1
|
Cai L, Huang H, Li Q, Deng J, Ma X, Zou J, Li G, Chen G. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. CHEMOSPHERE 2023; 329:138696. [PMID: 37062392 DOI: 10.1016/j.chemosphere.2023.138696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The formation characteristics of trihalomethanes (THMs) and haloacetamides (HAcAms) from dissolved organic matter and its fractions were investigated during chlorine-based disinfection processes. The relationships between water quality parameters, fluorescence parameters, and the formation levels of THMs and HAcAms were analyzed. The fractions contributing most to the acute toxicity were identified. The trichloromethane (TCM) generation level (72 h) generally followed the order of Cl2 > NH2Cl > NHCl2 process. The NHCl2 process was superior to the NH2Cl process in controlling TCM formation. Hydrophobic acidic substance (HOA), hydrophobic neutral substance (HON), and hydrophilic substance (HIS) were identified as primary precursors of 2,2-dichloroacetamide and trichloroacetamide during chlorination and chloramination. The formation of TCM mainly resulted from HOA, HON and HIS fractions relatively uniformly, while HOA and HIS fractions contributed more to the formation of bromodichloromethane and dibromomonochloromethane. UV254 could be used as an alternative indicator for the amount of ΣTHMs formed during chlorination and chloramination processes. Dissolved organic nitrogen was a potential precursor of 2,2-dichloroacetamide during chlorination process. The fractions with the highest potential acute toxicity after the chlorination were water-dependent.
Collapse
Affiliation(s)
- Litong Cai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Fujian Metrology Institute, Fujian, Fuzhou, 350003, China.
| | - Huahan Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| |
Collapse
|
2
|
Ho MC, Yang RY, Chen GF, Chen WH. The effect of metformin and drinking water quality variation on haloacetamide formation during chlor(am)ination of acetaminophen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117603. [PMID: 36893720 DOI: 10.1016/j.jenvman.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Acetaminophen (Apap) is widely used and is known to form toxic haloacetamides (HAcAms) during chlorination. Metformin (Met) is a typical medication with usage much higher than that of Apap and its ubiquitous presence in the environment is known. The objective of this study was to investigate the effects of Met which contains multiple amino groups potentially joining reactions and different chlorination methods on HAcAm formation from Apap. In addition, a major drinking water treatment plant (DWTP) using the largest river in southern Taiwan was sampled to study the influence of Apap in a DWTP on the HAcAm formation. Results showed increasing dichloroacetamide (DCAcAm) molar yields of Apap at a Cl/Apap molar ratio of 5 during chlorination (0.15%) and two-step chlorination (0.03%). HAcAms were formed by the chlorine substitution of hydrogen on the methyl group in Apap followed by the cleavage of the bonding between nitrogen and aromatic. While a high Cl/Apap ratio during chlorination led to reactions between chlorine and HAcAms formed decreasing the HAcAm yields, the two-step chlorination further reduced the HAcAm formation during chlorination by a factor of 1.8-8.2. However, Met which limitedly formed HAcAms increased the DCAcAm yields of Apap by 228% at high chlorine dosages during chlorination and by 244% during two-step chlorination. In the DWTP, trichloroacetamide (TCAcAm) formation was important. The formation was positively correlated with NH4+, dissolved organic carbon (DOC), and specific ultraviolet absorbance (SUVA). DCAcAm dominated in the presence of Apap. The DCAcAm molar yields were 0.17%-0.27% and 0.08%-0.21% in the wet and dry seasons, respectively. The HAcAm yields of Apap in the DWTP were limitedly changed between different locations and seasons. Apap could be one important cause for HAcAm formation in a DWTP, as the presence of other pharmaceuticals such as Met possibly worsens the situation in chlorine applications.
Collapse
Affiliation(s)
- Ming-Chuan Ho
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Ying Yang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Guan-Fu Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Augsburger N, Zaouri N, Cheng H, Hong PY. The use of UV/H 2O 2 to facilitate removal of emerging contaminants in anaerobic membrane bioreactor effluents. ENVIRONMENTAL RESEARCH 2021; 198:110479. [PMID: 33212130 DOI: 10.1016/j.envres.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effluent from anaerobic membrane bioreactor (AnMBR) contains ammonia and would require post-polishing treatment before it can be disinfected by chlorine. However, additional post-treatment steps to remove nutrients offset the energetic benefits derived from anaerobic fermentation. The use of chlorine or ozone also promotes concerns associated with disinfection byproducts. This study evaluates UV/H2O2 as a potential strategy suited for the removal of pharmaceutical compounds as well as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from AnMBR effluent. Our findings indicate that 10 mg/L H2O2 and 61.5 mJ/cm2 of UV fluence are able to achieve a 4-log removal of both Escherichia coli PI7 and Klebsiella pneumoniae L7. However, a higher fluence of 311 mJ/cm2 with the same amount of H2O2 would be required to achieve >90% removal of atenolol, carbamazepine and estrone. The removal of the pharmaceutical compounds was driven by the hydroxyl radicals generated from H2O2, while UV exposure governed the inactivation of ARB and ARGs. UV/H2O2 increased overall mutagenicity of the treated wastewater matrix but did not result in any changes to the natural transformation rates. Instead, UV significantly reduced natural transformation rates by means of DNA damage. Overall, UV/H2O2 could be the ideal final disinfection strategy for AnMBR effluent without requiring additional post-treatment prior disinfection.
