1
|
Kötke D, Gandrass J, Bento CP, Ferreira CS, Ferreira AJ. Occurrence and environmental risk assessment of pharmaceuticals in the Mondego river (Portugal). Heliyon 2024; 10:e34825. [PMID: 39157411 PMCID: PMC11328081 DOI: 10.1016/j.heliyon.2024.e34825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
In this case study pharmaceuticals were analysed in the Mondego river (Portugal) and their environmental risk assessed by means of risk quotients based on an extensive retrieval of ecotoxicological data for freshwater and saltwater species. The Mondego river crosses Coimbra, the most populated city in the Portuguese Centro Region hosting a complex of regional hospitals. Environmentally relevant and prioritised pharmaceuticals were investigated in this study and their potential hazards were evaluated by conducting a separate risk assessment for the freshwater and estuary parts of the examined river section. A target analysis approach with method detection limits down to 0.01 ng L-1 was used to determine pharmaceuticals. Twenty-one prioritised target analytes out of seven therapeutical classes (antibiotics, iodinated X-ray contrast media (ICM), analgesics, lipid reducers, antiepileptics, anticonvulsants, beta-blockers) were investigated by applying ultra-high pressure liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionisation source. The relative pattern of pharmaceuticals along the middle to the lower Mondego showed a quite uniform picture while an approximately 40fold increase of absolute concentrations was observed downstream of the wastewater treatment plant (WWTP) discharge of Coimbra. The most frequently measured substance groups were the ICM, represented by the non-ionic ICM iopromide (βmin: 3.03 ng L-1 - βmax: 2,810 ng L-1). Environmentally more critical substances such as carbamazepine, diclofenac, and bezafibrate, with concentrations up to and 52.6 ng L-1, 59.8 ng L-1, and 10.2 ng L-1 respectively, may potentially affect aquatic wildlife. Carbamazepine revealed elevated risk quotients (RQs >1) along the middle and lower Mondego with a maximum RQ of 53 downstream of Coimbra. Especially for saltwater species, carbamazepine and clarithromycin pose high potential risks. Especially in periods of low water discharge of the Mondego river, other pharmaceuticals as diclofenac and bezafibrate may pose additional risks downstream of the WWTP.
Collapse
Affiliation(s)
- Danijela Kötke
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Juergen Gandrass
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
| | - Célia P.M. Bento
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Organic Environmental Chemistry, Geesthacht, 21502, Germany
- Wageningen Environmental Research, Wageningen UR, 6708 PB, Wageningen, the Netherlands
| | - Carla S.S. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - António J.D. Ferreira
- Research Centre for Natural Resources, Environment and Society (CERNAS), Agrarian Technical School, Polytechnic Institute of Coimbra, P-3040-316, Coimbra, Portugal
| |
Collapse
|
2
|
Pires P, Pereira AMPT, Pena A, Silva LJG. Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art. TOXICS 2024; 12:415. [PMID: 38922095 PMCID: PMC11209577 DOI: 10.3390/toxics12060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
In recent years, contaminants of emerging concern have been reported in several environmental matrices due to advances in analytical methodologies. These anthropogenic micropollutants are detected at residual levels, representing an ecotoxicological threat to aquatic ecosystems. In particular, the pharmacotherapeutic group of non-steroidal anti-inflammatories (NSAIDs) is one of the most prescribed and used, as well as one of the most frequently detected in the aquatic environment. Bivalves have several benefits as a foodstuff, and also as an environment bioindicator species. Therefore, they are regarded as an ideal tool to assess this issue from both ecotoxicological and food safety perspectives. Thus, the control of these residues in bivalves is extremely important to safeguard environmental health, also ensuring food safety and public health. This paper aims to review NSAIDs in bivalves, observing their consumption, physicochemical characteristics, and mechanisms of action; their environmental occurrence in the aquatic environment and aquatic biota; and their effects on the ecosystem and the existent legal framework. A review of the analytical methodologies for the determination of NSAIDs in bivalves is also presented.
Collapse
Affiliation(s)
| | | | | | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal (A.P.)
| |
Collapse
|
3
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
4
|
Udayan G, Giordano ME, Pagliara P, Lionetto MG. Motility of Mytilus galloprovincialis hemocytes: Sensitivity to paracetamol in vitro exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106779. [PMID: 38016241 DOI: 10.1016/j.aquatox.2023.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Pharmaceuticals released into the environment (PiEs) represent an environmental problem of growing concern for the health of ecosystems and humans. An increasing number of studies show that PiEs pose a risk to aquatic organisms. The aim of the present work was to contribute to increasing the knowledge of the effects of PiE on marine biota focusing on the effect of paracetamol on the motility of hemocytes in Mytilus galloprovincialis, a bivalve mollusk species widely utilized as bioindicator organism. Hemocytes are the immunocompetent cells of bivalve mollusks. An early and key stage of mollusk immune response is represented by the recruitment and migration of these cells to the site of infection. Therefore, motility is an intrinsic characteristic of these cells. Here, we first characterized the spontaneous cell movement of M. galloprovincialis hemocytes when plated in a TC-treated polystyrene 96-well microplate. Two different cellular morphotypes were distinguished based on their appearance and motility behavior: spread cells and round-star-shaped cells. The two motility morphotypes were characterized by different velocities as well as movement directness, which were significantly lower in round-star-shaped cells with respect to spread cells. The sensitivity of the motility of M. galloprovincialis hemocytes to paracetamol at different concentrations (0.02, 0.2 and 2 mg/L) was investigated in vitro after 1h and 24h exposure. Paracetamol induced alterations in the motility behavior (both velocity and trajectories) of the hemocytes and the effects were cell-type specific. The study of hemocyte movements at the single cell level by cell tracking and velocimetric parameters analysis provides new sensitive tools for assessing the effects of emerging pollutants at the cellular levels in non-target organisms.
