1
|
Liu Y, Guo L, Liu L, Xu L, Kuang H, Xu X, Xu C. A paper-based lateral flow immunochromatographic sensor for the detection of tricyclazole in rice. Food Chem 2024; 459:140434. [PMID: 39003854 DOI: 10.1016/j.foodchem.2024.140434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Tricyclazole is commonly used to prevent rice blast to meet the carbohydrate intake needs of half of the global population, and a large number of toxicological reports indicate that monitoring of tricyclazole is necessary. Here, we analyzed the structure of tricyclazole and designed different hapten derivatization strategies to prepare a high-performance monoclonal antibody (half inhibition concentration of 1.61 ng/mL), and then a lateral flow immunochromatographic sensor based on gold nanoparticles for the detection of tricyclazole in rice, with a limit of detection of 6.74 μg/kg and 13.58 μg/kg in polished and brown rice, respectively. The recoveries in rice were in the range of 84.6-107.4%, no complex pretreatment was required for comparison with LC-MS/MS, and the comparative analysis demonstrated that our method had good accuracy and precision. Therefore, the developed lateral flow immunochromatographic analysis was a reliable and rapid means for the on-site analysis of tricyclazole in rice.
Collapse
Affiliation(s)
- Yang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China..
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China..
| |
Collapse
|
2
|
Sethi G, Saini R, Banerjee T, Kumar R, Sahu SR, Singh N. Kinetics and sorption behavior of glyphosate and tricyclazole for their efficient retention in biomixtures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:624-635. [PMID: 39285757 DOI: 10.1080/03601234.2024.2404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
The present investigation aims to study adsorption-desorption behavior of glyphosate and tricyclazole in rice straw-compost biomixtures. To enhance pesticide adsorption and performance of the bio-purification system, rice straw-compost (BM) biomixture was mixed with wheat straw biochar (WBC, 1% and 5%), and adsorption of both pesticides in control (BM) and WBCBM(1%) and WBCBM(5%) biomixtures was compared. The kinetics study suggested that the pseudo-second-order model best explained the time-dependent adsorption of both pesticides and intraparticle adsorption was not the rate-determining step. Tricyclazole was more sorbed than glyphosate in all biomixtures which can be attributed to its lower water solubility. The WBC increased the sorption of both pesticides, but the effect varied with the nature of pesticides and biochar content. The adsorption coefficient values in BM, WBCBM(1%), and WBCBM(5%) biomixtures were 26.74, 38.16, and 51.97 (glyphosate) and 38.07, 59.94, and 84.54 (tricyclazole), respectively. The adsorption data was subjected to the Freundlich, the Langmuir, and the Temkin isotherms, and among them, the Freundlich isotherm best explained pesticide adsorption behavior. Desorption results suggested that the adsorption of glyphosate was more irreversible than tricyclazole and depended upon initial pesticide concentration. This study suggested that biochar mixed rice straw-compost biomixtures can be exploited in bio-purification systems for glyphosate and tricyclazole.
Collapse
Affiliation(s)
- Garima Sethi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Renu Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudama Ram Sahu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
4
|
Li M, Chen X, Song C, Xu J, Fan L, Qiu L, Li D, Xu H, Meng S, Mu X, Xia B, Ling J. Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants (Basel) 2024; 13:871. [PMID: 39061939 PMCID: PMC11274337 DOI: 10.3390/antiox13070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10-0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety.
