1
|
Araújo CAF, Paulino MKSS, Costa DHGD, Silva ARD, Leal LYDC, Nunes JA, Bezerra FS, Berto SDDC, Gonçalves WJF, Nascimento CWAD, Souza ERD. Soil salinity improves the capacity of Atriplex nummularia Lindl. to phytoextract cadmium. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137955. [PMID: 40112433 DOI: 10.1016/j.jhazmat.2025.137955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The halophyte Atriplex nummularia Lindl. is commonly used for remediating salt-affected soils and can accumulate heavy metals, yet studies on metal phytoextraction in saline soils are limited. This study makes a significant contribution to advancing the existing knowledge by exploring how salinity influences the cadmium (Cd) phytoextraction mechanisms in Atriplex, providing new insights into the effects of salinity on the absorption, translocation, and accumulation of heavy metals in halophytic plants. This research evaluated salinity's effect on Cd phytoextraction by Atriplex. The experiment used saline (SL, EC = 14.23 dS m⁻¹) and non-saline (NSL, EC = 1.89 dS m⁻¹) Luvisols with six Cd levels (0-50 mg kg⁻¹). Parameters assessed included dry biomass of aerial parts (DBAp) and roots, Cd in aerial parts (CdAp) and roots, translocation factor (TF), water relations, ion concentrations, and gas exchange. Cd did not affect DBAp in NSL, showing tolerance, while in SL, DBAp exceeded NSL up to 34 mg kg⁻¹ . Gas exchange decreased with Cd, but water relations were unaffected. CdAp reached 49 and 25 mg kg⁻¹ in SL and NSL, respectively. Salinity provided a favorable TF up to the dose of 30 mg kg⁻¹ Cd. These results highlight the species' potential for Cd phytoextraction, especially in saline conditions.
Collapse
|
2
|
Li Y, Yang Y, He J, Guo S, An X, Li Y, Guo R, Lin Y, Zhang R. Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste. Sci Rep 2025; 15:3231. [PMID: 39863674 PMCID: PMC11762989 DOI: 10.1038/s41598-025-87629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management. This study probed into their improvement effects on abandoned mine tailings from aspects such as plant growth and nutrient content. Based on this, the trail explored the impacts of different ratios of quarry waste matrix on different plant growth and the physical and chemical properties of the quarry matrix. The original soil, without fertilizer and with 45% water treatment, was taken as the control (CK), while the experimental group comprised of composite soil with different ratios of original soil and slag, combined with various water and nitrogen fertilizer treatments. Pennisetum alopecuroides (L.) Spreng, Campsis grandiflora (Thunb.) Schum, Setaria glauca (L.) Beauv, Periploca sepium Bunge, and mugwort (Artemisia argyi Levl. Et Vant.) were planted, respectively, in the control and experimental groups. After a 30-day period of nitrogen fertilizer and water treatment, an analysis was conducted to evaluate the physicochemical properties and growth status of the tailing matrix for different treatments. The results demonstrated that the M7 treatment significantly promoted the growth of mugwort, whereas the M2 treatment stimulated the growth of Campsis grandiflora (Thunb.) Schum. Additionally, the M3 treatment proved to be advantageous for enhancing the growth of Setaria glauca (L.) Beauv, Pennisetum alopecuroides (L.) Spreng, and Periploca sepium Bunge. The soil matrix pH of Pennisetum alopecuroides (L.) Spreng, Campsis grandiflora (Thunb.) Schum, Setaria glauca (L.) Beauv, Periploca sepium Bunge, and mugwort is all above 7.5, while macronutrient elements including TK, AK, TN, AN, TP, and AP exhibit varying degrees of enhancement. PCA analysis disclosed that there were significant disparities in substrate properties and plant growth properties among treatments for Pennisetum alopecuroides (L.) Spreng, Campsis grandiflora (Thunb.) Schum, Setaria glauca (L.) Beauv, Periploca sepium Bunge, and mugwort (P < 0.05). The correlation network and structural equation analysis revealed a significant positive correlation between the water and fertilizer matrix and soil AN and TN (P < 0.05). Additionally, TK exhibited a positive correlation with the growth status of all five plant species. Moreover, the water and fertilizer substrate displayed a positive association with the growth status of Pennisetum alopecuroides (L.) Spreng, Setaria glauca (L.) Beauv, Periploca sepium Bunge, as well as mugwort; however, it showed a negative correlation with the growth status of Campsis grandiflora (Thunb.) Schum.
Collapse
Affiliation(s)
- Yanchen Li
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Yang Yang
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Jialin He
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Shan Guo
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Xuejing An
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Yan Li
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Rui Guo
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
| | - Yipeng Lin
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| | - Ruipeng Zhang
- Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China
| |
Collapse
|
3
|
Keith BF, Lam EJ, Montofré ÍL, Zetola V, Bech J. The scientific landscape of phytoremediation of tailings: a bibliometric and scientometric analysis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2084-2102. [PMID: 38975678 DOI: 10.1080/15226514.2024.2373427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This article seeks to evaluate the scientific landscape of the phytoremediation of mine tailings through a series of bibliometric and scientometric techniques. Phytoremediation has emerged as a sustainable approach to remediate metal-contaminated mine waste areas. A scientometric analysis of 913 publications indexed in Web of Science from 1999 to 2023 was conducted using CiteSpace. The results reveal an expanding, interdisciplinary field with environmental sciences as the core category. Keyword analysis of 561 nodes and 2,825 links shows a focus on plant-metal interactions, microbial partnerships, bioavailability, and field validation. Co-citation analysis of 1,032 nodes and 2,944 links identifies seminal works on native species, plant-microbe interactions, and amendments. Temporal mapping of 15 co-citation clusters indicates a progression from early risk assessments and native plant inquiries to integrated biological systems, economic feasibility, and sustainability considerations. Recent trends emphasize multidimensional factors influencing adoption, such as plant-soil-microbe interactions, organic amendments, and field-scale performance evaluation. The findings demonstrate an intensifying translation of phytoremediation from scientific novelty to engineering practice. This quantitative and qualitative analysis of research trends aids in understanding the development of phytoremediation for mine tailings. The results provide valuable insights for researchers and practitioners in this evolving field.
Collapse
Affiliation(s)
- Brian F Keith
- Department of Computing and Systems Engineering, Universidad Católica del Norte, Antofagasta, Chile
| | - Elizabeth J Lam
- Department of Chemical and Environmental Engineering, Universidad Católica del Norte, Antofagasta, Chile
| | - Ítalo L Montofré
- Mining Business School, ENM, Universidad Católica del Norte, Antofagasta, Chile
- Mining and Metallurgical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
| | - Vicente Zetola
- Construction Management Department, Universidad Católica del Norte, Antofagasta, Chile
| | - Jaume Bech
- Soil Science Laboratory, Faculty of Biology, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Jia Y, Xiao E, Lan X, Lin W, Sun J, Xiao T. Microbial-mediated metal(loid) immobilization in mulch-covered tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116881. [PMID: 39151372 DOI: 10.1016/j.ecoenv.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Oujdi M, Chafik Y, Boukroute A, Bourgerie S, Sena-Velez M, Morabito D, Addi M. Exploring Phytoremediation Potential: A Comprehensive Study of Flora Inventory and Soil Heavy Metal Contents in the Northeastern Mining Districts of Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1811. [PMID: 38999651 PMCID: PMC11244480 DOI: 10.3390/plants13131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Mining activities produce waste materials and effluents with very high metal concentrations that can negatively impact ecosystems and human health. Consequently, data on soil and plant metal levels are crucial for evaluating pollution severity and formulating soil reclamation strategies, such as phytoremediation. Our research focused on soils and vegetation of a highly contaminated site with potentially toxic metals (Pb, Zn, and Cu) in the Touissit mining districts of eastern Morocco. Vegetation inventory was carried out in three mine tailings of the Touissit mine fields using the "field tower" technique. Here, 91 species belonging to 23 families were inventoried: the most represented families were Poaceae and Asteraceae, and the biological spectrum indicated a predominance of Therophytes (55.12%). From the studied areas, 15 species were selected and collected in triplicate on the tailings and sampled with their corresponding rhizospheric soils, and analyzed for Pb, Zn, and Cu concentrations. Reseda lutea, lotus marocanus, and lotus corniculatus can be considered as hyperaccumulators of Pb, as these plants accumulated more than 1000 mg·kg-1 in their aerial parts. According to TF, these plant species could serve as effective plants for Pb phytoextraction.