Collapse
Affiliation(s)
- Gayatri Udayan
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Elena Giordano
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Patrizia Pagliara
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Giulia Lionetto
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
5
|
Silva AR, Mesquita DP, Salomé Duarte M, Lado Ribeiro AR, Pereira MFR, Madalena Alves M, Monteiro S, Santos R, Cunha MV, Jorge S, Vieira J, Vilaça J, Lopes LC, Carvalho M, Brito C, Martins A, Pereira L. Exploring the correlations between epi indicators of COVID-19 and the concentration of pharmaceutical compounds in wastewater treatment plants in Northern Portugal. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 10:100315. [PMID: 37193121 PMCID: PMC10171898 DOI: 10.1016/j.hazadv.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus led to changes in the lifestyle and human behaviour, which resulted in different consumption patterns of some classes of pharmaceuticals including curative, symptom-relieving, and psychotropic drugs. The trends in the consumption of these compounds are related to their concentrations in wastewater systems, since incompletely metabolised drugs (or their metabolites back transformed into the parental form) may be detected and quantified by analytical methods. Pharmaceuticals are highly recalcitrant compounds and conventional activated sludge processes implemented in wastewater treatment plants (WWTP) are ineffective at degrading these substances. As a results, these compounds end up in waterways or accumulate in the sludge, being a serious concern given their potential effects on ecosystems and public health. Therefore, it is crucial to evaluate the presence of pharmaceuticals in water and sludge to assist in the search for more effective processes. In this work, eight pharmaceuticals from five therapeutic classes were analysed in wastewater and sludge samples collected in two WWTP located in the Northern Portugal, during the third COVID-19 epidemic wave in Portugal. The two WWTP demonstrated a similar pattern with respect to the concentration levels in that period. However, the drugs loads reaching each WWTP were dissimilar when normalising the concentrations to the inlet flow rate. Acetaminophen (ACET) was the compound detected at highest concentrations in aqueous samples of both WWTP (98. 516 μg L - 1 in WWTP2 and 123. 506 μg L - 1in WWTP1), indicating that this drug is extensively used without the need of a prescription, known of general public knowledge as an antipyretic and analgesic agent to treat pain and fever. The concentrations determined in the sludge samples were below 1.65 µg g - 1 in both WWTP, the highest value being found for azithromycin (AZT). This result may be justified by the physico-chemical characteristics of the compound that favour its adsorption to the sludge surface through ionic interactions. It was not possible to establish a clear relationship between the incidence of COVID-19 cases in the sewer catchment and the concentration of drugs detected in the same period. However, looking at the data obtained, the high incidence of COVID-19 in January 2021 is in line with the high concentration of drugs detected in the aqueous and sludge samples but prediction of drug load from viral load data was unfeasible.
Collapse
Affiliation(s)
- Ana R Silva
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Daniela P Mesquita
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - M Salomé Duarte
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Ana R Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Madalena Alves
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| | - Sílvia Monteiro
- Laboratório de Análises de Águas, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Santos
- Laboratório de Análises de Águas, Técnico Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | - António Martins
- AdP VALOR- Serviços Ambientais, S.A, Portugal
- Água do Algarve, S.A, Portugal
| | - Luciana Pereira
- CEB, Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães 4800-122, Portugal
| |
Collapse
|
6
|
Matijević G, Babić S, Maršavelski A, Stipaničev D, Repec S, Čož-Rakovac R, Klobučar G. Estimating risk of cardiovascular pharmaceuticals in freshwaters using zebrafish embryotoxicity test - statins threat revealed. CHEMOSPHERE 2023; 313:137574. [PMID: 36528155 DOI: 10.1016/j.chemosphere.2022.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular pharmaceuticals (CVPs) are globally present in inland waters and have also been found in the sediment and plasma of fish from the Sava River, Croatia. Based on the previous research, CVPs amiodarone (AMI), ramipril (RAM), simvastatin (SIM), and verapamil (VER) have been selected for this study. Their effect has been investigated, individually and in a mixture, on the development of the zebrafish embryo Danio rerio (Hamilton, 1822) within the first 96 h of development. Upon exposure to environmentally relevant concentrations of tested CVPs (0.1, 1, and 10 μg/L) zebrafish survival and development as apparent from observed morphological abnormalities, heartbeat rates and changes in behavior, hatching success, larval length and oxidative stress level were monitored. The CVP causing the highest mortality and pathological changes was SIM (1 and 10 μg/L), which corresponds well with the observed effects during zebrafish exposure to CVPs' mixtures (4 and 40 μg/L). All pharmaceuticals affected cardiac function and decreased heart rate. SIM (1 μg/L), VER and RAM (10 μg/L) decreased larval length, while induced oxidative stress was recorded in the SIM- and VER-exposed specimens. Behavioral alterations of zebrafish were observed only in AMI-treated group (10 μg/L). Our amino acid sequence comparison and structural and docking analysis showed a highly conserved binding site between human and zebrafish HMG-CoA reductase for SIM and its main metabolite simvastatin acid. Using these ecotoxicological bioassays on a zebrafish model with particular emphasis on sublethal endpoints, the risk of CVPs, especially statins, for fish in inland waters has been identified.
Collapse
Affiliation(s)
- Gabrijela Matijević
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Aleksandra Maršavelski
- University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, Zagreb, Croatia
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica Grada Vukovara 220, 10000, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Bijenička 54, Zagreb, Croatia; Ruđer Bošković Institute, Center of Excellence for Marine Bioprospecting (BioProCro), Bijenička 54, Zagreb, Croatia
| | - Göran Klobučar
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov Trg 6, Zagreb, Croatia.
| |
Collapse
|
7
|
Torres T, Barros S, Neuparth T, Ruivo R, Santos MM. Using zebrafish embryo bioassays to identify chemicals modulating the regulation of the epigenome: a case study with simvastatin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22913-22928. [PMID: 36307569 DOI: 10.1007/s11356-022-23683-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Contaminants of emerging concern have been increasingly associated with the modulation of the epigenome, leading to potentially inherited and persistent impacts on apical endpoints. Here, we address the performance of the OECD Test No. 236 FET (fish embryo acute toxicity) in the identification of chemicals able to modulate the epigenome. Using zebrafish (Danio rerio) embryos, acute and chronic exposures were performed with the pharmaceutical, simvastatin (SIM), a widely prescribed hypocholesterolemic drug reported to induce inter and transgenerational effects. In the present study, the epigenetic effects of environmentally relevant concentrations of SIM (from 8 ng/L to 2000 ng/L) were addressed following (1) an acute embryo assay based on OECD Test No. 236 FET, (2) a chronic partial life-cycle exposure using adult zebrafish (90 days), and (3) F1 embryos obtained from parental exposed animals. Simvastatin induced significant effects in gene expression of key epigenetic biomarkers (DNA methylation and histone acetylation/deacetylation) in the gonads of exposed adult zebrafish and in 80 hpf zebrafish embryos (acute and chronic parental intergenerational exposure), albeit with distinct effect profiles between biological samples. In the chronic exposure, SIM impacted particularly DNA methyltransferase genes in males and female gonads, whereas in F1 embryos SIM affected mostly genes associated with histone acetylation/deacetylation. In the embryo acute direct exposure, SIM modulated the expression of both genes involved in DNA methylation and histone deacetylase. These findings further support the use of epigenetic biomarkers in zebrafish embryos in a high throughput approach to identify and prioritize epigenome-modulating chemicals.