Collapse
Affiliation(s)
- Mingxiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Jing Xu
- Environmental Testing Centre, Wuxi 214028, China;
| | - Limin Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Shunlong Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Jun Ling
- Fisheries Institute, Anhui Academy of Agriculture Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Weng Y, Gu W, Jin Y. Epoxiconazole altered hepatic metabolism in adult zebrafish based on transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109901. [PMID: 38508352 DOI: 10.1016/j.cbpc.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Epoxiconazole (EPX) is a triazole fungicide, which has been widely used in pest control of cereal crops. However, its extensive use has led to concerning levels of residue in water bodies, posing substantial risks to aquatic life. In this study, we characterized the toxicological effects of EPX on 6-month-old male and female zebrafish at 70 and 700 μg/L, respectively. The results revealed that EPX exposure markedly increased both body length and weight in zebrafish of both sexes, consequently elevating their condition factor. Besides, EPX exposure resulted in notable alterations in hepatic histopathology. These changes included loosened hepatocyte structure, ballooning degeneration, nucleolysis, and disappearance of cell line, with male zebrafish exhibiting more severe damage. High concentration of EPX also significantly increased hepatic lipid accumulation in male zebrafish, as well as increased hepatic triglyceride (TG) levels. Correspondingly, there was a notable alteration in the transcription of genes including cyp51, hmgcr, and PPAR-γ, which associated with cholesterol and lipid metabolism. Interestingly, with the hepatic transcriptomic analysis, high concentration of EPX produced 195 upregulated and 107 downregulated differential expression genes. Both KEGG and GO analyses identified significant enrichment of these genes in lipid and amino acid metabolism pathways. Notably, some key genes involved in the steroid synthesis pathway were marked upregulated. In addition, molecular docking study confirmed that EPX could bind CYP51 protein well (△G = -7.7 kcal/mol). Taken together, these findings demonstrated the multiple toxic effects of EPX on adult zebrafish.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weijie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
6
|
Liu J, Li W, Sun S, Huang L, Wan M, Li X, Zhang L, Yang D, Liu F, Liao X, Lu H, Xiao J, Zhang S, Cao Z. Comparison of cardiotoxicity induced by alectinib, apatinib, lenvatinib and anlotinib in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109834. [PMID: 38218563 DOI: 10.1016/j.cbpc.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Four tyrosine kinase inhibitors, alectinib, apatinib, lenvatinib and anlotinib, have been shown to be effective in the treatment of clinical tumors, but their cardiac risks have also raised concerns. In this study, zebrafish embryos at 6 h post fertilization (hpf) were exposed to the four drugs at concentrations of 0.05-0.2 mg/L until 72 hpf, and then the development of these embryos was quantified, including heart rate, body length, yolk sac area, pericardial area, distance between venous sinus and balloon arteriosus (SV-BA), separation of cardiac myocytes and endocardium, gene expression, vascular development and oxidative stress. At the same exposure concentrations, alectinib and apatinib had little effect on the cardiac development of zebrafish embryos, while lenvatinib and anlotinib could induce significant cardiotoxicity and developmental toxicity, including shortened of body length, delayed absorption of yolk sac, pericardial edema, prolonged SV-BA distance, separation of cardiomyocytes and endocardial cells, and downregulation of key genes for heart development. Heart rate decreased in all four drug treatment groups. In terms of vascular development, alectinib and apatinib did not inhibit the growth of embryonic intersegmental vessels (ISVs) and retinal vessels, while lenvatinib and anlotinib caused serious vascular toxicity, and the inhibition of anlotinib in vascular development was more obvious. Besides, the level of reactive oxygen species (ROS) in the lenvatinib and anlotinib treatment groups was significantly increased. Our results provide reference for comparing the cardiotoxicity of the four drugs.
Collapse
Affiliation(s)
- Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Sujie Sun
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, 361021, Fujian, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Dou Yang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
7
|
Verma SK, Nandi A, Sinha A, Patel P, Mohanty S, Jha E, Jena S, Kumari P, Ghosh A, Jerman I, Chouhan RS, Dutt A, Samal SK, Mishra YK, Varma RS, Panda PK, Kaushik NK, Singh D, Suar M. The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling. Biomed Pharmacother 2024; 171:116160. [PMID: 38237351 DOI: 10.1016/j.biopha.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Snehasmita Jena
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Puja Kumari
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 61137, Czech Republic
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea.