Collapse
Affiliation(s)
- Nicolas Augsburger
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hong Cheng
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Kanan A, Karanfil T. Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140987. [PMID: 32693285 DOI: 10.1016/j.scitotenv.2020.140987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
To date, several studies have used formation potential (FP) tests to examine the presence of HAN precursors in water and wastewater. However, given the decomposition of HANs with time at elevated free chlorine levels, FP test results do not provide meaningful results. We conducted side-by-side FP and uniform formation condition (UFC) experiments to demonstrate that, in order to obtain practical, meaningful, and representative information about HANs formation and their precursors during chlorination, it is important to conduct experiments and report results under UFC [or simulated distribution system (SDS)] conditions. The results confirmed higher HAN formation under UFC than FP tests during chlorination of the tested two surface water and three wastewater effluent samples, indicating HAN decomposition at high chlorine conditions of FP tests. In addition, the well reported ratio (~10%) of HAN/THM from previous studies was more consistent with the UFC results but was lower than 10% in the FP results. On the other hand, HAN formation during chloramination of the same samples were lower under the UFC than FP conditions. Furthermore, FP tests under both chlorination and chloramination resulted in lower bromine substitution factor. We concluded that reporting results of HANs FP tests are not representative, and future studies should focus on UFC or distribution system specific (SDS) experiments for chlorination. However, chloramination FP tests may still provide some information about the HAN precursors in waters.
Collapse
Affiliation(s)
- Amer Kanan
- Department of Environment and Earth Sciences, Faculty of Science and Technology, Al-Quds University, Palestine
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Science, Clemson University, SC, USA.
| |
Collapse
|
5
|
Qian Y, Hu Y, Chen Y, An D, Westerhoff P, Hanigan D, Chu W. Haloacetonitriles and haloacetamides precursors in filter backwash and sedimentation sludge water during drinking water treatment. WATER RESEARCH 2020; 186:116346. [PMID: 32866929 DOI: 10.1016/j.watres.2020.116346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Haloacetonitriles (HANs) and haloacetamides (HAMs) are nitrogenous disinfection byproducts that are present in filter backwash water (FBW) and sedimentation sludge water (SSW). In many cases FBW and SSW are recycled to the head of drinking water treatment plants. HAN and HAM concentrations in FBW and SSW, without additional oxidants, ranged from 6.8 to 11.6 nM and 2.9 to 3.6 nM of three HANs and four HAMs, respectively. Upon oxidant addition to FBW and SSW under formation potential conditions, concentrations for six HANs and six HAMs ranged from 92.2 to 190.4 nM and 42.2 to 95.5 nM, respectively. Therefore, at common FBW and SSW recycle rates (2 to 10% of treated water flows), the precursor levels in these recycle waters should not be ignored because they are comparable to levels present in finished water. Brominated HAN and chlorinated HAM were the dominant species in FBW and SSW, respectively. The lowest molecular weight ultrafiltration fraction (< 3 kDa) contributed the most to HAN and HAM formations. The hydrophilic (HPI) organic fraction contributed the greatest to HAN precursors in sand-FBW and SSW and were the most reactive HAM precursors in both sand- or carbon-FBWs. Fluorescence revealed that aromatic protein-like compounds were dominant HAN and HAM precursors. Therefore, strategies that remove low molecular weight hydrophilic organic matter and aromatic protein-like compounds will minimize HAN and HAM formations in recycled FBW and SSW.