Collapse
Affiliation(s)
- Mohammed Oujdi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Yassine Chafik
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Azzouz Boukroute
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Sylvain Bourgerie
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Marta Sena-Velez
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Domenico Morabito
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| |
Collapse
|
6
|
Li X, Wu Y, Yang K, Zhu M, Wen J. The impact of microbial community structure changes on the migration and release of typical heavy metal (loid)s during the revegetation process of mercury-thallium mining waste slag. ENVIRONMENTAL RESEARCH 2024; 251:118716. [PMID: 38490627 DOI: 10.1016/j.envres.2024.118716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The effect of changes in microbial community structure on the migration and release of toxic heavy metal (loid)s is often ignored in ecological restoration. Here, we investigated a multi-metal (mercury and thallium, Tl) mine waste slag. With particular focus on its strong acidity, poor nutrition, and high toxicity pollution characteristics, we added fish manure and carbonate to the slag as environmental-friendly amendments. On this basis, ryegrass, which is suitable for the remediation of metal waste dumps, was then planted for ecological restoration. We finally explored the influence of changes in microbial community structure on the release of Tl and As in the waste slag during vegetation reconstruction. The results show that the combination of fish manure and carbonate temporarily halted the release of Tl, but subsequently promoted the release of Tl and arsenic (As), which was closely related to changes in the microbial community structure in the waste slag after fish manure and carbonate addition. The main reason for these patterns was that in the early stage of the experiment, Bacillaceae inhibited the release of Tl by secreting extracellular polymeric substances; with increasing time, Actinobacteriota became the dominant bacterium, which promoted the migration and release of Tl by mycelial disintegration of minerals. In addition, the exogenously added organic matter acted as an electron transport medium for reducing microorganisms and thus helped to reduce nitrate or As (Ⅴ) in the substrate, which reduced the redox potential of the waste slag and promoted As release. At the same time, the phylum Firmicutes, including specific dissimilatory As-reducing bacteria that are capable of converting As into a more soluble form, further promoted the release of As. Our findings provide a theoretical basis for guiding the ecological restoration of relevant heavy-metal (loid) mine waste dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Kaizhi Yang
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030000, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
8
|
Wang W, Xue J, Zhang L, You J. Influence of conditioner and straw on the herbaceous plant-based phytoremediation copper tailings: a field trial at Liujiagou tailings pond, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25059-25075. [PMID: 38462565 DOI: 10.1007/s11356-024-32812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
A field trial was performed to carry out an enhanced phytoremediation technique for multi-metal contaminated copper tailings by Sudan grass (Sorghum Sudanese), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon), using conditioner (TH-LZ01) and straw combination into composite amendments as soil amendments, aimed to obtain the maximum of phytoremediation effect. The results showed that compared with untreated herbaceous plants, the application of conditioner and straw planted with herbaceous plants reduced the pH and conductivity and increased the organic matter and water content of the copper tailings to different degrees. With the addition of conditioner and straw, the DTPA-Cd, DTPA-Cu, DTPA-Pb, and DTPA-Zn contents in the copper tailings showed a decreasing trend compared with the untreated group. The herbaceous plants were promoted to reduce the percentage contents of acid soluble fractions Cd, Cu, Pb, and Zn and to increase the percentage contents of reducible, oxidizable, and residual fractions heavy metals (Cd, Cu, Pb, and Zn) in the copper tailings to different degrees. The contents of Cd, Cu, Pb, and Zn in the underground part of herbaceous plants were higher than those in the aboveground part, and the contents of Cd, Cu, Pb, and Zn in the aboveground part and underground part decreased after adding conditioner and straw, which indicated that the conditioner and straw inhibited the transport of heavy metals in the plant. Furthermore, the principal component analysis showed that the application of conditioner and straw with planting ryegrass had more potential for improving the physicochemical properties of copper tailings and reducing heavy metal toxicity, followed by Bermuda grass and Sudan grass.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Liping Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
9
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
10
|
Shahrokh V, Martínez-Martínez S, Faz Á, Zornoza R, Acosta JA. Efficiency of large-scale aided phytostabilization in a mining pond. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4665-4677. [PMID: 36892788 PMCID: PMC10310568 DOI: 10.1007/s10653-023-01520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Mining activities accumulate large quantities of waste in tailing ponds, which results in several environmental impacts. In Cartagena-La Unión mining district (SE Spain), a field experiment was carried out in a tailing pond to evaluate the effect of aided phytostabilization on reducing the bioavailability of zinc (Zn), lead (Pb), copper (Cu) and cadmium (Cd) and enhancing soil quality. Nine native plant species were planted, and pig manure and slurry along with marble waste were used as amendments. After 3 years, the vegetation developed heterogeneously on the pond surface. In order to evaluate the factors affecting this inequality, four areas with different VC and an area without treatment (control area) were sampled. Soil physicochemical properties, total, bioavailable and soluble metals, and metal sequential extraction were determined. Results revealed that pH, organic carbon, calcium carbonate equivalent and total nitrogen increased after the aided phytostabilization, while electrical conductivity, total sulfur and bioavailable metals significantly decreased. In addition, results indicated that differences in VC among sampled areas were mainly owing to differences in pH, EC and concentration of soluble metals, which in turn were modified by the effect of non-restored areas on close restored areas after heavy rains due to a lower elevation of the restored areas compared to the unrestored ones. Therefore, to achieve the most favorable and sustainable long-term results of aided phytostabilization, along with plant species and amendments, micro-topography should be also taken into consideration, which causes different soil characteristics and thus different plant growth and survival.
Collapse
Affiliation(s)
- Vajihe Shahrokh
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Silvia Martínez-Martínez
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Ángel Faz
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Raúl Zornoza
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Jose A Acosta
- Department of Agricultural Engineering, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
| |
Collapse
|
11
|
Li X, Wu Y, Wang H, Wen J, Zhu M. Effects of microorganisms on the migration and transformation of typical heavy metal (loid)s in mercury-thallium mining waste slag during the combined application of fish manure and natural minerals. CHEMOSPHERE 2023:139385. [PMID: 37394189 DOI: 10.1016/j.chemosphere.2023.139385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Mercury-thallium mining waste slag has the characteristics of extremely acidic, low fertility and highly toxic polymetallic composite pollution, making it difficult to be treated. We use nitrogen- and phosphorus-rich natural organic matter (fish manure) and calcium- and phosphorus-rich natural minerals (carbonate and phosphate tailings) individually or in combination to amend the slag, analyze their effects on the migration and transformation of potentially toxic elements (Tl and As) in the waste slag. We set up sterile and non-sterile treatments specifically to further investigate the direct or indirect effect of microorganisms attached to added organic matter on Tl and As. The results showed that addition of fish manure and natural minerals to the non-sterile treatments promoted the release of As and Tl, resulting in an increase in As and Tl concentrations in the tailing lixiviums from 0.57 to 2.38-6.37 μg/L and from 69.92 to 107.51-157.21 μg/L, respectively. Sterile treatments promoted the release of As (from 0.28 to 49.88-104.18 μg/L) and inhibited the release of Tl (from 94.53 to 27.60-34.50 μg/L). Use of fish manure and natural minerals alone or in combination significantly reduced the biotoxicity of the mining waste slag, in which the combination was more efficient. XRD analysis showed that microorganisms in the medium promoted the dissolution of jarosite and other minerals, which indicated that the release and migration of As and Tl in Hg-Tl mining waste slag were closely related to microbial activities. Furthermore, metagenomic sequencing revealed that microorganisms such as Prevotella, Bacteroides, Geobacter, and Azospira, which were abundant in the non-sterile treatments, had remarkable resistance to a variety of highly toxic heavy metals and could affect the dissolution of minerals and the release and migration of heavy metals through redox reactions. Our results may aid in the rapid soilless ecological restoration of related large multi-metal waste slag dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Hui Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
12
|
Jia L, Fan W, Wang P, Chen Y, Zhao P, Yang S, Long G. Attapulgite amendment favors the utilization of high cadmium-contaminated soil for Erigeron breviscapus cultivation. CHEMOSPHERE 2023; 326:138490. [PMID: 36965533 DOI: 10.1016/j.chemosphere.2023.138490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
A practical measure of soil pollution can effectively control the utilization of contaminated soil during the remediation process. In this study, Erigeron breviscapus was used as the experimental material. Soil polluted with high concentrations of cadmium (Cd) was used to study the effects of different doses of attapulgite (AP) (0, 10, 20, and 40 kg-1 for AP0, AP10, AP20, and AP40, respectively) on the yield and quality of E. breviscapus (as measured by scutellarin), as well as soil remediation. The results showed that the yield and scutellarin content of E. breviscapus decreased by 33.4% and 78.9%, respectively, in soil contaminated with high concentrations of Cd (AP0) compared with the control soil (without Cd added). Moreover, the yield increased by 48.0% and 10.6% in AP20 and AP40, respectively, compared with AP0, and the scutellarin content increased by a factor of 2.35-2.41 in AP10, AP20, and AP40. Compared with AP0, the soil Cd content decreased by 22.5-26.2% in AP10, AP20, and AP40 and the available Cd content and acid-extractable Cd fraction in the soil also decreased. The catalase, peroxidase, superoxide dismutase activities, chlorophyll, and Fe2+ content were increased in AP10, AP20, and AP40, leading to an increased yield and scutellarin content. Overall, AP20 had the best effect on the yield, quality of E. breviscapus, and soil remediation. This study provides a practical measure to consider for concurrent benefits of pollution remediation and utilization of Cd-contaminated soil.
Collapse
Affiliation(s)
- Lijie Jia
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Peili Wang
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Yu Chen
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Ping Zhao
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Shengchao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangqiang Long
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
13
|
Huang Y, Li B, Chen H, Li J, Xu J, Li X. Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1484. [PMID: 37050110 PMCID: PMC10096890 DOI: 10.3390/plants12071484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant-soil systems remain unknown. In this study, different GABA dosages (0-8 g kg-1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9-159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant-soil systems.
