1
|
Lian H, Zhang Y, Han C, Yang J. Reproductive toxicity of hexabromocyclododecane in rotifer Brachionus plicatilis: Involvement of reactive oxygen species and calcium signaling pathways. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106689. [PMID: 39154542 DOI: 10.1016/j.marenvres.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
To assess the toxicity of Hexabromocyclododecane (HBCD), the population, individual, and cellular biochemical parameters of the rotifer Brachionus plicatilis exposed to different concentrations of HBCD were investigated. The results showed that the population growth rate, reproductive period, and offspring number in B. plicatilis significantly decreased under 324 μg/L and 648 μg/L HBCD. Antioxidant enzyme activity and mRNA expression of CAT and Mn-SOD were promoted at low concentrations (32 μg/L and 64 μg/L) and inhibited at high concentrations (324 μg/L and 648 μg/L), while MDA content accumulated continuously with increasing HBCD concentrations, indicating that HBCD induced oxidation imbalance in rotifers. Further evidence was provided by the correlation between DNA fragmentation and physiological changes. The increased intercellular concentration of Ca2+ and the expression of CaM mRNA suggested that HBCD activated pathways related to calcium signaling. In summary, the excessive production of ROS induced by HBCD was considered to be the main cause of reproductive toxicity.
Collapse
Affiliation(s)
- Hairong Lian
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, 241002, China
| | - Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
2
|
Li F, Yang J, Li J, Lin X. Adaptive Strategies and Underlying Response Mechanisms of Ciliates to Salinity Change with Note on Fluctuation Properties. Microorganisms 2024; 12:1957. [PMID: 39458267 PMCID: PMC11509147 DOI: 10.3390/microorganisms12101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The adaptability of marine organisms to changes in salinity has been a significant research area under global climate change. However, the underlying mechanisms of this adaptability remain a debated subject. We hypothesize that neglecting salinity fluctuation properties is a key contributing factor to the controversy. The ciliate Euplotes vannus was used as the model organism, with two salinity fluctuation period sets: acute (24 h) and chronic (336 h). We examined its population growth dynamics and energy metabolism parameters following exposure to salinity levels from 15‱ to 50‱. The carrying capacity (K) decreased with increasing salinity under both acute and chronic stresses. The intrinsic growth rate (r) decreased with increasing salinity under acute stress. Under chronic stress, the r initially increased with stress intensity before decreasing when salinity exceeded 40‱. Overall, glycogen and lipid content decreased with stress increasing and were significantly higher in the acute stress set compared to the chronic one. Both hypotonic and hypertonic stresses enhanced the activities of metabolic enzymes. A trade-off between survival and reproduction was observed, prioritizing survival under acute stress. Under chronic stress, the weight on reproduction increased in significance. In conclusion, the tested ciliates adopted an r-strategy in response to salinity stress. The trade-off between reproduction and survival is a significant biological response mechanism varying with salinity fluctuation properties.
Collapse
Affiliation(s)
- Fenfen Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jing Yang
- College of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Premnath BJ, Alamelu S, Rajendran GR, Bichandarkoil Jayaram P, Krishnan H, Kamaraj SK, Thirumurugan A, Alshehri MA, Sayed S, Srinivasan MK, Panneerselvam C. Evaluation of immunotoxicity of iron oxide nanoparticles on coelomocytes of Eisenia fetida. Drug Chem Toxicol 2024:1-11. [PMID: 39039826 DOI: 10.1080/01480545.2024.2373794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
Iron oxide nanoparticles (Fe3O4 NPs) have gained considerable attention due to their diverse applications in various fields. However, concerns about their potential toxic effects on the environment and living organisms have also emerged. In this study, we synthesized and characterized Fe3O4 NPs and assessed their immunotoxicity on the coelomocytes of Eisenia fetida. The Fe3O4 NPs were synthesized using a co-precipitation method, and their physicochemical properties were determined using techniques such as X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). The synthesized Fe3O4 NPs exhibited a uniform size distribution with spherical morphology and the phase purity was confirmed from XRD analysis. To evaluate the immunotoxicity of Fe3O4 NPs, Eisenia fetida coelomocytes were exposed to various concentrations of Fe3O4 NPs for 14 days. Furthermore, we analyzed the impact of Fe3O4 NPs on the biochemical parameters, including superoxide dismutase (SOD), catalase (CAT), acid phosphatase (APs), alkaline phosphatase (ALP), and total protein content (TPC), as well as conducted a histological examination. Biochemical analysis revealed significant alterations in the activity levels of SOD, CAT, APs, ALP, and TPC in the coelomocytes, indicating immune system dysregulation upon exposure to Fe3O4 NPs. Moreover, histological examination demonstrated structural changes, suggesting cellular damage caused by Fe3O4 NPs. These findings provide valuable insights into the immunotoxic effects of Fe3O4 NPs on Eisenia fetida and underscore the need for further investigation into the potential environmental impact of nanoparticles.
Collapse
Affiliation(s)
- Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Saravanan Alamelu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Gokul Raj Rajendran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | | | - Harish Krishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Sathish Kumar Kamaraj
- Instituto Politécnico Nacional (IPN)-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira (CICATA-Altamira), Carretera Tampico-Puerto Industrial Altamira Km 14.5, Tamps, Mexico
| | - Arun Thirumurugan
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Santiago, Chile
| | | | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Chellasamy Panneerselvam
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
4
|
Su X, Wang X, Zhou Z, Zeng X, Wu Q, Leung JYS. Can antimony contamination in soil undermine the ecological contributions of earthworms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166305. [PMID: 37586541 DOI: 10.1016/j.scitotenv.2023.166305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.
Collapse
Affiliation(s)
- Xiaotong Su
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Zhiqian Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xuan Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta (Ministry of Education), School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
5
|
Poiani SB, Dobeš P, Kunc M, Pereira MC, Bueno OC, Hyršl P. The Influence of Selected Insecticides on the Oxidative Response of Atta sexdens (Myrmicinae, Attini) Workers. NEOTROPICAL ENTOMOLOGY 2023; 52:1088-1099. [PMID: 37656416 PMCID: PMC10695876 DOI: 10.1007/s13744-023-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Reactive oxygen species (ROS) are generated as products of normal cellular metabolic activities; however, the use of pesticides to control leafcutter ants leads to unbalanced ROS production. We evaluated the effects of two insecticides (fipronil, sulfluramid) and metallic insecticide complex (magnesium complex [Mg(hesp)2(phen)] (1)) on the superoxide dismutase (SOD), glutathione (GSH) and the overall antioxidant capacity using two different methodologies: total radical-trapping potential (TRAP) and oxygen radical absorbance capacity (ORAC). Media workers of Atta sexdens (C. Linnaeus) were exposed to the insecticides for 24 h, 48 h, 72 h and 96 h before their fat bodies were dissected for analysis. The results showed that although the sulfluramid may cause the production of ROS, its slow action in the organism does not lead to oxidative stress. There is a rise in oxidative stress in workers of leafcutter ants treated with fipronil because SOD significantly increased when compared to the control group. On the other hand, Mg1-complex suppressed both GSH and SOD, indicating that the immune system may be affected by Mg1-complex, which has a delayed activity ideal for its use in chemical pest control. Both TRAP and ORAC evaluated total antioxidant capacities; however, ORAC proved to be a more sensitive method. In conclusion, the Mg1-complex is a new compound that should be further investigated as a potential replacement for fipronil and sulfluramid in pest control.
