1
|
Kumar M, Kumar S, Lovish. Statistical and geospatial assessment of trace and toxic elements distribution in ground and surface water of northern parts of the Indo-Gangetic plains: Source identification and health risk assessment. CHEMOSPHERE 2024; 364:142990. [PMID: 39094702 DOI: 10.1016/j.chemosphere.2024.142990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study focusses on ground and surface water resources in the northern parts of the Indo-Gangetic Plains. The study aims to identify potential contaminants, analyse their distribution, trace their origins, and evaluate associated health risk. Samples from 80 locations; groundwater (n = 69) and surface water (n = 11) were analysed for nineteen trace and toxic elements using ICP-MS. Eight elements in groundwater (Mn, Fe, Ni, Zn, As, Tl, U and Se) and six in surface water (Al, Mn, Fe, Ni, Zn, and Tl) exceeded WHO (2011) and BIS (2012) limits in certain areas. The geospatial analysis reveals hotspots of trace and toxic element concentration, with higher levels detected in the southeast and western regions of the study area. Correlation matrices revealed a robust correlation (∼>0.75-0.99, p < 0.01) among all trace and toxic elements (excluding Li, Be, As, Ag, and U) in surface water samples when compared to groundwater samples. Cluster analysis and principal component analysis (PCA) (explains 70.09 cumulative percent for total 6 of factors) of groundwater chemistry indicates that Zn, Ni and Tl contamination may originate from industrial activities (metallurgical processes and manufacturing). The potential sources of Mn may be both geological and human-induced, while Fe, Se, As and U can originate from specific geological formations or human-related activities like over-extraction and leaching of excess fertilizers into aquifers. For surface water, PCA (explains 92.92 cumulative percent for total 5 of factors) identifies industrial activities as the main source of Mn, Fe, Tl, Ni, and Zn, while Al originates from both geological and anthropogenic sources. The water quality index indicated poor to very poor water quality in the western and central regions, whereas the northern and eastern regions exhibited excellent water quality. Health risk assessment reveals HI values for groundwater water: 3.85 (adults), 7.70 (children); surface water: 1.52 (adults), 3.05 (children), emphasizing the urgent need for remediation measures.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, 140306, India.
| | - Sunil Kumar
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, 140306, India.
| | - Lovish
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, 140306, India.
| |
Collapse
|
2
|
Ouyang KW, Wang TT, Wang H, Luo YX, Hu YF, Zheng XM, Ling Q, Wang KW, Xiong YW, Zhang J, Chang W, Zhang YF, Yuan Z, Li H, Gao L, Xu DX, Zhu HL, Yang L, Wang H. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172938. [PMID: 38703850 DOI: 10.1016/j.scitotenv.2024.172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.
Collapse
Affiliation(s)
- Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Lan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
3
|
Tan H, Zhang C, Li J, Zeng M, Cheng Y. Human Health Risk Assessment of Elevated Fe and Mn Intake in Groundwater in Yangtze Catchment. GROUND WATER 2024; 62:226-235. [PMID: 37067925 DOI: 10.1111/gwat.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Globally, it has been reported that groundwater contains elevated levels of Fe and Mn. However, the risk of prolonged exposure to groundwater with elevated Fe and Mn was often ignored due to their much lower carcinogenic risk. To assess the human health risk of elevated Fe and Mn intake in groundwater, 1863 groundwater samples from the Yangtze catchment, a densely populated and economically prosperous area of China, were collected in this study. The spatial distributions of Fe and Mn in groundwater were investigated by the geographic information system (GIS) and their health risk assessment was done. The results indicated that 38.6% and 50.3% of the groundwater samples were defined as "elevated/high" levels for Fe and Mn, respectively, exceeding 0.3 and 0.1 mg/L (World Health Organization guidelines). Moreover, in the groundwater of Yangtze Catchment, the order of Fe and Mn contents is followed by upper< middle< lower. Based on the calculated hazard index (HI), HIadult and HIchild were in a range of 0-4.91 and 0-11.07, respectively. There was an area of 3,483 and 35,523 km2 with a non-carcinogenic risk from Fe and Mn, correspondingly. The numbers of affected adults and children were about 3,018,066 and 2,775,007, respectively. It means that 0.20% and 2.00% of the study area or 0.64% and 0.59% of the total population will suffer health risks from Fe and Mn intake in groundwater, respectively. Therefore, a significant basis for groundwater safety in the Yangtze catchment and similar areas was provided in this study.
Collapse
Affiliation(s)
- Haoyan Tan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Caixiang Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, 430074, China
| | - Jiasen Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Ming Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yikang Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
4
|
Singh PK, Yadav JS, Kumar I, Kumar U, Sharma RK. Screening of mustard cultivars for phytoremediation of heavy metals contamination in wastewater irrigated soil systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:321. [PMID: 38418671 DOI: 10.1007/s10661-024-12506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The mustard (Brassica juncea L.) plant is a well-known and widely accepted hyper-accumulator of heavy metals. The genetic makeup of mustard's cultivars may significantly impact their phytoremediation capabilities. The present study aimed to investigate the growth performance, yield attributes, and heavy metal accumulation potential of B. juncea cv. Varuna, NRCHB 101, RH 749, Giriraj, and Kranti, cultivated in soil irrigated with wastewater (EPS) and bore-well water (MPS). EPS contributed more Cr, Cd, Cu, Zn, and Ni to tested mustard cultivars than the MPS. EPS reduced morphological, biochemical, physiological, and yield attributes of tested mustard cultivars significantly (p < 0.05) than the MPS. Among the tested cultivars of mustard plants, Varuna had the highest heavy metal load with the lowest harvest index (35.8 and 0.21, respectively). Whereas NRCHB 101 showed the lowest heavy metal load with the highest harvest index (26.9 and 0.43, respectively). The present study suggests that B. juncea cv. Varuna and NRCHB 101 could be used for the phytoextraction of heavy metals and reducing their contamination in food chain, respectively in wastewater irrigated areas of peri-urban India. The outcomes of the present study can also be utilized to develop a management strategy for sustainable agriculture in heavy metal polluted areas resulting from long-term wastewater irrigation.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Jay Shankar Yadav
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India.
| |
Collapse
|
5
|
Nayak SK, Nandimandalam JR. Impacts of climate change and coastal salinization on the environmental risk of heavy metal contamination along the odisha coast, India. ENVIRONMENTAL RESEARCH 2023; 238:117175. [PMID: 37741567 DOI: 10.1016/j.envres.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Climate change-mediated rise in sea level and storm surges, along with indiscriminate exploitation of groundwater along populous coastal regions have led to seawater intrusion. Studies on groundwater salinization and heavy metal contamination trends are limited. Present study investigated the heavy metal contamination, associated risks and provided initial information on the impacts of groundwater salinization on heavy metals along the coastal plains of Odisha, India. Total 50 groundwater samples (25 each in post- and pre-monsoon) were collected and analysed. Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 μS/cm) indicated that the groundwater-seawater mixing process has enhanced the leaching and ion exchange of metallic ions in central part of the study area. Multivariate statistical analysis suggested leaching process, seawater intrusion and agricultural practices as the main heavy metal sources in the groundwater. 4% of samples in post- and 16% in pre-monsoon represented high heavy metal pollution index (HPI). Pollution indices indicated the central and south-central regions are highly polluted due to saline water intrusion and high agricultural activities. Ecological risks in the groundwater systems found low (ERI <110) in both seasons. Children population found more susceptible to health risks than adults. Hazard index (HI > 1) has shown significant non-carcinogenic risks where Fe, Mn, As, B, Li and Co are the potential contributors. Incremental lifetime cancer risk (ILCR >1.0E-03) has suggested high carcinogenic risks, where As and Ni are the major contributors. The study concluded that groundwater salinization could increase the heavy metal content and associated risks. This would help policymakers to take appropriate measures for sustainable coastal groundwater management.