Collapse
Affiliation(s)
- Yingqi Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huafang Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jingxian Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
14
|
Azizi M, Faz A, Zornoza R, Martinez-Martinez S, Acosta JA. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. PLANTS (BASEL, SWITZERLAND) 2023; 12:1219. [PMID: 36986908 PMCID: PMC10058974 DOI: 10.3390/plants12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated areas by potentially toxic elements. However, in soils affected by polymetallic contamination, including metals, metalloids, and rare earth elements (REEs), it is necessary to evaluate the behavior of these toxic elements in the soil-plant system, which will allow the selection of the most appropriate native plants with phytoremediation potential to be used in phytoremediation programs. This study was conducted to evaluate the level of contamination of 29 metal(loid)s and REEs in two natural soils and four native plant species (Salsola oppositifolia, Stipa tenacissima, Piptatherum miliaceum, and Artemisia herba-alba) growing in the vicinity of a Pb-(Ag)-Zn mine and asses their phytoextraction and phytostabilization potential. The results indicated that very high soil contamination was found for Zn, Fe, Al, Pb, Cd, As, Se, and Th, considerable to moderate contamination for Cu, Sb, Cs, Ge Ni, Cr, and Co, and low contamination for Rb, V, Sr, Zr, Sn, Y, Bi and U in the study area, dependent of sampling place. Available fraction of PTEs and REEs in comparison to total concentration showed a wide range from 0% for Sn to more than 10% for Pb, Cd, and Mn. Soil properties such as pH, electrical conductivity, and clay content affect the total, available, and water-soluble concentrations of different PTEs and REEs. The results obtained from plant analysis showed that the concentration of PTEs in shoots could be at a toxicity level (Zn, Pb, and Cr), lower than toxic but more than sufficient or natural concentration accepted in plants (Cd, Ni, and Cu) or at an acceptable level (e.g., V, As, Co, and Mn). Accumulation of PTEs and REEs in plants and the translocation from root to shoot varied between plant species and sampling soils. A. herba-alba is the least efficient plant in the phytoremediation process; P. miliaceum was a good candidate for phytostabilization of Pb, Cd, Cu, V, and As, and S. oppositifolia for phytoextraction of Zn, Cd, Mn, and Mo. All plant species except A. herba-alba could be potential candidates for phytostabilization of REEs, while none of the plant species has the potential to be used in the phytoextraction of REEs.
Collapse
|
15
|
Proto M, Newsome L, Jensen E, Courtney R. Geochemical analyses of metal(loid) fractions do not predict plant uptake behavior: Are plant bioassays better tools to predict mine rehabilitation success? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160679. [PMID: 36481156 DOI: 10.1016/j.scitotenv.2022.160679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Management of metal(loid) tailings at historic sites presents environmental hazards usually requiring rehabilitation to mitigate pollution risks. Strategies employed include capping or establishing vegetation directly, which requires tailings assessments to determine suitable rehabilitation approaches. Assessments are typically geochemical analyses, but plant based approaches may provide a more accurate measure of revegetation success although they are often limited to germination indices. This study uses the plant bioassay (Rhizotest™) with common geochemical assessment to predict plant uptake of metal(loid)s and the subsequent likely rehabilitation success. Pb/Zn tailings from five legacy sites within the UK and Ireland were characterized for pH, EC, water soluble and CaCl2-extractable content and aqua regia extractable content. Uptake of Sb, As, Cd, Cu, Ca, Mg, Mn, Zn, Pb was determined in shoots and roots of Lolium perenne. Total Zn, Pb, Sb, Cd and As in tailings ranged from 694 to 2683 mg kg-1, 1252 to 8072 mg kg-1, 14 to 148 mg kg-1, 1.3 to 44 mg kg-1 and 1.3 to 45 mg kg-1, respectively. The only correlation found between total and water soluble or CaCl2-extractable metal(loid) contents was for Cd, where r = 0.8 for total and CaCl2-extractable fractions. Limited uptake and translocation risk was identified for major contaminants Zn and Pb in most tailings samples but in some cases exceedance of phytotoxic threshold values occurred that was not reflected in geochemical analysis. Crucially, although total Cd and Sb content was relatively low (< 20 mg kg-1) in some tailings, elevated plant content for some samples highlights phytotoxic risk from minor elements. Results indicate that screening based on geochemical content is not sufficiently predictive of metal(loid) phytoavailability to reliably inform mine rehabilitation strategies. We therefore strongly recommend that geochemical analyses are supplemented with plant based bioassay to plan mine tailings revegetation and reduce risk of wider ecosystem metal(loid) transfer.
Collapse
Affiliation(s)
- M Proto
- Department of Biological Sciences and Bernal Institute, University of Limerick, Ireland
| | - L Newsome
- Camborne School of Mines, University of Exeter, United Kingdom of Great Britain and Northern Ireland
| | - E Jensen
- Aberystwyth University, United Kingdom of Great Britain and Northern Ireland
| | - R Courtney
- Department of Biological Sciences and Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
16
|
Castillo B, Acuña E, Sánchez A, Cornejo P, Salazar O, Tapia Y. Phytostabilization of trace elements and 13C isotope composition of Atriplex atacamensis Phil. cultivated in mine tailings treated with organic amendments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:354. [PMID: 36729333 DOI: 10.1007/s10661-023-10973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Mining generates large quantities of mineral processing wastes that are typically stored in mine tailings (MT) ponds. Long-term exposure of the surrounding areas to the material from the tailings ponds has been reported to have adverse effects on both human health and the environment. The purpose of this study was to evaluate the ability of Atriplex atacamensis Phil. to phytostabilize metals (Cu, Fe, Mn, and Zn) and sulfur (S) when grown directly on mine tailings with and without compost (C) and humic substance (HS). The stress status of A. atacamensis Phil. was also evaluated through the 13C isotopic composition of bulk leaves. A 120-day greenhouse experiment was conducted and three treatments were evaluated: (i) MT without any amendments (control), (ii) MT + C (dose: 89 ton ha-1), and (iii) MT + HS (0.72 ton ha-1). Mine tailings material exhibited low salinity, alkaline pH, high extractable S-SO4 concentrations, and low fertility; total Fe, Mn, and Zn concentrations were within the reference range for mine tailings, but total Cu concentrations were high at 1860 ± 236 mg kg-1. The HS had higher pH, EC, CEC, and available concentrations of N, P, and K than compost, while S-SO4 concentrations were similar in both amendments. 13C NMR analysis showed that the HS contained more alkyl, aromatic, and phenolic groups, while the compost was dominated by O-alkyl and carboxyl groups. At the end of the experiment, the MT + C treatment achieved a significant decrease in Cu, Fe, and Mn concentrations in the roots and aboveground parts of A. atacamensis Phil. and an increase in Zn values in both tissues. Both amendments increased the sulfur content in the aboveground parts, while metal concentrations under the HS treatment proved similar to control. Furthermore, the δ13CV-PDB values obtained in this study indicate that the organic amendments did not cause additional physiological stress to the plants compared to the MT treatment. Overall, A. atacamensis Phil. was shown to have the ability to phytostabilize metals and sulfur, making it a potential candidate species for in situ evaluation of the phytostabilization process on mine tailings.
Collapse
Affiliation(s)
- Benjamín Castillo
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - Edouard Acuña
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, 7820436, Santiago, Chile
| | - Andrea Sánchez
- Departamento de Producción Agrícola, Universidad de Chile, Santiago, 8820808, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260-000, Quillota, Chile
| | - Osvaldo Salazar
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808, Santiago, Chile.
| |
Collapse
|
17
|
Medina-Díaz HL, López-Bellido FJ, Alonso-Azcárate J, Fernández-Morales FJ, Rodríguez L. COMPREHENSIVE STUDY OF ELECTROKINETIC-ASSISTED PHYTOEXTRACTION OF METALS FROM MINE TAILINGS BY APPLYING DIRECT AND ALTERNATE CURRENT. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
18
|
Morad MY, El-Sayed H, El-Khadragy MF, Abdelsalam A, Ahmed EZ, Ibrahim AM. Metabolomic Profiling, Antibacterial, and Molluscicidal Properties of the Medicinal Plants Calotropis procera and Atriplex halimus: In Silico Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:477. [PMID: 36771561 PMCID: PMC9920412 DOI: 10.3390/plants12030477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties.
Collapse
Affiliation(s)
- Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt
| |
Collapse
|
19
|
Wang L, Shen L, Sun W, Ji B, Tang H. The effects of natural weathering ages on mineralogical, physical, and chemical properties of stacking molybdenum tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87817-87827. [PMID: 35821324 DOI: 10.1007/s11356-022-21934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the influence of natural weathering on the mineralogical, physical, and chemical properties of molybdenum tailings from Shaanxi Province, China, stored at different stacking ages. The results showed that the mineralogical and chemical compositions of the molybdenum tailings remained stable after stacking for different years. The analysis of bulk density, porosity, field moisture capacity, and aggregate characteristics indicated that the physical structure of the molybdenum tailings was similar to a nearby soil with increasing stacking age in spite of a time-consuming process. In addition, 10 years of the natural weathering process resulted in the formation of more aggregates with the surface of microaggregates roughened, and displayed more debris and fine particles than stocking for 1 year. The findings showed that the bulk density of molybdenum tailings reduced from 1.45 to 1.42 g/cm3 after 10 years of storage, while its porosity rose from 46.5 to 49.4%. The fraction of large aggregate (> 0.25 mm) and mean weight diameter increased from 7.91 to 42.07% and from 0.1482 to 0.1864 mm, respectively, which demonstrated that the natural weathering significantly improved the physical properties of the aggregate and enhanced the structural stability. Thus, natural weathering provides an ecological basis for restoring and reconstructing the soil ecosystem in molybdenum tailings. The results confirmed that long-term deposition can improve the soil structure of tailings, which provides a reference for further research on restoring and reconstructing the soil ecosystem in molybdenum tailings.