Collapse
Affiliation(s)
- Silvana Beani Poiani
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mayara Cristina Pereira
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Odair Correa Bueno
- Institute of Biosciences, Center for the Study of Social Insects, Sao Paulo State University UNESP, Sao Paulo, Brazil
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
6
|
Deng S, Wu Y, Duan H, Cavanagh JAE, Wang X, Qiu J, Li Y. Toxicity assessment of earthworm exposed to arsenate using oxidative stress and burrowing behavior responses and an integrated biomarker index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149479. [PMID: 34399332 DOI: 10.1016/j.scitotenv.2021.149479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenate (As-V) is a ubiquitous contaminant in soil as a result of excessive use of veterinary drugs and pesticides, causing enormous environmental risks. Multiple biomarkers have been used to assess the ecotoxicity of arsenic, however, the mechanisms of toxicity remain unclear. This paper describes the exposure of the earthworm (Eisenia fetida) to natural soil with different As-V concentrations for 28 days, then biomarkers from oxidative stress and burrowing behavior were quantified to evaluate As-V stress. Dynamic changes in reactive oxygen species (ROS), lipid peroxidation (MDA), adenosine triphosphate (ATP) content and antioxidant enzymes activity (Gpx, SOD, CAT) implied two stages of intensified stress responses and physiological adaptability. The transcriptional expression and regulation of antioxidant enzymes showed different responses. The mRNA expression of sod1 was up-regulated, while that of cat showed no significant change. The related regulators, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), showed dose-dependent activation, suggesting antioxidant defense induced by Nrf2 signaling. The burrowing behavior after 14-day exposure indicated that As-V inhibited burrowing activity, especially the burrow length and maximum burrow depth. These multiple biomarkers were integrated using a biomarker response index (BRI) model, which showed significant dose-effect relationship especially on day 28, and suggested that ATP was a sensitive and representative biomarker. This study provided evidence that burrowing activity, Nrf2 and HO-1 were useful biomarkers warranting inclusion into the BRI model. Arsenic toxicity was comprehensively understood through redox homeostasis regulation, biochemical and behavioral changes, and these results suggested new strategies for soil pollutants diagnosis.
Collapse
Affiliation(s)
- Songge Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanqi Duan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xiuhong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Resistance of Common Bean Genotypes to the Broad Mite, Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae): Offspring Development and Biochemical Basis. INSECTS 2021; 12:insects12100910. [PMID: 34680680 PMCID: PMC8540688 DOI: 10.3390/insects12100910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary The broad mite is a prominent pest, and its management is difficult due to its fast life cycle and farmers’ difficulty in detecting it before the damage is caused. Thus, the use of resistant plants is critical for an integrated pest management program for this mite species. Experiments were conducted to search for common bean varieties with resistance against the broad mite. With our findings, selected genotypes could be used for an integrated pest management program. Carioca Original, one of the most-used varieties in Brazil, had a lower yield, despite low numbers of broad mites. Broad mite populations did not jeopardize the yield of the Verdão and Negrão 11 varieties. Abstract The broad mite (BM) Polyphagotarsonemus latus is a pest of great prominence for several crops, including the common bean (Phaseolus vulgaris). The objective of this study was to select resistant genotypes and to determine chemicals associated with resistance. In the first experiment, BM incidence was assessed for 36 genotypes in a greenhouse study. A group of 10 genotypes was selected according to the development of BM populations. Mite populations and phytometric and biochemical variables were then determined to study eventual differential genotypic responses to mite infestation. Lower numbers of mite mobile forms (larvae + adults) were found on Verdão, Negrão and Carioca Original genotypes. The magnitude of differences reached 5.4 times more BM in the IAC Alvorada than the Verdão genotype. Plant yields were reduced for the genotypes TAA Bola Cheia, IPR Sabiá, IPR Uirapuru, IAC Alvorada and Carioca Original when plants were infested with BM. The yields for LP 13833, BRS Esteio, Negrão 11, Verdão and MD 1133 were similar between infested and non-infested genotypes, indicating tolerance. Verdão and Negrão 11, besides the tolerance, exhibited low offspring development, indicating antibiosis and/or antixenosis. Higher phenolic compound levels were found in the Verdão genotype. Increased contents of catalase and peroxidase were detected for Negrão 11 genotype when infested with BM. This work allowed the detection of common bean genotypes that express resistance and tolerance to BM. These genotypes can be used in places with a history of BM infestation, or used in breeding programs to incorporate these characteristics in other genotypes.