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
8
|
Zhu H, Liao D, Mehmood MA, Huang Y, Yuan W, Zheng J, Ma Y, Peng Y, Tian G, Xiao X, Lan C, Li L, Xu K, Lu H, Wang N. Systolic heart failure induced by butylparaben in zebrafish is caused through oxidative stress and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115692. [PMID: 37981439 DOI: 10.1016/j.ecoenv.2023.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Due to Butylparaben (BuP) widespread application in cosmetics, food, pharmaceuticals, and its presence as an environmental residue, human and animal exposure to BuP is common, potentially posing hazards to both human and animal health. Congenital heart disease is already a serious problem. However, the effects of BuP on the developing heart and its underlying mechanisms remain unclear. Here, zebrafish embryos were exposed to environmentally and human-relevant concentrations of BuP (0.6 mg/L, 1.2 mg/L, and 1.8 mg/L, calculated but not measured) at 6 h post-fertilization (hpf) and were treated until 72 hpf. Exposure to BuP led to cardiac morphological defects and cardiac dysfunction in zebrafish embryos, manifesting symptoms similar to systolic heart failure. The etiology of BuP-induced systolic heart failure in zebrafish embryos is multifactorial, including cardiomyocyte apoptosis, endocardial and atrioventricular valve damage, insufficient myocardial energy, impaired Ca2+ homeostasis, depletion of cardiac-resident macrophages, cardiac immune non-responsiveness, and cardiac oxidative stress. However, excessive accumulation of reactive oxygen species (ROS) in the cardiac region and cardiac immunosuppression (depletion of cardiac-resident macrophages and cardiac immune non-responsiveness) may be the predominant factors. In conclusion, this study indicates that BuP is a potential hazardous substance that can cause adverse effects on the developing heart and provides evidence and insights into the pathological mechanisms by which BuP leads to cardiac dysfunction. It may help to prevent the BuP-based congenital heart disease heart failure in human through ameliorating strategies and BuP discharge policies, while raising awareness to prevent the misuse of preservatives.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Wuliangye Group Co., Ltd., Yibin 644007, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Dalong Liao
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330029, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin 644007, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China
| | - Yuyang Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Guiyou Tian
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoping Xiao
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Chaohua Lan
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Linman Li
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Kewei Xu
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Chengdu Chongqing Shuangcheng economic circle (Luzhou) advanced technology research institute, Luzhou 646000, China; Engineering Technology Research Center of Special Grain for Wine Making, Yibin 644000, China.
| |
Collapse
|
9
|
Jiang Z, Shi D, Chen Y, Li H, Wang J, Lv X, Zi Y, Wang D, Xu Z, Huang J, Liu J, Duan H. Discovery of novel isopropanolamine inhibitors against MoTPS1 as potential fungicides with unique mechanisms. Eur J Med Chem 2023; 260:115755. [PMID: 37672934 DOI: 10.1016/j.ejmech.2023.115755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The resistance and ecotoxicity of fungicides seriously restrict our ability to effectively control Magnaporthe oryzae. Discovering fungicidal agents based on novel targets, including MoTPS1, could efficiently address this situation. Here, we identified a hit VS-10 containing an isopropanolamine fragment as a novel MoTPS1 inhibitor through virtual screening, and forty-four analogs were synthesized by optimizing the structure of VS-10. Utilizing our newly established ion-pair chromatography (IPC) and leaf inoculation methods, we found that compared to VS-10, its analog j11 exhibited substantially greater inhibitory activity against both MoTPS1 and the pathogenicity of M. oryzae. Molecular simulations clarified that the electrostatic interactions between the bridging moiety of isopropanolamine and residue Glu396 of contributed significantly to the binding of j11 and MoTPS1. We preliminarily revealed the unique fungicidal mechanism of j11, which mainly impeded the infection of M. oryzae by decreasing sporulation, killing a small portion of conidia and interfering with the accumulation of turgor pressure in appressoria. Thus, in this study, a novel fungicide candidate with a unique mechanism targeting MoTPS1 was screened and discovered.
Collapse
Affiliation(s)
- Zhiyang Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yitong Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huilin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Jin'e Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Xinrui Lv
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Dongli Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Huang L, Wang Z, Liu J, Wan M, Liu J, Liu F, Tu X, Xiao J, Liao X, Lu H, Zhang S, Cao Z. Apatinib induces zebrafish hepatotoxicity by inhibiting Wnt signaling and accumulation of oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:2679-2690. [PMID: 37551640 DOI: 10.1002/tox.23902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 μM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.