Collapse
Affiliation(s)
- Soumya Kanta Nayak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
6
|
Saeed O, Székács A, Jordán G, Mörtl M, Abukhadra MR, Eid MH. Investigating the impacts of heavy metal(loid)s on ecology and human health in the lower basin of Hungary's Danube River: A Python and Monte Carlo simulation-based study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9757-9784. [PMID: 37843689 PMCID: PMC10673977 DOI: 10.1007/s10653-023-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to determine the environmental and health risks of the heavy metal levels in the Danube River in Hungary. The metals, including Fe, Mn, Zn, Cu, Ni, Cr, Pb, and As, were measured in the period from 2013 to 2019. The Spearman correlation and heatmap cluster analysis were utilized to determine the origin of pollution and the factors that control surface water quality. Several indices, such as the heavy metal pollution index (HPI), metal index (MI), hazard quotient oral and dermal (HQ), hazard index oral and dermal (HI), and carcinogenic risk (CR), were conducted to evaluate the potential risks for the environment and human health. The values of the HPI were between the range of 15 < HPI < 30, which indicated moderate pollution; however, the MI results showed high pollution in Dunaföldvár and Hercegszántó cities. The ecological risk (RI < 30) and HI values (< 1) showed low environmental risks and non-carcinogenic impacts of the existing metals, either on adults or children. The mean CR value of oral arsenic was 2.2E-04 and 2.5E-04 during April-September and October-March, respectively, indicating that children were the most vulnerable to arsenic-carcinogenic oral effects. While lead's CR oral values for children during April-September exceeded the threshold of 1.0E-04, chromium's oral and dermal CR values for both adults and children were 2.08E-04, 6.11E-04, 1.97E-04, and 5.82E-04 during April-September and October-March, respectively. These results demonstrate the potential carcinogenic risks related to chromium exposure within the two pathways in Hungary and highlight the need for effective measures to mitigate these risks.
Collapse
Affiliation(s)
- Omar Saeed
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - András Székács
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly u. 1, Gödöllő, 2100, Hungary
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Győző Jordán
- Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
| | - Mostafa R Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Mohamed Hamdy Eid
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
- Institute of Environmental Management, Faculty of Earth Science, University of Miskolc, Miskolc, 3515, Hungary
| |
Collapse
|
7
|
Vig N, Ravindra K, Mor S. Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: A potential review. CHEMOSPHERE 2023; 341:140103. [PMID: 37689154 DOI: 10.1016/j.chemosphere.2023.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Worldwide, harmful emissions from coal power plants cause many illnesses contribute to premature deaths burden. Despite its high impact on human health and being a major source of toxic pollutants, coal has been considered a component of global energy for decades. Hence, this work was envisaged to understand the rising environmental and multiple health issues from coal power plants. Studies on the adverse impacts of coal power plants on the environment, including soil, surface water, groundwater and air, were critically evaluated. The health risk from exposure to different pollutants and toxic metals released from the power plant was also demonstrated. The study also highlighted the government initiatives and policies regarding coal power operation and generation. Lastly, the study focused on guiding coal power plant owners and policymakers in identifying the essential cues for the risk assessment and management. The current study found an association between environmental and human health risks due to power generation, which needs intervention from the scientific and medical fields to jointly address public concerns. It is also suggested that future research should concentrate on exposure assessment techniques by integrating source-identification and geographic information systems to assess the health effects of different contaminants from power plants and to mitigate their adverse impact.
Collapse
Affiliation(s)
- Nitasha Vig
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, 160012, India.
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Rana A, Attri SV, Singh S, Kaur R. Otolith microchemistry of freshwater indigenous minor carp (Bangana dero) as a biomonitoring tool to trace heavy metals in River Sutlej, Ropar Wetland (Ramsar site), Punjab, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1286. [PMID: 37815645 DOI: 10.1007/s10661-023-11927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The elemental composition of the fish otolith may represent a permanent record of the environmental condition the fish inhabited. Fish otolith grows incrementally from the core to a marginal region that acts as a repository of trace metal signatures. The present study explores the potential application of otolith microchemistry of the benthopelagic indigenous minor carp Bangana dero sampled from the Ropar wetland on River Sutlej, Punjab. The concentration of sixteen metals was evaluated in the otolith (n = 42) and water (n = 48) for the post-monsoon and pre-monsoon season from 2020 to 2022 using inductively coupled plasma mass spectrometry (ICP-MS) followed by element detection in the core and marginal region of whole otolith, using energy-dispersive mass spectroscopy (EDS). All the heavy metals exhibited an increase in metal concentrations in fish otolith than water during the post-monsoon season. By indices approach, the otolith was found to have a high bioaccumulation factor for Se in the post-monsoon and Hg in the pre-monsoon. Certain trace metals like As and Hg exhibited fluctuations in their core and marginal region. Thus, trace metal patterns in the otolith could act as a potential tool for monitoring the seasonal changes of metals in water bodies. The EFHg, EFSe and EFAs in the fish otolith predicted its anthropogenic source, while the remaining studied elements showed ambient water origin. Thus, using the otoliths of Bangana dero as a long-term monitoring tool in the future may be helpful for environmental assessments and the reconstruction of historical exposure for safeguarding of water bodies.
Collapse
Affiliation(s)
- Anjali Rana
- Department of Zoology, Panjab University, Chandigarh, India
| | | | | | - Ravneet Kaur
- Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Tang L, Liu J, Zeng J, Luo X, Ke W, Li C, Gao W, Jiang J, Xue S. Anthropogenic processes drive heterogeneous distributions of toxic elements in shallow groundwater around a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131377. [PMID: 37054642 DOI: 10.1016/j.jhazmat.2023.131377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Smelting activities have a far-reaching influence on the quality of soil and groundwater, while most studies have neglected the information on the pollution characteristics of groundwater. The hydrochemical parameters of shallow groundwater and the spatial distributions of toxic elements were investigated in this study. Correlations analysis and groundwater evolution revealed that the major ions were primarily determined by silicate weathering and calcite dissolution process, and anthropogenic processes had a significant effect on groundwater hydrochemistry. Almost 79%, 71%, 57%, 89%, 100%, and 78.6% of samples exceeded the standards of Cd, Zn, Pb, As, SO42-, and NO3-, and their distribution is closely related to the production process. Analysis of soil geochemistry indicated that the relatively mobile forms of toxic elements strongly influence the origin and concentration in shallow groundwater. Besides, rainfall with high magnitude would lead to a decrease of toxic elements in shallow groundwater, whereas the area once stacked waste residue was the opposite. It is recommended to strengthen risk management of the limited mobility fraction while devising a plan for waste residue treatment in accordance with the local pollution conditions. The research on controlling the mechanism of toxic elements in shallow groundwater, along with sustainable development in the study area and other smelting zones may benefit from this study.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| |
Collapse
|
10
|
Yang X, Jia C, Yang F, Yang H, Yao Y. Spatio-temporal variation of groundwater pollution in urban wetlands and management strategies for zoning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118318. [PMID: 37315460 DOI: 10.1016/j.jenvman.2023.118318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Groundwater is an important resource to maintain the sustainable development of urban wetlands. The Jixi National Wetland Park (JNWP) was studied to realize the refined prevention and control of groundwater. The self-organizing map-K-means algorithm (SOM-KM), improved water quality index (IWQI), health risk assessment model and forward model were used comprehensively to evaluate the groundwater status and solute sources in different periods. The results showed that the groundwater chemical type in most areas was the HCO3-Ca type. Groundwater chemistry data from different periods were clustered into five groups. Groups 1 and 5 are affected by agricultural and industrial activities, respectively. The IWQI value in the normal period was higher in most areas due to the influence of spring ploughing. The east side of the JNWP was disturbed by human activities, and the quality of drinking water continued to deteriorate from the wet period to the dry period. 64.29% of the monitoring points showed good irrigation suitability. The health risk assessment model showed that the health risk was the largest in the dry period and the smallest in the wet period. The main factors causing health risks in the wet period and other periods were NO3- and F-, respectively. The overall cancer risk was within acceptable limits. The forward model and ion ratio analysis showed that the weathering of carbonate rocks was the main factor affecting the evolution of groundwater chemistry, accounting for 67.16%. The high-risk areas of pollution were mainly concentrated in the east of the JNWP. K+ and Cl- were the key monitoring ions in the risk-free zone and potential risk zone, respectively. The research can be used to help decision-makers carry out fine zoning control of groundwater.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, 250014, China
| | - Chao Jia
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, 250014, China.