Collapse
|
8
|
Yang X, Gong J, Zhang X, Huang Y, Zhang W, Yang J, Lin J, Chai Y, Liu J. Evaluation of the combined toxicity of multi-walled carbon nanotubes and cadmium on earthworms in soil using multi-level biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112441. [PMID: 34174738 DOI: 10.1016/j.ecoenv.2021.112441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of multi-walled carbon nanotubes (MWCNTs) with cadmium (Cd) in soil may cause the combined biological effects, but few study reported about their joint toxic effects on earthworms. Therefore, this study investigated the effects of sub-lethal levels of MWCNTs (10, 50, 100 mg/kg) and Cd (2.0, 10 mg/kg) on earthworms Eisenia fetida for 14 days. The changes in multi-level biomarkers of growth inhibition rate, cytochrome P450 isoenzymes (CYP1A2, 2C9 and 3A4), and small molecular metabolites (metabolomics) were determined. The toxic interaction between MWCNTs and Cd was characterized by the combination of the biomarker integration index (BRI), joint effect index concentration addition index (CAI), and the effect concentration addition index (EAI). The results showed that the single MWCNTs exposure caused insignificant change in most biomarkers, while the combined exposure of MWCNTs (50-100 mg/kg) and 10 mg/kg Cd led to significant changes in ten most important metabolites identified by metabolomics and activities of CYP1A2, 2C9, and 3A4. Compared with the toxicity of Cd alone, the combined toxicity of the mixture was significantly reduced. According to the integration of BRI and CAI/EAI, a clearly antagonistic interaction at relatively low effects was observed between MWCNTs and Cd. The responses of multiple biomarkers suggest the toxic action mode of the mixture on earthworms was related to the oxidative injury, and the disruption of amino acid, purine, and pyrimidine metabolism, and the urea cycle.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Yongchuan Huang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junjie Lin
- Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| |
Collapse
|
9
|
Mohammad W, Mohammed T, El-Wakeil KA, Hassan MM. Effects of combined treatment of cadmium and oxytetracycline on the terrestrial isopod Porcellio leavis. BRAZ J BIOL 2021; 82:e246979. [PMID: 34133578 DOI: 10.1590/1519-6984.246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
The influence of pharmaceutical residues and heavy metals on living organisms has received global attention. The present study assessed the interactive effect of antibiotic residues and heavy metals in soil, as contaminated food with cadmium (Cd) and oxytetracycline (OTC) on the isopod Porcellio leavis. It was fed on fresh plant leaves contaminated with different concentrations of cadmium, Cd+OTC1000 ppm, Cd+OTC2000 ppm and Cd+OTC3000 ppm for 4 weeks. The changes in the feeding patterns, protein, lipid peroxidation (LPO), catalase activity (CAT), and total free amino acids (TFAA) were recorded. There were significant differences in the obtained results where Cd reduced the egestion ratio (ER) however, OTC enhanced this ratio. Biochemical analysis illustrated that combination between OTC and Cd inhibits the toxic effects of Cd at low concentration (1000 ppm), while at high concentration (3000 ppm) raise the toxicity. Detailed studies are required for further understanding of the interaction between OTC and heavy metals, and also its impact on soil animals and for improving soil risk evaluation.
Collapse
Affiliation(s)
- W Mohammad
- New valley University, Faculty of Science, Zoology Department, New valley, Egypt
| | - T Mohammed
- Assiut University, Zoology and Entomology Department, Faculty of Science, Assiut, Egypt
| | - K A El-Wakeil
- Assiut University, Zoology and Entomology Department, Faculty of Science, Assiut, Egypt
| | - M M Hassan
- Taif University, Faculty of Science, Department of Biology, Taif, Saudi Arabia.,Ain Shams University, Faculty of Science, Zoology Department, Cairo, Egypt
| |
Collapse
|
10
|
Mkhinini M, Helaoui S, Boughattas I, Amemou C, Banni M. Earthworm Eisenia andrei modulates oxidative stress in bean plants Vicia faba irrigated with treated wastewater. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1003-1016. [PMID: 32617728 DOI: 10.1007/s10646-020-02243-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
With respect to reducing the pressure on freshwater resources, treated wastewater (TWW) irrigation represents a sustainable alternative in agriculture. Due to their low quality and variable composition, TWW could entail harmful consequences for living organisms in terrestrial ecosystems. This study aims to evaluate how earthworm (Eisenia andrei) can modulate oxidative stress in bean plants (Vicia faba) that are irrigated over a course of 60 days with two doses of TWW (50 and 100%) in addition to a control condition (0%) irrigated with distilled water. This is achieved by measuring glutathione-S-transferase (GST) activity and malondialdehyde accumulation (MDA) in plants. Furthermore, catalase (CAT), GST, MDA, and acetylcholinesterase (AChE) activities of the earthworms are also assessed. Our results show that growth and physiological parameters are modified when applying TWW irrigation. Moreover, oxidative stress apprehended by GST activity and MDA accumulation is exacerbated in V. faba plants after exposure to increased TWW doses. Similarly, TWW irrigation enhances oxidative stress parameters in earthworms with a crucial decrease in AChE activity. In addition, the presence of earthworms increases growth and physiological parameters; it also results in a significant reduction in GST activity and MDA rate in V. faba plants. Our results provide new insights into the impact of TWW irrigation on soil organisms and the importance of earthworms in the reduction of oxidative stress in plants.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia.
| | - Cyrine Amemou
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, University of Sousse, Sousse, Tunisia
| |
Collapse
|
11
|
Li X, Wang M, Jiang R, Zheng L, Chen W. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J Environ Sci (China) 2020; 94:137-146. [PMID: 32563477 DOI: 10.1016/j.jes.2020.03.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
It is widely acknowledged that a simplified and robust approach to evaluating thecombined effects of chemical mixtures is critical for ecological risk assessment (ERA) of contaminated soil. The earthworm (Eisenia fetida) was used as a model to study the combined effects of polymetallic contamination and the herbicide siduron in field soil using a microcosm experiment. The responses of multiple biomarkers, including the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and acetylcholine esterase (AChE), the concentrations of glycogen, soluble protein (SP), malonaldehyde (MDA), and metallothionein (MT), and the neutral red uptake test (NRU), were investigated. Multivariate analysis, Principal Component Analysis (PCA) and Spearman's Rank Correlations analysis (BVSTEP) revealed that the activities of AChE and CAT and the NRU content were the prognostic biomarkers capturing the minimum data set of all the variables. Internal Cd (tissue Cd) in earthworms was closely related to the health status of worms under combined contamination of heavy metals and siduron. The integrated effect (Emix) calculated based on the activities of AChE and CAT and NRU content using the stress index method had significantly linear regression with internal Cd (p<0.01). Emix(10), Emix(20), and Emix(50) were then calculated, at 1.27, 1.63 and 2.71 mg/kg dry weight, respectively. It could be concluded that a bioassay-based approach incorporating multivariate analysis and internal dose was pragmatic and applicable to evaluating combined effects of chemical mixtures in soils under the guidance of the top-down evaluation concept of combined toxicity.
Collapse
Affiliation(s)
- Xuzhi Li
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zheng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Huang C, Wang W, Yue S, Adeel M, Qiao Y. Role of biochar and Eisenia fetida on metal bioavailability and biochar effects on earthworm fitness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114586. [PMID: 32325356 DOI: 10.1016/j.envpol.2020.114586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Biochar has gained extensive attention due to its remediation role in soil pollution. However, its hazardous effects on the soil fauna in contaminated soil and its remediation efficiency affected by soil organisms are still obscure. The individual and combined effects of biochar and earthworms (Eisenia fetida) on soil properties, metal bioavailability, and earthworm fitness were investigated in historically heavy metal (HM)-contaminated soil. The results showed that biochar increased the soil pH by 0.31, decreased DTPA-extractable Cd, Cu, Zn and Pb contents by 11.9%, 14.3%, 5.27% and 23.8%, respectively, and immobilized the HMs from a bioavailable fraction to a residual fraction. The co-incubation of biochar and E. fetida decreased soil pH by 0.11 and increased DTPA-extractable Cu, Zn, and Pb contents by 3.75%, 20.9% and 4.43%, respectively. The results of the correlation analysis showed that soil pH was significantly negatively correlated with HM bioavailability, and it was a potential factor contributed to this opposite effect. Furthermore, biochar decreased the biomass growth of E. fetida and inhibited the activities of SOD, CAT and GSH in E. fetida by 31.1%, 51.3% and 29.6% after 28 days of incubation. Overall, biochar and E. fetida showed the opposite effects on the soil remediation, and biochar also led to a negative effect on earthworms. These findings provided insights on verifying the actual remediation effects of biochar and its ecological risk in situ soil remediation.