Collapse
Affiliation(s)
- Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Lingfeng Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China
| | - Bin Ji
- Department of Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
20
|
Thouin H, Norini MP, Battaglia-Brunet F, Gautret P, Crampon M, Le Forestier L. Temporal evolution of surface and sub-surface geochemistry and microbial communities of Pb-rich mine tailings during phytostabilization: A one-year pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115538. [PMID: 35772273 DOI: 10.1016/j.jenvman.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Collapse
Affiliation(s)
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Fabienne Battaglia-Brunet
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| |
Collapse
|
21
|
Hu Y, Li J, Li R, Niu Y, Cao M, Luo J. Influence of magnetized water irrigation on characteristics of antioxidant enzyme, ferritin, and Cd excretion in Festuca arundinacea during phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129527. [PMID: 35816798 DOI: 10.1016/j.jhazmat.2022.129527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The magnetic field can alter the hydrogen-bond structure and polarity characteristics of water; therefore, we hypothesize that magnetized water can affect plant physiological functions, including metal detoxification and excretion. In this study, the amount of Cd excreted on the leaves of Festuca arundinacea was estimated using magnetized water and normal water irrigation patterns. Irrigation with magnetized water improved the shoot dry weight and Cd content in F. arundinacea by 13.6% and 52.8%, respectively, compared to the control. Magnetized water irrigation also increased antioxidant enzyme activities in plant leaves, thereby alleviating the oxidative damage. The concentration of ferritin was 0.91 folds higher than that of the control, increasing the Fe sequestration and detoxification capacity of F. arundinacea. The amount of Cd excreted was significantly higher under magnetized water irrigation, thereby increasing the annual Cd removal by 109.7% from soil by leaf washing compared with that of the control. In contrast, F. arundinacea irrigated with magnetized water excreted 38.1% less Fe owing to the increase in ferritin levels, compared with that of the control. This study suggests a novel pathway of Cd phytoremediation by rinsing excreted Cd from the leaf surface without harvesting and replanting F. arundinacea.
Collapse
Affiliation(s)
- Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jinrui Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Ruyi Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yao Niu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
22
|
Li X, Li B, Zheng Y, Luo L, Qin X, Yang Y, Xu J. Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113739. [PMID: 35714481 DOI: 10.1016/j.ecoenv.2022.113739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Screening for superior cadmium (Cd) phytoremediation resources and uncovering the mechanisms of plant response to Cd are important for effective phytoremediation of Cd-polluted soils. In this study, the characteristics of Coreopsis grandiflora related to Cd tolerance and accumulation were analyzed to evaluate its Cd phytoremediation potential. The results revealed that C. grandiflora can tolerate up to 20 mg kg-1 of Cd in the soil. This species showed relatively high shoot bioconcentration factors (1.09-1.85) and translocation factors (0.46-0.97) when grown in soils spiked with 5-45 mg kg-1 Cd, suggesting that C. grandiflora is a Cd accumulator and can potentially be used for Cd phytoextraction. Physiological analysis indicated that antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) and various free amino acids (e.g., proline, histidine, and methionine) participate in Cd detoxification in C. grandiflora grown in soil spiked with 20 mg kg-1 of Cd (Cd20). The overall microbial richness and diversity remained similar between the control (Cd0) and Cd20 soils. However, the abundance of multiple rhizospheric microbial taxa was altered in the Cd20 soil compared with that in the Cd0 soil. Interestingly, many plant growth-promoting microorganisms (e.g., Nocardioides, Flavisolibacter, Rhizobium, Achromobacter, and Penicillium) enriched in the Cd20 soil likely contributed to the growth and vitality of C. grandiflora under Cd stress. Among these, some microorganisms (e.g., Rhizobium, Achromobacter, and Penicillium) likely affected Cd uptake by C. grandiflora. These abundant plant growth-promoting microorganisms potentially interacted with soil pH and the concentrations of Cd and AK in soil. Notably, potassium-solubilizing microbes (e.g., Rhizobium and Penicillium) may effectively solubilize potassium to assist Cd uptake by C. grandiflora. This study provides a new plant resource for Cd phytoextraction and improves our understanding of rhizosphere-associated mechanisms of plant adaptation to Cd-contaminated soil.
Collapse
Affiliation(s)
- Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China.
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
23
|
Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14127266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Contamination of soil with heavy metals is a worldwide problem, which causes heavy metals to release into the environment. Remediation of such contaminated soil is essential to protect the environment. The aims of this study are: first, to compare the effect of biochar and the joint application of biochar with fertilizer for the phytoremediation of heavy metals-contaminated soil using Acacia auriculiformis; second, to study the effect of the application rate of biochar in improving the physicochemical properties of the soil. The soil samples were collected from an active coal mine dump and assessed for their physicochemical properties and heavy metals toxicity. Initial results indicated that the soil has poor physicochemical properties and was contaminated with the presence of heavy metals such as Zn, Ni, Cu, Cr, and Co. Later, the heavy metals-contaminated soil was mixed with the 400 and 600 °C biochar, as well as the respective biochar–fertilizer combination in varying mixing ratios from 0.5 to 5% (w/w) and subjected to a pot-culture study. The results showed that the application of both varieties of biochar in combination with fertilizer substantially improved the physicochemical properties and reduced the heavy metals toxicity in the soil. The biochar and fertilizer joint application also substantially improved the soil physiochemical properties by increasing the application rate of both varieties of biochar from 0.5 to 5%. The soil fertility index (SFI) of the biochar and biochar–fertilizer amended soil increased by 49.46 and 52.22%, respectively. The plant’s physiological analysis results indicated a substantial increase in the plant’s shoot and root biomass through the application of biochar and biochar–fertilizer compared to the control. On the other hand, it significantly reduced the heavy metals accumulation and, hence, the secretion of proline and glutathione hormones in the plant cells. Therefore, it can be concluded that the joint application of biochar with the application rate varying between 2.5 to 5% (w/w) with the fertilizer significantly improved the physicochemical properties of the soil and reduced the heavy metals toxicity compared to the controlled study.
Collapse
|
24
|
Waris M, Baig JA, Talpur FN, Kazi TG, Afridi HI. An environmental field assessment of soil quality and phytoremediation of toxic metals from saline soil by selected halophytes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:535-544. [PMID: 35669794 PMCID: PMC9163272 DOI: 10.1007/s40201-022-00800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/03/2022] [Indexed: 05/22/2023]
Abstract
The current study has aims to investigate the soil quality and phytoextraction of cadmium (Cd), chromium (Cr), and lead (Pb) from saline soils using Alhagi maurorum (camelthorn), Tamarix aphylla (saltcedar), Salvadora persica (mustard bush), and Suaeda nigra (bush seep weed). The saline bulk soil, rhizospheric soil, and different parts of selected plants were oxidized using the acid mixture and determined Cd, Cr, and Pb by atomic absorption spectrometry. The bio-concentration factor (BCF) and translocation factor (TF) of also examined. The quality parameters of soil like pH (< 8.5), and electrical conductivity (EC; > 4.00 dS m-1) indicated the soil is saline. The salinity of soil was lower the organic matters, and total nitrogen contents in studied saline bulk soil due to deterioration condition of soils. However, the rhizospheric soil showed the improved quality of saline soil reflected the good phytoextraction of salts from saline soil. The high contents of Cd in roots and shoots (1.02 and 0.65 µg g-1) of Alhagi maurorum, Cr in the roots and shoots (6.20, and 6.75 µg g-1) of Tamarix aphylla and Pb in the roots and shoots (5.63, and 5.75 µg g-1) of Suaeda nigra. The BCF and TF showed the Tamarix aphylla and Alhagi maurorum for Pb, Alhagi maurorum, and Salvadora persica for Cr considered as hyperaccumulator plants. Based on BCF and TF values of Alhagi maurorum, Tamarix aphylla for Cd, and Salvadora persica for Cr and Pb have the efficiency to uptake toxic metals from saline soil. Thus, it can be concluded that selected plant species may have ability for the phytoextraction the Cd, Cr and Pb from saline soil.
Collapse
Affiliation(s)
- Muhammad Waris
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Jameel Ahmed Baig
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
- Young Welfare Society, Jamshoro, 76080 Sindh Pakistan
| | - Farah Naz Talpur
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Tasneem Gul Kazi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| | - Hassan Imran Afridi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080 Pakistan
| |
Collapse
|
25
|
Luo Y, Zheng Z, Wu P, Wu Y. Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. CHEMOSPHERE 2022; 286:131678. [PMID: 34346324 DOI: 10.1016/j.chemosphere.2021.131678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The establishment of vegetation cover is an important strategy to reduce wind and water erosion at metal smelting waste slag sites. However, the mobility of heavy metals in waste slag-vegetation-leachate systems after the application of revegetation strategies is still unclear. Large microcosm experiments were conducted for revegetation of waste slag for 98 d using combined amendments, i.e., phosphate rock and an organic waste coming from the anaerobic digestion of pig manure (named as biogas residue), and by single- and co-planted perennial ryegrass (Lolium perenne L.) and Trifolium repens (T. repens). The results showed that the application of biogas residue slightly increased the concentrations of Zn and Cd in the leachates; however, the establishment of plants could avoid the excessive leaching of heavy metals coming from the biogas residue. The bioavailability of Cu, Zn, and Cd slightly increased, but Pb bioavailability significantly decreased regardless of single- or co-planting patterns. Additionally, the bioavailability of Cu, Zn, and Cd in the waste slag revegetated with perennial ryegrass was lower than that in T. repens under the single-planting pattern. The change in the heavy metals bioavailability under different revegetation strategies was mainly due to the root-induced change in the pH and speciation of heavy metals in the waste slag. The application of biogas residue and phosphate rock tends to the immobilization of Pb. Heavy metals mainly accumulated in the underground parts of the two herbs, and the heavy metal contents in the underground parts of perennial ryegrass were higher than those in T. repens regardless of single- or co-planting patterns. The heavy metals accumulated in T. repens were lower than those in perennial ryegrass in the single-planting pattern. The bioaccumulation and transportation factors of the two herbs were extremely low. Thus, the two herbs are potential candidates for phytostabilization of zinc smelting waste slag sites.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhilin Zheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang, 550025, China; College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
26
|
Madline A, Benidire L, Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67185-67202. [PMID: 34247350 DOI: 10.1007/s11356-021-15168-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an eco-friendly method for rehabilitation of mine tailing. Some heavy metals and salt-tolerant plant growth-promoting rhizobacteria (PGPR) could be beneficial in alleviating soil salinity and heavy metal stress during plant growth. The aim of this work is to select PGPR that could be used in phytoremediation process. Twenty-nine rhizobacteria are examined for their ability to grow at increasing concentrations of NaCl, Zn, Pb, Cu, and Cd. The results showed that seventeen rhizobacteria displayed high salinity and metal tolerance up to 100 g L-1 of NaCl, 5 mM of Cd, 9 mM of Pb, 10 mM of Zn, and 6 mM of Cu. Moreover, almost all tested bacteria maintained their PGP traits under 10% of NaCl and multi-metal stress. Based on seedling bioassay under metallic and salt stress, using Peganum harmala L. and Lactuca sativa L., beneficial effects of seed inoculation with bacterial consortia (Mesorhizobium tamadayense, Enterobacter xiangfangensis, Pseudomonas azotifigens, and Streptomyces caelestis) have been observed in terms of root and shoot elongation. Our results show that the stress-tolerant consortium used has a great potential to sustain plants establishment in heavily disturbed soils.