| | - Fan Yang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Haitao Yang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yue Yao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
11
|
Aziz S, Altaf J, Khalil A, Khalil H, Jehangir K, Awan FS. Human cancer risk due to chromium and its bioaccumulation in physids in Central Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27664-0. [PMID: 37204568 DOI: 10.1007/s11356-023-27664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The present study aims to assess the ecological risk of chromium [Cr(VI)] in the water and soil of Central Punjab and its natural bioremediation through physids. Members of the genus Physa are cosmopolitan as they are resistant to various pollutants. The snails of the genus Physa were sampled from October through March. Three species, i.e., P. acuta, P. fontinalis, and P. gyrina, were identified. The foot, shell, water, and soil samples were tested for the presence of the hexavalent chromium, using ICP-MS. The maximum mean concentration of chromium in soil was found in GB(R8), i.e., 2.66 ppb. The maximum mean concentration of chromium in water was found in RB(R4), 1.627 ppb. The highest maximum average daily dose (ADD) was found in RB:R6, with a hazard quotient (HQ) of 32.32 and a carcinogenic risk (CR) of approximately 20 in every 100 children as a result of water pollution which is quite similar to RB:R5 showing these are extremely polluted area due to chromium. The pollution level of chromium in soil of Faisalabad is less than zero and safe while water is unsuitable for drinking as the value of water quality index (WQI) is higher than 100. No significant difference among the three species was found regarding bioaccumulation of chromium, in the snail shell and body. Physids play an active role in the bioremediation of soil and water yet may become cancer-causing tablets in the food chains of the region.
Collapse
Affiliation(s)
- Safia Aziz
- Department of Zoology, Government College University Faisalabad, Punjab, Pakistan
| | - Javaria Altaf
- Department of Zoology, Government College University Faisalabad, Punjab, Pakistan.
| | | | | | - Kiran Jehangir
- Department of Zoology, Government College University Faisalabad, Punjab, Pakistan
| | - Faisal Saeed Awan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
12
|
Vig N, Ravindra K, Mor S. Evaluation of groundwater for drinking and irrigation applications concerning physicochemical and ionic parameters through multiple indexing approach: a case study around the industrial zone, Punjab, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2077-2097. [PMID: 35796803 DOI: 10.1007/s10653-022-01309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The seasonal quality of groundwater and its appropriateness for drinking and irrigation were assessed using a multiple indexing approach in this study. Physicochemical and ionic parameters were examined in groundwater samples near the industrial zone of Rupnagar, Punjab. To assess groundwater quality, water quality index (WQI) and pollution index were used. The Durov's, piper, wilcox and stiff diagrams were plotted to understand the hydro-chemistry. Similarly, the irrigation indices, i.e., salinity hazard, sodium adsorption ratio, soluble sodium percentage (Na%), magnesium adsorption ratio, residual sodium carbonate, permeability index and Kelley's ratio were applied to ascertain the water quality for agricultural purposes. As a result, total hardness, calcium (Ca2+), magnesium (Mg2+) and fluoride (F-) were found above the standard permissible limits. WQI analysis showed 12% samples of pre-monsoon (PRE-M) and 28% samples of post-monsoon (POS-M) were of poor quality, which may pose health risks. Hydrochemistry revealed the predominance of Ca2+, Na+, Mg2+ and HCO3- ions in the groundwater attributed to natural and anthropogenic sources. Piper diagram revealed Ca2+-Mg2+-Cl-, Na+-Cl-, Ca2+-Na+- HCO3-, Ca2+- HCO3- and Ca2+-Cl, Ca2+-HCO3- water types exist in the study area. USSL diagram showed that the samples from both seasons come under the low salinity hazard. In addition, total dissolved solids and electrical conductivity showed a strong positive association, indicating the saline nature of groundwater. Furthermore, hierarchical clustering classified groundwater into three groups (I, II and III), revealing that groundwater quality varies due to natural and anthropogenic effects. Based on the findings, the groundwater was found marginally suitable for drinking and irrigation purposes. It is therefore recommended that the groundwater is examined on a regular basis in order to maintain its quality.
Collapse
Affiliation(s)
- Nitasha Vig
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Guleria A, Chakma S. A bibliometric and visual analysis of contaminant transport modeling in the groundwater system: current trends, hotspots, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32032-32051. [PMID: 36459319 DOI: 10.1007/s11356-022-24370-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Contaminant transport modeling (CTM) in the groundwater represents the complex bio-geo-chemical processes in the subsurface system and plays a vital role in designing remediation strategies for contaminated sites. Hence, this study evaluated 1955 articles on CTM-based studies published from 2010 to 2022 by utilizing the Scopus® database to provide a quantitative analysis of current trends and future directions. A systematic approach comprised of a bibliometric survey and visualization of various networks was conducted with the VOSviewer and Biblioshiny software for quantitative analysis of progress of CTM research field over the past decade. The hotspots and evolution of themes of CTM were found using Sankey diagrams, and thematic maps. It was observed that articles were published at an exponential rate over past 5 years. The analysis of Scopus® database revealed that the average citations per article and the average citations per year per article were 14.7 and 2.225. In the past decade, USA published 489 articles and emerged as the leading country based on mutual collaborations and cooperation with other top 9 most productive countries. Flinders University was ranked in the first position based on the number of articles, followed by Pacific Northwest National Laboratory. The findings obtained from this study can help researchers identify exploitation and core areas, to understand better the direction of research of mathematical model development, and to determine hotspots of CTM research field.
Collapse
Affiliation(s)
- Abhay Guleria
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India.
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
14
|
Ahmed RS, Abuarab ME, Ibrahim MM, Baioumy M, Mokhtar A. Assessment of environmental and toxicity impacts and potential health hazards of heavy metals pollution of agricultural drainage adjacent to industrial zones in Egypt. CHEMOSPHERE 2023; 318:137872. [PMID: 36657577 DOI: 10.1016/j.chemosphere.2023.137872] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The objectives of this study were to assess the environmental impact of industrial wastewater disposal in the El-Khadrawiya agricultural drain, Menoufia Governorate, Egypt, as well as the effect on water, soil, and plant qualities in the drain's extension area, which was primarily adjacent to the industrial zone. The analyses results of wastewater at El-Khadrawiya drain revealed that heavy metal concentrations in water samples exceeded WHO permitted limits. Heavy metal levels followed the following pattern: (Pb > Zn > Cr > Cd > Ni > As), where Heavy metal levels average were: (1.8492 > 1.7857 > 0.1815 > 0.1578 > 0.059 > 0.0048. Wastewater, soil and plant samples were analyzed using (PerkinElmer AAnalyst 400 Atomic Absorption Spectrometer A Analyst 400), Heavy metal pollution evaluation indicators: Target hazard quotient (THQ), Hazard index (HI), Chronic daily intake (CDI), Carcinogenic risk (CR), and Heavy metals pollution index (HPI)) showed that a majority of samples discovered values referring to carcinogenic health risks for the population. In contrast, the soil contamination indices followed the same trend, with the contamination factor (CF) indicating that the majority of samples exposed low to medium levels of pollution for (Ni, Cd, and Zn), while Pb and Cr were between high and very high, and the contamination degree (Cd) and modified degree of contamination (mCd) indicating that the majority of samples revealed the medium level of pollution, with the exception of one site with a high level of contamination. The bioaccumulation factor (BAF) revealed that heavy metal accumulation in plants exceeds the critical range. This study should be expanded to include additional agricultural regions with comparable conditions in order to provide environmental monitoring of present challenges and work toward solutions.