Collapse
Affiliation(s)
- Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Weiyue Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Shizhong Yue
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Muhammad Adeel
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Yang X, Li Y, Wang X. Effects of ciprofloxacin exposure on the earthworm Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114287. [PMID: 32146370 DOI: 10.1016/j.envpol.2020.114287] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The widespread use of the antibiotic ciprofloxacin (CIP) poses a serious risk to soil organisms. Here, earthworms (Eisenia fetida) were used to explore the effect of CIP exposure on growth, reproduction, mortality, antioxidant enzyme activity, DNA damage, and mRNA levels. The results showed that mortality, weight, and reproduction did not change in response to CIP exposure. The antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and glutathione (GSH) were inhibited after 10 mg/kg CIP exposure on day 21, and catalase (CAT) activity increased significantly on day 14. High concentrations (1-2 g/kg) of CIP pollution caused DNA damage in E. fetida on days 7 and 14. At a dose of 10 mg/kg, CIP altered antioxidant enzymes and gene expression, but was not harmful to the growth and reproduction of E. fetida. Moreover, mRNA expression of annetocin, metallothionein, heat shock protein 70, and translationally controlled tumor protein were significantly upregulated on day 28. These findings indicate that antioxidant enzymes, DNA damage, and mRNA levels of biomarkers are more sensitive than mortality, growth, and reproduction for detecting CIP pollution in the soil environment.
Collapse
Affiliation(s)
- Xuelian Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Yuanbo Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China
| | - Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China.
| |
Collapse
|
14
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
15
|
Alves ADO, Weis GCC, Unfer TC, Assmann CE, Barbisan F, Azzolin VF, Chitolina B, Duarte T, Ribeiro-Filho EE, Duarte MMMF, Boligon A, Vélez-Martin E, Palma TV, de Andrade CM, da Cruz IBM. Caffeinated beverages contribute to a more efficient inflammatory response: Evidence from human and earthworm immune cells. Food Chem Toxicol 2019; 134:110809. [DOI: 10.1016/j.fct.2019.110809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/18/2019] [Accepted: 09/05/2019] [Indexed: 01/19/2023]
|
16
|
García-Gómez C, Babín M, García S, Almendros P, Pérez RA, Fernández MD. Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:199-207. [PMID: 31229817 DOI: 10.1016/j.scitotenv.2019.06.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The co-exposure of soil organisms to ZnO nanoparticles (ZnO NPs) and pesticides is likely to take place in agricultural soils. However, the impacts of co-exposure on terrestrial ecosystems are virtually unknown. In this paper, Eisenia andrei was exposed for a 28-day period to serial concentrations of ZnO NPs and/or the organophosphate insecticide chlorpyrifos (CPF) in natural soil, and was evaluated for single and joint effects. Zn and CPF accumulation in earthworm tissue was also determined. In the single assay, ZnO NPs and CPF caused statistical significant effects on survival and growth, but mainly on reproduction. Significant reductions in fecundity and fertility were detected with EC50 values of 278 and 179 mg Zn/kg for ZnO NPs, and of 50.75 and 38.24 mg/kg for CPF, respectively. The most notable effect on biomarkers was the reduction in acetylcholinesterase (AChE) activity caused by CPF, which reflected the neurotoxicity of this compound. The results of the combined assay indicated that co-exposure to ZnO NPs and CPF increased adverse effects in E. andrei. According to the independent action model, the binary mixtures showed a synergism (a stronger effect than expected from single exposures) on earthworm reproduction, which became up to 84% higher than the theoretically predicted values. Zn, and especially CPF accumulation, were influenced by the co-exposure. These results underpin the need to consider the effects of mixtures of NPs and organic chemicals on soil to adequately make ecological risk assessments of NPs.
Collapse
Affiliation(s)
- Concepción García-Gómez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Environment Department, Ctra. A Coruña, km 7.5, 28040 Madrid, (Spain).
| | - Mar Babín
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Environment Department, Ctra. A Coruña, km 7.5, 28040 Madrid, (Spain).
| | - Sandra García
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Environment Department, Ctra. A Coruña, km 7.5, 28040 Madrid, (Spain).
| | - Patricia Almendros
- Universidad Politécnica de Madrid (UPM), Chemical and Food Technology Department, CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Madrid, 28040, Spain.
| | - Rosa Ana Pérez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Environment Department, Ctra. A Coruña, km 7.5, 28040 Madrid, (Spain).
| | - María Dolores Fernández
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Environment Department, Ctra. A Coruña, km 7.5, 28040 Madrid, (Spain).
| |
Collapse
|
17
|
Porfido C, Allegretta I, Panzarino O, Laforce B, Vekemans B, Vincze L, de Lillo E, Terzano R, Spagnuolo M. Correlations between As in Earthworms' Coelomic Fluid and As Bioavailability in Highly Polluted Soils as Revealed by Combined Laboratory X-ray Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10961-10968. [PMID: 31373803 DOI: 10.1021/acs.est.9b02310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combined X-ray-based spectroscopy techniques were applied to investigate arsenic (As) bioaccumulation in earthworms (Eisenia andrei) exposed to six field-collected polluted soils (58-13 330 mg As kg-1). After 14 days of exposure to the arsenious soils, the As distribution in earthworms was examined by micro-X-ray fluorescence spectroscopy (μXRF), after epoxy resin embedding and preparing thin sections. Similar to μXRF data, XRF-computed tomography (XRF-CT) confirmed As accumulation in the coelom of intact earthworms. Therefore, total-reflection XRF was used to determine total As within both the whole earthworm's body (AsE) and coelomic fluid extracts (AsF). Bioaccumulation data (AsE and AsF) were thereafter evaluated in relation to total As concentration in soils (AsT) and to As mobile fraction in soils. A significant linear correlation (R2 = 0.97) was found between AsE and AsF, indicating that the As sequestrated into the coelomic fluid may reflect the total body concentration. Therefore, we may conclude that the As concentration in the coelomic fluid can be used as an index of As availability. This paper demonstrates that by combining different laboratory X-ray analytical techniques, compartmentalization and bioavailability of potentially toxic elements can be visualized and quantified within indicator-living organisms, thus contributing to an improved risk assessment for contaminated soils.