Collapse
Affiliation(s)
- Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yue Hu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557-0258, United States
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Nishizawa S, Matsushita T, Matsui Y, Shirasaki N. Formation of disinfection by-products from coexisting organic matter during vacuum ultraviolet (VUV) or ultraviolet (UV) treatment following pre-chlorination and their fates after post-chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140300. [PMID: 32783868 DOI: 10.1016/j.scitotenv.2020.140300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Vacuum ultraviolet (VUV) treatment is a promising advanced oxidation process for the removal of organic contaminants during water treatment. Here, we investigated the formation of disinfection by-products from coexisting organic matter during VUV or ultraviolet (UV) treatment following pre-chlorination, and their fates after post-chlorination, in a standard Suwannee River humic acid water and a natural lake water. VUV treatment after pre-chlorination decreased the total trihalomethane (THM) concentration but increased total aldehyde and chloral hydrate concentrations; total haloacetic acid (HAA) and haloacetonitrile (HAN) concentrations did not change. UV treatment after pre-chlorination produced similar changes in the by-products as those observed for VUV treatment, with the exception that the total THM concentration was not changed, and the total HAN concentration was increased. The final concentrations of by-products after post-chlorination were increased by VUV or UV treatment, except for the total HAA concentration, which remained unchanged after UV treatment. The increases were greater after VUV treatment than after UV treatment, probably because the larger amount of hydroxyl radicals generated during VUV treatment compared with during UV treatment transformed coexisting organic matter into precursors of by-products that were then converted to by-products during post-chlorination.
Collapse
Affiliation(s)
- Shota Nishizawa
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Li Y, Jiang J, Li W, Zhu X, Zhang X, Jiang F. Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii. CHEMOSPHERE 2020; 252:126611. [PMID: 32443275 DOI: 10.1016/j.chemosphere.2020.126611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Halogenated disinfection byproducts (DBPs) are formed during chlorine disinfection of drinking water. The complicated natural organic matter in source water causes the formation of an even more complicated mixture of DBPs. To evaluate the toxicity of a DBP mixture in a disinfected water sample, the sample needs to be pretreated in order to attain an observable acute adverse effect in the toxicity test. During sample pretreatment, volatile DBPs including trihalomethanes, haloacetonitriles and haloketones may be lost, which could affect the toxicity evaluation of the DBP mixture. In this study, we intentionally prepared "concentrated" simulated drinking water samples, which contained sufficiently high levels of volatile and nonvolatile DBPs and thus enabled directly evaluating the toxicity of the DBP mixtures without sample pretreatment. Specifically, the natural organic matter and bromide concentrations and the chlorine dose in the concentrated water samples were 250 times higher than those in a typical drinking water sample. Each concentrated water sample was divided into two aliquots, and one of them was nitrogen sparged to eliminate volatile DBPs; then, both aliquots were used directly in a well-established developmental toxicity test. No significant difference (p > 0.10) was found between the developmental toxicity indexes of each concentrated water sample without and with nitrogen sparging, indicating that the contribution of volatile DBPs to the developmental toxicity of the DBP mixture might be marginal. A reasonable interpretation is that nonvolatile halogenated DBPs (especially the aromatic ones) in the DBP mixture could be the major developmental toxicity contributor that warrants more attention.
Collapse
Affiliation(s)
- Yu Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaohu Zhu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Feng Jiang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Kiattisaksiri P, Khan E, Punyapalakul P, Musikavong C, Tsang DCW, Ratpukdi T. Vacuum ultraviolet irradiation for mitigating dissolved organic nitrogen and formation of haloacetonitriles. ENVIRONMENTAL RESEARCH 2020; 185:109454. [PMID: 32278158 DOI: 10.1016/j.envres.2020.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The main objective of this work was to investigate the feasibility of using vacuum ultraviolet (VUV, 185 + 254 nm) and ultraviolet (UV, 254 nm) for the reduction of dissolved organic nitrogen (DON) and haloacetonitrile formation potential (HANFP) of surface water and treated effluent wastewater samples. The results showed that the reduction of dissolved organic carbon (DOC), DON, hydrophobicity (HPO), absorbance at 254 nm (UV254), and fluorescence excitation-emission matrix (FEEM) of both water samples by VUV was higher compared to using UV. The addition of H2O2 remarkably improved the performances of VUV and UV. VUV/H2O2 exhibited the highest removal efficiency for DOC and DON. Even though HANFP increased at the early stage, its concentration decreased (19-72%) at the end of treatment (60 min). Decreases in DON (30-41%) and DOC (51-57%) led to HANFP reduction (53-72%). Moreover, FEEM revealed that substantial reduction in soluble microbial product-like compounds (nitrogen-rich organic) had a strong correlation with HANFP reduction, implying that this group of compounds act as a main precursor of HANs. The VUV/H2O2 system significantly reduced HANFP more than UV/H2O2 and therefore is suitable for controlling HAN precursors and HAN formation in drinking water and reclaimed wastewater.