Collapse
Affiliation(s)
- Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Zhipeng Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jiejun Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Xiaofei Tu
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| |
Collapse
|
11
|
Ma L, Yin Z, Xie Q, Xu Y, Chen Y, Huang Y, Li Z, Zhu X, Zhao Y, Wen W, Xu H, Wu X. Metabolomics and mass spectrometry imaging reveal the chronic toxicity of indoxacarb to adult zebrafish (Danio rerio) livers. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131304. [PMID: 37043861 DOI: 10.1016/j.jhazmat.2023.131304] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Indoxacarb is a widely used insecticide in the prevention and control of agricultural pests, whereas its negative effects on non-target organisms remain largely unclear. Herein, we demonstrated the integrated metabolomics and mass spectrometry imaging (MSI) methods to investigate the chronic exposure toxicity of indoxacarb at environmentally relevant concentrations in adult zebrafish (Danio rerio) liver. Results showed that movement behaviors of zebrafish can be affected and catalase (CAT), glutamic oxalacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities were significantly increased after indoxacarb exposure for 28 days. Pathological analysis of zebrafish livers also showed that cavitation and pathological reactions occur. Metabolomics results indicated that metabolic pathways of zebrafish liver could be significantly affected by indoxacarb, such as tricarboxylic acid (TCA) cycle and various amino acid metabolisms. MSI results revealed the spatial differentiation of crucial metabolites involved in these metabolic pathways within zebrafish liver. Taken together, these integrated MSI and metabolomics results revealed that the toxicity of indoxacarb arises from metabolic pathways disturbance, which resulted in the decrease of liver detoxification ability. These findings will promote the current understanding of pesticide risks and metabolic disorders in zebrafish liver, which provide new insights into the environmental risk assessment of insecticides on aquatic organisms.
Collapse
Affiliation(s)
- Lianlian Ma
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qingrong Xie
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yudi Huang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xinhai Zhu
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuhui Zhao
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Wenlin Wen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Yuan W, Hu Y, Lu C, Zhang J, Liu Y, Li X, Jia K, Huang Y, Li Z, Chen X, Wang F, Yi X, Che X, Xiong H, Cheng B, Ma J, Zhao Y, Lu H. Propineb induced notochord deformity, craniofacial malformation, and osteoporosis in zebrafish through dysregulated reactive oxygen species generation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106596. [PMID: 37290275 DOI: 10.1016/j.aquatox.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 μM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 μmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.
Collapse
Affiliation(s)
- Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, Jiangsu, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xinran Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zekun Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China..
| |
Collapse
|
13
|
Weng Y, Xu T, Wang C, Jin Y. Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic Profiling in Male Mice. Metabolites 2023; 13:metabo13040522. [PMID: 37110180 PMCID: PMC10144212 DOI: 10.3390/metabo13040522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Epoxiconazole (EPX), a triazole fungicide, is widely used in agriculture to control pests and diseases. High residual and occupational exposure to EPX increases health risks, and evidence of potential harm to mammals remains to be added. In the present study, 6-week-old male mice were exposed to 10 and 50 mg/kg bw EPX for 28 days. The results showed that EPX significantly increased the liver weights. EPX also decreased the mucus secretion of the colon and altered intestinal barrier function in mice including a reduced expression of some genes (Muc2, meprinβ, tjp1). Moreover, EPX altered the composition and abundance of gut microbiota in the colon of mice. The alpha diversity indices (Shannon, Simpson) in the gut microbiota increased after exposure to EPX for 28 days. Interestingly, EPX increased the ratio of Firmicutes to Bacteroides and the abundance of other harmful bacteria including Helicobacter and Alistipes. Based on the untargeted metabolomic analysis, it was found that EPX altered the metabolic profiles of the liver in mice. KEGG analysis of differential metabolites revealed that EPX disrupted the pathway related to glycolipid metabolism, and the mRNA levels of related genes were also confirmed. In addition, the correlation analysis showed that the most altered harmful bacteria were associated with some significantly altered metabolites. The findings highlight that EPX exposure changed the micro-environment and lipid metabolism disturbance. These results also suggest that the potential toxicity of triazole fungicides to mammals cannot be ignored.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
14
|
Jia K, Xiong H, Yuan W, Huang L, Xu J, Lu C, Hu Y, Huang K, Luo Q, Ma J, Lu H. Diflovidazin damages the hematopoietic stem cells to zebrafish embryos via the TLR4/ NF-κB/ p53 pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108672. [PMID: 36893927 DOI: 10.1016/j.fsi.2023.108672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Exposure to environmental contaminants frequently induces the occurrence of blood diseases, but the underlying molecular mechanisms are scarcely known. The toxicity of Diflovidazin (DFD), a widely used mite-remover, to the blood system of non-target organisms requires urgent elucidation. To investigate the deleterious effects of DFD (2, 2.5, and 3 mg/L) on the development and survive of hematopoietic stem cells (HSCs), the zebrafish model was used in this study. DFD exposure reduced the number of HSCs and their subtypes, including macrophages, neutrophils, thymus T-cells, erythrocytes, and platelets. The significant changes in the abnormal apoptosis and differentiation of HSCs were the major reasons for the reduction in blood cells. Using small-molecule antagonists and p53 morpholino revealed that the NF-κB/p53 pathway was responsible for the apoptosis of HSCs upon DFD exposure. The restoration results attributed to the TLR4 inhibitor and molecular docking showed that the TLR4 protein, which was upstream of NF-κB signaling, played a vital role in DFD toxicology. This study elucidates the role and molecular mechanism of DFD in damaging zebrafish HSCs. It provides a theoretical basis for the occurrence of various blood diseases in zebrafish and other organisms.