Collapse
Affiliation(s)
- Carlo Porfido
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| | - Ignazio Allegretta
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| | - Onofrio Panzarino
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| | - Brecht Laforce
- Department of Chemistry , Ghent University , Krijgslaan 281 (S12) , 9000 Ghent , Belgium
| | - Bart Vekemans
- Department of Chemistry , Ghent University , Krijgslaan 281 (S12) , 9000 Ghent , Belgium
| | - Laszlo Vincze
- Department of Chemistry , Ghent University , Krijgslaan 281 (S12) , 9000 Ghent , Belgium
| | - Enrico de Lillo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| | - Roberto Terzano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| | - Matteo Spagnuolo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti , Università degli Studi di Bari "Aldo Moro" , Via G. Amendola 165/A , 70126 Bari , Italy
| |
Collapse
|
18
|
The Year of the Honey Bee ( Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. INSECTS 2019; 10:insects10080244. [PMID: 31394797 PMCID: PMC6723739 DOI: 10.3390/insects10080244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
It has been known for many years that in temperate climates the European honey bee, Apis mellifera, exists in the form of two distinct populations within the year, short-living summer bees and long-living winter bees. However, there is only limited knowledge about the basic biochemical markers of winter and summer populations as yet. Nevertheless, the distinction between these two kinds of bees is becoming increasingly important as it can help beekeepers to estimate proportion of long-living bees in hives and therefore in part predict success of overwintering. To identify markers of winter generations, we employed the continuous long-term monitoring of a single honey bee colony for almost two years, which included measurements of physiological and immunological parameters. The results showed that the total concentration of proteins, the level of vitellogenin, and the antibacterial activity of haemolymph are the best three of all followed parameters that are related to honey bee longevity and can therefore be used as its markers.
Collapse
|
19
|
Liu H, Xuan L, Zhou J, Zhou D, Wang Y. Effects of Soil Properties on Cadmium Toxicity to Folsomia candida (Collembola). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:90-97. [PMID: 30535823 DOI: 10.1007/s00128-018-2514-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The study was endeavored to investigate the effects of soil properties on the acute and chronic cadmium (Cd) toxicities to Folsomia candida (Collembola F. candida). Results of the present study indicated that 10% lethal concentrations (LC10) in a period of 7 days were ranged from 68.6 to > 1000 mg/kg Cd. Soil Cd concentrations that halve F. candida reproductions (EC50, 28 days) were ranged from 41.4 to 146.8 mg/kg. Stepwise regression analysis between the thresholds of Cd toxicity and soil properties revealed that the pH and organic matter (OM) were two fundamental factors for the assessment of biological threats posed by Cd. The exchangeable Cd was mainly affected by soil pH. The reproduction inhibition and adult mortality ratios of F. candida were positively correlated with soil exchangeable Cd. The development of a comprehensive pedotransfer function based on pH and OM values would be suitable for accurately assessing the biological risks arising from Cd contamination.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Xuan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
20
|
Mkhinini M, Boughattas I, Alphonse V, Livet A, Bousserrhine N, Banni M. Effect of treated wastewater irrigation in East Central region of Tunisia (Monastir governorate) on the biochemical and transcriptomic response of earthworms Eisenia andrei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1245-1255. [PMID: 30180333 DOI: 10.1016/j.scitotenv.2018.07.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/21/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Treated wastewater (TWW) reuse for irrigation has become an excellent way to palliate water scarcity in Mediterranean arid regions. However, the toxicological effects of these effluents on the soil's organisms, especially earthworms, have not been well studied as yet. In this paper, earthworms Eisenia andrei were exposed for 7 days and 14 days to five agricultural soils irrigated with TWW for different periods: 1 year, 8 years, and 20 years. In addition, they were also exposed to soil from one reference site sampled from the Ouardenin perimeter in the Monastir Governorate in Tunisia. The effect on earthworms was assessed at the biochemical level by evaluating for catalase (CAT), glutathione-S-transferase (GST), malondialdehyde accumulation (MDA) and acetylcholinesterase inhibition (AChE). On the other hand, genotoxicity and transcriptomic responses were evaluated using micronuclei test (MNT) and gene expression level of CAT and GST. Moreover, metals uptake by earthworms was analyzed. Results showed that CAT and GST activity in the earthworm increased significantly when they were exposed to soils irrigated with TWW for 1, 8 and 20 years. Furthermore, MDA concentration also increased significantly with the increase in exposure period. However, AChE activity decreased and MNi frequency increased in earthworms after 7 and 14 days of exposure to soils irrigated with TWW for more than a year. The gene expression level of CAT and GST showed a significant variability, thus data are discussed in relation to the studied biomarkers (CAT and GST). These data provide new insights into the effect of toxicity of TWW on the soil's macro fauna, which is strongly affected by the trace elements and other organic compounds accumulated in soils after 20 years of TWW irrigation.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia.
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia.
| | - Vanessa Alphonse
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Alexandre Livet
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex, 94010, France.
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Tunisia
| |
Collapse
|
21
|
Mkhinini M, Boughattas I, Bousserhine N, Banni M. Biochemical and transcriptomic response of earthworms Eisenia andrei exposed to soils irrigated with treated wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2851-2863. [PMID: 30499083 DOI: 10.1007/s11356-018-3794-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In order to ensure better use of treated wastewater (TWW), we investigated the effect of three increasing doses of TWW, 10%, 50%, and 100%, on biochemical and transcriptomic statuses of earthworms Eisenia andrei exposed during 7 and 14 days. The effect of TWW on the oxidative status of E. andrei was observed, but this effect was widely dependent on the dilution degree of TWW. Results showed a significant decrease in the catalase (CAT) activity and an increase in the glutathione-S-transferase (GST) activity, and considerable acetylcholinesterase (AChE) inhibition was recorded after 14 days of exposure. Moreover, malondialdehyde (MDA) accumulation was found to be higher in exposed animals compared to control worms. The gene expression level revealed a significant upregulation of target genes (CAT and GST) during experimentation. These data provided new information about the reuse of TWW and its potential toxicity on soil organisms.
