1
|
da Silva J, de Almeida EA, Karoleski GE, Koloshe E, Peron AP, Job AE, Leimann FV, Shirai MA, da Silva Gonzalez R. Synthesis of a Bioactive Nitric Oxide-Releasing Polymer from S-Nitrosated Starch. ACS OMEGA 2024; 9:41268-41278. [PMID: 39398142 PMCID: PMC11465258 DOI: 10.1021/acsomega.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The incorporation of nitric oxide (NO) into polymeric matrices minimizes degradation and facilitates controlled release. This optimization increases the field of application of NO, in dressings, food protective films, and implant devices, among others. This work presents an economical and easy way to manufacture bioactive nitric oxide-releasing polymer (BioNOR-P) and evaluates its bactericidal and antioxidant activity (AA), mechanical behavior, cytotoxicity, and genotoxicity, seeking future use in different applications. The BioNOR-P film was obtained by a casting method, forming a homogeneous, transparent film with good mechanical properties. The release of NO in an aqueous medium showed the film's ability to release NO slowly, at a rate of 0.58 nmol/g-1 min-1. Furthermore, the noncytotoxicity and antioxidant activity observed by NO release from BioNOR-P, as well as the ability to inhibit bacterial growth, may aid in the development of a NO-released polymer with different areas of application.
Collapse
Affiliation(s)
- Jéssica
Fernanda da Silva
- Food
Engineering Course, Federal Technological
University of Paraná (UTFPR), Campo Mourão Campus, Campo Mourão 87301-899, Paraná, Brazil
| | - Edson Araujo de Almeida
- Post-graduation
Program of Chemistry, State University of
Maringá (UEM), Maringá 87020-900, Paraná, Brazil
| | - Geovana Ellen Karoleski
- Chemical
Engineering Course, Federal Technological
University of Paraná, Campo
Mourão 87301-899, Paraná, Brazil
| | - Everton Koloshe
- Chemical
Course, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Ana Paula Peron
- Department
of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Aldo Eloizo Job
- Department
of Physics, State University Paulista “Julio
de Mesquita Filho”, Campus, Presidente Prudente 19060-900, São Paulo, Brazil
| | - Fernanda Vitória Leimann
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Marianne Ayumi Shirai
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Postgraduate
Program in Food Technology, Federal Technological
University of Paraná, Campo Mourão 87301-899, Paraná, Brazil
- Department
of Chemistry, Federal Technological University
of Paraná, Campo Mourão 87301-899, Paraná, Brazil
| |
Collapse
|
2
|
Kallawar GA, Bhanvase BA. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1748-1789. [PMID: 38055170 DOI: 10.1007/s11356-023-31175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
This comprehensive review explores the complex environment of textile wastewater treatment technologies, highlighting both well-established and emerging techniques. Textile wastewater poses a significant environmental challenge, containing diverse contaminants and chemicals. The review presents a detailed examination of conventional treatments such as coagulation, flocculation, and biological processes, highlighting their effectiveness and limitations. In textile industry, various textile operations such as sizing, de-sizing, dyeing, bleaching, and mercerization consume large quantities of water generating effluent high in color, chemical oxygen demand, and solids. The dyes, mordants, and variety of other chemicals used in textile processing lead to effluent variable in characteristics. Furthermore, it explores innovative and emerging techniques, including advanced oxidation processes, membrane filtration, and nanotechnology-based solutions. Future perspectives in textile wastewater treatment are discussed in-depth, emphasizing the importance of interdisciplinary research, technological advancements, and the integration of circular economy principles. Numerous dyes used in the textile industry have been shown to have mutagenic, cytotoxic, and ecotoxic potential in studies. Therefore, it is necessary to assess the methods used to remediate textile waste water. Major topics including the chemical composition of textile waste water, the chemistry of the dye molecules, the selection of a treatment technique, the benefits and drawbacks of the various treatment options, and the cost of operation are also addressed. Overall, this review offers a valuable resource for researchers and industry professionals working in the textile industry, pointing towards a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Gauri A Kallawar
- Department of Chemical Technology, Dr. Babasaheb Ambedkar, Marathwada University, Chatrapati Sambhajinagar, 431004, MS, India
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India.
| |
Collapse
|
3
|
Overdahl KE, Tighe RM, Stapleton HM, Ferguson PL. Investigating sensitization activity of azobenzene disperse dyes via the Direct Peptide Reactivity Assay (DPRA). Food Chem Toxicol 2023; 182:114108. [PMID: 37890762 PMCID: PMC10872524 DOI: 10.1016/j.fct.2023.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and have been found in indoor house dust and in children's polyester apparel. Azobenzene disperse dyes are implicated as potentially allergenic; however, little experimental data is available on allergenicity of these dyes. Here, we examine the binding of azobenzene disperse dyes to nucleophilic peptide residues as a proxy for their potential reactivity as electrophilic allergenic sensitizers. The Direct Peptide Reactivity Assay (DPRA) was utilized via both a spectrophotometric method and a high-performance liquid chromatography (HPLC) method. We tested dyes purified from commercial dyestuffs as well as several known transformation products. All dyes were found to react with nucleophilic peptides in a dose-dependent manner with pseudo-first order kinetics (rate constants as high as 0.04 h-1). Rates of binding reactivity were also found to correlate to electrophilic properties of dyes as measured by Hammett constants and electrophilicity indices. Reactivities of polyester shirt extracts were also tested for DPRA activity and the shirt extracts with high measured abundances of azobenzene disperse dyes were observed to induce greater peptide reactivity. Results suggest that azobenzene disperse dyes may function as immune sensitizers, and that clothing containing these dyes may pose risks for skin sensitization.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke School of Medicine, Duke University, Durham, NC, 27708, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
4
|
Overdahl KE, Kassotis CD, Hoffman K, Getzinger GJ, Phillips A, Hammel S, Stapleton HM, Ferguson PL. Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122491. [PMID: 37709124 PMCID: PMC10655148 DOI: 10.1016/j.envpol.2023.122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.
Collapse
Affiliation(s)
- Kirsten E Overdahl
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202. United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Gordon J Getzinger
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Stephanie Hammel
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States.
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708. United States; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708. United States.
| |
Collapse
|
5
|
Leimann FV, de Souza LB, de Oliveira BPM, Rossi BF, da Silva PS, Shiraishi CSH, Kaplum V, Abreu RM, Pereira C, Barros L, Peron AP, Ineu RP, Oechsler BF, Sayer C, de Araújo PHH, Gonçalves OH. Evaluation of berberine nanoparticles as a strategy to modulate acetylcholinesterase activity. Food Res Int 2023; 173:113295. [PMID: 37803607 DOI: 10.1016/j.foodres.2023.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| | - Luma Borges de Souza
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Bruna Franzon Rossi
- Food and Chemical Engineering Academic Department (DAAEQ), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Carlos Seiti Hurtado Shiraishi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Kaplum
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rui Miguel Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Paula Peron
- Biodiversity and Nature Conservation Department, Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rafael Porto Ineu
- Department of Technology and Food Science, Federal University of Santa Maria - UFSM, Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| |
Collapse
|
6
|
Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. CHEMOSPHERE 2023; 313:137505. [PMID: 36509189 DOI: 10.1016/j.chemosphere.2022.137505] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raisul Awal Mahmood
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Syful Islam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Ayed L, Bekir K, Jabeur C. Modeling and optimization of biodegradation of methylene blue by Staphylococcus aureus through a statistical optimization process: a sustainable approach for waste management. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:380-394. [PMID: 35906914 DOI: 10.2166/wst.2022.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial species for metabolizing dye molecules were isolated from textile wastewater. The best microbial species for such an application was selected amongst the isolated bacterial populations by conducting methylene blue (MB) batch degradation studies with the bacterial strains. The most suitable bacterial species was Staphylococcus aureus (S. aureus). Process parameters were optimized using Full Factorial Design (FFD) and under the optimum conditions (pH of 5, temperature of 35 °C, 150 ppm, and time of 8 h). Response Surface Methodology (RSM) modeling technique was applied to model the process and their performance and predictive capabilities of the response (removal efficiency) was also examined. When tested with 20 ppm dye using batch reactors, the maximum COD and color removal efficiencies, were found to be 88% and 98%, respectively. Our results showed that Staphylococcus aureus had a high decolorization capacity. UV-Visible and Fourier-transform infrared (FTIR) spectroscopy analysis confirmed the biodegradation of MB. Using phytotoxicity and mutagenicity endpoints, toxicological studies of MB before and after biodegradation were studied. Toxicity assay signaled that biodegradation led to the detoxification of MB dye.
Collapse
Affiliation(s)
- Lamia Ayed
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, Higher Institute of Biotechnology, Monastir, Tunisia E-mail: ; Higher Institute of Biotechnology, Monastir (ISBM), Monastir, Tunisia
| | - Karima Bekir
- Unit of Research Analysis and Processes Applied to the Environment UR17ES32, The Higher Institute of Applied Sciences and Technology, Mahdia 5121, Tunisia
| | - Chedia Jabeur
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, Higher Institute of Biotechnology, Monastir, Tunisia E-mail:
| |
Collapse
|
8
|
Kumar V, Ameen F, Islam MA, Agrawal S, Motghare A, Dey A, Shah MP, Américo-Pinheiro JHP, Singh S, Ramamurthy PC. Evaluation of cytotoxicity and genotoxicity effects of refractory pollutants of untreated and biomethanated distillery effluent using Allium cepa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118975. [PMID: 35157935 DOI: 10.1016/j.envpol.2022.118975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution caused by the discharge of raw and partly treated distillery effluent has become a serious and threatening problem due to its high pollution load. The aim of the present study was to assess the physicochemical load in alcohol distillery effluent before and after biomethanation treatment and the cyto- and genotoxicity effects of refractory pollutants emanated in raw/untreated and biomethanated distillery effluent on the ultrastructural and biochemical responses of Allium cepa root tip cells. Physicochemical analysis revealed high biochemical oxygen demand (BOD: 47840-36651 mg L-1), chemical oxygen demand (COD: 93452-84500 mg L-1) and total dissolved solids (TDS: 64251-74652 mg L-1) in raw and biomethanated effluent along with metal(loid)s (Fe: 456.152-346.26; Zn: 1.654-1.465; Cu: 0.648-0.562; Ni: 1.012-0.951, and Pb: 0.264 mg L-1) which were beyond the safe discharge values prescribed by the environmental regulatory agencies. The UV-Visible and Fourier transform infrared spectrophotometry analyses confirmed the high levels of organic, inorganic, and mixed contaminants discharged in raw and biomethanated distillery effluents. Furthermore, GC-MS analysis characterised chemical contaminants, such as hexadecanoic acid, butanedioic acid, bis(trimethylsilyl) ester; hexadecane, 2,6,11,15-tetramethyl, stigmasterol, and β-sitosterol trimethylsilyl ether that have been reported as androgenic-mutagenic, and endocrine disrupting chemicals by the United States Environmental Protection Agency (U.S. EPA). The cytotoxicity measured by A. cepa showed dose depended inhibition root growth inhibition and simultaneous reduction in mitotic index in tested effluents. The chromosomal aberrations studies resulted in laggard chromosomes, sticky chromosomes, vagrant chromosomes, chromosome loss, c-mitosis, chromosome bridge, abnormal metaphase, and disturbed anaphase as found in a dose-dependent manner. Furthermore, dose-dependent enhancement in the levels of malondialdehyde, hydrogen peroxide, and antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, and catalase were found to be higher in raw effluents treated root cells compared to biomethanated distillery effluent. Analysis of ultrastructural changes in root tip cells by TEM analysis revealed dramatic changes in the morphology of cell organelles and accumulation of metallic elements in and on the surface tissues. The results concluded that the discharged distillery effluents retained certain toxic pollutants which imposed cytotoxic and genotoxic hazards to A. cepa. Thus, for the sake of environmental protection, the raw as well as the disposed biomethanated effluent must be efficiently treated before its dumping into the terrestrial ecosystem.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India; Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Sakshi Agrawal
- Department of Botany, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Ankit Motghare
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Maulin P Shah
- Enviro Tech Laboratory, Ankeleshwar, 393002, Gujarat, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, number 56, ZIP Code 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, number 584, ZIP Code 08230-030, São Paulo, SP, Brazil
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science (IISc), Bangalore, 56001, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science (IISc), Bangalore, 56001, India
| |
Collapse
|
9
|
Kumar V, Shahi SK, Romanholo Ferreira LF, Bilal M, Biswas JK, Bulgariu L. Detection and characterization of refractory organic and inorganic pollutants discharged in biomethanated distillery effluent and their phytotoxicity, cytotoxicity, and genotoxicity assessment using Phaseolus aureus L. and Allium cepa L. ENVIRONMENTAL RESEARCH 2021; 201:111551. [PMID: 34192556 DOI: 10.1016/j.envres.2021.111551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The color effluent discharged by alcohol distilleries comprises very high pollution loads due to the plethora of refractory chemicals even after anaerobic treatment and causing adverse effects to the environment. The present study aimed to examine the phytotoxic, cytotoxic, and genotoxic potential of the identified refractory organic and inorganic pollutants discharged in bio-methanated distillery effluent (BMDE). Physico-chemical analyses revealed that BMDE retains high BOD, COD, TDS along with heavy metals like Fe (572.64 mg L-1), Mn (4.269 mg L-1), Cd (1.631 mg L-1), Zn (2.547 mg L-1), Pb (1.262 mg L-1), (Cr 1.257 mg L-1), and Ni (0.781 mg L-1) beyond the permissible limits for effluent discharge. GC-MS analysis revelaed the presence of hexadecanoic acid, TMS ester; octadecanoic acid, TMS ester; 2,3 bis[(TMS)oxy]propyl ester; stigmasterol TMS ether; β-sitosterol TMS ester; hexacosanoic acid; and tetradecanoic acid, TMS ester as major refractory organic pollutants, which are listed as potential endocrine disruptor chemicals (EDCs) as per USEPA. Furthermore, phytotoxicity assessment with Phaseolus aureus L. showed the toxic nature of BMDE as it inhibited various seedling growth parameters, seed germination, and suppression of α-amylase activity in seed germination experiment. Moreover, genotoxicity and cytotoxicity evaluation of the discharged BMDE evidenced in root-tip meristematic cells of Allium cepa L. where chromosomal aberration such as disturbed metaphase, c-mitosis, laggard chromosomes, sticky chromosomes, prolonged prophase, polyploid cells, and apoptotic bodies etc. were observed. Thus, this study's results suggested that BMDE discharged without adequate treatment poses potential risk to environment and may cause a variety of serious health threats in living beings upon exposure.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| | - Sushil Kumar Shahi
- Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITR), Tiradentes University, Farolândia, Aracaju, SE, 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani Kalyani, Nadia, 741235, West Bengal, India
| | - Laura Bulgariu
- Technical University Gheorghe Asachi of Iaşi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, Iaşi, Romania
| |
Collapse
|
10
|
Smirnova MV, Kotelnikov VA. Effect of Heracleum sosnowskyi extract aqueous solution on the Allium cepa root meristem. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Heracleum sosnowskyi (Apiaceae) contains a lot of useful chemical ingredients that can be used in industry, medicine and other fields as plant component extracts and as chemical compounds that have been extracted in different ways, which requires the last to be tested for chemical safety, including a genotoxic test in vivo. In the present paper, the 96-hour effect of the H. sosnowskyi extract aqueous solution at concentrations of 0.01, 0.05, 0.10, and 0.50 mL/L on the genetic apparatus and mitotic activity of the cells of the Allium cepa (Alliaceae) root meristem is discussed. Distilled water was applied as a negative control, and hydrogen peroxide 1% as a positive one. The extract was prepared from the plant’s fresh leaves by soaking them in acetone. It was then distilled at 57 ºС and diluted with distilled water to obtain the experimental concentrations. As extract content in the aqueous solution increased, a statistically significant decrease in mitotic activity, an increase in aberrant cell percentage and a concentration-dependent inhibition of root growth were observed. In the 0.5 mL/L solution, if compared against the other experimental concentrations, an increase in the metaphase, anaphase and telophase indices along with a decrease in the prophase index were observed. The most common aberrations for all the concentrations were lagging and sticking chromosomes, anaphase bridges, ring chromosomes and nuclear buds. The same solution and the positive control produced membrane damage; giant and ghost cells. The results of the experiment performed have demonstrated the extract’s aneugenic effect that causes spindle disturbance, mitodepression and inhibits the cells of the Allium cepa root meristem, prevails over its clastogenic effect.
Collapse
|
11
|
Alam R, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Watanabe T, Kim S. Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124176. [PMID: 33131941 DOI: 10.1016/j.jhazmat.2020.124176] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation and metabolic pathways of three anthraquinone dyes, Reactive Blue 4 (RB4), Remazol Brilliant Blue - R (RBBR), and Acid Blue 129 (AB129) by Trametes hirsuta D7 fungus immobilized in light expanded clay aggregate (LECA) were investigated. Morphological characteristics observed with scanning electron microscope (SEM) showed successful immobilization of the fungus in LECA. Based on UV absorbance measurement, immobilized T. hirsuta D7 effectively degraded 90%, 95%, and 96% of RB4, RBBR and AB129, respectively. Metabolites were identified with high-resolution mass spectrometry (HRMS) and degradation pathway of the dyes by T. hirsuta D7 was proposed. Toxicity assay on human dermal fibroblast (HDF) showed that anthraquinone dyes exhibits significant toxicity of 35%, 40%, and 34% reduction of cell viability by RB4, RBBR, and AB129, respectively. Fungal treatment resulted in an abatement of the toxicity and cell viability was increased up to 94%. The data clearly showed the effectiveness of immobilized T. hirsuta D7 in LECA on detoxification of anthraquinone dyes. This study provides potential and fundamental understanding of wastewater treatment using the newly isolated fungus T. hirsuta D7.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Cibinong 16911, Republic of Indonesia.
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
12
|
Khan A, Kumar V, Srivastava A, Saxena G, Verma PC. Biomarker-based evaluation of cytogenotoxic potential of glyphosate in Vigna mungo (L.) Hepper genotypes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:73. [PMID: 33469782 DOI: 10.1007/s10661-021-08865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Herbicides have proven to be a boon for agricultural fields. Their inherent property to kill weeds and unwanted vegetation makes them an essential biological tool for farmers and agricultural systems. Besides being capable of destroying weeds, they also exhibit certain effects on non-target crop plants. In the present study, a laboratory experiment was performed to assess the effect of glyphosate on Vigna mungo root meristem cells. Seeds of five different genotypes of V. mungo were treated with a series of concentrations of glyphosate ranging from 1 to 10 mM, and their effects on mitotic cell division were studied. Healthy and uniform-sized seeds were selected and were allowed to grow in Petri plates for 3 days, and all the doses were maintained in triplicates. Roots were fixed at day 3 after treatment (DAT) for cytological microscopic slide preparation. The results obtained indicate the dose-dependent reduction in the mitotic index in all the genotypes and an increase in the percentage of chromosomal aberrations (CAs) and relative abnormality rate (RAR). Most commonly observed chromosome aberrations at lower doses (< 6 mM) were fragments, stickiness, and disoriented metaphase, while at higher doses (6 to 10 mM) bridges, laggards, spindle disorientation, and clumping were obvious. The increase in the percentage of CAs and RAR indicates the inhibitory effect of glyphosate on cell cycle progression at various stages in root tip cells. The present study is a fine example of a biomarker-based genotoxic assessment of mitotic damage caused by glyphosate.
Collapse
Affiliation(s)
- Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| | - Praveen C Verma
- Department of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| |
Collapse
|
13
|
Arshad H, Imran M, Ashraf M. Toxic effects of Red-S3B dye on soil microbial activities, wheat yield, and their alleviation by pressmud application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111030. [PMID: 32750587 DOI: 10.1016/j.ecoenv.2020.111030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study examined the effect of Red-S3B textile dye on soil microbial activities, uptake of the dye by wheat plants and growth on the dye-contaminated soil. Moreover, pressmud (PM) application was investigated for its alleviative effect on wheat yield and dye uptake by plants. Preliminarily, soil was spiked with a wide concentration range (0, 100, 250, 500, 750 and 1000 mg kg-1 soil) of Red-S3B dye and wheat was grown for 42-days. The dye did not suppress the activities of soil enzymes and growth of wheat seedlings at 100 mg kg-1; however, beyond this level the dye had a linear negative effect on these attributes. With 1000 mg dye kg-1 soil, wheat seedling biomass, viable microbial count, soil respiration, dehydrogenase, phosphatase, and urease activities decreased by 84%, 33%, 45%, 69%, 24%, and 11%, respectively as compared to uncontaminated soil. Moreover, phosphorus and potassium content in wheat shoot decreased, while the nitrogen content increased in Red-S3B contaminated soil. In the subsequent pot experiment, PM application (12.5 g kg-1 soil) was assessed to alleviate the adverse effect of moderately toxic level of Red-S3B dye (500 mg kg-1 soil) on wheat growth and yield. Root and straw biomass, and grain yield of wheat decreased by 13, 19 and 12%, respectively in Red-S3B contaminated soil as compared to uncontaminated soil. However, PM application to dye-contaminated soil retrieved the dye-induced reduction in root and straw biomass and grain yield to become statistically (p ≤ 0.05) at par with control plants. The color of Red-S3B was clearly visible in spikes depicting that plants absorbed Red-S3B but probably could not metabolize it. Amending the dye-contaminated soil with PM decreased Red-S3B content in awns from 78 to 37 mg kg-1. Hence, it is concluded that Red-S3B textile dye is highly toxic to soil microbes and wheat plants at levels exceeding 100 mg kg-1 soil. Soil application of PM alleviates the adverse effect of Red-S3B dye on wheat growth through reducing its uptake by plants.
Collapse
Affiliation(s)
- Hadeeqa Arshad
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| | - Muhammad Imran
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
| | - Muhammad Ashraf
- NIAB College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan
| |
Collapse
|
14
|
Salazar Mercado SA, Quintero Caleño JD, Rojas Suárez JP. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. CHEMOSPHERE 2020; 249:126193. [PMID: 32086064 DOI: 10.1016/j.chemosphere.2020.126193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Propanil can produce methemoglobinemia, hemolytic anemia, hepatotoxicity, metabolic disorder and nephrotoxicity. It also has a genotoxic effect, although it is not listed as a carcinogen and it continues to be applied excessively throughout the world. Consequently, in this study the cytogenotoxic effect of propanil was evaluated, using apical root cells of Allium cepa and Lens culinaris. In which, L. culinaris seeds and A. cepa bulbs were subjected to 6 treatments with propanil (2, 4, 6, 8, 10 and 12 mg L-1) and to distilled water as control treatment. Subsequently, the root growth was measured every 24 h for 3 days. Next, the mitotic index and cellular anomalies were determined. Whereby, decreased root development was observed in all treatments. Likewise, greater inhibition of mitosis was evidenced in L. culinaris compared to A. cepa. In addition, chromosomal abnormalities, such as nucleus absence, sticky chromosomes in metaphase and binucleated cells, were present in most of the treatments. Thus, the presence of micronuclei and the results of L. culinaris, indicate the high cytogenotoxicity of propanil and the feasibility of this species as bioindicator.
Collapse
Affiliation(s)
- Seir Antonio Salazar Mercado
- Department of Biology, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96B Colsag, San José de Cúcuta, Colombia.
| | | | - Jhan Piero Rojas Suárez
- Department of Civil Constructions, Roads, Transportation, Hydraulics and Fluids, Universidad Francisco de Paula Santander, Cúcuta, Colombia.
| |
Collapse
|
15
|
Rodrigues de Almeida EJ, Christofoletti Mazzeo DE, Deroldo Sommaggio LR, Marin-Morales MA, Rodrigues de Andrade A, Corso CR. Azo dyes degradation and mutagenicity evaluation with a combination of microbiological and oxidative discoloration treatments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109484. [PMID: 31398583 DOI: 10.1016/j.ecoenv.2019.109484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of the Acid Blue 161 and Procion Red MX-5B dyes in a binary solution by the filamentous fungus Aspergillus terreus and the yeast Saccharomyces cerevisiae in systems with and without electrochemical oxidation as the pretreatment process. UV-Vis spectrophotometry, high-performance liquid chromatography with (HPLC), Fourier transform infrared (FT-IR) spectroscopy and Salmonella/microsome assay (Ames test) were applied towards the degradation analysis of the dyes. Adsorption tests with white clay immobilized on alginate were also conducted after the discoloration treatments to remove intermediate metabolites formed during the degradation of the dye molecules. The discoloration treatments led to the complete color removal of the solutions in all the systems tested. The clay demonstrated affinity for the metabolites formed after discoloration treatments, the removal rates were variable, but the all systems has proved efficient. The Salmonella/microsome assay (Ames test) with strains TA98 and TA100 in the absence and presence of exogenous metabolism (S9 microsomal system, Moltox) revealed that the initial molecules and by-products of the metabolism of the dyes were direct mutagens. The electrochemical/A. terreus/clay system was able to discolor the solutions and transform the direct mutagens into non-mutagenic compounds in addition to reducing the mutagenic potency of the pro-mutagens to the Salmonella strain TA100/S9, which demonstrates the high efficiency of this system with regard to discoloring and degrading azo dye molecules and their by-products. Therefore, this study showed that although not having standard treatment system for this type of pollutant, the combination of treatments can be considered promising. The use of electrochemical oxidation along with microbiological treatment may lead to the degradation and mineralization of these compounds, reducing or eliminating the environmental impact caused by the improper disposal of these dyes in aquatic environments.
Collapse
Affiliation(s)
- Erica Janaina Rodrigues de Almeida
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil.
| | - Dânia Elisa Christofoletti Mazzeo
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Lais Roberta Deroldo Sommaggio
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Maria Aparecida Marin-Morales
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| | - Adalgisa Rodrigues de Andrade
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Carlos Renato Corso
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Av. 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
16
|
Pan T, Wang R, Xiao K, Ye W, Dong W, Xu M. Continuous degradation of phenanthrene in cloud point system by reuse of Sphingomonas polyaromaticivorans cells. AMB Express 2019; 9:8. [PMID: 30661204 PMCID: PMC6339633 DOI: 10.1186/s13568-019-0736-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
Extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was previously carried out in cloud point system (CPS). In this study, we explored the possibility of further increasing the efficiency of the culture by repeatedly reusing cells and the system for biodegradation. Three different recycling strategies were adopted. In reuse of cells plus CPS, cells were reused for 3 times while maintaining high degradation rates (> 90%). Thereafter, the accumulation of metabolites in the dilute phase resulted in a decrease in cell viability. This inhibition was avoided in recycling the cells plus coacervate phase by replacing the dilute phase with fresh Medium. However, due to the slow adaptation of the cells to the new degradation environment and the reduction in the volume of the coacervate phase, the cells were only reused twice and their activity decreased. However, the same long degradation cycle (5 days) as the reuse of cells plus coacervate phase reduced the overall degradation efficiency of phenanthrene. Finally, a combined strategy of 3 times of cells plus CPS reuse and individual cells reuse once was employed and run for two cycles. 3 rounds of reuse of cells plus CPS improved cells utilization and phenanthrene degradation efficiency. Then, the subsequent round of reuse of cells alone relieved the effect of increasing metabolites on cell viability. This study provides a potential application for reusing cells to continuously degrade phenanthrene in soil and water in CPS.
Collapse
|
17
|
Silva de Sá I, Peron AP, Leimann FV, Bressan GN, Krum BN, Fachinetto R, Pinela J, Calhelha RC, Barreiro MF, Ferreira ICFR, Gonçalves OH, Ineu RP. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem Toxicol 2018; 125:29-37. [PMID: 30592967 DOI: 10.1016/j.fct.2018.12.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 11/24/2022]
Abstract
Curcumin, the main bioactive polyphenolic compound in Curcuma longa L. rhizomes has a wide range of bioactive properties. Curcumin presents low solubility in water and thus limited bioavailability, which decreases its applicability. In this study, cytotoxic effects of curcumin solid dispersions (CurSD) were evaluated against tumor (breast adenocarcinoma and lung, cervical and hepatocellular carcinoma) and non-tumor (PLP2) cells, while cytotoxic and genotoxic effects were evaluated in Allium cepa. The effect of the CurSD on the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glutathione S-transferase (GST), and monoamine oxidase (MAO A-B) enzymes was determined, as well as its capacity to inhibit the oxidative hemolysis (OxHLIA) and the formation of thiobarbituric acid reactive substances (TBARS). CurSD are constituted by nanoparticles that are readily dispersible in water, and inhibited 24% and 64% of the AChE and BChE activity at 100 μM, respectively. GST activity was inhibited at 30 μM while MAO-A and B activity were inhibited at 100 μM. CurSD showed cytotoxicity against all the tested tumor cell lines without toxic effects for non-tumor cells. No cytotoxic and genotoxic potential was detected with the Allium cepa test. CurSD maintained the characteristics of free curcumin on the in vitro modulation of important enzymes without appreciable toxicity.
Collapse
Affiliation(s)
- Igor Silva de Sá
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Ana Paula Peron
- Biodiversity and Nature Conservation Department, Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Getúlio Nicola Bressan
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Avenida Roraima n° 1000, 97105-900, Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima n° 1000, 97105-900, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Avenida Roraima n° 1000, 97105-900, Santa Maria, RS, Brazil; Post-Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima n° 1000, 97105-900, Santa Maria, RS, Brazil
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ricardo Costa Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Maria Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Rafael Porto Ineu
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, CEP 87301-899, Caixa Postal: 271, Campo Mourão, PR, Brazil
| |
Collapse
|
18
|
Verma S, Srivastava A. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - A biomarker based study. CHEMOSPHERE 2018; 206:248-254. [PMID: 29753287 DOI: 10.1016/j.chemosphere.2018.04.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Pesticides have brought tremendous benefits to mankind by increasing food production and controlling various crop diseases. But their prolonged and extensive use has been reported to induce toxicity. Biological markers used for the evaluation of toxic effects of pesticides have increased these days. The aim of this study was to determine the morphotoxic and cytogenotoxic effects of pesticide pendimethalin applied to the soil by using morphological and genotoxic biomarkers in the test plant Allium cepa L. A pot experiment was set up in which pendimethalin was added to soil at the rate of 0, 0.033, 0.044, 0.055 and 0.066 g kg-1 soil. Similar sized onion bulbs were planted in each pot and 3 replicates were maintained for each dose of pendimethalin at 1, 7, 15, 30 and 45 days after treatment. Average root number (ARN) and average length of roots (ALR) of onion bulbs were recorded and on the day 3 of sowing roots were harvested and fixed for cytological analysis. Morphological biomarkers revealed significant concentration and duration dependent inhibition of ARN and ALR as compared to control which shows the morphotoxicity of pendimethalin. The results also showed inhibitory effect on the mitotic index (%) of A. cepa while relative abnormality rate (%) increased. Further, we observed aberrations in both the dividing and non-dividing cells along with spotting of few ring chromosomes. Reduced mitotic index, increased relative abnormality rate; various chromosomal and interphase nuclear aberrations all being mitosis endpoint markers reflect the cytogenotoxicity of pendimethalin, even at lower concentrations.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, 226007, UP, India.
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, 226007, UP, India.
| |
Collapse
|
19
|
Melo RGD, Andrade AFD, Bezerra RP, Correia DS, Souza VCD, Brasileiro-Vidal AC, Viana Marques DDA, Porto ALF. Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. CHEMOSPHERE 2018; 204:344-350. [PMID: 29674146 DOI: 10.1016/j.chemosphere.2018.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/05/2018] [Accepted: 04/07/2018] [Indexed: 05/28/2023]
Abstract
Algal wastewater remediation has become attractive for a couple of years now, however the effectiveness of genetic toxicity reducing of some by-products through microalgae are still not well reported. This study aimed to evaluate the growth, nutrients and toxicity removal of Chlorella vulgaris cultivated under autotrophic and mixotrophic conditions in three agro-industrial by-products. Mixotrophic culture using corn steep liquor showed higher cell concentration, specific growth rate, maximum cell productivity and biomass protein content when compared to cheese whey and vinasse. Nutrient removal results showed that C. vulgaris was able to completely remove corn steep liquor nutrients, while in cheese whey and vinasse culture this removal was not as efficient, observing remaining COD. This work evaluated for the first time the corn steep liquor and cheese whey genetic toxicity through Allium cepa seeds assay. These results demonstrate that corn steep liquor toxicity was totally eliminated by C. vulgaris cultivation, and cheese whey and vinasse toxicity were minimized. This study proves that the mixotrophic cultivation of C. vulgaris can increase cellular productivity, as well as it is a suitable and economic alternative to remove the toxicity from agroindustrial by-products.
Collapse
Affiliation(s)
- Rebeca Gonçalves de Melo
- Bioscience Center, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Alexsandra Frazão de Andrade
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil
| | - Raquel Pedrosa Bezerra
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil
| | - Dominick Spindola Correia
- Department of Genetics, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Vanessa Cristina de Souza
- Department of Genetics, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Ana Christina Brasileiro-Vidal
- Department of Genetics, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | | | - Ana Lúcia Figueiredo Porto
- Bioscience Center, Federal University of Pernambuco, Avenue Prof. Moraes Rego 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil; Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
20
|
Verma S, Srivastava A. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:238. [PMID: 29564638 DOI: 10.1007/s10661-018-6616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg-1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| |
Collapse
|
21
|
Mishra S, Maiti A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8286-8314. [PMID: 29383646 DOI: 10.1007/s11356-018-1273-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The industrial dye-contaminated wastewater has been considered as the most complex and hazardous in terms of nature and composition of toxicants that can cause severe biotic risk. Reactive azo, anthroquinone and triphenylmethane dyes are mostly used in dyeing industries; thus, the unfixed hydrolysed molecules of these dyes are commonly found in wastewater. In this regard, bacterial species have been proved to be highly effective to treat wastewater containing reactive dyes and heavy metals. The bio-decolourisation of dye occurs either by adsorption or through degradation in bacterial metabolic pathways under optimised environmental conditions. The bacterial dye decolourisation rates vary with the type of bacteria, reactivity of dye and operational parameters such as temperature, pH, co-substrate, electron donor and dissolved oxygen concentration. The present paper reviews the efficiency of bacterial species (individual and consortia) to decolourise wastewater containing reactive azo, anthroquinone and triphenylmethane dyes either individually or mixed or with metal ions. It has been observed that bacteria Pseudomonas spp. are comparatively more effective to treat reactive dyes and metal-contaminated wastewater. In recent studies, either immobilised cell or isolated enzymes are being used to decolourise dye at a large scale of operations. However, it is required to investigate more potent bacterial species or consortia that could be used to treat wastewater containing mixed reactive dyes and heavy metals like chromium ions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
22
|
Thamke VR, Tapase SR, Kodam KM. Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems. WATER RESEARCH 2017; 125:237-248. [PMID: 28865373 DOI: 10.1016/j.watres.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Ionic liquids (ILs) are much known for their promising alternative for volatile solvents in industries and gained popularity as a greener solvent, however industrial effluent discharge containing ILs are also increasing. There is a scarcity of information on the toxicity of ILs; the present study will explore different facts about their harmfulness. The toxic effects of five different ILs: [C4MIM]Br, [Hx3PC14]N(CN)2, [C10MIM]BF4, [BTDA]Cl and [C4MPY]Cl were analysed on bacteria, fungi, plant and animal cells. Both Gram positive and negative bacteria were found to be more susceptible to [C10MIM]BF4 and [BTDA]Cl than [C4MIM]Br, [Hx3PC14]N(CN)2 and [C4MPY]Cl, whereas fungi revealed quite a resistance to all ILs. All ILs were toxic towards Triticum aestivum affecting their roots and shoots, however [C10MIM]BF4 and [BTDA]Cl were more toxic amongst them. Studies on Allium cepa described their toxic behaviour at the genetic level by altering cell division and nuclear material. Furthermore, studies on human red blood cells described by % haemolysis in which [Hx3PC14]N(CN)2 and [BTDA]Cl exhibited higher toxicity at very lower concentrations. While the genotoxic effect on blood lymphocytes exerted by [Hx3PC14]N(CN)2, [C10MIM]BF4 and [BTDA]Cl confirmed their toxic effects on human cells.
Collapse
Affiliation(s)
- Viresh R Thamke
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Savita R Tapase
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan M Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
23
|
Wang T, Sun W, Zhang X, Xu H, Xu F. Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1247. [PMID: 29143785 PMCID: PMC5706194 DOI: 10.3390/ma10111247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance.
Collapse
Affiliation(s)
- Tao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wei Sun
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Haiyan Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
24
|
Nouren S, Bhatti HN, Iqbal M, Bibi I, Kamal S, Sadaf S, Sultan M, Kausar A, Safa Y. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye. CHEMOSPHERE 2017; 169:474-484. [PMID: 27889513 DOI: 10.1016/j.chemosphere.2016.11.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 05/27/2023]
Abstract
Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H2O2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H2O2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents.
Collapse
Affiliation(s)
- Shazia Nouren
- Department of Chemistry, Women University of Azad Jammu & Kashmir, Bagh, Pakistan.
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Ismat Bibi
- Department of Chemistry, Islamia University Bahawalpur, Pakistan
| | - Shagufta Kamal
- Department of Applied Chemistry, Govt. College University, Faisalabad, Pakistan
| | - Sana Sadaf
- Bio-analytical Chemistry Laboratory, Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, Pakistan
| | - Misbah Sultan
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Abida Kausar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Yusra Safa
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
25
|
de Souza RB, de Souza CP, Bueno OC, Fontanetti CS. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: A new alternative against leaf-cutting ants. CHEMOSPHERE 2017; 168:1093-1099. [PMID: 27816288 DOI: 10.1016/j.chemosphere.2016.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation.
Collapse
Affiliation(s)
- Raphael Bastão de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Cleiton Pereira de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Odair Correa Bueno
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Carmem Silvia Fontanetti
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
26
|
de Souza CP, Guedes TDA, Fontanetti CS. Evaluation of herbicides action on plant bioindicators by genetic biomarkers: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:694. [PMID: 27888426 DOI: 10.1007/s10661-016-5702-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
The use of pesticides has increased worldwide, owing to the demand for products of good quality and to satisfy a growing population. Herbicides represent almost half of the total amount of pesticides used. Although important to the reduction of costs and an increase of productivity, their indiscriminate use, as well as that of the other pesticides, is a global environmental problem, since they affect the living organisms. To evaluate the damage caused by herbicides to the environment, different organisms have been used as bioindicators, especially higher plants, due to several advantages. This is a literature review on herbicidal actions in plant bioindicators, as assessed by genetic biomarkers. Also, the present manuscript aimed to characterize the main organisms (Allium cepa, Vicia faba and Tradescantia spp.) and the most used biomarkers (mitotic index, chromosome aberrations, micronuclei, sister chromatid exchange and mutations). We concluded that herbicides induce cytotoxicity and genotoxicity in the assessed bioindicators. The data corroborate the existing warnings of the risks that the indiscriminate and increasing use of pesticides poses to the environment and its biodiversity.
Collapse
|