Collapse
Affiliation(s)
- Pradabduang Kiattisaksiri
- Faculty of Public Health, Thammasat University (Lampang Center), Lampang, 52190, Thailand; International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4015, United States
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering, and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Xu J, Kralles ZT, Hart CH, Dai N. Effects of Sunlight on the Formation Potential of Dichloroacetonitrile and Bromochloroacetonitrile from Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3245-3255. [PMID: 32068383 DOI: 10.1021/acs.est.9b06526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sunlight plays an important role in transforming effluent organic matter as wastewater effluents travel downstream, but the corresponding effects on the formation of haloacetonitriles (HANs), a group of toxic disinfection byproducts, in wastewater-impacted surface water have not been thoroughly investigated. In this study, we observed that sunlight preferentially attenuated the formation potential of bromochloroacetonitrile (BCAN-FP) over that of dichloroacetonitrile (DCAN-FP) in chlorine- and UV-disinfected secondary effluents. For four effluent samples from different plants, 36 h of irradiation by simulated sunlight removed 28-33% of DCAN-FP and 41-48% of BCAN-FP. Across a larger set of effluent samples (n = 18), 8 h of irradiation (equivalent to 2-3 d of natural sunlight) decreased the calculated cytotoxicity contributed by dihaloacetonitrile-FP in most samples. Similar behavior was observed for a mixture of wastewater and surface water (volume ratio 1:1). For UV-disinfected effluents, the higher the UV dose, the more likely was there a reduction in DCAN-FP and BCAN-FP in the subsequent sunlight irradiation. Experiments with model compounds showed that fulvic acid and UV photoproducts of tryptophan yield excited triplet-state organic matters during sunlight irradiation and play an important role in promoting the attenuation of HAN precursors.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Christine H Hart
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Jaichuedee J, Wattanachira S, Musikavong C. Kinetics of the formation and degradation of carbonaceous and nitrogenous disinfection by-products in Bangkok and Songkhla source waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134888. [PMID: 31767322 DOI: 10.1016/j.scitotenv.2019.134888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The kinetics of the formation and degradation of disinfection by-products (DBPs) in the treated water from the Bangkhen and Hatyai water treatment plants in Thailand were investigated. The DBPs studied included trichloromethane (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN), bromochloroacetonitrile (BCAN), and trichloronitromethane (TCNM). When the chlorination time was increased, the levels of TCM, BDCM, DBCM, and TCNM increased, while the levels of TCAN, DCAN, and BCAN decreased. The kinetic rates of DBPs' formation were assessed based on the formation and degradation rates, which were best described by first-order kinetics. TCM had the highest formation rate with a range of rate constants from 5.5 × 10-3 to 7.3 × 10-3 h-1. TCAN had the lowest degradation rate with a range of rate constants from 0.6 × 10-3 to 2.9 × 10-3 h-1. Good correlations were observed between chlorination time and DBPs' formation normalized by LC50, lowest cytotoxicity, and lowest genotoxicity. A high formation rate of TCM and a low degradation rate of TCAN normalized by their toxicity were observed. The optimal retention time providing low DBPs' formation together with high DBPs' degradation was determined. The retention time of three days decreased the sum of the DBPs/LC50, DBPs/lowest cytotoxicity, and DBPs/lowest genotoxicity from a retention time of one day by 40-60%, 45-65%, and 25-36%, respectively.
Collapse
Affiliation(s)
- Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Suraphong Wattanachira
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
11
|
Kozari A, Paloglou A, Voutsa D. Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134449. [PMID: 31639540 DOI: 10.1016/j.scitotenv.2019.134449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the formation potential of emerging DBPs (haloacetonitriles, halonitromethanes and halopropanones) during ozonation and ozonation/hydrogen peroxide treatment and subsequent chlorination of sewage effluent under various experimental conditions. Estimation of possible risk due to DBPs by calculation of cytotoxicity and genotoxicity was attempted. The studied DBPs showed different formation behavior during chlorination, with maximum yields within 0.5-48 h. Maximum cytotoxicity and genotoxicity was observed after 4 h of chlorination with dibromoacetonitrile being the major contributor. Ozonation and O3/H2O2 treatment resulted in increase of trichloronitromethane followed by a decline at higher doses, and reduction of haloacetonitriles. High ozone doses reduced cytotoxicity and genotoxicity of treated effluents. The presence of bromide shifted to bromo-DBPs formation and enhanced both cytotoxicity and genotoxicity. Particulate fraction in effluents significantly contributed to the formation of DBPs and consequently to the their toxicity.