Collapse
Affiliation(s)
- Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia.
| | - Noureddine Bousserhine
- Laboratory of Water Environment and Urban Systems, University Paris-Est Créteil, 94010, Créteil cedex, France
| | - Mohammed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy Chott-Meriem, 4042, Chott-Meriem, Tunisia
| |
Collapse
|
22
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
23
|
Li X, Wang M, Chen W, Jiang R. Evaluation of combined toxicity of Siduron and cadmium on earthworm (Eisenia fetida) using Biomarker Response Index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:893-901. [PMID: 30235648 DOI: 10.1016/j.scitotenv.2018.07.380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Agrochemicals and heavy metals are widespread contaminants in urban soil and could co-exist as mixture, which could cause unexpected risk to terrestrial organism. To assess the joint effect of herbicide Siduron and Cd, a battery of sub-lethal biomarkers was studied using earthworm ecotoxicological assay. Most selected biomarkers appeared significant but complicated responses with the increasing concentration of contaminants after 28-day exposure. In order to quantify the overall effect of the mixture contaminants, Biomarker Response Index (BRI) was used to integrate the multiple responses. Concentration Addition Index (CAI) and Effect Addition Index (EAI) were introduced to assess types of joint effect. Results showed significantly dose-effect responses between BRI and contaminant exposure concentrations. Integrated toxicity increased obviously under joint treatments of Siduron and Cd compared to their individual treatments. According to CAI, a clear antagonism was observed at relatively lower effects and gradually transformed to slight synergism with an increase of effects, while EAI showed the joint effect of addition at the whole range of effect levels. Thus, compared to the simple analysis of those complicated responses, BRI is an effective method to determine the integrated toxicity of mixture and its combination with joint effect indices (CAI and EAI) provides more worthy risk assessment on toxicity interaction among compounds.
Collapse
Affiliation(s)
- Xuzhi Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Ruan Y, Dou Y, Chen J, Warren A, Li J, Lin X. Evaluation of phenol-induced ecotoxicity in two model ciliate species: Population growth dynamics and antioxidant enzyme activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:176-185. [PMID: 30269012 DOI: 10.1016/j.ecoenv.2018.09.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/08/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
The application of identical exposure dosages in different species generally leads to a limited understanding of dose-response patterns because of species-specific factors. To evaluate phenol-induced ecotoxicity, antioxidant enzyme activity and population growth dynamics were compared in two model ciliates, the marine species Euplotes vannus and the freshwater species Paramecium multimicronucleatum. Dosage ranges of phenol exposure were based on tolerance limits of test ciliates as determined by their carrying capacity (K) and growth rate (r). When the exposure duration of phenol increased from 48 h to 96 h, the median effective dose (ED50) for P. multimicronucleatum decreased faster than that for E. vannus, and the ratio of the former to the latter declined from 2.75 to 0.30. When E. vannus was exposed to increasing concentrations of phenol (0-140 mg l-1), r rose initially and then dropped significantly at concentrations higher than 40 mg l-1, whereas K decreased linearly over the entire range. For P. multimicronucleatum, both r and K declined gradually over the range 0-200 mg l-1 phenol. Dose-response patterns of activities of three individual antioxidant enzymes, and the integrative index of the three enzymes, presented a biphasic (inverse U-shaped) curve at each of four durations of exposure, i.e. 12 h, 24 h, 36 h and 48 h. Cluster analyses and multidimensional scaling analyses of antioxidant enzyme activities revealed differences in the temporal succession of physiological states between the two model ciliates. In brief, combining ED50 with growth dynamic parameters is helpful for designing exposure dosages of toxicants in ecotoxicity tests.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Yingfeng Dou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Jingyi Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jiqiu Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China.
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
25
|
Maity S, Banerjee R, Goswami P, Chakrabarti M, Mukherjee A. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil. CHEMOSPHERE 2018; 203:307-317. [PMID: 29626808 DOI: 10.1016/j.chemosphere.2018.03.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to assess the biomarkers of oxidative stress [reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), aldehyde dehydrogenase (ALDH) and lipid peroxidation (LPO)] in earthworms of different ecological categories [epigeic Eisenia fetida (E. fetida) and anecic Eutyphoeus waltoni (E. waltoni)] exposed to cadmium (Cd)-polluted soil (30, 60 and 120 mg kg-1) for 28 days. Cd accumulation in earthworms increased significantly with increasing exposure dose and duration. However, E. fetida showed a relatively higher level of Cd accumulation until day 21; thereafter, depletion in the Cd level was recorded for the highest exposure dose. In E. waltoni, the detoxification enzymes and GSH level increased significantly with increasing exposure dose and Cd accumulation for 14 days (acute phase). In contrast, in E. fetida, acute exposure to Cd increased detoxification enzymes with decrease in GSH levels. For both species, sub-chronic exposures (28 days) increased lipid peroxidation with decrease in detoxification enzymes. GPx and ALDH responses of Cd-exposed earthworms showed a similar trend. Thus, these enzymes can be used as general biomarkers in these two species. The consistent variations in GST, GPx and ALDH activities suggest that E. waltoni may be used as a bioindicator species; this further signifies the use of endemic earthworms as a bioindicator to assess the risk of soil contamination. The present investigation indicates that Cd accumulation and biomarker responses in earthworms depend on dose and duration of exposure and on the concerned species.
Collapse
Affiliation(s)
- Sulata Maity
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Ritesh Banerjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Priya Goswami
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
26
|
Javadi Khederi S, Khanjani M, Gholami M, Panzarino O, de Lillo E. Influence of the erineum strain of Colomerus vitis (Acari: Eriophyidae) on grape (Vitis vinifera) defense mechanisms. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 75:1-24. [PMID: 29611069 DOI: 10.1007/s10493-018-0252-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/19/2018] [Indexed: 05/08/2023]
Abstract
Grape (Vitis vinifera) is commonly affected by the erineum strain of Colomerus vitis (GEM) in Iran and the susceptibility of grape cultivars to GEM is poorly understood. In order to evaluate the impact of GEM on grape and its defense mechanisms against the mite, an exploratory study was carried out on 19 cultivars (18 Iranian and the non-native Muscat Gordo). The differential susceptibility of cultivars to GEM was compared on the basis of the area of leaf damage induced by GEM. The cultivars White Thompson seedless of Bovanat, Atabaki Zarghan, Koladari Ghoochan and Sahebi Uroomie were less susceptible to GEM, whereas Ghalati Dodaj, Rishbaba, Muscat Gordo and Neyshaboori Birjand appeared to be the most affected by the mite. In a no-choice setup, plants of selected cultivars of these two groups were infested by GEM and assayed for 10 biomarkers usually related to plant stress mechanisms against plant feeders: the activity of defense enzymes-peroxidase (POX), polyphenol oxidase (PPO), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), catalase (CAT), the amount of total polyphenolics, total flavonoids, total soluble carbohydrates, hydrogen peroxide (H2O2), and malondialdehyde (MDA) expressing lipid peroxidation. The biomarkers were assessed in grape leaves 7 days before releasing the mites, as well as 7, 14 and 28 days after infestation (DAI). The activity of the enzymes and the amount of the compounds usually increased in percentage after mite infestation. A significant negative correlation was found between the area of leaf damage and PPO, POX, SOD, MDA and H2O2 for all sampling dates. The area of leaf damage showed a significant positive correlation with total soluble carbohydrates at 28 DAI, and significant negative correlations with CAT (at 14 and 28 DAI), PAL and total flavonoids (at 7 DAI). No correlation was observed between area of leaf damage and total polyphenolics. The biomarkers PPO, SOD, CAT activity and H2O2 provided the best explanation for the response of grape cultivars to GEM infestation.
