan, LOS; candesartan, CAN; telmisartan, TEL; irbesartan, IRB; and valsartan, VAL), and the biodegradation product valsartan acid (VALA), in water samples (raw and treated wastewater, river and tap water) was developed. Solid-phase extraction (SPE) and ultra-performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) were employed as concentration and determination techniques, respectively. Different sorbents and elution solvents were tested for sample preparation. Under optimized conditions, samples at neutral pH (6-8 units) were concentrated using mixed-mode (reversed-phase and anionic exchange) cartridges. Thereafter, the sorbent was washed with 5 mL of a methanol: water (1:1) solution, dried under a nitrogen stream and compounds were eluted with 2 mL of methanol: NH3 (98:2). The accuracy of the method (accounting for SPE efficiency and matrix effects during electrospray ionization) was investigated using solvent-based calibration standards. Global recoveries, obtained for different water matrices (tap, river, treated and raw wastewater), ranged from 82% to 134%, with standard deviations between 2 and 18%. LOQs varied from 2 to 50 ng L-1. Analysis of un-spiked samples confirmed: (1) the incomplete removal of sartans at sewage treatment plants (STPs), (2) the formation of VALA during municipal water treatment, and (3) the presence of VALA in the processed tap water samples. Additional findings of the current study are the detection of hydroxylated derivatives of the sartan drugs IRB and LOS in wastewater, and the E-Z isomerization of EPR in environmental water samples.
Collapse
Affiliation(s)
- G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences. Institute for Research and Food Analysis (IIAA). Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences. Institute for Research and Food Analysis (IIAA). Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences. Institute for Research and Food Analysis (IIAA). Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences. Institute for Research and Food Analysis (IIAA). Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
21
|
Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int J Biol Macromol 2019; 132:244-253. [PMID: 30930264 DOI: 10.1016/j.ijbiomac.2019.03.211] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Many water bodies are being contaminated by atorvastatin, which has certain side effects and problems on healthy individuals through contaminated water. For this purpose, effective and selective carboxymethylcellulose macromolecule iron composite nanoparticles were synthesized by green methods, characterized and used for uptake of atorvastatin drug residue from water. Atorvastatin in water was analyzed by HPLC using Aqua C28 (250 mm × 46 mm id) column and buffer-ACN (35:65, v/v) as eluent. The maximum elimination of atorvastatin was 80% with 40 μg L-1 concentration; 40 min agitated time, 5.0 pH, 1.0 g L-1 dose and 298 K temp. The removal data obeyed Freundlich, Langmuir, Dubinin-Radushkevich and Temkin models. The values of free energy were -8.79, -8.73 and -8.65 kJ mol-1 at 20.0, 25.0 and 30.0 °C temperatures. Enthalpy value was -14.16 kJ mol-1; showing exothermic removal. Entropy was -18.74 × 10-3 kJ mol-1 K; presenting decrease in entropy in the process. The kinetics modeling showed pseudo-first-order and liquid film diffusion mechanisms of removal. The removal technology was quick, conservation pleasant and lucrative. It is because of it capability with little dose and interaction time. Hence, the reported technology is practical for the exclusion of atorvastatin in water resource.
Collapse
|
22
|
Oxazepam Alters the Behavior of Crayfish at Diluted Concentrations, Venlafaxine Does Not. WATER 2019. [DOI: 10.3390/w11020196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pharmaceutically active compounds are only partially removed from wastewaters and hence may be major contaminants of freshwaters. Direct and indirect effects on aquatic organisms are reported at dilute concentrations. This study was focused on the possible effects of environmentally relevant concentrations (~1 µg L−1) of two psychoactive compounds on the behavior of freshwater crayfish. Experimental animals exposed to venlafaxine did not show any behavioral alteration. Crayfish exposed to the benzodiazepine oxazepam exhibited a significant alteration in the distance moved and activity, and the effects were different when individuals were ready for reproduction. Results suggested that even the low concentration of selected psychoactive pharmaceuticals could alter the behavioral patterns of crayfish, as reported for other pharmaceuticals. These results provide new information about the possible adverse effects of pharmaceuticals at dilute concentrations. From previous knowledge and our results, it is obvious that different compounds have different effects and the effects are even specific for different taxa. Detailed studies are therefore needed to assess the possible ecological consequences of particular substances, as well as for their mixtures.
Collapse
|
23
|
Carpinteiro I, Castro G, Rodríguez I, Cela R. Free chlorine reactions of angiotensin II receptor antagonists: Kinetics study, transformation products elucidation and in-silico ecotoxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1000-1010. [PMID: 30180308 DOI: 10.1016/j.scitotenv.2018.08.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Angiotensin II receptor antagonists (ARA II) are widely employed in the treatment of hypertension-related diseases. Because of their partial metabolization and limited biodegradability, these drugs have become ubiquitous pollutants in the aquatic environment, including surface water. This research evaluated the reactivity of the ARA II drugs: irbesartan (IRB), losartan (LOS) telmisartan (TEL) and valsartan (VAL) with free chlorine. Responses of parent compounds and their transformation products (TPs) were followed by liquid chromatography (LC) with quadrupole (Q) time-of-flight (TOF) mass spectrometry. Degradation experiments were carried out using ultrapure and river water samples, adjusted at different pHs and, in some cases, adding a small amount (ng mL-1 level) of bromide salts. Whilst TEL and VAL remained stable in presence of relatively high concentrations of free chlorine (10 mg L-1), IRB and LOS were removed according to a pseudo-first order kinetics model. Considering an initial chlorine concentration of 10 mg L-1, their half-lives varied between 6 and 734 min, depending mostly on the water pH. IRB reacted with free chlorine through hydroxylation processes, with and without molecular cleavage and re-arrangements in the imidazolone ring. Its TPs showed a lower in-silico predicted toxicity than the parent drug. In case of LOS, two major competitive degradation routes were identified. They involved replacement of the methanol group attached to the imidazole cycle by chlorine or bromine, and the cleavage of this cycle with removal of the chlorinated carbon and the nitrogen in alpha position. The TPs generated following the first route are predicted to be more toxic than LOS.
