1
|
Zhao Z, Lou W, Zhong D, Shi Y, Zhang F, Wang L, Wu X, Sheng A, Chen J. Time-varying contributions of Fe II and Fe III to As V immobilization under anoxic/oxic conditions: The impacts of biochar and dissolved organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175241. [PMID: 39098410 DOI: 10.1016/j.scitotenv.2024.175241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Engineering black carbon (e.g. biochar) has been widely found in natural environments due to natural processes and extensive applications in engineering systems, and could influence the geochemical processes of coexisting arsenic (AsV) and FeII, especially when they are exposed to oxic conditions. Here, we studied time-varying kinetics and efficiencies of AsV immobilization by solid-phase FeII (FeIIsolid) and FeIII (FeIIIsolid) in FeII-AsV-biochar systems under both anoxic and oxic conditions at pH 7.0, with focuses on the effects of biochar surface and biochar-derived dissolved organic carbon (DOC). Under anoxic conditions, FeII could rapidly immobilize AsV via co-adsorption onto biochar surfaces, which also serves as the dominant pathway of AsV immobilization at the initial stage of reaction (0-5 min) under oxic conditions at high biochar concentrations. Subsequently, with increasing biochar concentrations, FeIIIsolid precipitation from aqueous FeII (FeIIaq) oxidation (5-60 min) starts to play an important role in AsV immobilization but in decreased efficiencies of AsV immobilization per unit iron. In the following stage (60-300 min), FeIIsolid oxidation is suppressed and leads to AsV release into solutions at >1.0 g·L-1 biochar. The decreasing efficiency of AsV immobilization over time is attributed to the gradual release of DOC into solution from biochar particles, which significantly inhibit AsV immobilization when FeIIIsolid is generated from FeIIsolid oxidation in the vicinity of biochar surfaces. Specifically, 4.06 mg·L of biochar-derived DOC can completely inhibit the immobilization of AsV in the 100 μM FeII system under oxic conditions. The findings are crucial to comprehensively understand and predict the behavior of FeII and AsV with coexisting engineering black carbon in natural environments.
Collapse
Affiliation(s)
- Zezhou Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Lou
- Hunan Provincial Engineering Research Center for Resource Recovery and Safe Disposal of Industrial Solid Waste, Hunan Heqing Environmental Technology Company Limited, Changsha 410032, China
| | - Delai Zhong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yao Shi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengjiao Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxu Sheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Chen
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Sun J, Sun Y, Prommer H, Bostick BC, Liu Q, Ma M, Li Z, Liu S, Siade AJ, Li C, Han S, Zheng Y. Sustaining Irrigation Supplies through Immobilization of Groundwater Arsenic In Situ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12653-12663. [PMID: 38916402 PMCID: PMC11251839 DOI: 10.1021/acs.est.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 μg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 μg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Yuqin Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Henning Prommer
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Ma
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Zengyi Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Adam J Siade
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuangbao Han
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Barron A, Jamieson J, Colombani N, Bostick BC, Ortega-Tong P, Sbarbati C, Barbieri M, Petitta M, Prommer H. Model-Based Analysis of Arsenic Retention by Stimulated Iron Mineral Transformation under Coastal Aquifer Conditions. ACS ES&T WATER 2024; 4:2944-2956. [PMID: 39005241 PMCID: PMC11242918 DOI: 10.1021/acsestwater.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.
Collapse
Affiliation(s)
- Alyssa Barron
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Pablo Ortega-Tong
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia; Intera Inc., Perth 6000 WA, Australia
| | - Chiara Sbarbati
- Dept. of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Maurizio Barbieri
- Dept. of Earth Sciences, "Sapienza" University of Roma, Roma 00185, Italy
| | - Marco Petitta
- Dept. of Earth Sciences, "Sapienza" University of Roma, Roma 00185, Italy
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia; Ekion Pty Ltd., Swanbourne 6010 WA, Australia
| |
Collapse
|
4
|
Chen PA, Wang HP, Kuznetsov AM, Masliy AN, Liu S, Chiang CL, Korshin GV. XANES/EXAFS and quantum chemical study of the speciation of arsenic in the condensate formed in landfill gas processing: Evidence of the dominance of As-S species. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130522. [PMID: 37055954 DOI: 10.1016/j.jhazmat.2022.130522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 06/19/2023]
Abstract
The XANES/EXAFS data and quantum chemical simulations presented in this study demonstrate several features of the chemistry of arsenic compounds found in the condensates and solids generated in landfill gas (LFG) processing carried out for renewable natural gas (RNG) production. The XANES data show the decrease in the position of the absorption edge of As atoms, similar to that characteristic for sulfur-containing As solutes and solids. The EXAFS data show that the As-O and As-S distances in these matrixes are similar to those in thioarsenates. Quantum-chemical calculations demonstrated the close agreement between the experimental and modeled As-S and As-O distances determined for a range of methylated and thiolated arsenic solutes. These calculations also showed that the increase of the number of the As-S bonds in the coordination shell of arsenic is accompanied by a consistent decrease of the charges of As atoms. This decrease is correlated with the number of the As-S bonds, in agreement with the trend observed in the XANES data. These results provide insight into the intrinsic chemistry and reactivity of As species present in LFG matrixes; they may be helpful for the development of treatment methods to control arsenic in these systems.