Collapse
Affiliation(s)
- Saeid Javadi Khederi
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Khanjani
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Mansur Gholami
- Department of Horticulture, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Onofrio Panzarino
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| | - Enrico de Lillo
- Department of Soil, Plant and Food Sciences, Entomological and Zoological Section, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
27
|
Liu H, Li M, Zhou J, Zhou D, Wang Y. Effects of soil properties and aging process on the acute toxicity of cadmium to earthworm Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3708-3717. [PMID: 29168134 DOI: 10.1007/s11356-017-0739-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
This study was undertaken to investigate the effects of soil properties and aging process on the acute toxicity of cadmium (Cd) to Eisenia fetida (E. fetida) in 18 Cd-spiked soils. Results showed that the Cd toxicity to E. fetida differed in the 18 soils with different characteristics, and median lethal concentration (LC50) values varied from 440.7 to 1520.4 mg/kg in freshly spiked soils. Soil pH and organic matter (OM) content were the two major factors associated with Cd toxicity. The increase in LC50 values and decreases in both exchangeable Cd in soils and tissue Cd concentrations in earthworm whole body indicated that aging (180 and 360 days) could reduce the acute toxicity and bioavailability of Cd to E. fetida. Cadmium concentrations in E. fetida were positively correlated with exchangeable Cd content in soils, and soil pH and OM were the key factors controlling the distribution and transformation of the exchangeable Cd. The results will provide useful reference information for the risk assessment of Cd in the terrestrial environment.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71st East Beijing Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
28
|
Gautam A, Ray A, Mukherjee S, Das S, Pal K, Das S, Karmakar P, Ray M, Ray S. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:620-631. [PMID: 29128823 DOI: 10.1016/j.ecoenv.2017.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 104 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country.
Collapse
Affiliation(s)
- Arunodaya Gautam
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Abhishek Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Soumalya Mukherjee
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Santanu Das
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Kunal Pal
- Nanobiotechnology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, 188 Raja Subodh Chandra Mallick Road, Kolkata 700032, West Bengal, India.
| | - Subhadeep Das
- Proteomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Parimal Karmakar
- Nanobiotechnology Laboratory, Department of Life Science and Biotechnology, Jadavpur University, 188 Raja Subodh Chandra Mallick Road, Kolkata 700032, West Bengal, India.
| | - Mitali Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
29
|
Dai W, Ke X, Li Z, Gao M, Wu L, Chiristie P, Luo Y. Antioxidant enzyme activities of Folsomia candida and avoidance of soil metal contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2889-2898. [PMID: 29143931 DOI: 10.1007/s11356-017-0489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Induction of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) and the avoidance of potentially toxic metals in soil by Folsomia candida were investigated. Both laboratory-spiked and field-polluted agricultural soils were used. Cadmium (Cd) concentrations in body tissues, animal avoidance behaviour and physico-chemical properties of the field soils were also determined. In laboratory Cd-spiked soils, the CAT and SOD activities in the Cd treatments were 71.1-94.7 and 1.31-4.55 times higher than in the control, respectively. In field-polluted agricultural soils, the CAT and POD activities generally increased with increasing pollution index (PI Nemerow ) of soil Cd, Cu, Pb and Zn. The CAT, POD and SOD activities at different PI Nemerow were 65.7-128, 30.1-180 and 36.5-95.8% higher than in the control, respectively. In line with the enzyme activities, Cd concentrations in the animal bodies were 8.31-15.1 and 3.21-10.0 times higher than in the control in spiked and field-polluted soils, respectively. Avoidance behaviour also increased with increasing metal concentrations in both soils. The effects of metals on CAT, POD or SOD activity were influenced by soil properties such as soil texture and pH. These results indicate that the antioxidant enzymes activities of F. candida can be induced by heavy metals and potentially used to assess the toxicity, and also that soil properties must be considered in the analysis of enzyme activities in different types of field soils.
Collapse
Affiliation(s)
- Wencai Dai
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Chiristie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
30
|
Zhang L, Duan X, He N, Chen X, Shi J, Li W, Xu L, Li H. Exposure to lethal levels of benzo[a]pyrene or cadmium trigger distinct protein expression patterns in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:733-742. [PMID: 28407590 DOI: 10.1016/j.scitotenv.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Different pollutants induce distinct toxic responses in earthworms (Eisenia fetida). Here, we used proteomics techniques to compare the responses of E. fetida to exposure to the 10% lethal concentration (14d-LC10) of benzo[a]pyrene (BaP) or cadmium (Cd) in natural red soil (China). BaP exposure markedly induced the expression of oxidation-reduction proteins, whereas Cd exposure mainly induced the expression of proteins involved in transcription- and translation-related processes. Furthermore, calmodulin-binding proteins were differentially expressed upon exposure to different pollutants. The calcium (Ca2+)-binding cytoskeletal element myosin was down-regulated upon BaP treatment, whereas the Ca2+-binding cytoskeletal element tropomyosin-1 was up-regulated upon Cd treatment. Some proteins exhibited opposite responses to the two pollutants. For instance, catalase (CAT) and heat shock protein 70 were up-regulated upon BaP treatment and down-regulated upon Cd treatment. A significant (p<0.05, one-way ANOVA with least-significant difference (LSD) test) increase in the level of reactive oxygen species (ROS) and CAT activity further showed that BaP mainly induces oxidative stress. Real-time PCR analysis showed that mRNA expression often did not correlate well with protein expression in earthworms subjected to Cd or BaP treatment. In addition, the expression of the gene encoding the protein metallothionein, which was not detected in the protein analysis, was induced upon Cd treatment, but slightly reduced upon BaP treatment. Therefore, BaP and Cd have distinct effects on the protein profile of E. Fetida with BaP markedly inducing ROS activity, and Cd mainly triggering genotoxicity. CAPSULE SUMMARY Distinct patterns of protein expression are induced in earthworms upon exposure to different pollutants; BaP markedly induces high levels of ROS, while Cd resultes in genotoxicity.