Collapse
Affiliation(s)
- Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lirong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jiaxin Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kaijie Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
15
|
Cao N, Ji J, Li C, Yuan M, Guo X, Zong X, Li L, Ma Y, Wang C, Pang S. Rapid and efficient removal of multiple aqueous pesticides by one-step construction boric acid modified biochar. RSC Adv 2023; 13:8765-8778. [PMID: 36936844 PMCID: PMC10018371 DOI: 10.1039/d2ra07684e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m2 g-1, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g-1, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to Daphnia magna. This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians Beijing 102205 China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University Beijing 100193 China
| |
Collapse
|
16
|
Xiong G, Hu H, Zhang H, Zhang J, Cao Z, Lu H, Liao X. Cyhalofop-butyl exposure induces the severe hepatotoxicity and immunotoxicity in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108644. [PMID: 36842639 DOI: 10.1016/j.fsi.2023.108644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Cyhalofop-butyl (CyB) is a highly effective herbicide and is widely used for weed control in paddy fields. Because CyB is easily residual in the aquatic environment, its potential harm to aquatic organisms has attracted much attention and has not been fully understood. In this study, we systematically explored the hepatotoxic and immunotoxic effects of CyB exposure in zebrafish embryos. Firstly, CyB induced a decrease in the survival rate of zebrafish and led to a series of developmental abnormalities. Meanwhile, CyB can significantly reduce the size of zebrafish liver tissue and the number of hepatocytes in a dose-dependent manner. Secondly, the number of macrophages and neutrophils significantly decreased but the antioxidant enzyme activities such as CAT and MDA were greatly elevated upon CyB exposure. Thirdly, RNA-Seq analysis identified 1, 402 differentially expressed genes (DEGs) including 621 up-regulated and 781 down-regulated in zebrafish embryos after CyB exposure. KEGG and GO functional analysis revealed that the metabolic pathways of drug metabolism-cytochrome P450, biosynthesis of antibiotics, and metabolism of xenobiotics, along with oxidation-reduction process, high-density lipoprotein particle and cholesterol transport activity were significantly enriched after CyB exposure. Besides, hierarchical clustering analysis suggested that the genes involved in lipid metabolism, oxidative stress and innate immunity were largely activated in CyB-exposed zebrafish. Moreover, CyB induced zebrafish liver injury and increased hepatocyte apoptosis, which increased the protein expression levels of Bax, TLR4, NF-kB p65 and STAT3 in zebrafish. Finally, specific inhibition of TLR signaling pathway by TLR4 knock-down could significantly reduce the expression of inflammatory cytokines induced by CyB exposure. Taken together, these informations demonstrated that CyB could induce the hepatotoxicity and immunotoxicity in zebrafish embryos, and the expression levels of many genes involved in lipid metabolism and immune inflammation were obtained by RNA-Seq analysis. This study provides valuable information for future elucidating the aquatic toxicity of herbicide in aquatic ecosystems.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| | - Hongmei Hu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Haiyan Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Zigang Cao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- College of Life Sciences, Jiangxi Key Laboratory of Developmental Biology of Organs, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
17
|
Yang D, Xiao J, Wan M, Liu J, Huang L, Li X, Zhang L, Liu F, Liang D, Zheng Y, Xie B, Liao X, Xiong G, Lu H, Cao Z, Zhang S. Roxadustat induces hepatotoxicity in zebrafish embryos via inhibiting Notch signaling. J Appl Toxicol 2023. [PMID: 36755374 DOI: 10.1002/jat.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Roxadustat is a novel and effective small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PHI). However, little research has been done on its toxicity to vertebrate embryonic development. In this study, we used zebrafish to assess the effects of roxadustat on early embryonic development. Exposure to 14, 28, and 56 μM roxadustat resulted in abnormal embryonic development in zebrafish embryos, such as shortened body length and early liver developmental deficiency. Roxadustat exposure resulted in liver metabolic imbalance and abnormal liver tissue structure in adult zebrafish. In addition, roxadustat could up-regulate oxidative stress, and astaxanthin (AS) could partially rescue liver developmental defects by down-regulation of oxidative stress. After exposure to roxadustat, the Notch signaling is down-regulated, and the use of an activator of Notch signaling can partially rescue hepatotoxicity. Therefore, our research indicates that roxadustat may induce zebrafish hepatotoxicity by down-regulating Notch signaling. This study provides a reference for the clinical use of roxadustat.