Collapse
Affiliation(s)
- Po-An Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| | - H Paul Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Andrey M Kuznetsov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Alexei N Masliy
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russian Federation
| | - Siqi Liu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| | | | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, USA
| |
Collapse
|
5
|
Chen G, Du Y, Fang L, Wang X, Liu C, Yu H, Feng M, Chen X, Li F. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158801. [PMID: 36115399 DOI: 10.1016/j.scitotenv.2022.158801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The environmental behavior of arsenic (As) is commonly affected by the biogeochemical processes of iron (Fe) and nitrogen (N). In this study, field experiments were conducted to explore As uptake in rice and As translation and distribution in As-contaminated iron-rich paddy soils after applying different forms of N fertilizers, including urea (CO(NH2)2), ammonium bicarbonate (NH4HCO3), nitrate of potash (KNO3), and ammonium bicarbonate + nitrate of potash (NH4HCO3 + KNO3). The results indicated that applying nitrate N fertilizer inhibited the reduction and dissolution of As-bearing iron minerals and promoted microbial-mediated As(III) oxidation in flooded soil, thus reducing the soil As bioavailability. The concentrations of total As and inorganic As ratio (iAs/TAs) in rice grain decreased by 32.4 % and 15.4 %, respectively. However, the application of ammonium nitrogen promoted the reductive dissolution of As-bearing iron minerals and stimulated microbial As(V) reduction in flooded soil, leading to the release of As from soil to porewater. The total As concentration and inorganic As uptake ratio in rice grain increased by 20.1 % and 6.2 %, respectively, when urea was applied, and by 29.6 % and 10.5 %, respectively, when ammonium bicarbonate was applied. However, the simultaneous application of NH4+ and NO3- had no significant effect on As concentration in rice grain and its transformation in paddy soils. Ammonium nitrogen enhanced the organic As concentration in rice grain because the increased As(III) promoted As methylation in soil. In contrast, nitrate decreased the organic As uptake by rice grain because the decreased As(III) diminished As methylation in soil. The results provide reasonable N fertilization strategies for regulating the As biogeochemical process and reducing the risk of As contamination in rice.
Collapse
Affiliation(s)
- Gongning Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiangqin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Huanyun Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Mi Feng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Ning X, Wang S, Zhao B, Long S, Wang Y, Nan Z. Arsenic and nitrate remediation by isolated FeOB strains coupled with additional ferrous iron in the iron-deficient arid soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154057. [PMID: 35217035 DOI: 10.1016/j.scitotenv.2022.154057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Remediation of As(III) by use of Fe(II) oxidation bacteria (FeOB) in iron-rich soils has been reported, but seldom used in the iron-deficient soil of arid areas. This study was aimed at selecting native bacterial strains to remediate As pollution in arid soils, coupled with the addition of Fe(II). The used methods included: The selection of two FeOB strains; XRD for solid phase identification based on peaks; SEM with EDS for morphology identification of newly formed minerals with chemical compositions; XPS for surface chemistry of the minerals; FTIR for functional groups of precipitates and 3DEEM for EPS determination, etc. The results were as follows: Sharp decrement curves of As(III) and NO3- with Fe(II) and total Fe contents and increment of NO2-; NH4+ fluctuating during the experimental period of 11 days; and precipitation of Fe(III) hydroxides together with As(III) with broken FeOBs due to encrustation in the SEM scan. It was concluded that two selected Pseudomonas strains have NAFO functionality by addition of iron as iron reduction-oxidation pair in the arid soil, further potentially fixing NH4+ while As(III) can be effectively remediated through the FeOB participation in forms of adsorption and co-precipitation of Fe(OH)3 through an oxidation of Fe(II) process.
Collapse
Affiliation(s)
- Xiang Ning
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People(')s Republic of China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People(')s Republic of China.
| | - Baojin Zhao
- Department of Environmental Sciences, University of South Africa, c/o Christiaan de Wet Road and Pioneer Avenue, Science Campus, Florida 1709, South Africa; School of Geoscience and Technology, Overseas Expertise Centre for Deep Marine Shale Gas Efficient Development Innovation (111 Centre), Southwest Petroleum University, Chengdu 610500, China
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People(')s Republic of China
| | - Yuqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People(')s Republic of China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People(')s Republic of China
| |
Collapse
|
7
|
Lopez-Adams R, Fairclough SM, Lyon IC, Haigh SJ, Zhang J, Zhao FJ, Moore KL, Lloyd JR. Elucidating heterogeneous iron biomineralization patterns in a denitrifying As(iii)-oxidizing bacterium: implications for arsenic immobilization. ENVIRONMENTAL SCIENCE. NANO 2022; 9:1076-1090. [PMID: 35663418 PMCID: PMC9073584 DOI: 10.1039/d1en00905b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic nitrate-dependent iron(ii) oxidation is a process common to many bacterial species, which promotes the formation of Fe(iii) minerals that can influence the fate of soil and groundwater pollutants, such as arsenic. Herein, we investigated simultaneous nitrate-dependent Fe(ii) and As(iii) oxidation by Acidovorax sp. strain ST3 with the aim of studying the Fe biominerals formed, their As immobilization capabilities and the metabolic effect on cells. X-ray powder diffraction (XRD) and scanning transmission electron microscopy (STEM) nanodiffraction were applied for biomineral characterization in bulk and at the nanoscale, respectively. NanoSIMS (nanoscale secondary ion mass spectrometry) was used to map the intra and extracellular As and Fe distribution at the single-cell level and to trace metabolically active cells, by incorporation of a 13C-labeled substrate (acetate). Metabolic heterogeneity among bacterial cells was detected, with periplasmic Fe mineral encrustation deleterious to cell metabolism. Interestingly, Fe and As were not co-localized in all cells, indicating delocalized sites of As(iii) and Fe(ii) oxidation. The Fe(iii) minerals lepidocrocite and goethite were identified in XRD, although only lepidocrocite was identified via STEM nanodiffraction. Extracellular amorphous nanoparticles were formed earlier and retained more As(iii/v) than crystalline "flakes" of lepidocrocite, indicating that longer incubation periods promote the formation of more crystalline minerals with lower As retention capabilities. Thus, the addition of nitrate promotes Fe(ii) oxidation and formation of Fe(iii) biominerals by ST3 cells which retain As(iii/v), and although this process was metabolically detrimental to some cells, it warrants further examination as a viable mechanism for As removal in anoxic environments by biostimulation with nitrate.