Collapse
Affiliation(s)
- A Kozari
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - A Paloglou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece
| | - D Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 541 24 Thessaloniki, Greece.
| |
Collapse
|
12
|
de Araújo JC, de Queiroz Silva S, de Aquino SF, Freitas DL, Machado EC, Pereira AR, de Oliveira Paranhos AG, de Paula Dias C. Antibiotic Resistance, Sanitation, and Public Health. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Chen H, Lin T, Chen W, Xu H, Tao H. Different removal efficiency of disinfection-byproduct precursors between dichloroacetonitrile (DCAN) and dichloroacetamide (DCAcAm) by up-flow biological activated carbon (UBAC) process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25874-25882. [PMID: 31273652 DOI: 10.1007/s11356-019-05736-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Up-flow biological activated carbon (UBAC) filter has been widely used in waterworks due to its less hydraulic loss, stronger biodegradation ability, and the prevention of excessive biomass growth relative to down-flow BAC treatment. In this study, the different removal efficiency (DRE) of disinfection byproduct precursors between dichloroacetonitrile (DCAN) and dichloroacetamide (DCAcAm) was evaluated when UBAC filter was used as advanced treatment process. Results showed that the UBAC filter with approximately 36 months of usage time had a poor performance in the removal of DCAcAm formation potential (FP) (i.e. 9.3-19.1%) compared to DCAN FP (i.e., 22.5-34.1%). After chlorination of UBAC effluent, the hydrolysis of DCAN to form DCAcAm only partly contributed to the DRE variations of both DCAN FP and DCAcAm FP. Using the high-throughput sequencing technology and the redundancy analysis (RDA), the second dominant genus Bacillus in UBAC filter, which may transform precursors of DCAN into inorganic matters, could be another reason that led to the DRE in DCAN and DCAcAm FP. The formation and leakage of soluble microbial products (SMPs) was identified by excitation-emission matrix (EEM) peak intensities as well as variation of biological index (BIX). The SMPs released into UBAC effluent, favoring the formation of DCAcAm, also contributed to the precursors of both DCAN and DCAcAm, causing a poor removal performance in DCAcAm FP by UBAC filter.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.
- College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
14
|
Jia X, Jin J, Gao R, Feng T, Huang Y, Zhou Q, Li A. Degradation of benzophenone-4 in a UV/chlorine disinfection process: Mechanism and toxicity evaluation. CHEMOSPHERE 2019; 222:494-502. [PMID: 30721807 DOI: 10.1016/j.chemosphere.2019.01.186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the degradation of benzophenone-4 (BP-4) in a UV/chlorine disinfection process, with chlorination and UV disinfection as comparisons. With a degradation efficiency of 80% after 10 s, the UV/chlorine process significantly enhanced the degradation of BP-4. However, a rebound of 36% of the initial concentration was observed in the UV/chlorine process ([free active chlorine (FAC)]0:[BP-4]0 = 1:1, pH = 7). The same tendency appeared under the addition of alkalinity, Cl-, and humic acid (HA). This work interpreted this interesting kinetic tendency from the perspective of mechanism. In fact, the transformation between the chlorinated product P1 and BP-4 was reversible under certain conditions. The inhomogeneous charge distribution of the CCl bond in P1 led to the photolytic dechlorination of P1. This transformation caused an increase in BP-4 concentration. In addition, the increase in the UV light power promoted the photodecomposition of P1 under the experimental condition. In addition, this study evaluated the change in absorbable organic halogens (AOX) and three kinds of toxicity changes in the BP-4 solution after chlorination and the UV/chlorine process, including the acute toxicity of luminescent bacteria, endocrine disrupting effect and cytotoxicity. The UV/chlorine process exhibited lower ecotoxicity than chlorination in water treatment.
Collapse
Affiliation(s)
- Xiaorui Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Jing Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Rui Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Tianyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Yan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
15
|
Zhang Y, Zuo S, Zhang Y, Ren G, Pan Y, Zhang Q, Zhou M. Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:771-777. [PMID: 30739030 DOI: 10.1016/j.jhazmat.2019.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/14/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical and personal care products as one of the micropollutants and bacteria in secondary effluent restrict the water reuse from municipal secondary effluent. Electro-peroxone (EP) process where H2O2 is generated in-situ by electrolysis is an emerging advanced oxidation process and an improvement of traditional peroxone method (O3/H2O2). In this work, a flow-through EP process was compared with ozonation and electrolysis for simultaneous disinfection and degradation of tetracycline (TC). The disinfection effect by EP was higher than the sum of standalone ozone and electrolysis and the coupling coefficient of ozonation and electrolysis in EP process was 1.2. The flow-through EP system presented similar efficiency for separately and simultaneously treating E. coli and TC. For the actual secondary effluent treatment, trihalomethanes, haloacetonitrile and halonitromethanes, the main disinfection by-products, were much lower than the WHO's thresholds for drinking water. TOC and COD removal was 44% and 65%, respectively, at flow rate of 35 mL/min. BOD5, bacteria, pH and other parameters in the effluent could satisfy the recreational landscape water quality standard, and the required energy consumption was 0.47 kW h/m3 at the flow rate 35 mL/min. Most of the degradation products were small-molecule organic acids, and possible degradation pathway of TC was suggested.