Collapse
Affiliation(s)
- Tiago Torres
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Susana Barros
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Quinta de Prados, Ed. Blocos Laboratoriais C1.10, 5000-801, Vila Real, Portugal
| | - Teresa Neuparth
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Raquel Ruivo
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - Miguel Machado Santos
- Group of Endocrine Disruptors and Emerging Contaminants, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
8
|
Duarte IA, Reis-Santos P, Fick J, Cabral HN, Duarte B, Fonseca VF. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120531. [PMID: 36397612 DOI: 10.1016/j.envpol.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Contamination of surface waters by pharmaceuticals is an emerging problem globally. This is because the increased access and use of pharmaceuticals by a growing world population lead to environmental contamination, threatening non-target species in their natural environment. Of particular concern are neuroactive pharmaceuticals, which are known to bioaccumulate in fish and impact a variety of individual processes such as fish reproduction or behaviour, which can have ecological impacts and compromise fish populations. In this work, we investigate the occurrence and bioaccumulation of 33 neuroactive pharmaceuticals in brain, muscle and liver tissues of multiple fish species collected in four different estuaries (Douro, Tejo, Sado and Mira). In total, 28 neuroactive pharmaceuticals were detected in water and 13 in fish tissues, with individual pharmaceuticals reaching maximum concentrations of 1590 ng/L and 207 ng/g ww, respectively. The neuroactive pharmaceuticals with the highest levels and highest frequency of detection in the water samples were psychostimulants, antidepressants, opioids and anxiolytics, whereas in fish tissues, antiepileptics, psychostimulants, anxiolytics and antidepressants showed highest concentrations. Bioaccumulation was ubiquitous, occurring in all seven estuarine and marine fish species. Notably, neuroactive compounds were detected in every water and fish brain samples, and in 95% of fish liver and muscle tissues. Despite variations in pharmaceutical occurrence among estuaries, bioaccumulation patterns were consistent among estuarine systems, with generally higher bioaccumulation in fish brain followed by liver and muscle. Moreover, no link between bioaccumulation and compounds' lipophilicity, species habitat use patterns or trophic levels was observed. Overall, this work highlights the occurrence of a highly diverse suite of neuroactive pharmaceuticals and their pervasiveness in waters and fish from estuarine systems with contrasting hydromorphology and urban development and emphasizes the urgent need for toxicity assessment of these compounds in natural ecosystems, linked to internalized body concentration in non-target species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
9
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Assessment of Human Pharmaceuticals in Drinking Water Catchments, Tap and Drinking Fountain Waters. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The occurrence of pharmaceuticals in water catchments and drinking waters raises potential risks to public health. Therefore, after addressing the major aquatic contamination pathway, the wastewater treatment plants (WWTPs), and, subsequently, surface waters, 18 human pharmaceuticals from 6 therapeutic groups (antibiotics, lipid regulators, selective serotonin reuptake inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs) and hormones) were analyzed in drinking water catchments, tap and drinking fountain waters. This was performed by solid phase extraction (SPE) and liquid chromatography coupled with tandem mass detection (LC-MS/MS). The 97 samples analyzed were collected from 31 different sites in the center of Portugal. All samples presented concentrations below the method detection limits (MDLs) that ranged between 1.13 to 5.45 ng L−1. The achieved results contributed to a better knowledge on the Portuguese and European context of drinking water, since there is a knowledge gap regarding this matrix. Comparing our data with other studies, published worldwide, we can observe that median concentrations of pharmaceuticals were reported in the low ng L−1 levels, values close to our MDLs. Consequently, it is unlikely that, in light of the current knowledge, the presence of pharmaceuticals in drinking water presents a threat to human health.
Collapse
|
11
|
Palma TL, Magno G, Costa MC. Biodegradation of Paracetamol by Some Gram-Positive Bacterial Isolates. Curr Microbiol 2021; 78:2774-2786. [PMID: 34085101 DOI: 10.1007/s00284-021-02543-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Bacterial isolates with the capacity to remove paracetamol were selected from an activated sludge sample collected in an oxidation ditch of a wastewater treatment plant. Among these, twelve bacterial isolates were selected according to their capacity to grow in the presence of paracetamol. They were identified using the colony morphotype procedure and by 16S rRNA gene sequencing analysis, but only four of them showed the ability to utilise paracetamol as the sole carbon source in the presence of a nitrogen supply. Those four bacterial isolates were assigned to species of the genera Bacillus, [Brevibacterium], Corynebacterium and Enterococcus. Bacterial isolates were cultured in liquid mineral salt medium (MSM) spiked with 200 mg/L of paracetamol at 28 °C in the dark. In cultures inoculated with [Brevibacterium] frigoritolerans, Corynebacterium nuruki and Enterococcus faecium, removal of 97 ± 4%, 97 ± 6% and 86.9 ± 0.8% of paracetamol at 200 mg/L were obtained, respectively, while in the presence of a species belonging to Bacillus cereus group removal of the drug below the limits of detection was attained with evidence of mineralisation, after 144 h of incubation. During the degradation process, the metabolites 4-aminophenol, hydroquinone and 2-hexenoic acid were detected. As far as we know, these species are herein first-time described as paracetamol degraders.
Collapse
Affiliation(s)
- Tânia L Palma
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal
| | - Gustavo Magno
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal.,Universidade Federal de Itajubá - Instituto de Recursos Naturais, Itajubá, Brazil
| | - Maria C Costa
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, building 7, 8005-139, Faro, Portugal. .,Faculdade de Ciências E Tecnologias, University of Algarve, Campus de Gambelas, building 8, 8005-139, Faro, Portugal.