Collapse
Affiliation(s)
- I Carpinteiro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research and Food Analysis (IIAA), Universidade of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research and Food Analysis (IIAA), Universidade of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research and Food Analysis (IIAA), Universidade of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research and Food Analysis (IIAA), Universidade of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Huerta B, Rodriguez-Mozaz S, Lazorchak J, Barcelo D, Batt A, Wathen J, Stahl L. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008-2009 National Rivers and Streams Assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:542-549. [PMID: 29635196 PMCID: PMC6097189 DOI: 10.1016/j.scitotenv.2018.03.387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 05/19/2023]
Abstract
Fish are good indicators of aquatic environment pollution because of their capability to uptake pollutants contained in water. Therefore, accumulation of pharmaceutical compounds in freshwater and marine fish and other aquatic organisms has been studied extensively in the last decade. In this context, the present study investigates the occurrence of pharmaceutical compounds in wild fish from 25 polluted river sites in the USA, downstream from wastewater treatment plants (WWTPs). Sample sites constitute a subset of urban rivers investigated in the U.S. EPA's 2008-2009 National Rivers and Streams Assessment. Thirteen pharmaceuticals (out of the twenty compounds analyzed) were quantified in fish fillets at concentrations commonly below 10ngg-1, in accordance with the findings from previous studies in the USA and Europe. The psychoactive drugs venlafaxine, carbamazepine and its metabolite 2-hydroxy carbamazepine were the most prevalent compounds (58%, 27% and 42%, respectively). This group of drugs is highly prescribed and rather resistant to degradation during conventional treatment in WWTPs as well as in natural aquatic environments. Salbutamol, a drug used to treat asthma, and the diuretic hydrochlorothiazide were also frequently detected (in >20% of the samples). Occurrence of six pharmaceutical families due to chronic exposure at environmental concentrations in water was detected in eight fish species.
Collapse
Affiliation(s)
- Belinda Huerta
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain.
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Jim Lazorchak
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, United States
| | - Damia Barcelo
- Catalan Institute for Water Research (ICRA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Angela Batt
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, United States
| | - John Wathen
- U.S. EPA Office of Water, Office of Science and Technology, 1200 Pennsylvania Ave., NW, Washington D.C. 20460, United States
| | - Leanne Stahl
- U.S. EPA Office of Water, Office of Science and Technology, 1200 Pennsylvania Ave., NW, Washington D.C. 20460, United States
| |
Collapse
|
25
|
Castro G, Carpinteiro I, Rodríguez I, Cela R. Determination of cardiovascular drugs in sewage sludge by matrix solid-phase dispersion and ultra-performance liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2018; 410:6807-6817. [DOI: 10.1007/s00216-018-1268-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
|
26
|
Klimaszyk P, Rzymski P. Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution? WATER MANAGEMENT AND THE ENVIRONMENT: CASE STUDIES 2018. [DOI: 10.1007/978-3-319-79014-5_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
27
|
Ahkola H, Tuominen S, Karlsson S, Perkola N, Huttula T, Saraperä S, Artimo A, Korpiharju T, Äystö L, Fjäder P, Assmuth T, Rosendahl K, Nysten T. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26778-26791. [PMID: 28963646 DOI: 10.1007/s11356-017-0216-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/13/2017] [Indexed: 05/22/2023]
Abstract
Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.
Collapse
Affiliation(s)
- Heidi Ahkola
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland.
| | - Sirkku Tuominen
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Sanja Karlsson
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Noora Perkola
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Timo Huttula
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Sami Saraperä
- Turku Region Water Ltd., Maariankatu 1, 20100, Turku, Finland
| | - Aki Artimo
- Turku Region Water Ltd., Maariankatu 1, 20100, Turku, Finland
| | - Taina Korpiharju
- The Water Protection Association of the River Kokemäenjoki (KVVY), P.O.Box 265, 33101, Tampere, Finland
| | - Lauri Äystö
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Päivi Fjäder
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Timo Assmuth
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Kirsi Rosendahl
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| | - Taina Nysten
- Finnish Environment Institute (SYKE), P.O.Box 140, 00251, Helsinki, Finland
| |
Collapse
|
28
|
Ma H, Bai Y, Li J, Chang YX. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis. Electrophoresis 2017; 39:260-274. [DOI: 10.1002/elps.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Yun Bai
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yan-xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| |
Collapse
|
29
|
Karimi S, Talebpour Z, Adib N. Sorptive thin film microextraction followed by direct solid state spectrofluorimetry: A simple, rapid and sensitive method for determination of carvedilol in human plasma. Anal Chim Acta 2016; 924:45-52. [DOI: 10.1016/j.aca.2016.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/28/2022]
|