Collapse
Affiliation(s)
- Atika Madline
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Leila Benidire
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Ali Boularbah
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco.
- Center of Excellence for Soil and Africa Research in Africa, AgroBioSciences, Mohammed VI Polytechnique - University Lot 660, Hay Moulay Rachid, Ben Guerir, Morocco.
- Université Cadi Ayyad, Ecole Supérieure de Technologie, El Kelâa des Sraghna, Morocco.
| |
Collapse
|
27
|
Fang Q, Huang T, Wang N, Ding Z, Sun Q. Effects of Herbaspirillum sp. p5-19 assisted with alien soil improvement on the phytoremediation of copper tailings by Vetiveria zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64757-64768. [PMID: 34318414 DOI: 10.1007/s11356-021-15091-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L. in copper tailings. Phytoremediation potential was evaluated by plant biomass and the ability of plants to absorb and transfer heavy metals. Results showed that the biomass was increased by 19.64-173.81% in p5-19 inoculation treatments with and without alien soil improvement compared with control. Meanwhile, photosynthetic pigment contents were enhanced in co-inoculation treatment (p5-19 with alien soil improvement). In addition, the malondialdehyde (MDA) content was decreased, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in p5-19 treatment, thereby alleviating the oxidative stress. Moreover, co-inoculation significantly (p < 0.05) increased the concentrations of Mn, Cu, Zn, and Cd in the roots and shoots of V. zizanioides. In particular, the highest concentrations of Mn, Zn, and Cd in the shoots (roots) were obtained in covering 10 cm combined with p5-19 inoculation treatment, which were 4.44- (2.71-), 4.73- (3.87-), and 5.93- (4.35-) fold as that of the controls, respectively. These results provided basis for the change of phytoremediation ability of V. zizanioides after inoculation. We concluded that p5-19 assisted with alien soil improvement was a potential strategy for enhancing phytoremediation ability in tailings.
Collapse
Affiliation(s)
- Qing Fang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Tao Huang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ning Wang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ziwei Ding
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Qingye Sun
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China.
- Academy of Resources and Environmental Engineering, Anhui University, 111 JiuLong Road, 523, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
28
|
Wu S, You F, Boughton B, Liu Y, Nguyen TAH, Wykes J, Southam G, Robertson LM, Chan TS, Lu YR, Lutz A, Yu D, Yi Q, Saha N, Huang L. Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13045-13060. [PMID: 34565140 DOI: 10.1021/acs.est.1c04527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in soil structure and biogeochemical function development, which are fundamental for the eco-engineering of tailings-soil formation to underpin sustainable tailings rehabilitation. In the present study, we have characterized the DOM composition and its molecular changes in an alkaline Fe ore tailing primed with organic matter (OM) amendment and plant colonization. The results demonstrated that microbial OM decomposition dramatically increased DOM richness and average molecular weight, as well as its degree of unsaturation, aromaticity, and oxidation in the tailings. Plant colonization drove molecular shifts of DOM by depleting the unsaturated compounds with a high value of nominal oxidation state of carbon (NOSC), such as tannin-like and carboxyl-rich polycyclic-like compounds. This may be partially related to their sequestration by secondary Fe-Si minerals formed from rhizosphere-driven mineral weathering. Furthermore, the molecular shifts of DOM may have also resulted from plant-regulated microbial community changes, which further influenced DOM molecules through microbial-DOM interactions. These findings contribute to the understanding of DOM biogeochemistry and ecofunctionality in the tailings during early pedogenesis driven by OM input and pioneer plant/microbial colonization, providing an important basis for the development of strategies and technologies toward the eco-engineering of tailings-soil formation.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Berin Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian National Phenome Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeremy Wykes
- Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Gordon Southam
- School of Earth & Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lachlan M Robertson
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 300, Taiwan
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dingyi Yu
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qing Yi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Narottam Saha
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Li X, Chen D, Yang Y, Liu Y, Luo L, Chen Q, Yang Y. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112392. [PMID: 34102395 DOI: 10.1016/j.ecoenv.2021.112392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Understanding the molecular mechanisms of cadmium (Cd) tolerance and accumulation in plants is important to address Cd pollution. In the present study, we performed comparative transcriptome analysis to identify the Cd response processes in the roots of two turnip landraces, KTRG-B14 (high-Cd accumulation) and KTRG-B36 (low-Cd accumulation). Two common enhanced processes, glutathione metabolism and antioxidant system, were identified in both landraces. However, some differential antioxidant processes are likely employed by two landraces, namely, several genes encoding peptide methionine sulfoxide reductases and thioredoxins were up-regulated in B14, whereas flavonoid synthesis was potentially induced to fight against oxidative stress in B36. In addition to the commonly upregulated ZINC INDUCED FACILITATOR 1-like gene in two landraces, different metal transporter-encoding genes identified in B14 (DETOXIFICATION 1) and B36 (PLANT CADMIUM RESISTANCE 2-like, probable zinc transporter 10, and ABC transporter C family member 3) were responsible for Cd accumulation and distribution in cells. Several genes that encode extensins were specifically upregulated in B14, which may improve Cd accumulation in cell walls or regulate root development to absorb more Cd. Meanwhile, the induced high-affinity nitrate transporter 2.1-like gene was also likely to contribute to the higher Cd accumulation in B14. However, Cd also caused some toxic symptoms in both landraces. Cd stress might inhibit iron uptake in both landraces whereas many apoenzyme-encoding genes were influenced in B36, which may be attributed to the interaction between Cd and other metal ions. This study provides novel insights into the molecular mechanism of plant root response to Cd at an early stage. The transporters and key enzymes identified in this study are helpful for the molecular-assisted breeding of low- or high-Cd-accumulating plant resources.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Di Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China.
| |
Collapse
|
30
|
Abstract
Abandoned mine lands (AMLs), which are considered some of the most dangerous anthropogenic activities in the world, are a source of hazards relating to potentially toxic elements (PTEs). Traditional reclamation techniques, which are expensive, time-consuming and not well accepted by the general public, cannot be used on a large scale. However, plant-based techniques have gained acceptance as an environmentally friendly alternative over the last 20 years. Plants can be used in AMLs for PTE phytoextraction, phytostabilization, and phytovolatilization. We reviewed these phytoremediation techniques, paying particular attention to the selection of appropriate plants in each case. In order to assess the suitability of plants for phytoremediation purposes, the accumulation capacity and tolerance mechanisms of PTEs was described. We also compiled a collection of interesting actual examples of AML phytoremediation. On-site studies have shown positive results in terms of soil quality improvement, reduced PTE bioavailability, and increased biodiversity. However, phytoremediation strategies need to better characterize potential plant candidates in order to improve PTE extraction and to reduce the negative impact on AMLs.
Collapse
|
31
|
Montofré ÍL, Lam EJ, Ramírez Y, Gálvez ME. Evaluation of copper tailing amendments through poultry waste and ammonium nitrate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2213-2230. [PMID: 33098495 DOI: 10.1007/s10653-020-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, two amendments, poultry waste and ammonium nitrate, were evaluated to condition and stabilize a mine tailing and thus help the vegetation cover settle. Individually, ammonium nitrate was tested as a nitrogen source and chicken bone ash as a phosphate source. For this, laboratory tests were made on soil columns from the area to be remediated. The mobility and availability of metals and nutrients were determined by analyzing their leachates chemically. The results showed that the use of chicken bone ash decreases soluble metal concentrations, particularly in Fe and soluble Mn. On the other hand, experimental conditions proved that the acidification produced by ammonium nitrate nitrification does not significantly increase the lechate metal content. Therefore, its use for fertilization does not involve phytotoxicity risks. Regarding the availability of macronutrients as well as trace elements, the results showed that the concentrations lie within the ranges suitable for plant nutrition. So, the treatments are effective both for fertilization and phytoremediation.
Collapse
Affiliation(s)
- Ítalo L Montofré
- Mining Business School, ENM, Universidad Católica del Norte, Antofagasta, Chile.