Collapse
Affiliation(s)
- Rasha S Ahmed
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt; Biosystems Engineering Research Department, Agriculture Engineering Research Institute, 12613, Giza, Egypt.
| | - Mohamed E Abuarab
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt.
| | - Mohamed M Ibrahim
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Magdy Baioumy
- Biosystems Engineering Research Department, Agriculture Engineering Research Institute, 12613, Giza, Egypt
| | - Ali Mokhtar
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
15
|
Chen J, Li Y, Liang G, Ma N, Dai W. Boosted capture of trace Cd(II) with a magnetic dual metal-organic-framework adsorbent. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
16
|
Nayak A, Matta G, Uniyal DP. Hydrochemical characterization of groundwater quality using chemometric analysis and water quality indices in the foothills of Himalayas. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 25:1-32. [PMID: 36118735 PMCID: PMC9468253 DOI: 10.1007/s10668-022-02661-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/30/2022] [Indexed: 05/28/2023]
Abstract
Groundwater pollution of the watershed is mainly influenced by the multifaceted interactions of natural and anthropogenic process. To analyse the spatial-temporal variation and pollution source identification and apportionment, the dataset was subjected to a globally acknowledged coherent technique using water quality indices and chemometric techniques (principal component analysis (PCA) and cluster analysis. The bulk of the samples tested were below the BIS's permissible levels. Groundwater samples from the pre- and post-monsoon seasons mostly contained the anions HCO- 3 > Cl- > SO2- 4 > NO- 3, while the primary cations were Ca2+ > Mg2+ > Na+ > K+. Groundwater was alkaline and hard at most of the sites. According to hydro-geochemical facies and relationships, Piper diagrams, and principal component analysis, weathering, dissolution, leaching, ion exchange, and evaporation were the key mechanisms influencing groundwater quality. The hydrochemical facies classified the groundwater samples into the Ca-Mg-HCO3 type. For all the sampling locations, PIG was determined to be 0.43, 0.52, 0.47, 0.48, 1.00, and 0.70; respectively. The majority of the test locations fell into the low to medium contamination zone, as determined by the groundwater pollution index (PIG) and contamination index. Three principal components, which together account for 93.8% of the total variance, were identified via PCA. The study's findings confirm the value of these statistical techniques in interpreting and understanding large datasets and offering reliable information to reduce the time and expense of programmes for monitoring and evaluating water quality.
Collapse
Affiliation(s)
- Anjali Nayak
- Hydrological Research Lab., Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar, India
| | - Gagan Matta
- Hydrological Research Lab., Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar, India
| | - D. P. Uniyal
- Uttarakhand State Council for Science and Technology, Dehradun, India
| |
Collapse
|
17
|
Perspective on the heavy metal pollution and recent remediation strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100166. [DOI: 10.1016/j.crmicr.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
18
|
Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137827. [PMID: 35805486 PMCID: PMC9266011 DOI: 10.3390/ijerph19137827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Groundwater is a significant component of water resources, but drinking groundwater with excessive heavy metals (HMs) is harmful to human health. Currently, quantitative source apportionment and probabilistic health risk assessment of HMs in groundwater are relatively limited. In this study, 60 groundwater samples containing seven HMs were collected from Hainan Island and analyzed by the coupled absolute principal component scores/multiple linear regression (APCS/MLR), the health risk assessment (HRA) and the Monte Carlo simulation (MCS) to quantify the pollution sources of HMs and the health risks. The results show that the high-pollution-value areas of HMs are mainly located in the industry-oriented western region, but the pollution level by HMs in the groundwater in the study area is generally low. The main sources of HMs in the groundwater are found to be the mixed sources of agricultural activities and traffic emissions (39.16%), industrial activities (25.57%) and natural sources (35.27%). Although the non-carcinogenic risks for adults and children are negligible, the carcinogenic risks are at a high level. Through analyzing the relationship between HMs, pollution sources, and health risks, natural sources contribute the most to the health risks, and Cr is determined as the priority control HM. This study emphasizes the importance of quantitative evaluation of the HM pollution sources and probabilistic health risk assessment, which provides an essential basis for water pollution prevention and control in Hainan Island.
Collapse
|
19
|
Rajmohan N, Niyazi BAM, Masoud MHZ. Trace metals pollution, distribution and associated health risks in the arid coastal aquifer, Hada Al-Sham and its vicinities, Saudi Arabia. CHEMOSPHERE 2022; 297:134246. [PMID: 35259356 DOI: 10.1016/j.chemosphere.2022.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Trace metals pollution, distribution and associated health risk were evaluated in the arid coastal aquifer, Hada Al-Sham, Western Saudi Arabia using an integrated approach namely heavy metal pollution index (HPI), contamination index (Cd), health risk assessment (HRA) model and multivariate statistical analysis. Groundwater samples (n = 47) were analysed for EC, pH, TDS, Ag, Al, B, Ba, Co, Cd, Cr, Cu, Fe, Mo, Ni, Pb, V and Zn. Groundwater is mostly alkaline (72%) with high salinity (TDS >1500 mg/l, 77%). Average trace metals concentrations are in the dominance order of B > Cu > Al > Mo > Pb > V > Ba > Zn > Ni > Cr > Fe > Ag. Groundwater (100% wells) is unsafe for drinking based on V, Mo, Al concentrations followed by the Pb (96%), B (91%), Ni (72%), Cr (23%), Cu (17%) and Ag (6%), which exceeded the WHO and USEPA prescribed limits. Results of HPI and Cd also implied the high contamination and enhanced level of metals in the groundwater. Chronic daily intake (CDIoral), hazard quotient (HQ) and total hazard quotient (THQ) were employed for health risk assessment. HQ values reveal that 100% (Al, Mo), 85% (Cu), 21% (B), 13% (Cr) and 6% (Pb) of samples exceeded the recommended limit (>1), which can cause an adverse health risk to adult and children. Pearson correlation, principal components analyses, and Hierarchical cluster analysis justified that aluminium silicates weathering and Fe oxides/hydroxides dissolution (Pb, Cr, Ni, Fe, Ag, Al, Mo and V), evaporation, anthropogenic input (Cu and B) and dissolution of carbonate and sulphate minerals (Ba and Zn) controlled the water chemistry in this aquifer. This study recommends a proper treatment of the groundwater to be safe for various uses. The comprehensive approach, employed here, is applicable to any arid aquifers worldwide.
Collapse
Affiliation(s)
- Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia.
| | - Burhan A M Niyazi
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia
| | - Milad H Z Masoud
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia; Hydrology Department, Desert Research Centre, 1 Mathaf Al-Mataria-Cairo, P. O. Box 11753, Cairo, Egypt
| |
Collapse
|
20
|
Liu Z, Yang S, Zhang L, Zeng J, Tian S, Lin Y. The Removal of Pb 2+ from Aqueous Solution by Using Navel Orange Peel Biochar Supported Graphene Oxide: Characteristics, Response Surface Methodology, and Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084790. [PMID: 35457658 PMCID: PMC9032524 DOI: 10.3390/ijerph19084790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
The value-added utilization of waste resources to synthesize functional materials is important to achieve the environmentally sustainable development. In this paper, the biochar supported graphene oxide (BGO) materials were prepared by using navel orange peel and natural graphite. The optimal adsorption parameters were analyzed by response surface methodology under the conditions of solution pH, adsorbent dosage, and rotating speed. The adsorption isotherm and kinetic model fitting experiments were carried out according to the optimal adsorption parameters, and the mechanism of BGO adsorption of Pb2+ was explained using Scanning Electron Microscope (SEM-EDS), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR). Compared with virgin biochar, the adsorption capacity of Pb2+ on biochar supported graphene oxide was significantly increased. The results of response surface methodology optimization design showed that the order of influence on adsorption of Pb2+ was solution pH > adsorbent dosage > rotating speed. The optimal conditions were as follows: solution pH was 4.97, rotating speed was 172.97 rpm, and adsorbent dosage was 0.086 g. In the adsorption−desorption experiment, the desorption efficiency ranged from 54.3 to 63.3%. The process of Pb2+ adsorption by BGO is spontaneous and endothermic, mainly through electrostatic interaction and surface complexation. It is a heterogeneous adsorption process with heterogeneous surface, including surface adsorption, external liquid film diffusion, and intra-particle diffusion.