Collapse
Affiliation(s)
- Rebeca Lopez-Adams
- Department of Earth and Environmental Sciences, University of Manchester Manchester UK
| | - Simon M Fairclough
- Department of Materials, University of Manchester Manchester UK
- Department of Materials Science and Metallurgy, University of Cambridge Cambridge UK
| | - Ian C Lyon
- Department of Earth and Environmental Sciences, University of Manchester Manchester UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester Manchester UK
| | - Jun Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing China
| | - Katie L Moore
- Department of Materials, University of Manchester Manchester UK
- Photon Science Institute, University of Manchester Manchester UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester Manchester UK
| |
Collapse
|
8
|
Li S, Liao Y, Pang Y, Dong X, Strous M, Ji G. Denitrification and dissimilatory nitrate reduction to ammonia in long-term lake sediment microcosms with iron(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150835. [PMID: 34627917 DOI: 10.1016/j.scitotenv.2021.150835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate is an abundant pollutant in aquatic environments. Competition between the nitrate reduction processes, denitrification, which converts nitrate into nitrogen gas, and dissimilatory nitrate reduction to ammonia (DNRA), which converts nitrate into ammonia, decides whether an ecosystem removes or retains nitrogen. The presence of iron was previously reported to stimulate DNRA while sometimes inhibiting denitrification in in-situ studies, but long-term effect of iron(II) inputs on the competition is unknown. Here we inoculated long-term microcosms with sediments from two freshwater lakes. During 540 days of incubations, the microcosms with nitrate and Fe(II) additions of both lakes were able to sustain high nitrate reduction rates. Lepidocrocite was produced as a product of iron oxidation. We found both denitrification and DNRA were stimulated by nitrate and iron in the absence of external organic carbon addition. Phylogenetic analysis of denitrification genes, nirK and nirS, and DNRA genes, nirB and nrfA, was performed with metagenomic sequencing results. Enrichment was shown for reported Fe(II)-dependent nitrate reducers associated with nirS and nirB. Most of these bacteria are affiliated with Betaproteobacteria. From 16S rRNA gene analysis, Betaproteobacteria was enriched as well. In parallel, heterotrophic denitrifiers and methanotrophic DNRA archaea increased in abundance. Our results suggested heterotrophic and Fe(II)-dependent nitrate reducers both contributed to denitrification and DNRA in long-term microcosm incubations provided with iron.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Barron A, Sun J, Passaretti S, Sbarbati C, Barbieri M, Colombani N, Jamieson J, Bostick BC, Zheng Y, Mastrocicco M, Petitta M, Prommer H. In situ arsenic immobilisation for coastal aquifers using stimulated iron cycling: Lab-based viability assessment. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2022; 136:105155. [PMID: 34955596 PMCID: PMC8699153 DOI: 10.1016/j.apgeochem.2021.105155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is one of the most harmful and widespread groundwater contaminants globally. Besides the occurrence of geogenic As pollution, there is also a large number of sites that have been polluted by anthropogenic activities, with many of those requiring active remediation to reduce their environmental impact. Cost-effective remedial strategies are however still sorely needed. At the laboratory-scale in situ formation of magnetite through the joint addition of nitrate and Fe(II) has shown to be a promising new technique. However, its applicability under a wider range of environmental conditions still needs to be assessed. Here we use sediment and groundwater from a severely polluted coastal aquifer and explore the efficiency of nitrate-Fe(II) treatments in mitigating dissolved As concentrations. In selected experiments >99% of dissolved As was removed, compared to unamended controls, and maintained upon addition of lactate, a labile organic carbon source. Pre- and post experimental characterisation of iron (Fe) mineral phases suggested a >90% loss of amorphous Fe oxides in favour of increased crystalline, recalcitrant oxide and sulfide phases. Magnetite formation did not occur via the nitrate-dependent oxidation of the amended Fe(II) as originally expected. Instead, magnetite is thought to have formed by the Fe(II)-catalysed transformation of pre-existing amorphous and crystalline Fe oxides. The extent of amorphous and crystalline Fe oxide transformation was then limited by the exhaustion of dissolved Fe(II). Elevated phosphate concentrations lowered the treatment efficacy indicating joint removal of phosphate is necessary for maximum impact. The remedial efficiency was not impacted by varying salinities, thus rendering the tested approach a viable remediation method for coastal aquifers.
Collapse
Affiliation(s)
- Alyssa Barron
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | | | - Chiara Sbarbati
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | | | | | - James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| | | | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen (China)
| | | | - Marco Petitta
- Dept. of Earth Sciences, “Sapienza” University of Roma, Roma, Italy
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley, WA, Australia
- CSIRO Land and Water, Wembley Australia
| |
Collapse
|
10
|
Sun Y, Sun J, Nghiem AA, Bostick BC, Ellis T, Han L, Li Z, Liu S, Han S, Zhang M, Xia Y, Zheng Y. Reduction of iron (hydr)oxide-bound arsenate: Evidence from high depth resolution sampling of a reducing aquifer in Yinchuan Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124615. [PMID: 33310320 PMCID: PMC7937834 DOI: 10.1016/j.jhazmat.2020.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 05/10/2023]
Abstract
Sediment in fluvial-deltaic plains with high-As groundwater is heterogenous but its characterization of As and Fe oxidation states lacks resolution, and is rarely attempted for aqueous and solid phases simultaneously. Here, we pair high-resolution (> 1 sample/meter) Fe extended fine-structure spectroscopy (EXAFS, n = 40) and As X-ray absorption near-edge spectroscopy (XANES, n = 49) with groundwater composition and metagenomics measurements for two sediment cores and their associated wells (n = 8) from the Yinchuan Plain in northwest China. At shallower depths, nitrate and Mn/Fe reducing sediment zones are fine textured, contain 9.6 ± 5.6 mg kg-1 of As(V) and 2.3 ± 2.7 mg kg-1 of As(III) with 9.1 ± 8.1 g kg-1 of Fe(III) (hydr)oxides, with bacterial genera capable of As and Fe reduction identified. In four deeper 10-m sections, sulfate-reducing sediments are coarser and contain 2.6 ± 1.3 mg kg-1 of As(V) and 1.1 ± 1.0 mg kg-1 of As(III) with 3.2 ± 2.6 g kg-1 of Fe(III) (hydr)oxides, even though groundwater As concentrations can exceed 200 μg/L, mostly as As(III). Super-enrichment of sediment As (42-133 mg kg-1, n = 7) at shallower depth is due to redox trapping during past groundwater discharge. Active As and Fe reduction is supported by the contrast between the As(III)-dominated groundwater and the As(V)-dominated sediment, and by the decreasing sediment As(V) and Fe(III) (hydr)oxides concentrations with depth.