| |
Collapse
|
12
|
Celik A. Oxytetracycline and paracetamol biodegradation performance in the same enriched feed medium with aerobic nitrification/anaerobic denitrification SBR. Bioprocess Biosyst Eng 2021; 44:1649-1658. [PMID: 33687552 DOI: 10.1007/s00449-021-02547-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Pharmaceuticals such as oxytetracycline and paracetamol are extensive chemicals in the aquatic systems. In this study, the removal performance of oxytetracycline and paracetamol was investigated in the same enriched feed water medium by sequencing batch aerobic/anaerobic reactor system. In this context, oxytetracycline and paracetamol in the aerobic phase were removed by a maximum of 66 and 99.8% respectively. At the same time, nitrification and denitrification removals were obtained as 95% and 98%, respectively. On the other hand, oxytetracycline and equivalent O2 flux of oxytetracycline maximum were calculated as 1.18 and 2.14 mg/L.d and the maximum removal volumetric flux of paracetamol and its O2 equivalent flux were determined approximately as 136 and 303 mg/L.d, simultaneously. In addition, oxytetracycline and paracetamol were given to the system in an amount of maximum 1 and 500 mg/L, respectively. Paracetamol has not significantly affected nitrification and denitrification up to 120 mg/L, but 500 mg/L paracetamol has completely finished denitrification in this system. On the other hand, the water environment of sequencing batc reactor has turned into a pitch dark state at 500 mg/L paracetamol feeding. As a result, aerobic bacteria preferred paracetamol rather than oxytetracycline. In other words, aerobic bacteria preferred paracetamol/oxytetracycline as the second electron acceptor after O2.
Collapse
Affiliation(s)
- Aytekin Celik
- Department of Environmental Engineering, Faculty of Engineering, Fırat University, 23119, Elazığ, Turkey.
| |
Collapse
|
13
|
Li Y, Taggart MA, McKenzie C, Zhang Z, Lu Y, Pap S, Gibb SW. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater. J Environ Sci (China) 2021; 100:18-27. [PMID: 33279030 DOI: 10.1016/j.jes.2020.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 05/26/2023]
Abstract
This work describes the development, optimisation and validation of an analytical method for the rapid determination of 17 priority pharmaceutical compounds and endocrine disrupting chemicals (EDCs). Rather than studying compounds from the same therapeutic class, the analyses aimed to determine target compounds with the highest risk potential (with particular regard to Scotland), providing a tool for further monitoring in different water matrices. Prioritisation was based on a systematic environmental risk assessment approach, using consumption data; wastewater treatment removal efficiency; environmental occurrence; toxicological effects; and pre-existing regulatory indicators. This process highlighted 17 compounds across various therapeutic classes, which were then quantified, at environmentally relevant concentrations, by a single analytical methodology. Analytical determination was achieved using a single-step solid phase extraction (SPE) procedure followed by high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The fully optimised method performed well for the majority of target compounds, with recoveries >71% for 15 of 17 analytes. The limits of quantification for most target analytes (14 of 17) ranged from 0.07 ng/L to 1.88 ng/L in river waters. The utility of this method was then demonstrated using real water samples associated with a rural hospital/setting. Eight compounds were targeted and detected, with the highest levels found for the analgesic, paracetamol (at up to 105,910 ng/L in the hospital discharge). This method offers a robust tool to monitor high priority pharmaceutical and EDC levels in various aqueous sample matrices.
Collapse
Affiliation(s)
- Yuan Li
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland, KW147JD, UK; Environmental and Biochemical Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK.
| | - Mark A Taggart
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland, KW147JD, UK
| | - Craig McKenzie
- Forensic Drug Research Group, Centre for Anatomy and Human Identification, School of Science and Engineering, UK
| | - Zulin Zhang
- Environmental and Biochemical Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| | - Yonglong Lu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sabolc Pap
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland, KW147JD, UK; University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, 21000 NoviSad, Serbia
| | - Stuart W Gibb
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland, KW147JD, UK
| |
Collapse
|
14
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
15
|
Neuparth T, Machado AM, Montes R, Rodil R, Barros S, Alves N, Ruivo R, Castro LFC, Quintana JB, Santos MM. Transgenerational inheritance of chemical-induced signature: A case study with simvastatin. ENVIRONMENT INTERNATIONAL 2020; 144:106020. [PMID: 32861161 DOI: 10.1016/j.envint.2020.106020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The hypothesis that exposure to certain environmental chemicals during early life stages may disrupt reproduction across multiple non-exposed generations has significant implications for understanding disease etiology and adverse outcomes. We demonstrate here reproductive multi and transgenerational effects, at environmentally relevant levels, of one of the most prescribed human pharmaceuticals, simvastatin, in a keystone species, the amphipod Gammarus locusta. The transgenerational findings has major implications for hazard and risk assessment of pharmaceuticals and other contaminants of emerging concern given that transgenerational effects of environmental chemicals are not addressed in current hazard and risk assessment schemes. Considering that the mevalonate synthesis, one of the key metabolic pathways targeted by simvastatin, is highly conserved among metazoans, these results may also shed light on the potential transgenerational effects of simvastatin on other animals, including humans.
Collapse
Affiliation(s)
- T Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - A M Machado
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - R Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - R Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - S Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - N Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - R Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - J B Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R. Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Kim KY, Oh JE. Evaluation of pharmaceutical abuse and illicit drug use in South Korea by wastewater-based epidemiology. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122622. [PMID: 32388180 DOI: 10.1016/j.jhazmat.2020.122622] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Drug abuse trends in South Korea were assessed by estimating the consumption rates of drugs that may be abused or misused by performing wastewater-based drug epidemiology. Of the 29 target compounds, 10 were found in samples from three wastewater treatment plants. Ephedrine had the highest mean estimated consumption rate, 574.1 mg d-1 (1000 people)-1. The anti-obesity drugs phendimetrazine and phentermine had the second and fifth highest mean estimated consumption rates, 182.9 and 113.1 mg d-1 (1000 people)-1, respectively. The zolpidem consumption rate was 65.8 mg d-1 (1000 people)-1. Methamphetamine was the only illicit drug detected in wastewater, and the estimated consumption rates (14.9-28.6 mg d-1 (1000 people)-1) were similar to consumption rates found in previous Korean studies (not detected to 45.8 mg d-1 (1000 people)-1). The mean estimated meperidine and cis-tramadol (opioid) consumption rates were 120 and 27.5 mg d-1 (1000 people)-1, respectively, and were 8.2 and 1.7 times higher, respectively, than the consumption rates found in 2013. Methylphenidate was detected in the influent and effluent samples at mean concentrations of 2.7 and 2.6 ng L-1, respectively, but the methylphenidate consumption rate could not be estimated because of the low excretion rate for humans (<1%).