- Mining and Metallurgical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile.
| | - Elizabeth J Lam
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
| | - Yendery Ramírez
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
- School of Engineering Sciences, Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
| | - María E Gálvez
- Chemical Engineering Department, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
32
|
Sun B, Lyu C, Bi R, Xia L, Zhang X, Xu C, Wang Y, Guo Y. Effects of polyacrylamide molecular weight and mass concentration on water transport characteristics of iron tailings. Sci Rep 2021; 11:6252. [PMID: 33737541 PMCID: PMC7973773 DOI: 10.1038/s41598-021-85338-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Iron tailings have few macropores which severely inhibit infiltration and transport of soil water. Polyacrylamide (PAM) can regulate soil water, but it is rarely used when remediating tailings matrix. In this research, PAM of four molecular weights of 300w, 600w, 800w, and 1000w were selected as amendments, and were each applied at five mass concentrations of 0% (CK), 0.01%, 0.04%, 0.08%, and 0.16% to observe their effects on water transport in iron tailings using column simulations in the laboratory. After adding PAM, the water retention and saturated water content of iron tailings increased significantly (P < 0.05). With increases in PAM molecular weight and mass concentration, the saturated hydraulic conductivity showed a downward trend, but the saturated hydraulic conductivity increased after a dry-wet cycle. With the increase of PAM mass concentration, adding PAM of 1000w molecular weight to iron tailing decreased infiltration capacity, but treatments of other molecular weights all initially increased then decreased infiltration capacity. The greatest improvement on infiltration capacity of iron tailings was observed with the addition of PAM of 300w molecular weight and 0.01% mass concentration. Adding PAM increased the vertical depth of the saturation zone of iron tailings (P < 0.05) with a maximum depth of 20.83 cm. The Kostiakov model more accurately simulated water infiltration of iron tailings compared with the Horton and Philip models. On the whole, when PAM of low molecular weight and concentration was added to iron tailings, PAM increased stable infiltration, saturated water content, and water retention. It also inhibited saturated hydraulic conductivity of iron tailings. Therefore, in practice, it is necessary to select the appropriate molecular weight and mass concentration of PAM according to the dominant limiting factors and remediation needs of the matrix.
Collapse
Affiliation(s)
- Bo Sun
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunjuan Lyu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- College of Resources and Environment, National Experimental Teaching Demonstration Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Rutian Bi
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Resources and Environment, National Experimental Teaching Demonstration Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lu Xia
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Caicai Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yu Wang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yansong Guo
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
33
|
Benidire L, Madline A, Pereira SIA, Castro PML, Boularbah A. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. CHEMOSPHERE 2021; 262:127803. [PMID: 32755694 DOI: 10.1016/j.chemosphere.2020.127803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 05/16/2023]
Abstract
Mine tailings pose a huge hazard for environmental and human health, and the establishment of vegetation cover is crucial to reduce pollutant dispersion for the surroundings. However, their hostile physicochemical conditions hamper plant growth, compromising phytoremediation strategies. This study aims to investigate the role of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the improvement of mine tailings properties and Lolium perenne L. (ryegrass) growth. Plants were grown in mine tailings mixed with an agricultural soil (1:1), 10% compost, and supplied with two different inorganic amendments - rock phosphate (6%) or lime (3%), and inoculated with the rhizobacterial strains Advenellakashmirensis BKM20 (B1) and Mesorhizobium tamadayense BKM04 (B2). The application of organo-mineral amendments ameliorated tailings characteristics, which fostered plant growth and further enhanced soil fertility and microbial activity. These findings were consistent with the increase of total organic carbon levels, with the higher numbers of heterotrophic and phosphate solubilizing bacteria, and higher dehydrogenase and urease activities, found in these substrates after plant establishment. Plant growth was further boosted by PGPR inoculation, most noticeable by co-inoculation of both strains. Moreover, inoculated plants showed increased activities for several antioxidant enzymes (catalase, peroxidase, polyphenoloxidase, and glutathione reductase) which indicate a reinforced antioxidant system. The application of agricultural soil, compost and lime associated with the inoculation of a mixture of PGPR proved to enhance the establishment of vegetation cover, thus promoting the stabilization of Kettara mine tailings. Nonetheless, further studies are needed in order to confirm its effectiveness under field conditions.
Collapse
Affiliation(s)
- L Benidire
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - A Madline
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - S I A Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - P M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - A Boularbah
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco; AgrobioSciences Program, Université Mohammed VI Polytechnique (UM6P), Benguerir, Morocco.
| |
Collapse
|
34
|
Wild Plants for the Phytostabilization of Phosphate Mine Waste in Semi-Arid Environments: A Field Experiment. MINERALS 2020. [DOI: 10.3390/min11010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The management of mine waste has become an urgent issue, especially in semi-arid environments. In this context, and with an aim to inhibit the oxidation of the sulfide tailings of the abandoned mine of Kettara in Morocco, a store-and-release (SR) cover made of phosphate mine waste (PW) was implemented. In order to guarantee its long-term performance, phytostabilization by local wild plant species is currently the most effective and sustainable solution. This study aimed to assess the growth performance and phytostabilization efficiency of five local wild plant species to grow on the SR cover made of PW. A field experiment was conducted for two growing seasons (2018 and 2019), without amendments and with the minimum of human care. PW and the aboveground and belowground parts of the studied plant species were collected and analyzed for As, Cd, Cu, Ni, and Zn. The bioconcentration factor (BCF) and translocation factor (TF) were also calculated. Despite the hostile conditions of the mining environment, the five plant species showed promising growth performances as follows: Atriplex semibaccata > Vicia sativa > Launaea arborescens > Peganum harmala > Asparagus horridus. The five plants showed high accumulation capacity of the trace elements, with the highest concentrations in belowground tissue. Principal component analysis distinguished A. semibaccata as having a high concentration of Cu and As, while Asparagus horridus had higher concentrations of Cd and Zn. In contrast, P. harmala, V. sativa, and L. arborescens demonstrated affinity regarding Ni. According to the BCF (<1) and TF (<1), these plant species could be used as effective phytostabilizers of the studied trace elements. The present study showed that local wild plant species have a great potential for the phytostabilization of PW, and could ensure the long-term efficiency of SR cover.
Collapse
|
35
|
Arvizu-Valenzuela LV, Cruz-Ortega R, Meza-Figueroa D, Loredo-Portales R, Chávez-Vergara BM, Mora LN, Molina-Freaner F. Barriers for plant establishment in the abandoned tailings of Nacozari, Sonora, Mexico: the influence of compost addition on seedling performance and tailing properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39635-39650. [PMID: 32651780 DOI: 10.1007/s11356-020-09841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Past mining activities have left a legacy of abandoned mine tailing deposits whose metal contaminants poses serious risks to ecosystems and human health. While the development of a vegetated cover in mine tailings can help in mitigating these risks, the local factors limiting plant establishment in these sites are not well understood, restricting phytostabilization efforts. Here, we explore some of the barriers that limit seedling establishment of two species (Vachellia farnesiana and Prosopis velutina) in a mine tailing deposit located in Nacozari, Sonora, Mexico, and assess whether compost addition can help in overcoming these barriers in pot and field experiments. Our field observations found 20 times more carbon and at least 4 times more nitrogen concentration in areas under vegetated patches than in non-vegetated areas, while a previous study found no difference in metal concentrations and other physicochemical parameters. This suggests that organic matter and nutrients are a major limitation for plant establishment. In agreement with this, species failed to establish without compost addition in the field experiment. Compost addition also had a positive effect on biomass accumulation, pH and microbial activity, but increased the substrate soluble concentration of As, Cu, and Zn. Nonetheless, only Cu, K, and Mo in P. velutina accumulated in tissues at levels considered toxic for animal consumption. Our study documents that compost addition facilitated plant establishment for the phytostabilization of mine tailings and help to prevent the dispersion of most metal contaminants via animal consumption. We encourage the use of complementary strategies to minimize the risk of dispersion of metal contaminants.
Collapse
Affiliation(s)
- Laura V Arvizu-Valenzuela
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico
| | - Rocio Cruz-Ortega
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, C.P. 83000, Hermosillo, Sonora, Mexico
| | - René Loredo-Portales
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico
| | - Bruno M Chávez-Vergara
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía, C.P. 04510, Ciudad de México, Mexico
| | - Lucy N Mora
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, C.P. 04510, Ciudad de México, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía, C.P. 04510, Ciudad de México, Mexico
| | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 83250, Hermosillo, Sonora, Mexico.
| |
Collapse
|
36
|
Li G, Chen F, Jia S, Wang Z, Zuo Q, He H. Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114887. [PMID: 32505933 DOI: 10.1016/j.envpol.2020.114887] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co-contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co-contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co-contaminated soil.
Collapse
Affiliation(s)
- Guirong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fukai Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyong Jia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China.
| | - Zongshuo Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiting Zuo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongmou He
- Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| |
Collapse
|
37
|
Electrical Resistivity Tomography as a Support Tool for Physicochemical Properties Assessment of Near-Surface Waste Materials in a Mining Tailing Pond (El Gorguel, SE Spain). MINERALS 2020. [DOI: 10.3390/min10060559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The legacy of the mining industry has left a large number of tailing ponds in the Cartagena–La Unión mining district exposed to water and wind erosion, which causes serious environmental and health problems and requires remediation. Before applying any remediation technique, an intensive sampling of the materials infilling the pond is required to determine the geochemistry of the pond, which will condition the remediation process. However, sampling the large number of tailing ponds that compose the district could be expensive. Thus, the main objective of this study is to evaluate the usefulness of electrical resistivity tomography (ERT) as a non-invasive tool to provide an image of spatial subsurface resistivity distribution and its relation to the physicochemical composition of near-surface mine wastes. To achieve this objective, three short ERT profiles were conducted, and 12 samples in each profile were collected at different depths for its geochemical characterization. Several non-linear regression models were fitted to predict physicochemical properties and metal concentrations from electrical resistivity measures. As a result, a high resistivity area was depicted in the ERT profiles G2 and G3, while the low resistivity ERT profile G1 was also obtained in accordance with the site’s surficial characteristics. Relationships among low resistivity values and high salinity, clay content, high metal concentrations, and mobility were established. Specifically, calibrated models were obtained for electrical conductivity, particle sizes of 0.02–50 µm and 50–2000 µm, total Zn and Cd concentration, and bioavailable Ni, Cd, and Fe. The ERT technique was shown to be a useful tool for the approximation of the location and distribution of the highest ranges of fine particle sizes, moisture, and, to a lesser extent, metal accumulation in the near-surface waste materials.