Collapse
Affiliation(s)
- Yuqin Sun
- College of Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Athena A Nghiem
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Benjamin C Bostick
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Long Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuangbao Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Peli M, Bostick BC, Barontini S, Lucchini RG, Ranzi R. Profiles and species of Mn, Fe and trace metals in soils near a ferromanganese plant in Bagnolo Mella (Brescia, IT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143123. [PMID: 33160660 DOI: 10.1016/j.scitotenv.2020.143123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
For the last forty-five years (from 1974 to present) ferroalloy production in Bagnolo Mella, Northern Italy, has generated particulate emissions enriched in potentially toxic metals and metalloids including arsenic (As), lead (Pb) and manganese (Mn). Of these, Mn is unique in that it has a significant background concentration and is seldom studied as a contaminant but is potentially a significant toxin derived from dusts regionally. Here we examine the distribution, redistribution, speciation and bioavailability of the Mn-contaminated top soils affected by atmospheric emissions adjacent to the ferroalloy plant. Four sites, variably located in the study area in terms of both distance and direction from the plant, were considered as representative of increasing levels of industrial influence. Soil profiles showed that metal concentrations (measured by X-ray fluorescence) varied considerably by location, i.e. higher in the sites closer to the plant and also at the surface level, although distributed throughout the top 15 cm, suggesting appreciable redistribution possibly due to soil mixing or infiltration. Most metal concentrations were correlated, except Mn which was independent and more variable across the sites than the other elements. Sequential chemical extractions indicated that Pb was primarily associated with Mn oxides, while As was most significantly associated with iron oxides. When Mn concentration significantly exceeded background levels, it was present in phases that were resistant to acid dissolution, very different from typical uncontaminated soils. X-ray Absorption Near Edge Spectroscopy (XANES) analyses suggested this recalcitrant Mn phase is likely a Mn-bearing spinel such as magnetite, that can be particularly toxic if ingested or inhaled. These first results highlight the legacy of ferroalloy production on surrounding soils, as well as the importance of Mn speciation for soil apportionment evaluation and human exposure estimation.
Collapse
Affiliation(s)
- Marco Peli
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University; 61 Route 9W - PO Box 1000, Palisades, NY 10964-8000, USA.
| | - Stefano Barontini
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| | - Roberto G Lucchini
- Dipartimento di Specialità Medico Chirurgiche, Scienze Radiologiche e Sanità Pubblica, DSMC - Università dezgli Studi di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy; Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 17 E 102 St Floor Third - West Tower, New York, NY 10029, USA.
| | - Roberto Ranzi
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, DICATAM - Università degli Studi di Brescia; via Branze 43, 25123 Brescia, BS, Italy.
| |
Collapse
|
12
|
Tang R, Prommer H, Yuan S, Wang W, Sun J, Jamieson J, Hu ZH. Enhancing Roxarsone Degradation and In Situ Arsenic Immobilization Using a Sulfate-Mediated Bioelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:393-401. [PMID: 33301302 DOI: 10.1021/acs.est.0c06781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Roxarsone (ROX) is widely used in animal farms, thereby producing organoarsenic-bearing manure/wastewater. ROX cannot be completely degraded and nor can its arsenical metabolites be effectively immobilized during anaerobic digestion, potentially causing arsenic contamination upon discharge to the environment. Herein, we designed and tested a sulfate-mediated bioelectrochemical system (BES) to enhance ROX degradation and in situ immobilization of the released inorganic arsenic. Using our BES (0.5 V voltage and 350 μM sulfate), ROX and its metabolite, 4-hydroxy-3-amino-phenylarsonic acid (HAPA), were completely degraded within 13-22 days. In contrast, the degradation efficiency of ROX and HAPA was <85% during 32-day anaerobic digestion. In a sulfate-mediated BES, 75.0-83.2% of the total arsenic was immobilized in the sludge, significantly more compared to the anaerobic digestion (34.1-57.3%). Our results demonstrate that the combination of sulfate amendment and voltage application exerted a synergetic effect on enhancing HAPA degradation and sulfide-driven arsenic precipitation. This finding was further verified using real swine wastewater. A double-cell BES experiment indicated that As(V) and sulfate were transported from the anode to the cathode chamber and coprecipitated as crystalline alacranite in the cathode chamber. These findings suggest that the sulfate-mediated BES is a promising technique for enhanced arsenic decontamination of organoarsenic-bearing manure/wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - James Jamieson
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
14
|
Qian Y, Qin C, Chen M, Lin S. Nanotechnology in soil remediation - applications vs. implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110815. [PMID: 32559688 DOI: 10.1016/j.ecoenv.2020.110815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials (ENMs) and nanotechnology have shown great potential in addressing complex problems and creating innovative approaches in soil remediation due to their unique features of high reactivity, selectivity and versatility. Meanwhile, valid concerns exist with regard to their implications towards the terrestrial environment and the ecosystem. This review summarizes: (i) the applications and the corresponding mechanisms of various types of ENMs for soil remediation; (ii) the environmental behavior of ENMs in soils and their interactions with the soil content; (iii) the environmental implications of ENMs during remedial applications. The overall objective is to promote responsible innovations so as to take optimal advantage of ENMs and nanotechnology while minimizing their adverse effects to the ecological system. It is critical to establish sustainable remediation methods that ensure a healthy and safe environment without bringing additional risk.
Collapse
Affiliation(s)
- Yuting Qian
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Caidie Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Shi Z, Hu S, Lin J, Liu T, Li X, Li F. Quantifying Microbially Mediated Kinetics of Ferrihydrite Transformation and Arsenic Reduction: Role of the Arsenate-Reducing Gene Expression Pattern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6621-6631. [PMID: 32352764 DOI: 10.1021/acs.est.9b07137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The behavior of arsenic (As) is usually coupled with iron (Fe) oxide transformation and mediated by both abiotic reactions and microbial processes in the environment. However, quantitative models for the coupled kinetic processes, which specifically consider the arsenate-reducing gene expression correspondent to different reaction conditions, are lacking. In this study, based on the pure cultured Shewanella putrefaciens incubation experiments, extended X-ray absorption fine structure spectroscopy, high resolution transmission electron microscopy, and a suite of microbial analyses, we developed a coupled kinetics model for microbially mediated As reduction and Fe oxide transformation and specifically quantified the As(V) reduction rate coefficients based on the expression patterns of arrA genes. The model reasonably described the temporal changes of As speciation and distribution. The microbial reduction rates of As(V) varied dramatically during the reactions, which were well represented by the varying transcript abundances of arrA genes at different As concentrations. The contributions of biotic and abiotic reactions to the overall reaction rates were assessed. The results improved our quantitative understanding on the key role of As(V)-reducing genes in regulating the speciation and distribution of As. The kinetic modeling approaches based on microbial gene expression patterns are promising for developing comprehensive biogeochemical models of As involving multiple coupled reactions.
Collapse
Affiliation(s)
- Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shiwen Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jingyi Lin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| |
Collapse
|
16
|
Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114124. [PMID: 32078878 DOI: 10.1016/j.envpol.2020.114124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Collapse
Affiliation(s)
- Aditi Bagade
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Vinod Nandre
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Yugendra Patil
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Nisha Sharma
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
17
|
Nghiem AA, Stahl MO, Mailloux BJ, Mai TT, Trang PT, Viet PH, Harvey CF, van Geen A, Bostick BC. Quantifying Riverine Recharge Impacts on Redox Conditions and Arsenic Release in Groundwater Aquifers Along the Red River, Vietnam. WATER RESOURCES RESEARCH 2019; 55:6712-6728. [PMID: 34079149 PMCID: PMC8168572 DOI: 10.1029/2019wr024816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Widespread contamination of groundwater with geogenic arsenic is attributed to microbial dissolution of arsenic-bearing iron (oxyhydr)oxides minerals coupled to the oxidation of organic carbon. The recharge sources to an aquifer can influence groundwater arsenic concentrations by transport of dissolved arsenic or reactive constituents that affect arsenic mobilization. To understand how different recharge sources affect arsenic contamination-in particular through their influence on organic carbon and sulfate cycling-we delineated and quantified recharge sources in the arsenic affected region around Hanoi, Vietnam. We constrained potential end-member compositions and employed a novel end-member mixing model using an ensemble approach to apportion recharge sources. Groundwater arsenic and dissolved organic carbon concentrations are controlled by the dominant source of recharge. High arsenic concentrations are prevalent regardless of high dissolved organic carbon or ammonium levels, indicative of organic matter decomposition, where the dominant recharge source is riverine. In contrast, high dissolved organic carbon and significant organic matter decomposition are required to generate elevated groundwater arsenic where recharge is largely nonriverine. These findings suggest that in areas of riverine recharge, arsenic may be efficiently mobilized from reactive surficial environments and carried from river-aquifer interfaces into groundwater. In groundwaters derived from nonriverine recharge areas, significantly more organic carbon mineralization is required to obtain equivalent levels of arsenic mobilization within inland sediments. This method can be broadly applied to examine the connection between hydrology, geochemistry and groundwater quality.
Collapse
Affiliation(s)
- Athena A Nghiem
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Mason O Stahl
- Department of Geology, Union College, Schenectady, NY, USA
| | - Brian J Mailloux
- Department of Environmental Sciences, Barnard College, New York, NY, USA
| | - Tran Thi Mai
- Research Centre for Environmental Technology and Sustainable Development, Hanoi University of Science and Technology, Vietnam National University, Hanoi, Vietnam
| | - Pham Thi Trang
- Research Centre for Environmental Technology and Sustainable Development, Hanoi University of Science and Technology, Vietnam National University, Hanoi, Vietnam
| | - Pham Hung Viet
- Research Centre for Environmental Technology and Sustainable Development, Hanoi University of Science and Technology, Vietnam National University, Hanoi, Vietnam
| | - Charles F Harvey
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| |
Collapse
|
18
|
Xiu W, Yu X, Guo H, Yuan W, Ke T, Liu G, Tao J, Hou W, Dong H. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt Bio-bi-minerals). CHEMOSPHERE 2019; 225:755-764. [PMID: 30903849 DOI: 10.1016/j.chemosphere.2019.02.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Biogenic iron(III) minerals (BIM) widely occur in aquatic systems. However, characteristics and mechanisms of As sequestration by biogenic biphasic Fe(III) minerals (Bio-bi-minerals) are not clearly understood. We investigated characteristics of Bio-bi-minerals induced by Pseudogulbenkiania sp. strain 2002 and explored their As sequestration mechanisms by monitoring particle morphology, mineralogical composition, and As binding properties. Results showed that Fe(II) oxidation (about 3 mM) by Pseudogulbenkiania sp. strain 2002 under growth condition produced biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt Bio-bi-minerals), which showed better performance in As immobilization compared to corresponding biogenic monophasic Fe(III) minerals (Bio-mono-minerals). Decreased particle size, increased abundance of ferrihydrite and occurrence of bidentate mononuclear edge-sharing (2E) and monodentate mononuclear edge-sharing As complexes (1V) contributed to enhanced As immobilization by Fh-Gt Bio-bi-minerals. We suggest that the Bio-bi-minerals have the potential to illuminate As biogeochemical cycles in aquatic systems and to remediate As and nitrate co-contaminated groundwater.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiaonuo Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wenjie Yuan
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Tiantian Ke
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Guangyao Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China; State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, PR China
| | - Jing Tao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Department of Chemistry and Life Science, Anshan Normal College, Anshan 114016, PR China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
19
|
Wang H, Liang D, Wang YN, Sun Y, Li W, Zhang D, Tsang YF, Pan X. Fabricating biogenic Fe(III) flocs from municipal sewage sludge using NAFO processes: Characterization and arsenic removal ability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:268-274. [PMID: 30347345 DOI: 10.1016/j.jenvman.2018.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 07/11/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
This study involved fabricating biogenic Fe(III) flocs enriched from municipal sludge using microbial nitrate-dependent anaerobic Fe(II)-oxidizing (NAFO) processes. The research focused on bacterial community compositions and physicochemical properties of the biogenic Fe(III) flocs and their ability to adsorb arsenic (As). High-throughput sequencing analysis showed that significant microbial succession occurs in the raw sludge after the NAFO processes. The predominant bacterial communities in the biogenic Fe(III) flocs included Rhodanobacter, Parvibaculum, Gemmatimonas and Segetibacter genera. Microscopic and spectroscopic analyses included scanning electron microscopy - energy disperse spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. These tests indicated that biogenic Fe(III) flocs were a mixture of NAFO bacteria and nanosized, poorly crystalline Fe(III) oxide particles. Batch experiments showed that after 120 min of reaction time, more than 95% of As(III) and As(V) (at an initial concentrations of 0.25 mg/L) were effectively removed with 120 ppm biogenic Fe(III) flocs. In addition, biogenic Fe(III) flocs removed As more effectively than abiotic Fe(III) flocs. These findings indicated that biogenic Fe(III) flocs produced from municipal sludge using NAFO processes performed well in removing As.
Collapse
Affiliation(s)
- Huawei Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Dandan Liang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Ya-Nan Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yingjie Sun
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Weihua Li
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Daoyong Zhang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China.
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
20
|
Sun J, Bostick BC, Mailloux BJ, Jamieson J, Yan B, Pitiranggon M, Chillrud SN. Arsenic mobilization from iron oxides in the presence of oxalic acid under hydrodynamic conditions. CHEMOSPHERE 2018; 212:219-227. [PMID: 30144683 PMCID: PMC6431252 DOI: 10.1016/j.chemosphere.2018.08.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 05/28/2023]
Abstract
Oxalic acid potentially enhances pump-and-treat for groundwater As remediation by accelerating mobilization. This study examines how oxalic acid mobilizes As from Fe(III)-oxide coated sand under hydrodynamic conditions. Four columns were packed with metal-substituted ferrihydrite or goethite to 1% Fe, presorbed to 50% As surface coverage, and reacted with pH = 2.2 artificial groundwater amended with 10 mM oxalic acid at 1 m day-1. Arsenic elution was affected by both As and Fe speciation. Although the As(V) columns experienced faster substrate dissolution, As(V) elution was delayed by re-adsorption, whereas As(III) elution was rapid due to pH decrease that prevented re-adsorption. Cr-ferrihydrite and Ni-goethite dissolved both effectively initially but then diverged. The Cr-ferrihydrite columns experienced continuous stoichiometric Fe and Cr release, and As release could be sustained. The Ni-goethite columns initially experienced nonstoichiometric Fe and Ni release, and As release was extensive. Such release, however, was not sustained. We hypothesized that Ni-goethite contained sites with distinct reactivity, and oxalic acid targeted readily-dissolved, sorption-dense sites. Our data indicate that oxalic acid-enhanced pump-and-treat methods would be easier to apply to aquifers dominated by As(III), requiring less amendment to be injected; such oxalic acid-enhanced methods remove reactive sediment Fe and As, potentially preventing future groundwater contamination.
Collapse
Affiliation(s)
- Jing Sun
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States; School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Brian J Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, NY 10027, United States
| | - James Jamieson
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Masha Pitiranggon
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, United States.
| |
Collapse
|
21
|
Park S, Lee JH, Shin TJ, Hur HG, Kim MG. Adsorption and Incorporation of Arsenic to Biogenic Lepidocrocite Formed in the Presence of Ferrous Iron during Denitrification by Paracoccus denitrificans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9983-9991. [PMID: 30111094 DOI: 10.1021/acs.est.8b02101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate adsorption and partial incorporation of arsenic, in its soluble form, either as arsenite or arsenate into lepidocrocite (γ-FeOOH), which was formed through nitrite-driven Fe(II) oxidation by Paracoccus denitrificans under nitrate-reducing conditions. Fe and As K-edge XANES and radial distribution functions of Fourier-transformed EXAFS spectra showed that portions of As were found to be incorporated in the biogenic lepidocrocite, in addition to higher portions of adsorbed As. We suggest that denitrifying bacteria such as Paracoccus denitrificans, studied here, could facilitate decrease of aqueous arsenic As(III) and/or As(V) through indirect Fe(II) oxidation to solid phase iron minerals, here as lepidocrocite, by the denitrification product nitrite in the presence of nitrate, ferrous iron, and arsenic, under certain environmental conditions where these materials could be found, such as in As-contaminated paddy soils and wetlands.
Collapse
Affiliation(s)
- Sunhwa Park
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Min Gyu Kim
- Pohang Accelerator Laboratory (PAL) , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| |
Collapse
|
22
|
Sun J, Frommer H, Siade AJ, Chillrud SN, Mailloux BJ, Bostick BC. Model-Based Analysis of Arsenic Immobilization via Iron Mineral Transformation under Advective Flows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9243-9253. [PMID: 30039966 PMCID: PMC6429028 DOI: 10.1021/acs.est.8b01762] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent laboratory studies have demonstrated that coinjection of nitrate and Fe(II) (as ferrous sulfate) to As-bearing sediments can produce an Fe mineral assemblage containing magnetite capable of immobilizing advected As under a relatively wide range of aquifer conditions. This study combined laboratory findings with process-based numerical modeling approaches, to quantify the observed Fe mineral (trans)formation and concomitant As partitioning dynamics and to assess potential nitrate-Fe(II) remediation strategies for field implementation. The model development was guided by detailed solution and sediment data from our well-controlled column experiment. The modeling results demonstrated that the fate of As during the experiment was primarily driven by ferrihydrite formation and reductive transformation and that different site densities were identified for natural and neoformed ferrihydrite to explain the observations both before and after nitrate-Fe(II) injection. Our results also highlighted that when ferrihydrite was nearing depletion, As immobilization ultimately relied on the presence of magnetite. On the basis of the column model, field-scale predictive simulations were conducted to illustrate the feasibility of the nitrate-Fe(II) strategy for intercepting advected As from a plume. The predictive simulations, which suggested that long-term As immobilization was feasible, favored a scenario that maintains high dissolved Fe(II) concentration during injection periods and thereby converts ferrihydrite to magnetite.