Collapse
Affiliation(s)
- Ki Yong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
17
|
Peña A, Delgado-Moreno L, Rodríguez-Liébana JA. A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134468. [PMID: 31839299 DOI: 10.1016/j.scitotenv.2019.134468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Reuse of wastewater (WW) as an agricultural irrigation source is being considered with increasing interest, mainly in arid and semiarid zones. However, due to the complex nature of WW its reuse can have an impact on the fate of the pesticides added to the soils and crops for pest control. This review provides a detailed insight about the main processes involved in pesticide-soil-WW interactions (adsorption/desorption, degradation, transport, plant uptake and field assays) focusing on the role of dissolved organic matter and salt content in the mentioned processes. The influence of pesticide and soil properties in these processes is also discussed. The review explores current research gaps in the pesticide-soil-WW interactions and identifies areas that merit further research, providing a perspective for further scientific exploration.
Collapse
Affiliation(s)
- Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 1, 18100-Armilla, Granada, Spain.
| | - Laura Delgado-Moreno
- Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain
| | | |
Collapse
|
18
|
Nunes B, Daniel D, Canelas GG, Barros J, Correia AT. Toxic effects of environmentally realistic concentrations of diclofenac in organisms from two distinct trophic levels, Hediste diversicolor and Solea senegalensis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108722. [PMID: 32032725 DOI: 10.1016/j.cbpc.2020.108722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/01/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro/Departament of Biology of the University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar/Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - David Daniel
- Departamento de Biologia da Universidade de Aveiro/Departament of Biology of the University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Gisela Gonçalves Canelas
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa/Faculty of Health Sciences of Fernando Pessoa University, (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| | - Joseane Barros
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto/Institute of Biomedical Sciences Abel Salazar of the University of Porto, (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alberto Teodorico Correia
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa/Faculty of Health Sciences of Fernando Pessoa University, (FCS/UFP), Rua Carlos da Maia 296, 4200-150 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental/Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
19
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part II-Toxicity and Environmental Risk Assessment. Molecules 2020; 25:molecules25081796. [PMID: 32295269 PMCID: PMC7221825 DOI: 10.3390/molecules25081796] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a review on their toxicity and environmental risk assessment (ERA) in different aquatic compartments, important issues to tackle the water framework directive (WFD). The toxicity data collected reported, with the exception of anxiolytics, at least one toxicity value for concentrations below 1 µg L−1. The results obtained for the ERA revealed risk quotients (RQs) higher than 1 in all the aquatic bodies and for the three trophic levels, algae, invertebrates and fish, posing ecotoxicological pressure in all of these compartments. The therapeutic groups with higher RQs were hormones, antiepileptics, anti-inflammatories and antibiotics. Unsurprisingly, RQs values were highest in wastewaters, however, less contaminated water bodies such as groundwaters still presented maximum values up to 91,150 regarding 17α-ethinylestradiol in fish. Overall, these results present an important input for setting prioritizing measures and sustainable strategies, minimizing their impact in the aquatic environment.
Collapse
|
20
|
Palma P, Fialho S, Lima A, Novais MH, Costa MJ, Montemurro N, Pérez S, de Alda ML. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136205. [PMID: 31905561 DOI: 10.1016/j.scitotenv.2019.136205] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 05/23/2023]
Abstract
Occurrence of pharmaceuticals in the aquatic environment is nowadays a well-established issue that has become a matter of both scientific and public concern. Tons of different classes of pharmaceuticals find their way to the environment at variable degrees, after their use and excretion through wastewater and sewage treatment systems. The main goal of this study was to correlate the dynamics and the environmental risk of pharmaceuticals with different temporal and hydrological patterns, at the Guadiana Basin (South of Portugal). Water samples were collected bimonthly during 2017 (classified as a drought year) and 2018 (post-drought year) in: Zebro, Álamos and Amieira (intermittent hydrological streams), and Lucefécit (perennial hydrological stream). The pharmaceuticals quantified in higher concentrations, out of 27 investigated, were diclofenac (up to 4806 ng L-1), ibuprofen (3161 ng L-1), hydrochlorothiazide (2726 ng L-1) and carbamazepine (3223 ng L-1). Zebro and Álamos presented the highest contamination by this group of environmental hazardous substances, which may be correlated with the presence of wastewater treatment plants upstream the sampling point of each stream. Furthermore, the highest concentrations occurred mainly during the dry period (2017), when the flow was nearly inexistent in Zebro, and in Álamos after the first heavy rainfalls. In specific periods, the high concentrations of pharmaceuticals detected may induce risk for the organisms of lowest trophic levels, damaging the balance of the ecosystems at these streams. The risk quotient optimised approach (RQf) integrating exposure, toxicity and persistence factors, ranks the pharmaceuticals investigated in terms of risk for the aquatic ecosystems as follows: diclofenac, ibuprofen and carbamazepine (high risk), clarithromycin (moderate risk), acetaminophen, ofloxacin and bezafibrate (endurable risk), and hydrochlorothiazide (negligible risk).
Collapse
Affiliation(s)
- Patrícia Palma
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal; Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal.
| | - Sofia Fialho
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Ana Lima
- Escola Superior Agrária, Instituto Politécnico de Beja, 7800-295 Beja, Portugal
| | - Maria Helena Novais
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal
| | - Maria João Costa
- Instituto de Ciências da Terra (ICT), Universidade de Évora, Évora, Portugal; Science and Technology School, University of Évora, Évora, Portugal
| | - Nicola Montemurro
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Sandra Pérez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Miren Lopez de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
21
|
Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01906-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Identification of Aquifer Recharge Sources as the Origin of Emerging Contaminants in Intensive Agricultural Areas. La Plana de Castellón, Spain. WATER 2020. [DOI: 10.3390/w12030731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In urban, industrial, and agricultural areas, a vast array of contaminants may be found because they are introduced into the aquifers by different recharge sources. The emerging contaminants (ECs) correspond to unregulated contaminants, which may be candidates for future regulation depending on the results of research into their potential effects on health and on monitoring data regarding their occurrence. ECs frequently found in wastewater, such as acetaminophen, carbamazepine, primidone, and sulfamethoxazole, may be good indicators of the introduction of the reclaimed water to the aquifers. The resistance of the ECs to removal in wastewater treatment plants (WWTPs) causes them to be appropriate sewage markers. Plana de Castellón (Spain) is a coastal area that has been characterized by intensive citrus agriculture since the 1970s. Traditionally, in the southern sector of Plana de Castellón, 100% of irrigation water comes from groundwater. In recent years, local farmers have been using a mixture of groundwater and reclaimed water from wastewater treatment plants (WWTPs) to irrigate the citrus. The aims of the present study were: (i) to assess the occurrences, spatial distributions, and concentrations of selected ECs, including 32 antibiotics, 8 UV filters, and 2 nonsteroidal anti-inflammatory drugs, in groundwater in a common agricultural context; (ii) to identify the recharge (pollution) sources acting as the origin of the ECs, and (iii) to suggest ECs as indicators of reclaimed water arrival in detrital heterogeneous aquifers. The obtained data provided relevant information for the management of water resources and elucidated the fate and behavior of emerging contaminants in similar contexts.