Collapse
|
38
|
Lukashe NS, Mnkeni PNS, Mupambwa HA. Growth and elemental uptake of Rhodes grass (Chloris gayana) grown in a mine waste-contaminated soil amended with fly ash-enriched vermicompost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19461-19472. [PMID: 32215791 DOI: 10.1007/s11356-020-08354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Vegetation cover in mine waste-affected soils is necessary to ensure sustainability of these fragile ecosystems. This study evaluated the potential of fly ash-enriched vermicompost (FV) to improve growth of Chloris gayana in a gold mine waste-affected soil. The treatments in the study were based on optimizing phosphorus supplied as vermicompost at 20 mg P and 40 mg P per kilogram soil which were compared to triple super phosphate (TSP) applied at 40 mg P/kg. The 40-mg P/kg FV treatment resulted in 38.4%, 164% and 182.5% significant increase in shoot height, shoot biomass and root biomass, respectively, relative to the control. The increased biomass was reflected in the plant tissue analysis where 40 mg P/kg FV had high P, Ca, Mg and K, though not significantly different to the 20-mg P/kg FV treatment. Amendment effect had no influence on plant tissue N, Pb, Cd and As. Chloris gayana uptake of Fe, Mn, Zn and Cr was significantly reduced with addition of the vermicompost, whereas Cu and B were significantly increased in the 40-mg P/kg FV treatment relative to the control though the increases did not exceed the critical concentration limits of these elements. Therefore, re-vegetation of mine waste-contaminated soils can be achieved with addition of FV at a rate of 40 mg P/kg FV. However, more studies may need to be done under field conditions to further evaluate the effectiveness of such vermicomposts in improving the re-vegetation capacity of mine waste-contaminated soils.
Collapse
Affiliation(s)
- Noxolo Sweetness Lukashe
- Department of Agronomy, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Pearson Nyari Stephano Mnkeni
- Department of Agronomy, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Hupenyu Allan Mupambwa
- Department of Agronomy, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa.
- Sam Nujoma Marine and Coastal Resources Research Centre, University of Namibia, Sam Nujoma Campus,, P. O. Box 462, Henties Bay, Namibia.
| |
Collapse
|
39
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
40
|
Radziemska M, Bęś A, Gusiatin ZM, Cerdà A, Jeznach J, Mazur Z, Brtnický M. Assisted phytostabilization of soil from a former military area with mineral amendments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109934. [PMID: 31740234 DOI: 10.1016/j.ecoenv.2019.109934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Due to the presence of toxic pollutants, soils in former military areas need remedial actions with environmentally friendly methods. Greenhouse experiments were conducted to investigate the aided phytostabilization of multi-heavy metals (HMs), i.e. Cd, Cr, Cu, Ni, Pb, Zn, in post-military soil by Festuca rubra and three mineral amendments (diatomite, dolomite and halloysite). The amendments were applied at 0 and 3.0% to each pot filled with 5 kg of polluted soil. After seven weeks of the phytostabilization, selected soil properties, biomass yield of F. rubra and immobilization of HMs by their accumulation in plant and redistribution among individual fractions in soil were determined. In addition, ecotoxicology parameters of non-amended and amended soil were established using Phytotoxkit (Sinapsis alba) and Ostracodtoxkit (Heterocypris incongruens) tests. The addition of halloysite significantly increased F. rubra biomass. Diatomite significantly increased both the Cd, Cu, Pb and Cr concentrations in the roots and the pH of the soil. The application of halloysite significantly decreased the Cd and Zn contents of the soil after the completion of the experiment. Dolomite and halloysite were more effective in HM immobilization in soil by decreasing their content in an exchangeable fraction than diatomite. These soil amendments significantly differentiated the length of S. alba roots and had a positive effect on the development of H. incongruens.
Collapse
Affiliation(s)
- Maja Radziemska
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Agnieszka Bęś
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Zygmunt M Gusiatin
- Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719, Olsztyn, Poland
| | - Artemi Cerdà
- Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Blasco Ibañez 28, Valencia, 46 010, Spain
| | - Jerzy Jeznach
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 4, 10-727, Olsztyn, Poland
| | - Martin Brtnický
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1/1665, 613-00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612-00, Brno, Czech Republic
| |
Collapse
|
41
|
Xu DM, Zhan CL, Liu HX, Lin HZ. A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35657-35669. [PMID: 31732950 DOI: 10.1007/s11356-019-06555-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Mine tailings, generated from the extraction, processing, and utilization of mineral resources, have resulted in serious acid mine drainage (AMD) pollution. Recently, scholars are paying more attention to two alternative strategies for resource recovery and ecological reclamation of mine tailings that help to improve the current tailing management, and meanwhile reduce the negative environmental outcomes. This review suggests that the principles of geochemical evolution may provide new perspective for the future in-depth studies regarding the pollution control and risk management. Recent advances in three recycling approaches of tailing resources, termed metal recovery, agricultural fertilizer, and building materials, are further described. These recycling strategies are significantly conducive to decrease the mine tailing stocks for problematic disposal. In this regard, the future recycling approaches should be industrially applicable and technically feasible to achieve the sustainable mining operation. Finally, the current state of tailing phytoremediation technologies is also discussed, while identification and selection of the ideal plants, which is perceived to be the excellent candidates of tailing reclamation, should be the focus of future studies. Based on the findings and perspectives of this review, the present study can act as an important reference for the academic participants involved in this promising field.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100082, China
| | - Chang-Lin Zhan
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Hong-Xia Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Han-Zhi Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100082, China
| |
Collapse
|
42
|
Luo J, Yang G, Igalavithana AD, He W, Gao B, Tsang DCW, Ok YS. Effects of elevated CO 2 on the phytoremediation efficiency of Noccaea caerulescens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113169. [PMID: 31539847 DOI: 10.1016/j.envpol.2019.113169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
Concentrations of atmospheric carbon dioxide have been continuously increasing, and more investigations are needed in regard to the responses of various plants to the corresponding climatic conditions. In particular, potential variations in phytoremediation efficiency induced by global warming have rarely been investigated. Objective of this research was to evaluate the changes in phytoremediation efficiency of Noccaea caerulescens exposed to different concentrations of CO2. The concentrations of CO2 in the elevated CO2 treatments were adjusted to 550 ± 50 ppm to match the level of atmospheric CO2 predicted in 2050-2070. Compared to ambient controls (400 ppm), biomass yields and metal concentrations of N. caerulescens increased under elevated CO2 conditions, thus indicating that the phytoremediation efficiency of the species could increase in higher CO2 environment. In addition, water soluble and exchangeable Pb and Cu concentrations in soils decreased under elevated CO2 conditions, which reduced the leaching risks of the metals. The concentrations of malondialdehyde (MDA) of N. caerulescens decreased to different degrees with the increased CO2 concentrations. The overall findings suggested that elevations in CO2 can reduce the oxidative damage caused by metals in this species. The phytoremediation efficiency of N. caerulescens grown in multiple metal-enriched soils could be enhanced with global warming.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Ge Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
43
|
Constantinescu P, Neagoe A, Nicoară A, Grawunder A, Ion S, Onete M, Iordache V. Implications of spatial heterogeneity of tailing material and time scale of vegetation growth processes for the design of phytostabilisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1057-1069. [PMID: 31539938 DOI: 10.1016/j.scitotenv.2019.07.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Phytostabilisation projects for tailing dams depend on processes occurring at spatial scales of 106 m2 and at decadal time scales. Most experiments supporting the design and monitoring of such projects have much smaller spatial and time scales. Usually, they are only designed for one single scale. Here, we report the results of three coupled experiments performed at pot, lysimeter and field plot scales using six sampling periodstimes from 3 to 20 months. The work explicitly accounts for the sampling times when evaluating the effects of amendments on the performance of plants grown in tailing substrates. Two treatments with potentially complementary roles were applied: zeolites to decrease availability of Cd, Cu, Pb and Zn and green fertilizer to increase the availability of nutrients. Zeolites have a positive influence on plant development, especially in the early stages. Analyses of the pooled datasets for all sampling times revealed the possibility of predicting plant physiological variables, such as protein concentrations, pigments and oxidative stress enzyme activities, as a function of the factors extracted by principal component analysis from the metal concentrations in plants, phosphorus concentrations in plants, and sampling times. Two potentially general methodological rules were extracted: account for the spatial geochemical variability of tailings, and cover the broadest possible range of time scales by experiments. The proposed experimental methodology can be of general use for the design of tailing dam remediation technologies with improvements involving the set of measured variables and sampling frequency and by carefully relating the costs to the institutional aspects of tailing dam management.