Collapse
Affiliation(s)
- Jing Sun
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| | - Henning Frommer
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- Corresponding Author Phone: +61 8 93336272; Fax: +61 8 9333 6499;
| | - Adam J. Siade
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| | - Brian J. Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Benjamin C. Bostick
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964, United States
| |
Collapse
|
23
|
Zhang M, Li Y, Long X, Chong Y, Yu G, He Z. An alternative approach for nitrate and arsenic removal from wastewater via a nitrate-dependent ferrous oxidation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:246-252. [PMID: 29783178 DOI: 10.1016/j.jenvman.2018.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Owing to the high efficiency of converting nitrate to nitrogen gas with ferrous iron as the electron donor, the process of nitrate-dependent ferrous oxidation (NDFeO) has been considered suitable to treat wastewater that contains nitrate but lacks organic matter. Meanwhile, arsenic immobilization often has been found during the NDFeO reaction. Thus, it was strongly expected that nitrate and arsenic could be removed simultaneously in co-contaminated wastewater through the NDFeO process. However, in the current work, arsenic was not removed during the NDFeO process when the pH was high (above 8), though the nitrate reduction rate was over 90%. Meanwhile, the biosolid particles from the NDFeO process demonstrated strong adsorption ability for arsenic when the pH was below 6. Yet, the adsorption became weak when the pH was above 7. Fourier transform infrared (FTIR) spectroscopy analysis revealed that the main activated component for arsenic adsorption was iron oxide in these particles, which was easily crippled under high pH conditions. These results implied that co-removal of nitrate and arsenic in wastewater treatment using NDFeO was difficult to carry out under high pH conditions. Thus, a two-step approach in which nitrate was removed first by NDFeO followed by arsenic adsorption with NDFeO biosolids was more feasible.
Collapse
Affiliation(s)
- Meilin Zhang
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingfen Li
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xinxian Long
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yunxiao Chong
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guangwei Yu
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Zihao He
- Department of Environmental Science and Engineering, College of Natural Resource and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Jamieson J, Prommer H, Kaksonen AH, Sun J, Siade AJ, Yusov A, Bostick B. Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5771-5781. [PMID: 29676145 PMCID: PMC6427828 DOI: 10.1021/acs.est.8b01122] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification. In this study, the relative contributions of biotic and abiotic processes during NDFO were quantified through the compilation and model-based interpretation of previously published experimental data. The kinetics of chemical denitrification by Fe(II) (chemodenitrification) were assessed, and compelling evidence was found for the importance of organic ligands, specifically exopolymeric substances secreted by bacteria, in enhancing abiotic oxidation of Fe(II). However, nitrite alone could not explain the observed magnitude of Fe(II) oxidation, with 60-75% of overall Fe(II) oxidation attributed to an enzymatic pathway for investigated strains: Acidovorax ( A.) strain BoFeN1, 2AN, A. ebreus strain TPSY, Paracoccus denitrificans Pd 1222, and Pseudogulbenkiania sp. strain 2002. By rigorously quantifying the intermediate processes, this study eliminated the potential for abiotic Fe(II) oxidation to be exclusively responsible for NDFO and verified the key contribution from an additional, biological Fe(II) oxidation process catalyzed by NDFO bacteria.
Collapse
Affiliation(s)
- James Jamieson
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- Corresponding Author: .
| | - Anna H. Kaksonen
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Adam J. Siade
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Anna Yusov
- Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Benjamin Bostick
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, New York 10964, United States
| |
Collapse
|
25
|
Simmler M, Bommer J, Frischknecht S, Christl I, Kotsev T, Kretzschmar R. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:722-731. [PMID: 28850940 DOI: 10.1016/j.envpol.2017.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or spring.
Collapse
Affiliation(s)
- Michael Simmler
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| | - Jérôme Bommer
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| | - Sarah Frischknecht
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland.
| | - Tsvetan Kotsev
- Department of Geography, National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio 2017; 8:e01326-17. [PMID: 29184025 PMCID: PMC5705915 DOI: 10.1128/mbio.01326-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Long-term exposure to trace levels of arsenic (As) in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V)] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III)] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V) reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III) and As(V) reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V) and Fe(III) in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.IMPORTANCE The consumption of arsenic in waters collected from tube wells threatens the lives of millions worldwide and is particularly acute in the floodplains and deltas of southern Asia. The cause of arsenic mobilization from natural sediments within these aquifers to groundwater is complex, with recent studies suggesting that sediment-dwelling microorganisms may be the cause. In the absence of oxygen at depth, specialist bacteria are thought able to use metals within the sediments to support their metabolism. Via these processes, arsenic-contaminated iron minerals are transformed, resulting in the release of arsenic into the aquifer waters. Focusing on a field site in Bangladesh, a comprehensive, multidisciplinary study using state-of-the-art geological and microbiological techniques has helped better understand the microbes that are present naturally in a high-arsenic aquifer and how they may transform the chemistry of the sediment to potentially lethal effect.
Collapse
Affiliation(s)
- Edwin T Gnanaprakasam
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Brian J Mailloux
- Environmental Science Department, Barnard College, New York, New York, USA
| |
Collapse
|
27
|
Huhmann BL, Neumann A, Boyanov MI, Kemner KM, Scherer MM. Emerging investigator series: As(v) in magnetite: incorporation and redistribution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1208-1219. [PMID: 28871292 DOI: 10.1039/c7em00237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to As in groundwater negatively impacts millions of people around the globe, and As mobility in groundwater is often controlled by Fe mineral dissolution and precipitation. Additionally, trace elements can be released from and incorporated into the structure of Fe oxides in the presence of dissolved Fe(ii). The potential for As to redistribute between sorbed on the magnetite surface and incorporated in the magnetite structure, however, remains unclear. In this study, we use selective chemical extraction and X-ray absorption spectroscopy (XAS) to distinguish magnetite-sorbed and incorporated As(v) and to provide evidence for As(v) incorporation during magnetite precipitation. While As in the As-magnetite coprecipitates did not redistribute between sorbed and incorporated over a 4 month period, a small, but measurable increase in incorporated As(v) of up to 13% was observed for sorbed As(v). We suggest that Fe(ii)-catalyzed recrystallization of magnetite did not significantly influence the redistribution of sorbed As(v) because the extent of Fe atom exchange was small (∼10%). In addition, the extent of As redistribution was the same in the absence and presence of added aqueous Fe(ii), suggesting that aqueous Fe(ii) had, overall, a minor effect on As redistribution for both coprecipitated and sorbed As(v). Our results suggest that coprecipitation of As(v) with magnetite and redistribution of As(v) sorbed on magnetite are potential pathways for irreversible As(v) uptake and sequestration. These pathways are likely to play a significant role in controlling As mobility in natural systems, during human-induced redox cycling of groundwater such as aquifer storage and recovery, as well as in iron oxide-based As removal systems.