Collapse
Affiliation(s)
- Dou Yang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Li Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Desheng Liang
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Yongliang Zheng
- Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Baogang Xie
- College of Pharmacy, Nanchang University, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Zhang J, Wang K, Guo J, Huang Y, Wei Y, Jia K, Peng Y, Lu H. Study on the mechanism of liver toxicity induced by acenaphthene in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114441. [PMID: 38321660 DOI: 10.1016/j.ecoenv.2022.114441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2024]
Abstract
Acenaphthene is a polycyclic aromatic hydrocarbon (PAH) that is a widely distributed environmental pollutant that accumulates in organisms and leads to health risks in humans. Although acenaphthene is reported to be toxic to aquatic organisms, its effects of acenaphthene on the livers of these organisms have not been evaluated. Here, zebrafish were used as an experimental model. Zebrafish larvae were exposed to 4.5, 5.5, and 6.5 mg/L acenaphthene for 72 h while adult zebrafish were exposed to 1.5, 2, and 2.5 mg/L acenaphthene for 28 days. We investigated the mechanism by which acenaphthene causes liver toxicity in zebrafish. The results showed that acenaphthene affected the early development of zebrafish and led to mitochondrial damage by promoting the production of reactive oxygen species (ROS) resulting in oxidative stress. The expression of genes related to inflammation and apoptosis was analyzed, observing up-regulation of the pro-inflammatory factors IL-8, TNF-α, and IL-6. The pro-apoptotic genes p53, Caspase-3, and Bax and the Bax/Bcl-2 ratio were up-regulated, while the anti-apoptotic gene Bcl-2 was down-regulated. In addition, we investigated the effects of acenaphthene on liver metabolism. When exposed to acenaphthene, the glycogen content of the liver decreased, while lipid accumulation increased together with alterations in related indicators of liver metabolism. In conclusion, acenaphthene induced oxidative stress through ROS production, leading to mitochondrial damage and activation of pathways associated with inflammation and apoptosis, resulting in hepatotoxicity. This affects normal liver metabolism. Our results revealed the mechanism of hepatotoxicity in zebrafish acenaphthene, and provided new evidence for a more comprehensive understanding of the hepatotoxicity of acenaphthene.
Collapse
Affiliation(s)
- June Zhang
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China.
| | - Kexin Wang
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Kun Jia
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yuan Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
| |
Collapse
|
19
|
Li C, Chen Y, Huang L, Zhang Y, Cao N, Guo X, Yao C, Li X, Duan L, Pang S. Potential toxicity and dietary risk of tricyclazole to Chinese mitten crab (Eriocheir sinensis) in the rice-crab co-culture model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120514. [PMID: 36309304 DOI: 10.1016/j.envpol.2022.120514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Tricyclazole is used as a common fungicide to control rice blast. However, studies on the toxicity of tricyclazole to crabs in the rice-crab co-culture system are still extremely rare. Here, the environmental dissipation of tricyclazole was monitored in this model, and the potential toxicity of tricyclazole to E. sinensis at environmental concentrations as well as the dietary risk was evaluated. The results showed that tricyclazole had no significant acute toxicity to E. sinensis (LC50 > 100 mg/L), while it promoted body weight gain. Tricyclazole in the hepatopancreas had a higher persistent bioaccumulation risk than in the muscle. Tricyclazole suppressed the immune response of E. sinensis under prolonged exposure and there should be gender differences, with females being more sensitive. Lipid metabolism enzymes were also significantly inhibited. While tricyclazole stimulated males molting but prolonged molting duration, both molting and duration of females were also disturbed. The dietary risk assessment indicated that tricyclazole intake from current crab consumption was low risk. This evidence demonstrated that tricyclazole may have potential risks to individual development, nutritional quality, and economic value on E. sinensis and should be used with caution in rice-crab co-culture system whenever possible.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China; Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing, China
| | - Yajie Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100125, China