Collapse
Affiliation(s)
- Zuwen Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Ganzhou 341000, China; (J.Z.); (S.T.)
- School of Live Sciences, Jinggangshan University, Ji’an 343009, China
- Correspondence: (Z.L.); (L.Z.)
| | - Shi Yang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Ganzhou 341000, China; (J.Z.); (S.T.)
| | - Linan Zhang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Ganzhou 341000, China; (J.Z.); (S.T.)
- Correspondence: (Z.L.); (L.Z.)
| | - Jinfeng Zeng
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Ganzhou 341000, China; (J.Z.); (S.T.)
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Shuai Tian
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Ganzhou 341000, China; (J.Z.); (S.T.)
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Yuan Lin
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| |
Collapse
|
21
|
Mor S, Vig N, Ravindra K. Distribution of heavy metals in surface soil near a coal power production unit: potential risk to ecology and human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:263. [PMID: 35260925 DOI: 10.1007/s10661-021-09692-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Coal thermal power plants are the dominant factor in producing various hazardous elements in surrounding surface soil, resulting in a significant human health hazard. In the current study, the seasonal (pre- and post-monsoon) concentration of As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, and Zn in surface soil around coal power production unit was analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The possible health risks throughout multiple exposure routes, i.e., ingestion, dermal, and inhalation were estimated for adult and children. Furthermore, geo-accumulation index (Igeo), enrichment factor (EF), pollution factor (CF), ecological risk index, and pollution load index (PLI) were applied to interpret the environmental pollution in the study area. The geospatial distribution pattern was computed to understand the trace and hazardous element distribution in the surface soil. As a result, the concentration of Fe (mg/kg) in pre-monsoon (15,620) and post-monsoon (27,180), Ni (mg/kg) in pre-monsoon (19.8), and post-monsoon (81.7) was found above the standard limits of soil prescribed by the WHO and FAO. Enrichment factor was observed between 0.95-6948 (pre-monsoon) and 0.53-116.09 (post-monsoon). The ecological risk index was found moderate to considerable for As and Cd metals during both seasons. In addition, the average PLI value was observed high for both seasons indicating the contamination of the study area with heavy metals. Moreover, Igeo values for Fe, Mg, and As were found relatively high. Conversely, health risks to the human population were found within the USEPA acceptable limits.
Collapse
Affiliation(s)
- Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Nitasha Vig
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
22
|
Karunanidhi D, Aravinthasamy P, Subramani T, Chandrajith R, Janardhana Raju N, Antunes IMHR. Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards. ENVIRONMENTAL RESEARCH 2022; 204:111998. [PMID: 34499896 DOI: 10.1016/j.envres.2021.111998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the heavy metals (Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Cadmium (Cd) and Zinc (Zn)) pollution in the Noyyal River of South India by collecting 130 river water samples (65 each in pre- and post-monsoon). The heavy metals were measured using Atomic Absorption Spectrophotometer (AAS). The data were used to calculate the associated health hazards for the inhabitants consume river water. Correlation analyses and average concentration of heavy metals denoted that post-monsoon metal concentrations were lesser compared to the pre-monsoon due to dilution effect. Modified Contamination Degree (MCD) indicated that 45% of pre-monsoon and 25% of post-monsoon samples were classified under extremely polluted category. Heavy metal pollution index (HPI) showed that all the regions fall under highly polluted category except 'Region I' where 20% of samples were under safe category during the pre-monsoon, whereas 9%,28%, 17% and 26% of samples in Regions I, II, III and IV were highly polluted during the post-monsoon season, respectively. Ecological Risk Index (ERI) revealed that high risks attained in Regions II (78%) and III (82%) during pre-monsoon, and reduced risks found in Regions II (28%) and III (45%) during post-monsoon season due to dilution by monsoon rainfall. Non-carcinogenic risks as inferred by the Hazard Index (HI) indicated that 78% and 52% of samples for infants, 75% and 49% of samples for teens and 71% and 45% of samples for adults exceeded the threshold limits of USEPA (HI > 1) and possessed risks during pre- and post-monsoon, respectively. The cancer risk assessment based on ingestion of heavy metals indicated that the order of risk is Ni > Cr > Cu. The HI for infants and teens was notably high to that of adults in both the seasons. This study will be useful to develop effective strategies for improving river water quality and to reduce human health hazards.
Collapse
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India.
| | - P Aravinthasamy
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India
| | - T Subramani
- Department of Geology, CEG, Anna University, Chennai, 600025, India
| | - Rohana Chandrajith
- Department of Geology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - I M H R Antunes
- Institute of Earth Sciences, ICT, Pole of University of Minho, Campus de Gualtar, 4710- 057, Braga, Portugal
| |
Collapse
|
23
|
Varol M, Tokatlı C. Seasonal variations of toxic metal(loid)s in groundwater collected from an intensive agricultural area in northwestern Turkey and associated health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:111922. [PMID: 34453897 DOI: 10.1016/j.envres.2021.111922] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
İpsala district located in the northwest of Turkey is an intensive agricultural area, where paddy cultivation has been carried out for more than 50 years. The main source for drinking water in the area is groundwater. Since large amounts of agrochemicals are applied to the paddy fields, groundwater in the study area can be contaminated with toxic metal (loid)s (TMs). In this study, levels of eight TMs in the drinking water samples taken from the district and its 22 villages in the dry and wet seasons were measured and compared with drinking water quality guidelines. In addition, non-carcinogenic and carcinogenic health risks, and pollution status of TMs were assessed. The mean values of Cd, Ni, Cu, Zn, Mn, Pb, As and Cr in both seasons were below the drinking water limits. High clay content and low infiltration rate of the soils in the study area may have caused low TM concentrations. The TMs levels were higher in the wet season due to high rainfall intensity. Metal pollution indices indicated that groundwater quality is suitable for potable uses. All hazard quotient and hazard index results for children and adults in both seasons were lower than the acceptable risk level of 1. Carcinogenic risk results of As and Cr in both seasons were within or below the acceptable risk range. These findings revealed that the TMs in the drinking water would not pose health risks to the local residents.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Doğanşehir Vahap Küçük Vocational School, Department of Aquaculture, Malatya, Turkey.
| | - Cem Tokatlı
- Trakya University, Laboratory Technology Department, İpsala, Edirne, Turkey
| |
Collapse
|
24
|
Chen G, Fu Q, Tan X, Yang H, Luo Y, Shen M, Gu Y. Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118695. [PMID: 34921945 DOI: 10.1016/j.envpol.2021.118695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Collapse
Affiliation(s)
- Gaobin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qianmin Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| |
Collapse
|
25
|
Wang Z, Su Q, Wang S, Gao Z, Liu J. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118016. [PMID: 34428698 DOI: 10.1016/j.envpol.2021.118016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 05/12/2023]
Abstract
Environmental changes and human activities have deteriorated the quality of groundwater, which is an important source of freshwater in coastal areas. The Jiangsu Coastal Zone (JCZ), which is a typical area of the eastern China coastal zone (ECCZ), has a great demand for clean water resources due to its dense population. The groundwater in the JCZ is affected by both human activities and seawater intrusion. However, research on heavy metals in the groundwater of the JCZ is limited. This study investigated the spatial distribution characteristics and influencing factors of heavy metals in coastal groundwater of Jiangsu Province and conducted a health risk assessment (HRA). Relatively high concentrations of Cu, Cd, Pb, Co, Zn, and Ba existed in the northern JCZ, while As and B predominated in the central JCZ. The main heavy metal pollutants in the groundwater are B and As, with mean values at 0.61 mg/L and 0.02 mg/L, exceeding the standard rate reaching 48.28% and 18.07% respectively. The HRA results showed that B had the largest hazard quotient (HQ), accounting for 50.22% of the total HQs, and As was attributed to the pollutant with the largest cancer risk (CR), accounting for 99.74% of the total CRs. According to the results of the correlation analysis, heavy metals in the groundwater of JCZ mainly originated from industrial pollution, seawater intrusion, and mineral dissolution. Seawater intrusion increases the content of As and B in groundwater, leading to higher health risks. Therefore, the government should strengthen the supervision of seawater intrusion by implementing more effective water resource management policies, or adopting engineering measures such as installing subsurface physical barriers to prevent and control seawater intrusion.