Collapse
Affiliation(s)
- Paula Constantinescu
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Aurora Neagoe
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Andrei Nicoară
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Anja Grawunder
- Institute of Geosciences, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany.
| | - Stelian Ion
- "Gheorghe Mihoc - Caius Iacob" Institute of Statistical Mathematics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania
| | - Marilena Onete
- Bucharest Institute of Biology, Romanian Academy, Splaiul Independentei no. 296, Bucharest, Romania
| | - Virgil Iordache
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania.
| |
Collapse
|
44
|
Li X, Zhang X, Wang X, Cui Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:517-525. [PMID: 31128549 DOI: 10.1016/j.ecoenv.2019.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
A greenhouse experiment was conducted to investigate an enhanced phytoremediation technique for multi-metal contaminated mine tailings by Solanum nigrum L. and using biochar/attapulgite as soil amendments. The 10% attapulgite (MA2) and 10% biochar (MB2) were recommended as the optimum chemical proportions for amendment materials. Plant length and fresh weight in the MA2/MB2-applied treatments were significantly higher than that in the non-amended treatment, indicating MA2 and MB2 amendments could alleviate metal phytotoxicity. Metal uptake in plant leaves was lower with MA2 and MB2 application than that in the non-amended treatment. However, metal uptake in plant roots was significantly increased with MA2 and MB2 application from the fifth month, suggesting that MA2 and MB2 had significant enhancement on metal stabilization. Temporal variation of metal translocation in soil-to-plant system showed that the function of MA2 and MB2 reached the plateau nearly in the seventh month. The removal rates of metals were higher after the application of MA2 than MB2, and by the following order: Cu (39.6%) > Zn (35.0%) > Cd (34.1%) > Hg (32.1%) > Pb (31.8%) > Mn (19.1%). The synergistic effect between S. nigrum L. and MA2/MB2 appeared to be particularly effective in terms of metal phytostabilization, and MA2 was superior to MB2.
Collapse
Affiliation(s)
- Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinlei Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
45
|
Luo J, He W, Xing X, Wu J, Gu XWS. The phytoremediation efficiency of Eucalyptus globulus treated by static magnetic fields before sowing. CHEMOSPHERE 2019; 226:891-897. [PMID: 31509918 DOI: 10.1016/j.chemosphere.2019.03.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 06/10/2023]
Abstract
Eucalyptus globulus pre-treated by static magnetic fields of 30, 60, 120, 150 and 400 mT (mT) before sowing were used in a 45-day experiment to remediate soil containing Cd, Hg, Pb, Zn, Cr and Cu. The influence of magnetic fields on its remediation efficiency was evaluated. Magnetic fields with strength of 30, 60, 120 and 150 mT increased the biomass yield of the species by 3.1, 19.4, 48.1 and 60.9%, respectively, while 400 mT decreased the yield by 16.7%. Comparing with the control exposed only to the earth's geomagnetic field, all plants pre-treated by static magnetic field had significantly higher metal concentrations with the highest values achieved in the field of 400 mT. Higher transpiration rate of the plants along with exposure to static magnetic fields induced lower soil moisture content and was beneficial to environmental control because it could reduce the leachate during the phytoremediation process. Among all static magnetic field treatments, 150 mT was the best to improve the phytoremediation and alleviate the environmental risk, which shortened the time to purify Cd, Pb and Cu by 27.8-73.2%, 27.3-74.7% and 2.5-50.6%, respectively and intercepted 31.6-86.1% of the leachate. Therefore, static magnetic field with appropriate intensity is a suitable candidate to improve phytoremediation efficiency through enhancing the biomass production, toxin uptake and leachate interception.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China.
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Xinli Xing
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jian Wu
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - X W Sophie Gu
- The University of Melbourne, Grattan StreetParkville, Melbourne, VIC 3010, Victoria, Australia
| |
Collapse
|
46
|
Li X, Zhang X, Wang X, Yang X, Cui Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. CHEMOSPHERE 2019; 224:716-725. [PMID: 30851523 DOI: 10.1016/j.chemosphere.2019.02.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The combined application of plant Suaeda salsa and indigenous fungus Trichoderma asperellum on the treatment of a lead (Pb) and salinity (Na+ and Ca2+) co-contaminated soil was investigated by a flowerpot experiment. As demonstrated by plant growth and selected antioxidant parameters, S. salsa was able to tolerate and grow in the co-contaminated soil, especially bioaugmented with T. asperellum, which promoted plant growth (9-23% and 5-13% increases for plant height and fresh weight, respectively) and appeared to alleviate plant oxidative damage (7-85% and 7-49% decreases for plant malondialdehyde and peroxidase levels, respectively). The SDS-PAGE fingerprints indicated that the total protein contents of S. salsa were affected under Pb and salinity stresses. The interactions of Na+ and Ca2+ ions on the phytotoxicity of Pb remained hormesis phenomenon that low-dose alleviation and high-dose enhancement. The analysis of phytoextraction parameters and bioavailability demonstrated that Pb was mainly concentrated in plant roots and poorly translocated, indicating the phytostabilization served as a major repair pathway. On the contrary, the Na+ and Ca2+ ions were concentrated in plant by the following order: shoot > root. Moreover, bioaugmentation of planted soil with T. asperellum generally led to the 9-42%, 13-58%, and 19-30% decreases of plant Pb, Na+, and Ca2+ concentrations and translocations, respectively, as well as a 6-21% decrease of soil Pb bioavailability. This study provided a bioaugmentation-assisted phytoremediation technique to make up the deficiencies of the long-term remediation for heavy metals and salinity.
Collapse
Affiliation(s)
- Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinlei Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoyong Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
47
|
Wang T, Li Y, Fu Y, Xie H, Song S, Qiu M, Wen J, Chen M, Chen G, Tian Y, Li C, Yuan D, Wang J, Li L. Mutation at Different Sites of Metal Transporter Gene OsNramp5 Affects Cd Accumulation and Related Agronomic Traits in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1081. [PMID: 31572408 PMCID: PMC6749076 DOI: 10.3389/fpls.2019.01081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 05/22/2023]
Abstract
OsNramp5 is a key gene involved in the control of the uptake of Cd, Mn, and other metal ions by rice root cells. The functional deficiency of this gene can significantly reduce the accumulation of Cd in rice grains, but the effects of its mutation on agronomic traits such as yield and quality have not been investigated comprehensively yet. In the present study, three Huanghuazhan-based OsNramp5 mutants [LCH1 (Low Cadmium Huanghuazhan 1), LCH2 (Low Cadmium Huanghuazhan 2), and LCH3 (Low Cadmium Huanghuazhan 3)] were obtained using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology. The mutation-type analysis showed that LCH1, LCH2, and LCH3 encoded defective OsNramp5 protein sequences containing only 76aa, 176aa, and 266aa, respectively. The determination of metal content and the statistics of related agronomic traits revealed that the functionally deficient OsNramp5 not only significantly reduced the accumulation of Cd in the grains of the mutants but also affected rice yield and quality. However, with the decrease of OsNramp5 mutation degree, its effects on chlorenchyma Mn accumulation, yield, and quality were also diminished. Additionally, we also found that the increase in the concentration of Mn in the soil restored the phenotype of the declined yield and quality due to the functional deficiency of OsNramp5. Our findings provide novel insights into and new materials for breeding rice varieties with low Cd accumulation and excellent agronomic traits under severe Cd pollution environment.
Collapse
Affiliation(s)
- Tiankang Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Yixing Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Yuefeng Fu
- Yueyang Agricultural Science Research Institute, Yueyang, China
| | - Hongjun Xie
- Hunan Rice Research Institute, Changsha, China
| | - Shufeng Song
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Mudan Qiu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Jiong Wen
- Yueyang Agricultural Science Research Institute, Yueyang, China
| | - Muwen Chen
- Yueyang Agricultural Science Research Institute, Yueyang, China
| | - Ge Chen
- Yueyang Agricultural Science Research Institute, Yueyang, China
| | - Yan Tian
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Chengxia Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Jianlong Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- *Correspondence: Li Li, ; Jianlong Wang,
| | - Li Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- *Correspondence: Li Li, ; Jianlong Wang,
| |
Collapse
|
48
|
Forján R, Rodríguez-Vila A, Cerqueira B, Covelo EF, Marcet P, Asensio V. Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:610. [PMID: 30259189 DOI: 10.1007/s10661-018-6997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A large number of studies on the reclamation of mine soils focused on the problem caused by metals and did not explore in depth the issue of nutrients and vegetation after the application of organic materials. The aim of this study was to compare the effect of two treatments made of wastes and vegetated with Brassica juncea L. on the fertility of a settling pond mine soil. The first treatment was compost, biochar, and B. juncea (SCBP) and the second treatment was technosol, biochar, and B. juncea (STBP). This study evaluated the effect of the treatments on the soil nutrient concentrations and fertility conditions in the soil amendment mixtures, after 11 months of greenhouse experiment. Total carbon and nitrogen concentrations were higher in treatment SCBP than in treatment STBP after 7 months but, after 11 months, carbon concentration was higher in STBP. The used technosol could have forms of carbon more stable than compost, which could be released slower than in the compost-amended soils. Both compost and technosol mixed with biochar also increased the concentration of calcium, potassium, magnesium, and sodium in exchangeable form in the mine soil.
Collapse
Affiliation(s)
- Rubén Forján
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, As Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain.
- Department of Plant Nutrition, University of São Paulo - Center of Nuclear Energy in Agriculture (USP-CENA), Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil.
| | - Alfonso Rodríguez-Vila
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, As Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Beatriz Cerqueira
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, As Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Emma F Covelo
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, As Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Purificación Marcet
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, As Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain
| | - Verónica Asensio
- Department of Plant Nutrition, University of São Paulo - Center of Nuclear Energy in Agriculture (USP-CENA), Av. Centenário 303, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|