Collapse
|
23
|
Oelkers K. The accessibility of data on environmental risk assessment of pharmaceuticals – are environmental risk assessments information on emissions with respect to international and European environmental information law? Regul Toxicol Pharmacol 2020; 111:104571. [DOI: 10.1016/j.yrtph.2019.104571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 11/15/2022]
|
24
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I-Source, Fate and Occurrence. Molecules 2020; 25:molecules25051026. [PMID: 32106570 PMCID: PMC7179177 DOI: 10.3390/molecules25051026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a systematic review on their source, fate and occurrence in different aquatic compartments, important issues to tackle the Water Framework Directive (WFD). The results obtained evidence that concentrations of pharmaceuticals are present, in decreasing order, in wastewater influents (WWIs), wastewater effluents (WWEs) and surface waters, with values up to 14 mg L−1 for ibuprofen in WWIs. The therapeutic groups which presented higher detection frequencies and concentrations were anti-inflammatories, antiepileptics, antibiotics and lipid regulators. These results present a broad and specialized background, enabling a complete overview on the occurrence of pharmaceuticals in the aquatic compartments.
Collapse
|
25
|
Barros S, Coimbra AM, Alves N, Pinheiro M, Quintana JB, Santos MM, Neuparth T. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:113-125. [PMID: 32116137 DOI: 10.1080/15287394.2020.1733722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic drug belonging to the statins group, is a widely prescribed pharmaceutical for prevention of cardiovascular diseases. Several studies showed that lipophilic statins, as SIM, cross the blood-brain barrier and interfere with the energy metabolism of the central nervous system in humans and mammalian models. In fish and other aquatic organisms, the effects of SIM on the brain energy metabolism are unknown, particularly following exposure to low environmentally relevant concentrations. Therefore, the present study aimed at investigating the influence of SIM on gene signaling pathways involved in brain energy metabolism of adult zebrafish (Danio rerio) following chronic exposure (90 days) to environmentally relevant SIM concentrations ranging from 8 ng/L to 1000 ng/L. Real-time PCR was used to determine the transcript levels of several genes involved in different pathways of the brain energy metabolism (glut1b, gapdh, acadm, accα, fasn, idh3a, cox4i1, and cox5aa). The findings here reported integrated well with ecological and biochemical responses obtained in a parallel study. Data demonstrated that SIM modulates transcription of key genes involved in the mitochondrial electron transport chain, in glucose transport and metabolism, in fatty acid synthesis and β-oxidation. Further, SIM exposure led to a sex-dependent transcription profile for some of the studied genes. Overall, the present study demonstrated, for the first time, that SIM modulates gene regulation of key pathways involved in the energy metabolism in fish brain at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Nélson Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - Marlene Pinheiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade De Santiago De Compostela, Santiago De Compostela, Spain
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- FCUP, Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| |
Collapse
|
26
|
Narain-Ford DM, Bartholomeus RP, Dekker SC, van Wezel AP. Natural Purification Through Soils: Risks and Opportunities of Sewage Effluent Reuse in Sub-surface Irrigation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 250:85-117. [PMID: 32939618 DOI: 10.1007/398_2020_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Dominique M Narain-Ford
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
- KWR Water Research Institute, Nieuwegein, The Netherlands.
| | - Ruud P Bartholomeus
- KWR Water Research Institute, Nieuwegein, The Netherlands
- Soil Physics and Land Management, Wageningen University & Research, Wageningen, The Netherlands
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- Department of Science, Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Nogueira J, António M, Mikhalev SM, Fateixa S, Trindade T, Daniel-da-Silva AL. Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1004. [PMID: 30518056 PMCID: PMC6316754 DOI: 10.3390/nano8121004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
Porous carbon materials derived from biopolymers are attractive sorbents for the removal of emerging pollutants from water, due to their high specific surface area, high porosity, tunable surface chemistry, and reasonable cost. However, carrageenan biopolymers were scarcely investigated as a carbon source to prepare porous carbon materials. Herein, hydrochars (HCs) and porous activated carbons (ACs) derived from natural occurring polysaccharides with variable sulfate content (κ-, ι- and λ-carrageenan) were prepared and investigated in the uptake of ciprofloxacin, which is an antibiotic detected in water sources and that poses serious hazards to public health. The materials were prepared using hydrothermal carbonization and subsequent chemical activation with KOH to increase the available surface area. The activated carbons were markedly microporous, presenting high specific surface area, up to 2800 m²/g. Activated carbons derived from κ- and λ-carrageenan showed high adsorption capacity (422 and 459 mg/g, respectively) for ciprofloxacin and fast adsorption kinetics, reaching the sorption equilibrium in approximately 5 min. These features place the ACs investigated here among the best systems reported in the literature for the removal of ciprofloxacin from water.
Collapse
Affiliation(s)
- João Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria António
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sergey M Mikhalev
- Centre for Mechanical Technology and Automation ⁻ Nanotechnology Research Group (TEMA-NRD), Mechanical Engineering Department, Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
30
|
Burns EE, Carter LJ, Snape J, Thomas-Oates J, Boxall ABA. Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:115-141. [PMID: 29714645 DOI: 10.1080/10937404.2018.1465873] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals are ubiquitous in the natural environment with concentrations expected to rise as human population increases. Environmental risk assessments are available for a small portion of pharmaceuticals in use, raising concerns over the potential risks posed by other drugs that have little or no data. With >1900 active pharmaceutical ingredients in use, it would be a major task to test all of the compounds with little or no data. Desk-based prioritization studies provide a potential solution by identifying those substances that are likely to pose the greatest risk to the environment and which, therefore, need to be considered a priority for further study. The aim of this review was to (1) provide an overview of different prioritization exercises performed for pharmaceuticals in the environment and the results obtained; and (2) propose a new holistic risk-based prioritization framework for drugs in the environment. The suggested models to underpin this framework are discussed in terms of validity and applicability. The availability of data required to run the models was assessed and data gaps identified. The implementation of this framework may harmonize pharmaceutical prioritization efforts and ensure that, in the future, experimental resources are focused on molecules, endpoints, and environmental compartments that are biologically relevant.
Collapse
Affiliation(s)
- Emily E Burns
- a Chemistry Department , University of York , Heslington , UK
| | - Laura J Carter
- b Environment Department , University of York , Heslington , UK
| | - Jason Snape
- c AstraZeneca AstraZeneca UK, Global Environment , Cheshire , UK
| | | | | |
Collapse
|
31
|
Pereira AMPT, Silva LJG, Laranjeiro CSM, Meisel LM, Lino CM, Pena A. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1182-1191. [PMID: 28787792 DOI: 10.1016/j.scitotenv.2017.07.200] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals occurrence and environmental risk assessment were assessed in Portuguese surface waters, evaluating the impact of wastewater treatment plants (WWTPs) and river flow rates. Twenty three pharmaceuticals from 6 therapeutic groups, including metabolites and 1 transformation product, were analysed in 72 samples collected from 20 different sites, upstream and downstream the selected WWTPs, in two different seasons. Analysis was performed by solid phase extraction followed by liquid chromatography coupled to tandem mass spectroscopy. Pharmaceuticals were detected in 27.8% of the samples. Selective serotonin reuptake inhibitors (SSRIs), anti-inflammatories and antibiotics presented the highest detection frequencies (27.8, 23.6 and 23.6%, respectively) and average concentrations (37.9, 36.1 and 33.5ngL-1, respectively). When assessing the impact of WWTPs, an increase of 21.4% in the average concentrations was observed in the samples located downstream these facilities, when compared with the upstream samples. Increased detection frequencies and concentrations were observed at lower flow rates, both when comparing summer and winter campaigns and by evaluating the different rivers. Risk quotients (RQs) higher than one were found for two pharmaceuticals, concerning two trophic levels. However, since Iberian rivers are highly influenced by water scarcity, in drought periods, the flow rates in these rivers can decrease at least ten times from the lowest value observed in the sampling campaigns. In these conditions, RQs higher than 1 would be observed for 5 pharmaceuticals, additionally, all the detected pharmaceuticals (11) would present RQs higher than 0.1. These results emphasize that the river flow rate represents an important parameter influencing pharmaceuticals concentrations, highlighting the ecotoxicological pressure, especially due to water scarcity in drought periods. This should be a priority issue in the environmental policies for minimizing its impact in the aquatic environment.
Collapse
Affiliation(s)
- André M P T Pereira
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal.
| | - Liliana J G Silva
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal.
| | - Célia S M Laranjeiro
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Leonor M Meisel
- Department of Pharmacology, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Celeste M Lino
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal.
| | - Angelina Pena
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
32
|
Pereira AMPT, Silva LJG, Lino CM, Meisel LM, Pena A. A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017. [PMID: 28628814 DOI: 10.1016/j.scitotenv.2017.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A critical evaluation of the European Medicines Agency (EMA) Guideline on Environmental Risk Assessment (ERA) was performed on 16 of Portugal's most consumed pharmaceuticals in wastewater effluents (WWEs), the main route for aquatic contamination. The predicted environmental concentrations (PECs) were formulated based on the Guideline, after incorporating several refinements. The best approach was selected by comparing the measured environmental concentrations (MECs) to the PECs in WWEs. Finally, risk was assessed by comparing PECs to predicted no-effect concentrations (PNECs). The results showed that the default value of the penetration factor (Fpen) used by the EMA (0.01) was surpassed and that national consumption and excretion data were the two most important parameters for PEC calculations. The risk quotient between PECs and PNECs was higher than 1 for 12 pharmaceuticals, indicating a risk to all three trophic levels of aquatic organisms (algae, daphnids and fish). To improve the current ERA framework, suggestions were made for incorporating consumption and excretion data, changing the default value of Fpen to 0.04 and adding a safety factor of 10. Moreover, this evaluation should be performed for pharmaceuticals already on the market, and future ERAs should incorporate a risk-benefit analysis, an important risk-management step.
Collapse
Affiliation(s)
- André M P T Pereira
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Liliana J G Silva
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Celeste M Lino
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Leonor M Meisel
- INFARMED, I.P. - National Authority of Medicines and Health Products, 1749-004 Lisboa, Portugal; Department of Pharmacology, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Angelina Pena
- LAQV, REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
33
|
Wang J, He B, Yan D, Hu X. Implementing ecopharmacovigilance (EPV) from a pharmacy perspective: A focus on non-steroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:772-784. [PMID: 28390750 DOI: 10.1016/j.scitotenv.2017.02.209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Environmental experts have made great efforts to control pharmaceutical pollution. However, the control of emerged environmental problems caused by medicines should draw more attention of pharmacy and pharmacovigilance researchers. Ecopharmacovigilance (EPV) as a kind of pharmacovigilance for the environment is recognized worldwide as crucial to minimize the environmental risk of pharmaceutical pollutants. But continuing to treat the pollution of pharmaceuticals as a group of substances instead of targeting individual pharmaceuticals on a prioritized basis will lead to a significant waste of resources. Considering vulture population decline caused by non-steroidal anti-inflammatory drugs (NSAIDs) residues, we presented a global-scale analysis of 139 reports of NSAIDs occurrence across 29 countries, in order to provide a specific context for implementing EPV. We found a heavy regional bias toward research in Europe, Asia and America. The top 5 most frequently studied NSAIDs included ibuprofen, diclofenac, naproxen, acetaminophen and ketoprofen. The profile of NSAIDs was dominated by acetaminophen in wastewater influents and effluents. Ibuprofen was the most abundant NSAID in surface water. Only 9 NSAIDs were reported in groundwater samples. And majority of NSAIDs were detected in solid matrices at below 1μg/g except for ketoprofen, diclofenac and ibuprofen. From a pharmacy perspective, we get some implication and propose some management practice options for EPV implementation. These include: Further popularizing and applying the concept of EPV, together with developing relevant regulatory guidance, is necessary; More attention should be paid to how to implement EPV for the pollution control of older established drugs; Triggering "a dynamic watch-list mechanism" in conjunction with "source control"; Implementing targeted sewage treatment technologies and strengthening multidisciplinary collaboration; Pharmaceutical levels in aquatic organisms as biological indicators for monitoring pharmaceutical pollution within the water environment; Upgrading drinking water treatment plants with the aim of removing pharmaceutical residues; Paying more attention to EPV for pharmaceuticals in solid matrices.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bingshu He
- Hubei Woman and Child Hospital, Wuhan 430070, China.
| | - Dan Yan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiamin Hu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
34
|
Thiebault T, Fougère L, Destandau E, Réty M, Jacob J. Temporal dynamics of human-excreted pollutants in wastewater treatment plant influents: Toward a better knowledge of mass load fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:246-255. [PMID: 28433767 DOI: 10.1016/j.scitotenv.2017.04.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 05/13/2023]
Abstract
The occurrence of 25 drug target residues (illicit drugs or pharmaceutically active compounds) was investigated during 85 consecutive days in the influents of a wastewater treatment plant in the Region Centre-Val de Loire, France. This long tracking period allowed a better understanding of the patterns affecting the occurrence of this type of contaminants. Among them, 2 were never detected (i.e. heroin and amphetamine). Concerning illicit drugs two patterns were found. Cocaine and ecstasy median loads varied considerably between weekdays and weekend days (i.e. 18.3 and 35.9% respectively) whereas cannabis and heroin (based on 6-mono-acetylmorphine loads) loads were within the same order of magnitude with a significant statistical correlation with pharmaceuticals such as acetaminophen or ketoprofen. The consumption of selected drugs was back-calculated from the loads. Among illicit drugs the highest consumption was found for cannabis with a median consumption of 51mg·day-1·inhabitant-1 (inh) whereas the median consumption for cocaine (based on benzoylecgonine loads) and ecstasy was 32 and 6mg·day-1·103·inh-1 respectively. The highest consumption values of pharmaceutically active compounds (PACs) were found for acetaminophen and acetylsalicylic acid with 108.8 and 34.1mg·day-1·inh-1 respectively, in good agreement with national sales data. A statistically significant weekly pattern was found for several PACs such as metoprolol and trimethoprim, but with the opposite pattern to that of illicit drugs. The variations in daily PAC loads could provide information about the mobility of people in the catchment, especially on the basis of daily taken PACs (i.e. to treat chronicle diseases).
Collapse
Affiliation(s)
- Thomas Thiebault
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France.
| | | | | | - Maxime Réty
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France; Univ Orleans, CNRS, ICOA, UMR 7311, 45067 Orleans, France
| | - Jérémy Jacob
- Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, 45071 Orleans, France
| |
Collapse
|
35
|
Azuma T, Arima N, Tsukada A, Hirami S, Matsuoka R, Moriwake R, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Ishida M, Hisamatsu K, Yunoki A, Mino Y. Distribution of six anticancer drugs and a variety of other pharmaceuticals, and their sorption onto sediments, in an urban Japanese river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19021-19030. [PMID: 28660504 DOI: 10.1007/s11356-017-9525-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The distributions of 31 pharmaceuticals grouped into nine therapeutic classes, including six anticancer drugs, were investigated in the waters and sediments of an urban river in Japan. The coefficients of sorption (logK d) to the river sediments were also determined from the results of a field survey and laboratory-scale experiment. Three anticancer drugs-bicalutamide, doxifluridine, and tamoxifen-were detected in the river sediments at maximum concentrations of 391, 392, and 250 ng/kg, respectively. In addition, the transformation products of psychotropic carbamazepine (2-hydroxy carbamazepine, acridine, and acridone) were detected in the range of 108 ng/kg (2-hydroxy carbamazepine) to 2365 ng/kg (acridine), and the phytoestrogen glycitein was detected in the range of N.D. to 821 ng/kg. The logK d values of the targeted pharmaceuticals in river sediments in the field survey ranged from 0.5 (theophylline) to 3.3 (azithromycin). These results were in accord with those of the laboratory-scale sorption experiment. To the best of our knowledge, this is the first report of the detection of the anticancer drugs bicalutamide and tamoxifen, the transformation products of carbamazepine (2-hydroxy carbamazepine, acridine, and acridone), and the phytoestrogen genistein in river sediments.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Natsumi Arima
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ai Tsukada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoru Hirami
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Rie Matsuoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ryogo Moriwake
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hirotaka Ishiuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tomomi Inoyama
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yusuke Teranishi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Misato Yamaoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mao Ishida
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kanae Hisamatsu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ayami Yunoki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
36
|
Paíga P, Santos L, Delerue-Matos C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J Pharm Biomed Anal 2017; 135:75-86. [DOI: 10.1016/j.jpba.2016.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/14/2023]
|
37
|
Paíga P, Santos LHMLM, Ramos S, Jorge S, Silva JG, Delerue-Matos C. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:164-177. [PMID: 27560998 DOI: 10.1016/j.scitotenv.2016.08.089] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/05/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
The occurrence of 33 pharmaceuticals and metabolites was evaluated along the Lis river and in the influents and effluents of two wastewater treatment plants (WWTPs) located along the river. Results indicate that pharmaceuticals, such as ibuprofen, ketoprofen, carbamazepine and fluoxetine, and the metabolite salicylic acid are widespread along the Lis river, showing 100% of detection frequency, at levels up to 1.3μgL-1. The number of molecules detected increased along the river, with 11 molecules in the source, 15 upstream WWTP 1, 16 downstream WWTP 1 and upstream WWTP 2 and 19 downstream WWTP 2. The highest concentrations were often found downstream near the river mouth. Different possible sources of contamination of the Lis river were identified, namely WWTP effluents, untreated wastewaters and livestock production. Nevertheless, the discharge of WWTP effluents appeared to be the most pronounced, given that, in general, it was noticed an increase in the concentration of pharmaceuticals downstream of the WWTPs. WWTP effluents contributed with a total mass load of pharmaceuticals into the Lis river between 470 and 2317mg/d/1000 inhabitants. Non-steroidal anti-inflammatory drugs/analgesics were the therapeutic group with a high contribution to the total mass load of pharmaceuticals entering the Lis river, followed by psychiatric drugs and antibiotics. No seasonal variation was observed for the detected concentrations of pharmaceuticals. At the levels detected in the Lis river, sulfamethoxazole, clarithromycin, azithromycin and ibuprofen showed to have potential risk for aquatic organisms. These findings show that further studies embracing different environmental compartments (water, sediment and biota) are needed, in order to evaluate the partition/distribution of pharmaceuticals, their metabolites and transformation products in the environment as well as to predict their possible impact to non-target organisms and, in a last instance, to human health.
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Lúcia H M L M Santos
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | - Sandra Ramos
- CEAUL, Universidade de Lisboa, Portugal and LEMA, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Sandra Jorge
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal
| | - Jaime Gabriel Silva
- Águas do Centro Litoral, SA, Grupo Águas de Portugal, ETA da Boavista, Avenida Dr. Luís Albuquerque, 3030-410 Coimbra, Portugal; Departamento de Engenharia Civil, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV/Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|