Collapse
Affiliation(s)
- Zhenyan Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Qiao Su
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Shu Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
26
|
Modeling analysis of the characteristics of selenium-rich soil in heavy metal high background area and its impact on main crops. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Varol M, Karakaya G, Sünbül MR. Spatiotemporal variations, health risks, pollution status and possible sources of dissolved trace metal(loid)s in the Karasu River, Turkey. ENVIRONMENTAL RESEARCH 2021; 202:111733. [PMID: 34293308 DOI: 10.1016/j.envres.2021.111733] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The Karasu River is the main tributary of the Euphrates River, which is the longest river in Southwest Asia. Domestic and industrial wastewater discharges, agricultural practices and mining activities in the basin can cause potential toxic metal pollution in the Karasu River. However, very little is known about the levels of dissolved trace metal(loid)s (TMs) in the river. In this study, levels of ten TMs (Fe, Al, Cd, Ni, Cu, Zn, Pb, As, Mn and Cr) in water samples taken monthly from 8 stations along the Karasu River between January 2019 and December 2019 were measured and compared with water quality guidelines. In addition, spatial and seasonal variations, health risks, pollution status and possible sources of the TMs were assessed. The 90th percentile levels of the TMs were below the drinking water standards. The highest total concentration was recorded at the most upstream station due to weathering processes, and rain and snowmelt runoff. The total metal concentration showed an increasing trend from winter to summer due to the combined effect of natural and anthropogenic sources. Metal pollution indices indicated that river water quality is suitable for potable uses. The results of factor and cluster analyses revealed that Ni, Fe, Mn and Cr are controlled by both lithogenic sources and anthropogenic activities, while other TMs are controlled by lithogenic sources. The hazard quotient (HQ) of each TM for both water ingestion and dermal contact pathways for residents was below the risk level. However, the hazard index (sum of HQs of all TMs) for water ingestion for children was higher than the risk level, indicated that the ingestion of ten TMs in the Karasu River may pose non-carcinogenic health risks to children. The carcinogenic risk results of As and Cr for both water ingestion and dermal absorption were within or below the acceptable carcinogenic risk range.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Doğanşehir Vahap Küçük Vocational School, Department of Aquaculture, Malatya, Turkey.
| | | | - Muhammet Raşit Sünbül
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| |
Collapse
|
28
|
Tokatlı C, Varol M. Variations, health risks, pollution status and possible sources of dissolved toxic metal(loid)s in stagnant water bodies located in an intensive agricultural region of Turkey. ENVIRONMENTAL RESEARCH 2021; 201:111571. [PMID: 34174257 DOI: 10.1016/j.envres.2021.111571] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
There are many reservoirs, ponds and lakes in the Meriç-Ergene River Basin (Turkey), which is an intensive agricultural region. Since agrochemicals are extensively applied to the agricultural soils in the basin, these water bodies may be contaminated with toxic metal (loid)s (TMs). However, no study has been conducted to determine TM levels in the water bodies. In this study, levels of seven TMs (Cr, As, Cu, N, Zn, Cd and Pb) in surface water samples taken from 25 different stagnant water bodies (11 reservoirs, 12 ponds and 2 lakes) in the dry and wet seasons were measured and compared with water quality guidelines. In addition, spatial and seasonal variations, health risks, pollution status and possible sources of TMs were assessed. The mean As concentration of the lakes was significantly higher due to drainage water from paddy fields. The ponds had higher total mean TM concentration likely due to their low water volume. Surface runoff from rainfall caused the Cr, Zn, Cd, Pb and Cu concentrations to increase in the wet season. Only the mean As concentration of the lakes in the dry season was above the drinking water standards. Metal pollution indices showed low contamination of the water bodies in both seasons. Health risk indices indicated that As in the lakes in the dry season via ingestion exposure pathway may pose both non-carcinogenic and carcinogenic health risks to the residents. The results of factor and correlation analyses showed that among the studied TMs, only As originated from anthropogenic sources. The findings of this study revealed that agricultural activities caused As pollution in the lakes, while the reservoirs and ponds were not significantly affected by agricultural activities. We suggest that the levels of TMs in all water bodies should be measured at regular intervals to check the quality of surface water.
Collapse
Affiliation(s)
- Cem Tokatlı
- Trakya University, Laboratory Technology Department, İpsala, Edirne, Turkey
| | - Memet Varol
- Malatya Turgut Özal University, Doğanşehir Vahap Küçük Vocational School, Department of Aquaculture, Malatya, Turkey.
| |
Collapse
|
29
|
Poonia T, Singh N, Garg MC. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021; 18:2891-2902. [DOI: 10.1007/s13762-020-03043-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 08/20/2024]
|
30
|
Kumar V, Bhatti SS, Nagpal AK. Assessment of Metal(loid) Contamination and Genotoxic Potential of Agricultural Soils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:272-284. [PMID: 34272567 DOI: 10.1007/s00244-021-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) is increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using wavelength-dispersive X-ray fluorescence (WDXRF) spectroscopy. The soil samples were also analyzed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of arsenic, cobalt and chromium in comparison with the reference values given by various international agencies. Pollution assessment using different indices like index of geo-accumulation, enrichment factor and contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson's correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.
Collapse
Affiliation(s)
- Vaneet Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
- Department of Botany, S.L. Bawa DAV College, Batala, 143505, India.
| | - Sandip Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
31
|
Hossain M, Karmakar D, Begum SN, Ali SY, Patra PK. Recent trends in the analysis of trace elements in the field of environmental research: A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Fu H, Wang B, Li D, Xue L, Hua Y, Feng Y, Xie H. Anaerobic fermentation treatment improved Cd 2+ adsorption of different feedstocks based hydrochars. CHEMOSPHERE 2021; 263:127981. [PMID: 32822946 DOI: 10.1016/j.chemosphere.2020.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization technology has attracted wide attention in recent years owing to its advantages, e.g., high yield and clean production, compared with traditional pyrolysis. Anaerobic fermentation (AF) is a new method to modify carbon materials, which may improve the surface properties of hydrochar (HC). To explore whether AF has effects on different feedstocks based HCs, two kinds of HCs derived from wheat straw and poplar sawdust were treated with AF for different time in this study. By comparing the changes in physicochemical properties of anaerobic fermentative hydrochars (AFHCs), adsorption behaviors of Cadmium (Cd2+) on AFHCs were evaluated. The results showed that the surface electrical characteristics, specific surface area, and oxygen-containing functional groups of HCs improved significantly after AF treatment, which confirmed our hypothesis that AF is suitable for improving the adsorption of different feedstocks based HCs. The adsorption capacity of Cd2+ on AFHCs was significantly enhanced by a 3.1-3.4 times increase after AF treatment. The effect of AF treatment on wheat straw hydrochar (WHC) was more evident than poplar sawdust hydrochar (SHC). WHCs treated with AF own higher adsorption capacity of Cd2+, which was attributed to the higher negative charge, more exchangeable cations, and more oxygen-containing functional groups. The adsorption process was found to be a spontaneous endothermic reaction dominated by chemisorption and controlled by electrostatic attraction, ion exchange, functional groups complexation, and π-bonding coordination. These results were contributed to understanding the modification of HC by AF and its application in heavy metal pollution remediation.