Collapse
Affiliation(s)
- Brittany L Huhmann
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
28
|
Rawson J, Siade A, Sun J, Neidhardt H, Berg M, Prommer H. Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8471-8480. [PMID: 28653837 DOI: 10.1021/acs.est.7b02097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over the last few decades, significant progress has been made to characterize the extent, severity, and underlying geochemical processes of groundwater arsenic (As) pollution in S/SE Asia. However, comparably little effort has been made to merge the findings into frameworks that allow for a process-based quantitative analysis of observed As behavior and for predictions of its long-term fate. This study developed field-scale numerical modeling approaches to represent the hydrochemical processes associated with an in situ field injection of reactive organic carbon, including the reductive dissolution and transformation of ferric iron (Fe) oxides and the concomitant release of sorbed As. We employed data from a sucrose injection experiment in the Bengal Delta Plain to guide our model development and to constrain the model parametrization. Our modeling results illustrate that the temporary pH decrease associated with the sucrose transformation and mineralization caused pronounced, temporary shifts in the As partitioning between aqueous and sorbed phases. The results also suggest that while the reductive dissolution of Fe(III) oxides reduced the number of sorption sites, a significant fraction of the released As was rapidly scavenged through coprecipitation with neo-formed magnetite. These secondary reactions can explain the disparity between the observed Fe and As behavior.
Collapse
Affiliation(s)
- Joey Rawson
- School of Earth Sciences, University of Western Australia , Crawley, WA 6009, Australia
- National Centre for Groundwater Research and Training , Adelaide, SA 5001, Australia
- CSIRO Land and Water , Private Bag No. 5, Wembley, WA 6913, Australia
| | - Adam Siade
- School of Earth Sciences, University of Western Australia , Crawley, WA 6009, Australia
- National Centre for Groundwater Research and Training , Adelaide, SA 5001, Australia
- CSIRO Land and Water , Private Bag No. 5, Wembley, WA 6913, Australia
| | - Jing Sun
- School of Earth Sciences, University of Western Australia , Crawley, WA 6009, Australia
- CSIRO Land and Water , Private Bag No. 5, Wembley, WA 6913, Australia
| | - Harald Neidhardt
- Department of Geosciences, University of Tübingen , Ruemelinstrasse 19-23, 72070 Tübingen, Germany
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Henning Prommer
- School of Earth Sciences, University of Western Australia , Crawley, WA 6009, Australia
- National Centre for Groundwater Research and Training , Adelaide, SA 5001, Australia
- CSIRO Land and Water , Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
29
|
Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:48-84. [PMID: 27477792 PMCID: PMC7306924 DOI: 10.1016/j.jhazmat.2016.06.060] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 05/12/2023]
Abstract
This review focuses on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that exhibits superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition and combustion, hydrothermal process, emulsion, microbial process, and green approaches. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for constructing chemical/biosensors and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are designed as antimicrobial agents for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dyes, oil, arsenic, phosphate, molybdate, fluoride, selenium, Cr(VI), heavy metal cations, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or catalyze chemical oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization.
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
30
|
Sun J, Chillrud SN, Mailloux BJ, Bostick BC. In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10162-71. [PMID: 27533278 PMCID: PMC5725337 DOI: 10.1021/acs.est.6b02362] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In situ precipitation of magnetite and other minerals potentially sequesters dissolved arsenic (As) in contaminated aquifers. This study examines As retention and transport in aquifer sediments using a multistage column experiment in which magnetite and other minerals formed from added nitrate and ferrous iron (Fe). Sediments were collected from the Dover Municipal Landfill Superfund site. Prior to nitrate-Fe(II) addition, As was not effectively retained within the sediments in the column. The combination of nitrate (10 mM) and Fe(II) (4 mM), resulted in mineral precipitation and rapidly decreased effluent As concentrations to <10 μg L(-1). Mineralogical analyses of sectioned replicate columns using sequential extractions, magnetic susceptibility and X-ray absorption spectroscopy indicate that magnetite and ferrihydrite formed in the column following nitrate-Fe(II) addition. This magnetite persisted in the column even as conditions became reducing, whereas ferrihydrite was transformed to more stable Fe oxides. This magnetite incorporated As into its structure during precipitation and subsequently adsorbed As. Adsorption to the minerals kept effluent As concentrations <10 μg L(-1) for more than 100 pore volumes despite considerable Fe reduction. The results indicate that it should be feasible to produce an in situ reactive filter by nitrate-Fe(II) injection.
Collapse
Affiliation(s)
- Jing Sun
- Department of Earth and Environmental Sciences, Columbia University, Mail Code 5505, New York, New York 10027, United States
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, New York 10964, United States
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, New York 10964, United States
| | - Brian J. Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, New York 10027, United States
| | - Benjamin C. Bostick
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, New York 10964, United States
- Corresponding Author: Phone: (+1) 845-365-8659; fax: (+1) 845-365-8155;
| |
Collapse
|
31
|
Sun J, Bostick BC, Mailloux BJ, Ross JM, Chillrud SN. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2016; 311:125-33. [PMID: 26970042 PMCID: PMC4826786 DOI: 10.1016/j.jhazmat.2016.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 05/08/2023]
Abstract
Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As.
Collapse
Affiliation(s)
- Jing Sun
- Department of Earth and Environmental Sciences, Columbia University, Mail Code 5505, New York, NY 10027, USA; Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - Brian J Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - James M Ross
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| |
Collapse
|
32
|
Sun J, Quicksall AN, Chillrud SN, Mailloux BJ, Bostick BC. Arsenic mobilization from sediments in microcosms under sulfate reduction. CHEMOSPHERE 2016; 153:254-61. [PMID: 27037658 PMCID: PMC4837041 DOI: 10.1016/j.chemosphere.2016.02.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 05/26/2023]
Abstract
Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful.
Collapse
Affiliation(s)
- Jing Sun
- Department of Earth and Environmental Sciences, Columbia University, Mail Code 5505, New York, NY 10027, USA; Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - Andrew N Quicksall
- Department of Civil and Environmental Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75205, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA
| | - Brian J Mailloux
- Department of Environmental Sciences, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University, PO Box 1000, 61 Route 9W, Palisades, NY 10964, USA.
| |
Collapse
|