Collapse
Affiliation(s)
- Yinqiao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sijin Zuo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Gengbo Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuwei Pan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qizhan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
Hirun-Utok C, Phattarapattamawong S. Degradation and transformation of natural organic matter accountable for disinfection byproduct formations by UV photolysis and UV/chlor(am)ine. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:929-937. [PMID: 31025972 DOI: 10.2166/wst.2018.496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L-1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L-1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.
Collapse
Affiliation(s)
- Chanathip Hirun-Utok
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand E-mail:
| | - Songkeart Phattarapattamawong
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand E-mail: ; Research Program in Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management, Bangkok, Thailand
| |
Collapse
|
17
|
|
18
|
Rizzo L, Agovino T, Nahim-Granados S, Castro-Alférez M, Fernández-Ibáñez P, Polo-López MI. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. WATER RESEARCH 2019; 149:272-281. [PMID: 30465985 DOI: 10.1016/j.watres.2018.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 05/17/2023]
Abstract
Photo-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied. Low PAA doses were found to be effective in the inactivation of antibiotic resistant Escherichia coli (AR E. coli) in GW, with the UV-C process being faster (limit of detection (LOD) achieved for a cumulative energy (QUV) of 0.3 kJL-1 with 0.2 mg PAA L-1) than solar driven one (LOD achieved at QUV = 4.4 kJL-1 with 0.2 mg PAA L-1). Really fast inactivation rates of indigenous AR E. coli were also observed in WW. Higher QUV and PAA initial doses were necessary to effectively remove the three target CECs (carbamazepine (CBZ), diclofenac and sulfamethoxazole), with CBZ being the more refractory one. In conclusion, photo-driven AOP with PAA can be effectively used as tertiary treatment of urban wastewater but initial PAA dose should be optimized to find the best compromise between target bacteria inactivation and CECs removal as well as to prevent scavenging effect of PAA on hydroxyl radicals because of high PAA concentration.
Collapse
Affiliation(s)
- Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Teresa Agovino
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | | | | | - Pilar Fernández-Ibáñez
- CIEMAT-Plataforma Solar de Almeria, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | | |
Collapse
|
19
|
Application of micro-solid-phase extraction for the on-site extraction of heterocyclic aromatic amines in seawater. J Sep Sci 2018; 41:1610-1617. [DOI: 10.1002/jssc.201701137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/09/2017] [Accepted: 12/10/2017] [Indexed: 11/07/2022]
|
20
|
Ding S, Chu W, Bond T, Wang Q, Gao N, Xu B, Du E. Formation and estimated toxicity of trihalomethanes, haloacetonitriles, and haloacetamides from the chlor(am)ination of acetaminophen. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:112-119. [PMID: 28772250 DOI: 10.1016/j.jhazmat.2017.07.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of pharmaceuticals and personal care products (PPCPs) in natural waters, which act as drinking water sources, raises concerns. Moreover, those compounds incompletely removed by treatment have the chance to form toxic disinfection byproducts (DBPs) during subsequent disinfection. In this study, acetaminophen (Apap), commonly used to treat pain and fever, was selected as a model PPCP. The formation of carbonaceous and nitrogenous DBPs, namely trihalomethanes, haloacetonitriles, and haloacetamides, during chlor(am)ination of Apap was investigated. Yields of chloroform (CF), dichloroacetonitrile (DCAN), dicholoacetamide (DCAcAm), and tricholoacetamide (TCAcAm), during chlorination were all higher than from chloramination. The yields of CF continuously increased over 48h during both chlorination and chloramination. During chlorination, as the chlorine/Apap molar ratios increased from 1 to 20, CF yields increased from 0.33±0.02% to 2.52±0.15%, while the yields of DCAN, DCAcAm and TCAcAm all increased then decreased. In contrast, during chloramination, increased chloramine doses enhanced the formation of all DBPs. Acidic conditions favored nitrogenous DBP formation, regardless of chlorination or chloramination, whereas alkaline conditions enhanced CF formation. Two proposed formation mechanisms are presented. The analysed DBPs formed during chlorination were 2 orders of magnitude more genotoxic and cytotoxicity than those from chloramination.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tom Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Qi Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang province, 325035, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu province, 213164, China
| |
Collapse
|
21
|