| | - Yuting Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunlian Yao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Liusheng Duan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Liu L, Yang Y, Yang F, Lin Y, Liu K, Wang X, Zhang Y. A mechanistic investigation about hepatoxic effects of borneol using zebrafish. Hum Exp Toxicol 2023; 42:9603271221149011. [PMID: 36594174 DOI: 10.1177/09603271221149011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Except for clinical value, borneol is routinely used in food and cosmetics with seldom safety evaluation. To investigate its hepatoxicity, we exposed 3 dpf (days post fertilization) larval zebrafish to borneol at a gradient of concentrations (200-500 μM) for 3 days. Herein, our results revealed that high doses of borneol (300-500 μM) caused liver size decrease or lateral lobe absence. Borneol also seriously disturbed the hepatic protein metabolism presented with the increased activity of alanine aminotransferase (ALT) and lipid metabolism shown with the increased level of triglycerides (TG) and total cholesterol (TC). The lipid accumulation (oil red staining) was detected as well. Additionally, significant upregulation of genes was detected that related to oxidative stress, lipid anabolism, endoplasmic reticulum stress (ERS), and autophagy. Conversely, the lipid metabolism-related genes were markedly downregulated. Moreover, the changes in the superoxide dismutase activity and the level of glutathione and malondialdehyde raised the likelihood of lipid peroxidation. The outcomes indicated the involvement of oxidative stress, ERS, lipid metabolism, and autophagy in borneol-induced lipid metabolic disorder and hepatic injury. This study will provide a more comprehensive understanding of borneol hepatoxicity and the theoretical basis for the safe use of this compound.
Collapse
Affiliation(s)
- L Liu
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - Y Yang
- School of Pharmacy, 12412Changzhou University, Changzhou, China.,Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - F Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Lin
- School of Pharmacy, 12412Changzhou University, Changzhou, China
| | - K Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - X Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Y Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
21
|
Zhang L, Chen C, Li X, Sun S, Liu J, Wan M, Huang L, Yang D, Huang B, Zhong Z, Liu F, Liao X, Xiong G, Lu H, Chen J, Cao Z. Exposure to pyrazosulfuron-ethyl induces immunotoxicity and behavioral abnormalities in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2022; 131:119-126. [PMID: 36195270 DOI: 10.1016/j.fsi.2022.09.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Pyrazosulfuron-ethyl is one of the most widely used herbicides in agriculture and can be widely detected in aquatic ecosystems. However, its biosafety, including its potential toxic effects on aquatic organisms and its mechanism, is still poorly understood. As an ideal vertebrate model, zebrafish, the effect of pyrazosulfuron-ethyl on early embryonic development and immunotoxicity of zebrafish can be well evaluated. From 10 to 72 h post fertilization (hpf), zebrafish embryos were exposed to 1, 5, and 9 mg/L pyrazosulfuron-ethyl which led in a substantial reduction in survival, total length, and heart rate, as well as a range of behavioral impairments. In zebrafish larvae, the number of neutrophils and macrophages was considerably decreased and oxidative stress levels increased in a dose-dependent way after pyrazosulfuron-ethyl exposure. And the expression of immune-related genes, such as TLR-4, MyD88 and IL-1β, were downregulated by pyrazosulfuron-ethyl exposure. Moreover, pyrazosulfuron-ethyl exposure also inhibited motor behavior. Notch signaling was upregulated after exposure to pyrazosulfuron-ethyl, while inhibition of Notch signaling pathway could rescue immunotoxicity. Therefore, our findings suggest that pyrazosulfuron-ethyl has the potential to induce immunotoxicity and neurobehavioral changes in zebrafish larvae.
Collapse
Affiliation(s)
- Li Zhang
- School of Public Health and Health Management,Gannan Medical University,Ganzhou, 341000, Jiangxi, China
| | - Chao Chen
- Birth Defect Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xue Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Sujie Sun
- Birth Defect Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Dou Yang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Binhong Huang
- School of Public Health and Health Management,Gannan Medical University,Ganzhou, 341000, Jiangxi, China
| | - Zilin Zhong
- Birth Defect Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Jianjun Chen
- Birth Defect Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
22
|
Bai L, