1
|
Li X, Bond T, Tan X, Yang H, Chen Y, Jin B, Chen B. Dissolved inorganic nitrogen as an overlooked precursor of nitrogenous disinfection byproducts - A critical review. WATER RESEARCH 2024; 268:122654. [PMID: 39490092 DOI: 10.1016/j.watres.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Aquatic nitrogenous compounds can be classified as dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN), including ammonia, nitrite, nitrate, and inorganic chloramines. The occurrence of nitrogenous disinfection byproducts (N-DBPs) in water, such as haloacetonitriles (HANs), halonitromethanes (HNMs), haloacaetamides (HAcAms), and nitrosamines (NAs), has attracted considerable attention due to their higher toxicity than regulated carbonaceous analogues. While numerous studies have investigated the contributions of DON to N-DBP formation, relatively fewer studies have explored DIN as N-DBP precursors, although DINs are sometimes evaluated as influencing factors. Through a literature review and data mining, this study delves into the existing body of evidence that analyze the contributions of different forms of DIN to N-DBP generation. The results showed that ammonia and nitrite can enhance trichloronitromethane (TCNM) and nitrodimethylamine (NDMA) formation in conventional chlorination and chloramination processes, nitrate can promote HNM formation in ultraviolet-based processes, and monochloramine can increase HAN, HAcAm, HNM, and NDMA formation in most disinfection scenarios. Notably, some experiments demonstrated that the yields of dichloroacetonitrile (DCAN) and TCNM can be higher from reactions involving nitrogen-free organic precursors and DIN than those involving DON and nitrogen-free disinfectant, suggesting that the relative importance of DON and DIN in forming N-DBP in real water remains unresolved. These insights thus underscore DIN as a non-negligible precursor in N-DBP formation and call for more attention to water management strategies for DIN.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xiaoyu Tan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bingbing Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Choi SY, Ji H, Park J, Choe JK. Iodide enhances degradation of histidine sidechain and imidazoles and forms new iodinated aromatic disinfection byproducts during chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134748. [PMID: 38815391 DOI: 10.1016/j.jhazmat.2024.134748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Peptide-bound histidines and imidazoles are important constituents of dissolved organic matter in water, and understanding the formation of halogenated disinfection byproduct (DBP) formation from these compounds during disinfection is important for ensuring a safe drinking water supply. Previous studies suggested that histidine has low reactivity with chlorine only; this study indicates that iodide substantially enhances histidine reactivity with the disinfectant at a time scale from days to hours. Mono- and di-iodinated histidines were identified as dominant transformation products with cumulative molar yields of 3.3 % at 6 h and they were stable in water over 7 days. These products were formed via electrophilic substitution of iodine to imidazole ring when hypoiodous acid reacted with histidine sidechain. Bromide minimally influenced the formation yields of these iodinated products, and higher pH increased yields up to 12 % for pH in the range 5-9. The cumulative concentration of low-molecular-weight DBPs, such as trihalomethanes and haloacetic acids, was less than 0.3 % under the same conditions. Similar iodinated imidazole analogs were also identified from other imidazoles (i.e., imidazole-carboxylic and phenyl-imidazole-carboxylic acids). This study demonstrated that peptide-bound histidine and imidazoles can serve as important precursors to iodinated aromatic DBPs, facilitating the identification of less-known iodinated DBPs.
Collapse
Affiliation(s)
- Seo-Yeong Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea.
| |
Collapse
|
3
|
Chen Z, Chen B, Shen H, Li X, Zhou C, Ma G, Wei X, Wang X, Yu H. Chlorination of Aromatic Amino Acids: Elucidating Disinfection Byproducts, Reaction Kinetics, and Influence Factors. Molecules 2024; 29:1879. [PMID: 38675699 PMCID: PMC11055117 DOI: 10.3390/molecules29081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of ongoing water pollution challenges, the intricate interplay between dissolved organic matter and disinfectants like chlorine gives rise to potentially harmful disinfection byproducts (DBPs) during water treatment. The exploration of DBP formation originating from amino acids (AA) is a critical focus of global research. Aromatic DBPs, in particular, have garnered considerable attention due to their markedly higher toxicity compared to their aliphatic counterparts. This work seeks to advance the understanding of DBP formation by investigating chlorination disinfection and kinetics using tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) as precursors. Via rigorous experiments, a total of 15 distinct DBPs with accurate molecular structures were successfully identified. The chlorination of all three AAs yielded highly toxic chlorophenylacetonitriles (CPANs), and the disinfectant dosage and pH value of the reaction system potentially influence chlorination kinetics. Notably, Phe exhibited the highest degradation rate compared to Tyr and Trp, at both the CAA:CHOCl ratio of within 1:2 and a wide pH range (6.0 to 9.0). Additionally, a neutral pH environment triggered the maximal reaction rates of the three AAs, while an acidic condition may reduce their reactivity. Overall, this study aims to augment the DBP database and foster a deeper comprehension of the DBP formation and relevant kinetics underlying the chlorination of aromatic AAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.C.); (B.C.); (H.S.); (X.L.); (C.Z.); (X.W.); (X.W.)
| | | | | | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China; (Z.C.); (B.C.); (H.S.); (X.L.); (C.Z.); (X.W.); (X.W.)
| |
Collapse
|
4
|
Tsotsou GE. Extraction-free analysis in cosmetics by digital image colorimetry, illustrated by the quantification of urea. Heliyon 2024; 10:e25503. [PMID: 38333856 PMCID: PMC10850965 DOI: 10.1016/j.heliyon.2024.e25503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
An extraction-free methodology is proposed for quantifying urea in cosmetics, which relies on urea-mediated decrease of methyl red decoloration by sodium hypochlorite. The method is applied directly to the cosmetic formulation and the resulting color intensity is captured by a smartphone camera. We demonstrate a linear relationship between color intensity and urea concentration in O/W emulsions and a shampoo. This quantification methodology is fully validated by determining its technical characteristics in an O/W cosmetic emulsion: The standard curve is linear over 2.5-30.0 % w/w urea (R2 ≥ 0.985). The coefficient of variation (CV %) on all quality control levels is ≤ 12.54 % for intermediate precision, indicating acceptable precision. Bias is up to ±4.93 % in the emulsion, indicating acceptable accuracy and a countable matrix effect. The proposed analysis setup in combination with a standard addition methodology is applied to verify urea content in purpose-made emulsions: bias is ≤±10.9 %, even in the presence of interfering ammonia. We finally demonstrate that the camera-captured color intensity of an O/W emulsion is proportional to different colorant concentrations in the formulation. This opens the route for further applications of the proposed setup to other ingredients capable of generating a colored product upon suitable reaction inside the formulation matrix.
Collapse
Affiliation(s)
- Georgia Eleni Tsotsou
- Laboratory of Chemistry, Biochemistry and Cosmetology, Department of Biomedical Sciences, University of West Attica, Egaleo, 122 43, Greece
- R&D Department, COSMETIC, Ioannou Metaxa 56, Karellas, Koropi, 19400, Greece
| |
Collapse
|
5
|
Long L, Wang S, Gao Z, You S, Wei L. Electro-oxidation and UV irradiation coupled method for in-site removing pollutants from human body fluids in swimming pool. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132963. [PMID: 37976850 DOI: 10.1016/j.jhazmat.2023.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
A comprehensive study was conducted to investigate how ultraviolet (UV) irradiation combined with electrochemistry (EC) can efficiently remove human body fluids (HBFs) related pollutants, such as urea/creatinine/hippuric acid, from swimming pool water (SPW). In comparison with the chlorination, UV, EC, and UV/chlorine treatments, the EC/UV treatment exhibited the highest removal rates for these typical pollutants (TPs) from HBFs in synthetic SPW. Specifically, increasing the operating current of the EC/UV process from 20 to 60 mA, as well as NaCl content from 0.5 to 3.0 g/L, improved urea and creatinine degradation while having no influence on hippuric acid. In contrast, EC/UV process was resilient to changes in water parameters (pH, HCO3-, and actual water matrix). Urea removal was primarily attributable to reactive chlorine species (RCS), whereas creatinine and hippuric acid removal were primarily related to hydroxyl radical, UV photolysis, and RCS. In addition, the EC/UV procedure can lessen the propensity for creatinine and hippuric acid to generate disinfection by-products. We can therefore draw the conclusion that the EC/UV process is a green and efficient in-situ technology for removing HBFs related TPs from SPW with the benefits of needless chlorine-based chemical additive, easy operation, continuous disinfection efficiency, and fewer byproducts production.
Collapse
Affiliation(s)
- Liangchen Long
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Shutao Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Ao J, Bu L, Wu Y, Zhu S, Zhou S. Insights into the fate and properties of organic halamines during ultraviolet irradiation: Implications for drinking water safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165994. [PMID: 37536590 DOI: 10.1016/j.scitotenv.2023.165994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Organic halamines compounds present a significant threat to the safety of drinking water due to their potential toxicity and stability. While Ultraviolet (UV) disinfection is commonly used for water treatment, its specific effects on organic halamines and the underlying mechanisms remain poorly understood. In this study, we investigated eight amino acid-derived organic chlor- and bromamines as representative compounds. Our findings revealed that organic halamines have a slow hydrolysis rate (<10-3 M-1 s-1) and can persist in water for extended periods (30-2000 min). However, their disinfection efficacy against Staphylococcus aureus and their ability to degrade micropollutants like carbamazepine were found to be limited. Interestingly, under UV irradiation, the N-X bonds in organic halamines were observed to break, leading to accelerated decomposition and the generation of abundant free radicals. These free radicals synergistically facilitated the removal of micropollutants and the inactivation of pathogenic microorganisms. It is worth noting that this transformation of organic halamines during UV disinfection resulted in a slight increase in the concentrations of nitrogenous disinfection byproducts. These findings shed light on the behavior and characteristics of organic halamines during UV disinfection processes, providing crucial insights for effectively managing drinking water quality impacted by these compounds. By understanding the implications of organic halamines, we can refine water treatment strategies and ensure the safety of drinking water supplies.
Collapse
Affiliation(s)
- Jian Ao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yangtao Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
Roumiguières A, Bouchonnet S, Kinani S. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants in Seawater. Part 3: Chromatographic- and Mass Spectrometric-Based Methodologies. Crit Rev Anal Chem 2023; 54:3001-3015. [PMID: 37347617 DOI: 10.1080/10408347.2023.2220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Chlorination of seawater forms a range of secondary oxidative species - collectively called "chlorine-produced oxidants" (CPOs) - having different biocidal, environmental and ecotoxicological properties. The chemical speciation of these compounds is an important step in attempts to assess the effectiveness of chlorination and the potential impacts of its releases. However, comprehensive determination of CPOs represents a significant analytical challenge for many reasons, including the following: CPO species are numerous, highly reactive, with short-lifetimes, difficult to isolate and generally present at low concentrations in a complex salt matrix. Literature review reveals the development of a wide variety of analytical approaches for analysis of CPOs, either collectively via group parameters or individually. A first category of these approaches was the subject of article II (also including sampling and sample preparation) of a trilogy devoted to the chemical speciation of CPOs in seawater. In this third article - which closes the trilogy - emphasis is placed on chromatographic- and mass spectrometric-based approaches. It reviews more than 80 methods, reported from 1981 to date, and thoroughly discusses their principles and performances. Methodologies involving chemical derivatization of CPOs prior to their analysis by gas or liquid chromatography coupled to mass spectrometry provide the best sensitivities, achieving sub-ppb detection limits for species for which suitable derivatization reagents are available. Online mass spectrometry approaches are attracting increasing interest for their ability to analyze multiple CPO species in real time without extensive sample preparation steps, reaching detection limits of about ppb for less polar oxidants. At the current state of metrological development, neither the methodologies based on chromatography nor those based on online mass spectrometry allow complete speciation of CPOs. Future trends and major challenges related to these approaches are discussed.
Collapse
Affiliation(s)
- Adrien Roumiguières
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire, CNRS, Institut polytechnique de Paris, Palaiseau, France
| | - Said Kinani
- Laboratoire National d'Hydraulique et Environnement (LNHE), Division Recherche et Développement, Electricité de France (EDF), Chatou Cedex, France
| |
Collapse
|
8
|
Sheng D, Bu L, Zhu S, Deng L, Shi Z, Zhou S. Transfer organic chloramines to monochloramine using two-step chlorination: A method to inhibit N-DBPs formation in algae-containing water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130343. [PMID: 36444058 DOI: 10.1016/j.jhazmat.2022.130343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Organic chloramines formed in chlorination of algae-containing water are typical precursors of nitrogenous disinfection byproducts (N-DPBs). The objective to simultaneously enhance the removal efficiency of organic chloramines and control DBP formation remains a challenge. In this study, we report a two-step chlorination strategy for transferring organic chloramines to monochloramine based on the decomposition mechanisms of mono- and di-organic chloramines, which could limit organic chloramines formation and inhibit N-DBPs formation. We demonstrated that two-step chlorination could decrease the organic chloramines formation by nearly 50% than conventional one-step chlorination. Furthermore, two-step chlorination not only blocked the pathway that organic chloramines decomposed to nitriles, but also led to the conversion of organic chloramines to monochloramine. During two-step chlorination of algal organic matter, the organic chloramine transfer proportion decreased by 6.5% and the monochloramine transfer proportion increased by 17.0%. The N-DBP formation, especially haloacetonitriles (HANs), decreased significantly as organic nitrogen became inorganic nitrogen (monochloramine) in two-step chlorination. This work further clarified the process from algal organic matter to N-DBPs, which could expand our understanding of algae-derived organic chloramines removal and DBPs control.
Collapse
Affiliation(s)
- Da Sheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zhou Shi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
Sheng D, Bu L, Zhu S, Li N, Li L, Zhou S. Novel insights into formation mechanism of organic chloramines from pre-oxidized algae-laden water: Multiple roles of dissolved organic nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155894. [PMID: 35569657 DOI: 10.1016/j.scitotenv.2022.155894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Organic chloramines posed significant risks to drinking water safety. However, the formation mechanism of algae-derived organic chloramines remained unclear. In this study, it was observed that pre-oxidation of algal suspensions increased organic chloramine formation during chlorination. Compared to KMnO4 pre-oxidation, O3 significantly increased the organic chloramine formation potential of algal suspensions. Characterization was performed with size exclusion chromatography-multiple detectors (SEC-MDs) to better understand the organic chloramine formation mechanism. The results revealed that low molecular weight proteins (AMW ≤ 0.64 kDa) were the main precursors of organic chloramines after conventional water treatment processes. We then focused on 14 essential amino acids involved in protein formation. Their concentrations and organic chloramine formation potentials were determined, based on which the theoretical organic chloramine formation potentials of the studied samples were evaluated. However, dramatic gaps between theoretical and experimental organic chloramine formations were observed, which suggested that not all organic nitrogen could react with chlorine to form organic chloramine. The condensed dual descriptor (CDD) was calculated to predict the electrophilic substitution reaction sites on peptides. Furthermore, the activation barrier of each proposed reaction was computed to confirm that the reaction sites for chlorine were located on amino groups. This study clarified the formation mechanism of algal-derived organic chloramines, which could provide a powerful theoretical foundation for controlling organic chloramine formation in drinking water processes.
Collapse
Affiliation(s)
- Da Sheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Nan Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China.
| |
Collapse
|
10
|
Comparison of Organic Matter Properties and Disinfection By-Product Formation between the Typical Groundwater and Surface Water. WATER 2022. [DOI: 10.3390/w14091418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The disinfection by-product (DBP) formation was affected by the dissolved organic matter (DOM). Therefore, the DOM properties and DBP formation potential of the two most widely used source waters: groundwater (GW) and surface water (SW), were comparatively studied in this work. The results suggested that the GW mainly consisted of protein-like organics with smaller molecular weight (Mw) less than 3000 Da, while the SW contained the humic- and fulvic-like substances with larger Mw. The tap water DBP concentration of GW as source water was lower than that of SW as well as the cytotoxic index (CI). The total DBP formation potential of the SW under chlorine and chloramine disinfection was higher than that of GW, especially the trihalomethanes (THMs) and haloacetic acid (HAAs). The higher THM and HAA formation potential of the SW was mainly attributed to the relatively hydrophobic and aromatic humic and fulvic substances. The halonitromethanes (HANs) formation was mainly due to the less hydrophobic protein-like components with smaller Mw. In addition, the total CI of the GW was lower than the SW under both chlorine and chloramine disinfection. Therefore, for the DBPs control, using the GW as source water was more beneficial to human health.
Collapse
|
11
|
Wang Y, Dong H, Qin W, Li J, Qiang Z. Activation of organic chloramine by UV photolysis: A non-negligible oxidant for micro-pollutant abatement and disinfection by-product formation. WATER RESEARCH 2021; 207:117795. [PMID: 34736003 DOI: 10.1016/j.watres.2021.117795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Due to the wide-presence of organic amines in natural waters, organic chloramines are commonly formed during (pre-)chlorination. With the increasing application of UV disinfection in water treatment, both the activation mechanism of organic chloramine by UV photolysis and its subsequent impact on water quality are not clear. Using sarcosine (Sar) as an amine group-containing compound, it was found that organic chloramines (i.e., Cl-Sar) would be firstly formed during chlorination even in the presence of natural organic matter. Compared with self-decay of Cl-Sar, UV photolysis accelerated Cl-Sar decomposition and induced NCl bond cleavage. Using metoprolol (MTP) as a model micro-pollutant, UV-activated Cl-Sar (UV/Cl-Sar) can accelerate micro-pollutant degradation, attributed to reactive radicals formation. HO• and Cl• were important contributors, with a total contribution of 45%‒64%. Moreover, the degradation rate of MTP by UV/Cl-Sar was pH-dependent, which monotonically increased from 0.044 to 0.065 min‒1 under pHs 5.5‒8.5. Although the activation of organic chloramine by UV could accelerate micro-pollutant degradation, UV/Cl-Sar treatment could also enhance disinfection by-products formation. Trichloromethane (TCM) formation was observed during MTP degradation by UV/Cl-Sar. After post-chlorination, TCM, 1,1-dichloropropanone, 1,1,1-trichloropropanone, and dichloroacetonitrile were detected. Their individual and total concentrations were all positively proportional to UV/Cl-Sar treatment time. The total concentration with 30 min treatment (66.93 μg L‒1) was about 2.3 times that with 1 min treatment (28.76 μg L‒1). Finally, the accelerated effect was verified with Cl-glycine and Cl-alanine. It is expected to unravel the non-negligible role of organic chloramine on water quality during UV disinfection.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlei Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Younas A, Rashid HN, Hussain D, Naqvi STR, Khan MA, Fatima B, Majeed S. Chlorfenapyr containing anions uptake from industrial wastewater by ethylene glycol functionalized benzyl dimethyl tetradecyl ammonium bromide membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112017. [PMID: 33516981 DOI: 10.1016/j.jenvman.2021.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The preservation of water and wastewater treatment has become a global challenge. The concentration of anions such as chlorides, fluorides, cyanides, and perchlorates above the permitted levels in water is harmful to human and aquatic life. Chlorfenapyr is an insecticide that contains the aforesaid anions and is abundantly present in industrial wastewater. This research is focused on the removal of these anions from wastewater by ethylene glycol functionalized benzyl dimethyl tetradecyl ammonium bromide immobilized on soluble polymer anion exchange membrane. The real wastewater samples rich in chlorfenapyr from two different sources (industrial and pond) were analyzed. Membrane efficiency was more than 50 ppm for each anion in a single fold. The double folds of membrane showed enhanced uptake and separation efficiency for chloride, fluoride, and cyanide from wastewater samples between 0.01 and 0.02 ppm down to lethal concenetrations values (LD 50). The membrane shows maximum separation efficiency between the pH ranges of 6-7. The interference effect on membrane separation efficiency showed that the replacement ability of sample anions was in the order of fluoride > chloride > perchlorate > cyanide. This high replacement efficiency of fluoride and chloride is attributed to the more chemical interactions of these anions with membrane.
Collapse
Affiliation(s)
- Asma Younas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hafiza Nadia Rashid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- International Centre for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
13
|
Peng F, Yang F, Lu Y, Li H, Yang Z. Formation of disinfection byproducts during chlorination of mixed nitrogenous compounds in swimming pools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142100. [PMID: 32916492 DOI: 10.1016/j.scitotenv.2020.142100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Disinfection byproducts (DBPs) in swimming pool waters are receiving increasing attention because of their toxicity and widespread occurrence. Current studies rarely investigate the formation of DBPs from typical precursors in swimming pools under mixed exposure. They also rarely investigate the formation of carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs) simultaneously. In this study, the formation of C-DBPs and N-DBPs were investigated during chlorination of mixed precursors (i.e., tryptophan, urea, creatinine, and ammonia). The effects of precursors and operation parameters were also investigated. Among the four precursors, tryptophan had the highest DBP formation potential. Urea and ammonia restrained the formation of C-DBPs but promoted the formation of more toxic N-DBPs. C-DBP yields were significantly higher than N-DBP yields under all experimental conditions. Longer reaction time and higher chlorine dosage promoted the formation of C-DBPs, while higher temperature decreased the concentration of N-DBPs. The presence of bromide not only improved the sum yields of DBPs, but also shifted chlorinated DBPs to brominated species.
Collapse
Affiliation(s)
- Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Fang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
14
|
Liu Z, Xu B, Lin YL, Zhang TY, Ye T, Hu CY, Lu YS, Cao TC, Tang YL, Gao NY. Mechanistic study on chlorine/nitrogen transformation and disinfection by-product generation in a UV-activated mixed chlorine/chloramines system. WATER RESEARCH 2020; 184:116116. [PMID: 32750585 DOI: 10.1016/j.watres.2020.116116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The conversion mechanisms of chlorine species (including free chlorine, monochloramine (NH2Cl), dichloramine, and total chlorine), nitrogen species (including ammonium (NH4+), nitrate (NO3-), and nitrite (NO2-)) as well as the formation of disinfection by-products (DBPs) in a UV-activated mixed chlorine/chloramines system in water were investigated in this work. The consumption rates of free chlorine and NH2Cl were significantly promoted in a HOCl/NH2Cl coexisting system, especially in the presence of UV irradiation. Moreover, the transformation forms of nitrogen in both ultrapure and HA-containing waters were considerably affected by UV irradiation and the mass ratio of free chlorine to NH2Cl. NO3- and NO2- can be easily produced under UV irradiation, and the removal efficiency of total nitrogen with UV was obvious higher than that without UV when the initial ratio of HOCl/NH2Cl was less than 1. The roles of different radicals in the degradation of free chlorine, NH2Cl and NH4+ were also considered in such a UV-activated mixed chlorine/chloramines system. The results indicated that OH• was important to the consumption of free chlorine and NH2Cl, and showed negligible influence on the consumption of NH4+. Besides, the changes of DOC and UV254 in HA-containing water in UV-activated mixed chlorine/chloramines system indicated that the removal efficiency of DOC (24%) was much lower than that of UV254 (94%). The formation of DBPs in a mixed chlorine/chloramines system was also evaluated. The yields of DBPs decreased significantly as the mass ratio of HOCl/NH2Cl varied from 1 : 0 to 0 : 1. Moreover, compared to the conditions without UV irradiation, higher DBPs yields and DBP-associated calculated toxicity were observed during the UV-activated mixed chlorine/chloramine process.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Tao Ye
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195, United States
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Yong-Shan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tong-Cheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
15
|
Hu Y, Yang Q, Guo Y, Xu J, Zhou W, Li J, Blatchley ER. Volatile organic chloramines formation during ClO 2 treatment. J Environ Sci (China) 2020; 92:256-263. [PMID: 32430128 DOI: 10.1016/j.jes.2020.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic chloramines are reported as the disinfection byproducts during chlorination or chloramination. However, ClO2, as an important alternative disinfectant for chlorine, was not considered to produce halogenated amines. In the present work, volatile organic chloramines including (CH3)2NCl and CH3NCl2 were found to be generated during the reaction of ClO2 and the dye pollutants. (CH3)2NCl was the dominant volatile DBP to result from ClO2 treated all four dye pollutants including Methyl Orange, Methyl Red, Methylene Blue and Malachite Green, with molar yields ranging from 2.6% to 38.5% at a ClO2 to precursor (ClO2/P) molar ratio of 10. HOCl was identified and proved to be the reactive species for the formation of (CH3)2NCl, which implied (CH3)2NCl was transformed by a combined oxidation of ClO2 and hypochlorous acid. (CH3)2NCl concentrations in the ppb range were observed when real water samples were treated by ClO2 in the presence of the dye pollutants. The results suggest that these azo dyes are one of the significant precursors for the formation of HOCl during ClO2 treatment and that organic chloramines should be considered in ClO2 disinfection chemistry and water treatment.
Collapse
Affiliation(s)
- Yuanzhi Hu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Qian Yang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yang Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jie Xu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Ernest R Blatchley
- School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907-2051, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Zhang C, Chen B, Korshin GV, Kuznetsov AM, Roccaro P, Yan M, Ni J. Comparison of the yields of mono-, Di- and tri-chlorinated HAAs and THMs in chlorination and chloramination based on experimental and quantum-chemical data. WATER RESEARCH 2020; 169:115100. [PMID: 31669900 DOI: 10.1016/j.watres.2019.115100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Thermodynamic and kinetic aspects of the formation of trihalomethanes and haloacetic acids determined based on the quantum chemical (QC) simulations were compared in this study with the experimental data generated using the differential spectroscopy approach in chlorination and chloramination. The ratios of the slopes of the correlations between -DlnA350 values and individual DBPs concentrations (SNH2Cl/SHOCl) were observed to be linearly correlated with the ratios of the Gibbs free energies (ΔGNH2Cl/ΔGHOCl) of the corresponding reactions of chloramine and chlorine with acetaldehyde which was used as a model DBP precursor in QC simulations. Further QC examination of the kinetics of chlorination and chloramination of the model compound acetoacetic acid showed that the activation energy of reactions between monochloramine that directly participates in substitution reactions to form mono-, di and tri-halogenated intermediates are 2-3 times higher than those of HOCl formed via the hydrolysis monochloramine. This result confirms that the interactions of chloramine with NOM and ensuing DBP formation are primarily mediated by the free chlorine released as a result of the hydrolysis of monochloramine while direct halogenation of NOM by monochloramine is likely to provide a small contribution to DBP formation.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Bingya Chen
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, United States
| | - Andrey M Kuznetsov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, Russian Federation, 420015
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123, Catania, Italy
| | - Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| |
Collapse
|
17
|
Zhang S, Lin T, Chen W, Xu H, Tao H. Degradation kinetics, byproducts formation and estimated toxicity of metronidazole (MNZ) during chlor(am)ination. CHEMOSPHERE 2019; 235:21-31. [PMID: 31254778 DOI: 10.1016/j.chemosphere.2019.06.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The residues of pharmaceuticals and personal care products (PPCPs) in environmental waters have been widespread concerned. Metronidazole (MNZ), normally employed to treat inflammation and infection, was chosen as one model PPCP. The degradation of MNZ by chlorination could be fitted by pseudo-first-order kinetics as the observed pseudo-first-order rate constants increasing from 0.0302 min-1 to 0.2872 min-1. However, the kinetics during chloramination of MNZ followed pseudo-second-order reaction, whose estimated half-live was approximately 6-8 times longer than chlorination. The chlor(am)ination of MNZ especially formed chloroform (CF), dicholoacetamide (DCAcAm), tricholoacetamide (TCAcAm) and dichloroacetonitrile (DCAN), and their yields were overall lower under chloramination than chlorination. During chlorination, the yield of CF was increased from 0.35 ± 0.02% to 2.06 ± 0.12% with 1-20 chlorine/MNZ molar ratio, whereas the formations of DCAcAm, TCAcAm and DCAN increased firstly and then decreased. Increasing chloramine dosage promoted the concentrations of scheduled disinfection byproducts (DBPs). CF and TCAcAm kept continuous generation in chlor(am)ination versus reaction time. Compared with the chlorination, the chloramination of MNZ was more dependent on pH value due to the self-degradation of chloramine. Faintly acidic condition favored N-DBPs' formation in MNZ when it was subjected to chlor(am)ination. The chloramination of MNZ produced cytotoxicity and genotoxicity by 10-15 folds lower than chlorination, and DCAN formed during chloramination dominated both DBPs' yields and toxicity contribution. Opposite to chlorination, the integrated toxicity of MNZ during chloramination varied linearly versus N-DBPs' yields.
Collapse
Affiliation(s)
- Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
18
|
Zhong Y, Gan W, Du Y, Huang H, Wu Q, Xiang Y, Shang C, Yang X. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO 2/Cl 2. WATER RESEARCH 2019; 162:471-481. [PMID: 31302364 DOI: 10.1016/j.watres.2019.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 05/27/2023]
Abstract
Mixing oxidant of chlorine dioxide (ClO2) and chlorine (Cl2) often applied in water disinfection. Two secondary wastewater effluents at different ammonium-N levels (0.1 and 1.6 mg N L-1) were treated with the mixing oxidant (ClO2/Cl2) to evaluate the formation of disinfection byproducts (DBPs) and the associated cytotoxicity of treated wastewaters. The total chlorine concentrations of ClO2 and Cl2 were maintained at 10 mg L-1 as Cl2 with varied mixing ratios of ClO2 to Cl2. The formation of 37 halogenated DBPs, including nitrogenous, brominated and iodinated analogues, and 2 inorganic DBPs (chlorite and chlorate) was examined. The sum concentrations of the halogenated DBPs were reduced remarkably with decreasing Cl2 percentages, but each individual DBP group had distinct features. The regulated trihalomethanes reduced the most when ClO2 was present in chlorination, but decreasing Cl2 percentage from 70% to 30% was not quite effective to reduce the formation of iodinated trihalomethanes, haloacetic acids and haloacetontriles in low ammonium-N wastewater. The bromine and iodine substitution factors tend to increase with decreasing Cl2 percentages, indicating that destruction of DBP precursors by ClO2 favored bromine and iodine incorporation. Additionally, decreasing Cl2 percentages in the mixing oxidant (ClO2/Cl2) was often accompanied with lower chlorate formation but higher chlorite formation. The toxicity of treated wastewaters was evaluated through two approaches: the calculated cytotoxicity based on the concentrations of detected DBPs and the experimental cytotoxicity using the Chinese hamster ovary (CHO) cells. The calculated cytotoxicity decreased with decreasing Cl2 percentages, with haloacetonitriles and haloacetaldehydes as predominate contributors. However, the experimental cytotoxicity tests showed that treatment of high ammonium-N wastewater with ClO2/Cl2 exhibited considerable higher (> 3 times) cytotoxicity potency than using single disinfectant.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhui Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Huang Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - YingYing Xiang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
19
|
Zhang TY, Xu B, Yao S, Hu Y, Lin K, Ye H, Cui C. Conversion of chlorine/nitrogen species and formation of nitrogenous disinfection by-products in the pre-chlorination/post-UV treatment of sulfamethoxazole. WATER RESEARCH 2019; 160:188-196. [PMID: 31151000 DOI: 10.1016/j.watres.2019.05.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Pre-chlorination and UV disinfection are two common processes in drinking water treatment plants. Sulfamethoxazole (SMX), an antibiotic widely detected in source water, was selected as a precursor to study the conversion of chlorine/nitrogen species and DBP formation in pre-chlorination/post-UV process. The combined chlorine (mainly organic chloramines) produced in pre-chlorination of SMX can self-degrade and release free chlorine back again as pre-chlorination time goes on. With free chlorine dose increasing, the self-degradation rate of combined chlorine increased obviously. But the combined chlorine stopped self-degrading and remained stable around 1 mg-Cl2/L after adding 0.30 mM chlorine for 30 min. Post-UV treatment after pre-chlorination can enhance the degradation and achieve a complete removal of combined chlorine (including organic chloramines). Deamination occurred during pre-chlorination/post-UV process and deamination amount (-NH2) per SMX concentration was 0.19 M/M. Radicals in this process had no obvious influence on chlorine/nitrogen species conversion. Direct chlorination of SMX had the lowest DBP formation potentials while the application of pre-chlorination and UV enhanced them. Compared with UV treatment only, dichloroacetonitrile formation potential of SMX reduced by 1.58 × 10-3 mol/mol-SMX (17.37 μg/l) after pre-chlorination/post-UV treatment. During pre-chlorination/post-UV/final-chlorination treatment of SMX, Br- and natural organic matter can enhance DBP formation and toxicity-weighted values. Acid conditions showed a very high DBP risk, while alkaline conditions could cut this risk obviously, especially for the toxicity-weighted values of these DBPs.
Collapse
Affiliation(s)
- Tian-Yang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Ye
- National Engineering Research Center of Urban Water Resources, Shanghai, 200082, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
20
|
Li C, Lin Q, Dong F, Li Y, Luo F, Zhang K. Formation of iodinated trihalomethanes during chlorination of amino acid in waters. CHEMOSPHERE 2019; 217:355-363. [PMID: 30419389 DOI: 10.1016/j.chemosphere.2018.10.190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Chlorination is essential to provide safe drinking water. However, this process leads to the formation of disinfection byproducts (DBPs). In this study, tryptophan (Trp) has been selected as a precursor to conduct the chlorine disinfection. Moreover, the factors that affect the formation of trihalomethanes (THMs) and iodinated trihalomethanes (I-THMs) are investigated. The formation pathway of Trp chlorination is proposed based on the intermediate products identified. According to the experimental results, the formation of THMs and I-THMs during Trp chlorination fitted a new first-order kinetic model. The dosage of chlorine, temperature, pH and the ratio of bromide and iodide had major influence on the formation of THMs and I-THMs during chlorination. In addition, the inhibition of luminescent bacteria Vibrio fischeri in the water sample increased during Trp chlorination.
Collapse
Affiliation(s)
- Cong Li
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Qiufeng Lin
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Feilong Dong
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Yuanhao Li
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Feng Luo
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|