Collapse
Affiliation(s)
- Haibin Fu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Detian Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Hua
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
33
|
Kumar V, Wanchoo RK, Toor AP. Sequential removal and recovery of cadmium ions (Cd2+) using photocatalysis and reduction crystallization from the aqueous phase. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00149c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The removal of cadmium ions using photocatalysis, reduction crystallization and their sequencial system.
Collapse
Affiliation(s)
- Vivek Kumar
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Ravinder Kumar Wanchoo
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Amrit Pal Toor
- Dr. S.S.B. University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
34
|
Malook K, Khan H. Removal of Cd(II) from water using zero valent iron/copper functionalized spent tea. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2552-2561. [PMID: 33339808 DOI: 10.2166/wst.2020.527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zero valent Fe/Cu functionalized spent tea adsorbent was prepared for the decontamination of Cd(II) contaminated water. The synthesized material was characterized for structural and morphological characteristics using various analytical techniques. The material was used as adsorbent for the adsorption of Cd(II) from aqueous solutions in batch study experiments. The effect of initial pH, adsorbent dosage, contact time and adsorbate concentration was investigated. The obtained data well followed the Langmuir adsorption isotherm model and pseudo-second order rate model with maximum adsorption capacity of 89.686 mg·g-1. Based on Langmuir separation factor (R), having a value of 0.706-0.194, the adsorption process was confirmed to be favorable. The adsorbent was used in the form of a column for the sorption of Cd(II) from a running solution with satisfactory results. The spent material was regenerated and reutilized with reduction of adsorption capacity by 1.48% only. Overall, the current adsorbent can be efficiently utilized for the removal of aqueous Cd(II).
Collapse
Affiliation(s)
- Khan Malook
- Centralized Resource Laboratory, University of Peshawar, Peshawar 25120, Pakistan E-mail:
| | - Hamayun Khan
- Department of Chemistry, Islamia College Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
35
|
Kumar R, Mittal S, Peechat S, Sahoo PK, Sahoo SK. Quantification of groundwater-agricultural soil quality and associated health risks in the agri-intensive Sutlej River Basin of Punjab, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4245-4268. [PMID: 32607702 DOI: 10.1007/s10653-020-00636-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The quality of drinking water and agricultural soil significantly affects the health of residents of the area. The quality of groundwater used as drinking and irrigation water along with agricultural soil of an agri-intensive region of the Sutlej River Basin (SRB), Punjab (India), has been investigated in the present paper to further access their impacts on human health. The quality parameters studied are pH, conductivity, cations, anions and trace elements/heavy metals. The spatio-distribution maps of major contaminates have been made. The distribution of major existing groundwater and agricultural soil contaminants has also been illustrated using inverse distance weighting interpolation technique. Further, the Pearson correlation matrix and principal component analysis (PCA) have been applied to explore the correlation and source apportionment analysis for the contaminants. Finally, the health risk assessment study has also been performed. The results showed elevated levels [compared to BIS acceptable limits] of bicarbonate and total hardness in more than 90% groundwater samples, while the concentration of Se and U exceeded in around 25% samples. Spatial distribution maps showed a non-homologous distribution pattern for most of the heavy metals except Zn, indicating their different origins. The significant existence of Se and U in groundwater and low content in soils indicated their geogenic origin. The Gibbs diagram suggested that rock-water interaction is the primary process controlling the chemical evolution of the groundwater in the region. The PCA indicated that Cu, Mn, Pb, NO3- and SO42- in groundwater have an anthropogenic origin, whereas Fe, As and U are mainly of geogenic origin. Significant positive correlations of heavy metals with Fe and Al in soils indicated scavenging of these elements by Fe/Al-oxyhydroxides minerals. Based on SAR, Na%, PI and corrosivity ratio analysis, it can be concluded that groundwater of the region is suitable for irrigation purposes Further, health risk assessment study indicated Cr and As are the possible cancer risk posing elements from both soil and groundwater. Non-carcinogenic risk assessment showed that cumulative exposure (hazard index-1.98) of U (HQ 1.21), NO3- (HQ 0.37) and F- (HQ 0.34) might pose harmful impacts to residents through groundwater ingestion in the long term. Although currently the contaminants in the groundwater-soil system may not pose any human health risks, continuous long-term monitoring is required to keep a check on the changes in their quality with time.
Collapse
Affiliation(s)
- Ravishankar Kumar
- Department of Environmental Sciences and Technology, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151 001, India
| | - Sunil Mittal
- Department of Environmental Sciences and Technology, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151 001, India.
| | - Sunayana Peechat
- Department of Environmental Sciences and Technology, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151 001, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Sciences and Technology, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151 001, India
- Instituto Tecnologico Vale, Rua Boaventura da Silva 955, Nazare, Belém, Pará, 66055-090, Brazil
| | - Sunil Kumar Sahoo
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
36
|
Ahmed T, Zounemat-Kermani M, Scholz M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228518. [PMID: 33212957 PMCID: PMC7698392 DOI: 10.3390/ijerph17228518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Climate variability is heavily impacting human health all around the globe, in particular, on residents of developing countries. Impacts on surface water and groundwater resources and water-related illnesses are increasing, especially under changing climate scenarios such as diversity in rainfall patterns, increasing temperature, flash floods, severe droughts, heatwaves and heavy precipitation. Emerging water-related diseases such as dengue fever and chikungunya are reappearing and impacting on the life of the deprived; as such, the provision of safe water and health care is in great demand in developing countries to combat the spread of infectious diseases. Government, academia and private water bodies are conducting water quality surveys and providing health care facilities, but there is still a need to improve the present strategies concerning water treatment and management, as well as governance. In this review paper, climate change pattern and risks associated with water-related diseases in developing countries, with particular focus on Pakistan, and novel methods for controlling both waterborne and water-related diseases are discussed. This study is important for public health care, particularly in developing countries, for policy makers, and researchers working in the area of climate change, water quality and risk assessment.
Collapse
Affiliation(s)
- Toqeer Ahmed
- Centre for Climate Research and Development, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad 45550, Pakistan;
| | | | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, PO Box 118, 22100 Lund, Sweden
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Aukland Park 2006, Johannesburg PO Box 524, South Africa
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Peel Park Campus, Salford M5 4WT, UK
- Correspondence: ; Tel.: +46-46-222-8920
| |
Collapse
|
37
|
Brindha K, Paul R, Walter J, Tan ML, Singh MK. Trace metals contamination in groundwater and implications on human health: comprehensive assessment using hydrogeochemical and geostatistical methods. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3819-3839. [PMID: 32601907 PMCID: PMC7641953 DOI: 10.1007/s10653-020-00637-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
Collapse
Affiliation(s)
- K Brindha
- Hydrogeology Group, Institute of Geological Sciences, Freie Universität Berlin, 12249, Berlin, Germany.
| | - Rajib Paul
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799 022, India
| | - Julien Walter
- Department of Applied Sciences, Centre d'études sur les ressources minérales (CERM), Risk Resources Water (R2eau) Research Group, Université du Québec à Chicoutimi, Saguenay, QC, G7H 2B1, Canada
| | - Mou Leong Tan
- Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mahesh Kumar Singh
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799 022, India
| |
Collapse
|
38
|
Mittal S, Kumar R, Sahoo PK, Sahoo SK. Geochemical assessment of groundwater contaminants and associated health risks in the Shivalik region of Punjab, India. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1802597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sunil Mittal
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Ravishankar Kumar
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
- Instituto Tecnologico Vale, Belém, Brazil
| | - Sunil Kumar Sahoo
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Haldar S, Ghosh A. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review. 3 Biotech 2020; 10:205. [PMID: 32328403 DOI: 10.1007/s13205-020-02195-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal (HM) pollution in aquatic ecosystems has an adverse effect on both aquatic life forms as well as terrestrial living beings, including humans. Since HMs are recalcitrant, they accumulate in the environment and are subsequently biomagnified through the food chain. Conventional physical and chemical methods used to remove the HMs from aquatic habitats are usually expensive, slow, non-environment friendly, and mostly inefficient. On the contrary, phytoremediation and microbe-assisted remediation technologies have attracted immense attention in recent years and offer a better solution to the problem. These newly emerged remediation technologies are eco-friendly, efficient and cost-effective. Both phytoremediation and microbe-assisted remediation technologies adopt different mechanisms for HM bioremediation in aquatic ecosystems. Recent advancement of molecular tools has contributed significantly to better understand the mechanisms of metal adsorption, translocation, sequestration, and tolerance in plants and microbes. Albeit immense possibilities to use such bioremediation as a successful environmental clean-up technology, it is yet to be successfully implemented in the field conditions. This review article comprehensively discusses HM accumulation in Indian aquatic environments. Furthermore, it describes the effect of HMs accumulation in the aquatic environment and the role of phytoremediation as well as microbe-assisted remediation in mitigation of the HM toxicity. Finally, the review concludes with a note on the challenges, opportunities and future directions for bioremediation in the aquatic ecosystems.