Du Y, Zhang X, Li C, Wu QY, Huang H, Hu HY. Transformation of DON in reclaimed water under solar light irradiation leads to decreased haloacetamide formation potential during chloramination. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:319-325. [PMID: 28719848 DOI: 10.1016/j.jhazmat.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Reclaimed water is usually stored in rivers or lakes before subsequent use. In storage ecosystems, the natural process of solar light irradiation plays a key role in water quality, altering disinfection byproduct formation potential in later use. This study investigated changes in haloacetamide formation potential (HAcAm FP) during subsequent chloramination when reclaimed water was exposed to solar light irradiation. Significant decreases in HAcAm FP were observed for the solar light irradiated reclaimed water, with reductions of 27%-69% for different haloacetamides. Moreover, transformation of dissolved organic nitrogen (DON) to inorganic nitrogen occurred during irradiation. The application of 15N- labeled monochloramine indicated that the nitrogen source of the decreased HAcAms mainly originated from DON, rather than chloramine. Chloramination of the model compound l-asparagine after irradiation demonstrated that the decreased HAcAms could be attributed to the decrease in DON. After solar light irradiation, the brominated HAcAm FP in the presence of bromide was also reduced, while the bromine incorporation factor remained steady. Overall, this study revealed the contribution of natural processes in controlling HAcAm FP during subsequent chloramination, suggesting solar light irradiation is important to water purification during reclaimed water storage.
Collapse
Affiliation(s)
- Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xue Zhang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, PR China
| | - Chao Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Huang Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, Guangdong, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
22
|
Du Y, Lv XT, Wu QY, Zhang DY, Zhou YT, Peng L, Hu HY. Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review. J Environ Sci (China) 2017; 58:51-63. [PMID: 28774626 DOI: 10.1016/j.jes.2017.01.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs. Genotoxicity by umu-test and estrogenic activity were decreased after chlorination because of destruction of toxic chemicals. During chlorination, water quality significantly impacted changes in toxicity. Ammonium tended to attenuate toxicity changes by reacting with chlorine to form chloramine, while bromide tended to aggravate toxicity changes by forming hypobromous acid. During pretreatment by ozonation and coagulation, disinfection byproduct formation potential (DBPFP) and toxicity formation potential (TFP) occasionally increase, which is accompanied by DOC removal; thus, the decrease of DOC was limited to indicate the decrease of DBPFP and TFP. It is more important to eliminate the key fraction of precursors such as hydrophobic acid and hydrophilic neutrals. During chlorination, toxicities can increase with the increasing chlorine dose and contact time. To control the excessive toxicity formation, a relatively low chlorine dose and short contact time were required. Quenching chlorine residual with reductive reagents also effectively abated the formation of toxic compounds.
Collapse
Affiliation(s)
- Ye Du
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Xiao-Tong Lv
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Da-Yin Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yu-Ting Zhou
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Lu Peng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| |
Collapse
|
23
|
Li Y, Zhang X, Yang M, Liu J, Li W, Graham NJD, Li X, Yang B. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity. CHEMOSPHERE 2017; 168:1302-1308. [PMID: 27919529 DOI: 10.1016/j.chemosphere.2016.11.137] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 05/15/2023]
Abstract
Chlorination is extensively applied for disinfecting sewage effluents, but it unintentionally generates disinfection byproducts (DBPs). Using seawater for toilet flushing introduces a high level of bromide into domestic sewage. Chlorination of sewage effluent rich in bromide causes the formation of brominated DBPs. The objectives of achieving a disinfection goal, reducing disinfectant consumption and operational costs, as well as diminishing adverse effects to aquatic organisms in receiving water body remain a challenge in sewage treatment. In this study, we have demonstrated that, with the same total chlorine dosage, a three-step chlorination (dosing chlorine by splitting it into three equal portions with a 5-min time interval for each portion) was significantly more efficient in disinfecting a primary saline sewage effluent than a one-step chlorination (dosing chlorine at one time). Compared to one-step chlorination, three-step chlorination enhanced the disinfection efficiency by up to 0.73-log reduction of Escherichia coli. The overall DBP formation resulting from one-step and three-step chlorination was quantified by total organic halogen measurement. Compared to one-step chlorination, the DBP formation in three-step chlorination was decreased by up to 23.4%. The comparative toxicity of one-step and three-step chlorination was evaluated in terms of the development of embryo-larva of a marine polychaete Platynereis dumerilii. The results revealed that the primary sewage effluent with three-step chlorination was less toxic than that with one-step chlorination, indicating that three-step chlorination could reduce the potential adverse effects of disinfected sewage effluents to aquatic organisms in the receiving marine water.