Collapse
Affiliation(s)
- Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Xiaochen Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; College of Resources, Environment, and Planning, Dezhou University, Dezhou 253023, People's Republic of China
| | - Nannan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinli Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weiming Li
- Nanjing Scientific Institute of Vegetables and Flowers, Nanjing 210095, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
31
|
Jančaříková G, Houser J, Dobeš P, Demo G, Hyršl P, Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog 2017; 13:e1006564. [PMID: 28806750 PMCID: PMC5584973 DOI: 10.1371/journal.ppat.1006564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcβ1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed β-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.
Collapse
Affiliation(s)
- Gita Jančaříková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
32
|
Shi Z, Tang Z, Wang C. A brief review and evaluation of earthworm biomarkers in soil pollution assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13284-13294. [PMID: 28382452 DOI: 10.1007/s11356-017-8784-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/08/2017] [Indexed: 05/21/2023]
Abstract
Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.
Collapse
Affiliation(s)
- Zhiming Shi
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Zhiwen Tang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Congying Wang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
33
|
Šrut M, Drechsel V, Höckner M. Low levels of Cd induce persisting epigenetic modifications and acclimation mechanisms in the earthworm Lumbricus terrestris. PLoS One 2017; 12:e0176047. [PMID: 28426746 PMCID: PMC5398608 DOI: 10.1371/journal.pone.0176047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Toxic effects of cadmium (Cd), a common soil pollutant, are still not very well understood, particularly in regard to its epigenetic impact. Therefore, the aim of this study was to assess DNA methylation changes and their persistence in the earthworm Lumbricus terrestris upon chronic low dose Cd exposure using methylation sensitive amplification polymorphism (MSAP). Moreover, the biomarker response and fitness of the earthworms, as well as the expression of detoxification-related genes (metallothionein (MT) and phytochelatin synthase (PCS)) was evaluated. Low levels of Cd caused an increase in genome-wide DNA methylation, which remained partly modified, even after several months of recovery in unpolluted soil. Increased cellular stress seemed to decrease after two weeks of exposure whereas fitness parameters remained unaffected by Cd, probably as a result from the activation of detoxification mechanisms like the expression of MTs. Interestingly, even though the level of Cd exposure was very low, MT expression levels indicate the development of acclimation mechanisms. Taken together, this study demonstrates that acclimation, as well as epigenetic modifications can occur already in moderately polluted environments. In addition, these effects can have long-lasting impacts on key species of soil invertebrates and might persist long after the actual heavy metal challenge has passed.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Victoria Drechsel
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Martina Höckner
- Department of Ecophysiology, Institute of Zoology, University of Innsbruck, Center for Molecular Biosciences, Technikerstr. 25, A-6020 Innsbruck, Austria
| |
Collapse
|
34
|
Ma T, Zhou W, Chen L, Wu L, Christie P, Zhang H, Luo Y. Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS One 2017; 12:e0173957. [PMID: 28319143 PMCID: PMC5358789 DOI: 10.1371/journal.pone.0173957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/01/2017] [Indexed: 01/15/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester (PAE) that has aroused public concern due to its resistance to degradation and its toxicity as an endocrine-disrupting compound. Effects of different concentrations of DEHP on Eisenia fetida in spiked natural soil have been studied in the body of the earthworm by means of soil cultivation tests 7, 14, 21 and 28 days after exposure. The results indicated that, in general, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, metallothionein (MT) content, the expression of heat shock protein 70 (HSP 70) and all the tested geno-toxicity parameters are promoted as time elapses and with increasing concentration of DEHP. However, peroxidase (POD) activity, neutral red retention time (NRRT) and mitochondrial membrane potential difference values were found to decrease even at a low concentration of DEHP of 1 mg kg-1 soil (p<0.05). Clear toxic effects of DEHP on E. fetida have been generally recognized by means of the disturbance of antioxidant enzyme activity/content and critical proteins, cell membrane and organelle disorder and DNA damage estimated by length of tail, tail DNA ratio, and tail moment parameters. A concentration of DEHP of 3 mg kg-1 may be recommended as a precaution against the potential risk of PAEs in soils and for indicating suitable threshold values for other soil animals and soil micro-organisms.
Collapse
Affiliation(s)
- Tingting Ma
- Institute of Hanjiang, Hubei University of Arts and Science, Xiangyang, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei Zhou
- School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang, China
| | - Li’ke Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Shanghai Research Institute of Chemical Industry, Shanghai, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Haibo Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Key laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- * E-mail:
| |
Collapse
|
35
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
36
|
Mincarelli L, Vischetti C, Craft J, Tiano L. DNA damage in different Eisenia andrei coelomocytes sub-populations after in vitro exposure to hydrogen peroxide. SPRINGERPLUS 2016; 5:302. [PMID: 27064673 PMCID: PMC4783309 DOI: 10.1186/s40064-016-1950-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Earthworms play an essential role in providing soil fertility and may represent an important soil contamination bio-indicator. They are able to ingest soil particles, adsorb substances throughout the intestinal epithelium into the coelomic cavity, where chemicals can come in direct contact with coelomic fluid. Earthworm coelomic fluid shelters leucocytes (coelomocytes) that differ significantly both structurally and functionally. Cellular variability could lead to different susceptibility towards contaminants possibly present in soil ecosystem. In order to define population specific dose response to chemicals and to identify a homogeneous cell population to be used as a relevant biomarker, we investigated different coelomocytes subpopulation, obtained by Percoll density gradient centrifugation (5–35 %), exposed ex vivo to H2O2 in the range of concentration 15–120 µM. DNA damage levels were assessed by the comet assay on unseparated coelomocytes and on three enriched cellular fractions (light, medium and heavy density subpopulations). All tested samples showed a dose–response genotoxic effect following H2O2 exposure. Moreover, light density sub-population appeared more susceptible to oxidative insult highlighted by a significant increase in DNA damage indexes at lower concentrations of H2O2. Present data suggested that in these experimental condition coelomocytes light fraction may represent a more sensitive biomarker of genotoxic insult.
Collapse
Affiliation(s)
- Laura Mincarelli
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Costantino Vischetti
- Environmental, Food and Agricultural Sciences Department, Polytechnic University of Marche, Ancona, Italy
| | - John Craft
- Biological and Biomedical Science Department, School of Health and Life Science, Glasgow Caledonian University, Glasgow, UK
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|