Collapse
Affiliation(s)
- Shyamalina Haldar
- 1Department of Biochemistry, Asutosh College, University of Calcutta, Kolkata, 700026 India
| | - Abhrajyoti Ghosh
- 2Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata, 700054 India
| |
Collapse
|
40
|
Mukherjee I, Singh UK, Singh RP, Kumari D, Jha PK, Mehta P. Characterization of heavy metal pollution in an anthropogenically and geologically influenced semi-arid region of east India and assessment of ecological and human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135801. [PMID: 31838424 DOI: 10.1016/j.scitotenv.2019.135801] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/21/2023]
Abstract
The present study evaluated the heavy metal contamination in groundwater and associated ecological and human health risks of a geologically and anthropogenically diverse semi-arid region of Birbhum district, India. For a reliable evaluation, concentrations of nine heavy metals in 680 groundwater samples (N = 680) which were collected during premonsoon and postmonsoon seasons of consecutive two years from 170 wells were measured. The human health risk assessment using the USEPA model which is based on single value for each parameter may inherit certain inaccuracy and uncertainties in the evaluation. Unlike earlier studies, a higher degree of accuracy in carcinogenic and noncarcinogenic health risk assessments was achieved through Monte Carlo simulations, sensitivity analysis and uncertainty analysis. The study revealed the occurrence of the target heavy metals in groundwater with mean dominance order of Fe > Zn > Sr > Mn > Cr > Pb > Ni > Cu > Cd where mean concentrations of the carcinogens, Pb and Fe exceeded their maximum permissible limits. The water quality status evaluated using the modified heavy metal pollution index, Nemerow index and Heavy metal evaluation index methods resulted in medium to high heavy metal contamination in groundwater within a large portion of the study area which indicated its unsuitability for drinking purpose. The study suspects a moderate to very high risk for the groundwater dependent ecosystems in major part of the study area. The study further revealed cancer risks, ranging from high to very high within the residents due to accumulative exposure of the carcinogenic heavy metals in groundwater through ingestion and dermal contact. Minor populations of the study area were found to be more vulnerable to the carcinogenic and noncarcinogenic diseases than teenagers and adults, mainly through oral exposure. The study recommends the residents to consume treated groundwater since the primary route of heavy metal exposure was identified to be the ingestion route.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Integrated Science Education and Research Centre (ISERC), Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India
| | - Umesh Kumar Singh
- Integrated Science Education and Research Centre (ISERC), Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India; Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, Bihar, India.
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, BHU, Varanasi 221005, India
| | - Deepa Kumari
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India
| | - Pawan Kumar Jha
- Centre for Environmental Studies, University of Allahabad, India
| | - Pankaj Mehta
- Department of Environmental Science, Central University of Jammu, District Samba, 181143, J&K, India
| |
Collapse
|
41
|
Hossain M, Patra PK. Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110038. [PMID: 31812017 DOI: 10.1016/j.ecoenv.2019.110038] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Trace elements (TEs) concentration in groundwater is a key factor for health risk assessment (HRA). To achieve high level of accuracy in HRA, the present study performed Monte Carlo simulations, sensitivity analysis and uncertainty analysis to a total of 184 (N = 184) groundwater samples, collected during December 2016 from Birbhum district. TEs in samples were detected by anodic stripping voltammetry (ASV). The mean concentration of TEs were found as Fe (855.88 μg/L)> Zn (204.0 μg/L)> Cu(84.9 μg/L)> Ni(47.31 μg/L)> Pb(14.43 μg/L)> Co(10.58 μg/L)> Cd (7.88 μg/L). It indicated serious contamination by Fe, Cd. Pb and Ni according BIS, 2012. Pollution indicators such as heavy metal pollution index (HPI) revealed that study area is heavily contaminated by these TEs. Incremental lifetime cancer risk (ILCR) value of TEs showed that Cd is the main offender for cancer risk. Average value of total hazard index (THI), was found to be 2.48. THI through ingestion pathways was found to be more risky than dermal contacts accounting for 88% and 12% health hazard respectively. The sensitivity analysis indicated ingestion rate, exposure time, and TEs concentration were the most influential parameters for all groundwater associated health hazards. The TEs affected areas were mapped through Empirical Bayesian Kriging geostatistical model and health risk prone zones were projected. The study demonstrated that Monte Carlo simulation and EBK can provide better accuracy in health risks prediction and spatial distribution analysis of contaminants in any geographical area. The TEs and their hazard zonation mapping with geostatistical modelling will be helpful for the policy makers and researchers to improve groundwater quality management practices.
Collapse
Affiliation(s)
- Mobarok Hossain
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, 731235, Birbhum, West Bengal, India
| | - Pulak Kumar Patra
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan, 731235, Birbhum, West Bengal, India.
| |
Collapse
|
42
|
Environmentally Sensitive Elements in Groundwater of an Industrial Town in India: Spatial Distribution and Human Health Risk. WATER 2019. [DOI: 10.3390/w11112350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper presents the results of a study to assess the groundwater quality in an industrial town located in Punjab, India. A total of 99 samples of groundwater were analyzed during the premonsoon and postmonsoon periods of 2018, which revealed the presence of numerous environmentally sensitive elements (ESEs), namely, arsenic (As), aluminum (Al), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), selenium (Se), and lead (Pb). Geographic information system (GIS)-based spatial interpolation showed higher contamination levels around the industrial areas and the drainage channel where industrial effluent is generally discharged. Further, groundwater quality was assessed using the heavy metal pollution index (HPI) and the metal index (MI), which indicated poor drinkability of the groundwater. Human exposure to groundwater contaminated with ESEs can pose serious health risks; therefore, noncarcinogenic and carcinogenic health risks due to presence of these elements were also evaluated. Reported health risks to humans from exposure to contaminated groundwater indicate the importance of regular monitoring of groundwater for ESEs vis-a-vis industrial effluent disposal practices.
Collapse
|
43
|
Effect of Initial Salt Composition on Physicochemical and Structural Characteristics of Zero-Valent Iron Nanopowders Obtained by Borohydride Reduction. Processes (Basel) 2019. [DOI: 10.3390/pr7100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of initial salt composition on characteristics of zero-valent iron nanopowders produced via borohydride reduction was studied. The samples were characterized by X-ray diffraction, scanning and transmission electron microscopy, and low-temperature nitrogen adsorption. The efficiency of Pb2+ ions removal from aqueous media was evaluated. The use of ferric salts led to enhanced reduction kinetics and, consequently, to a smaller size of iron particles in comparison with ferrous salts. A decrease in the ionic strength of the synthesis solutions resulted in a decrease in iron particles. The formation of small highly-reactive iron particles during synthesis led to their oxidation during washing and drying steps with the formation of a ferrihydrite phase. The lead ions removal efficiency was improved by simultaneous action of zero-valent iron and ferrihydrite phases of the sample produced from iron sulphate.
Collapse
|