Collapse
Affiliation(s)
- Yu Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Huang H, Chen BY, Zhu ZR. Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination. CHEMOSPHERE 2017; 166:126-134. [PMID: 27693873 DOI: 10.1016/j.chemosphere.2016.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The formation of haloacetamides (HAcAms) and haloacetonitriles (HANs) from a solution containing natural organic matter and a secondary effluent sample was evaluated for disinfection by chlorination, chloramination, and chlorination followed by chloramination (Cl2NH2Cl process). The use of preformed monochloramine (NH2Cl) produced higher concentrations of HAcAms and lower concentrations of HANs than chlorination, while the Cl2NH2Cl process produced the highest concentrations of HAcAms and HANs. These results indicate that the Cl2NH2Cl process, which inhibited the formation of regulated trihalomethanes compared with chlorination, enhanced the formation of HAcAms and HANs. For disinfection in the presence of bromide, brominated dihaloacetamides and dihaloacetonitriles were formed, and the trends were similar to those observed for chlorinated species in the absence of bromide. The degrees of bromine substitution of dihaloacetamides and dihaloacetonitriles were highest for chlorination, followed by the Cl2NH2Cl process and then by the NH2Cl process. For the Cl2NH2Cl process, HAN formation kept gradually increasing with prechlorination time increasing from 0 to 120 min, while HAcAm formation increased only until it reached a maximum at around 10-30 min. These results suggest that the prechlorination time could be reduced to control the formation of HAcAms and HANs. During chloramination, the formation of HAcAms and HANs was lower when using preformed NH2Cl than when chloramines were formed in situ, with higher formation of HAcAms and HANs when chlorine was added before ammonia than vice versa for the secondary effluent; this finding suggests that preformed NH2Cl could be used to inhibit the formation of HAcAms and HANs during chloramination.
Collapse
Affiliation(s)
- Huang Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, Guangdong, PR China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, Guangdong, PR China.
| | - Bo-Yi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, PR China
| | - Zi-Ru Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, PR China
| |
Collapse
|
25
|
Kosaka K, Ohkubo K, Akiba M. Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan. WATER RESEARCH 2016; 106:470-476. [PMID: 27770723 DOI: 10.1016/j.watres.2016.10.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
The occurrence of six haloacetamides (HAcAms), which are a group of emerging nitrogenous disinfection byproducts, was investigated in drinking water across Japan in September 2015 and February 2016. At least one of the six HAcAms were found in all of the drinking water samples and their total concentrations ranged from 0.3 to 3.8 μg/L. The detection frequencies and concentrations of 2,2-dichloroacetamide (DCAcAm) and 2-bromo-2-chloroacetamide (BCAcAm) were the largest among the targeted HAcAm species. The total HAcAm concentrations in the raw water after chlorination ranged from 0.8 to 11 μg/L. The bromine incorporation factors (BIFs) of the targeted dihalogenated HAcAms (di-HAcAms) (DCAcAm, BCAcAm, and 2,2-dibromoacetamide) in the drinking water samples correlated well with those in the raw water after chlorination. The total HAcAm concentrations and the BIF of the di-HAcAms in the raw water after chlorination correlated with trihalomethane concentrations. HAcAm concentrations after chlorination increased with chlorination time. While the formation of di-HAcAms after chlorination was higher at higher pH, that of 2,2,2-trichloroacetamide remained unaffected by pH.
Collapse
Affiliation(s)
- Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Keiko Ohkubo
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Michihiro Akiba
- National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| |
Collapse
|
26
|
Abusallout I, Hua G. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation. CHEMOSPHERE 2016; 159:184-192. [PMID: 27289205 DOI: 10.1016/j.chemosphere.2016.05.090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse.
Collapse
Affiliation(s)
- Ibrahim Abusallout
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
27
|
Qian-Yuan W, Chao L, Ye D, Wen-Long W, Huang H, Hong-Ying H. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation. WATER RESEARCH 2016; 95:260-267. [PMID: 27010786 DOI: 10.1016/j.watres.2016.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp.
Collapse
Affiliation(s)
- Wu Qian-Yuan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Li Chao
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Du Ye
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wang Wen-Long
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China.
| | - Hu Hong-Ying
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|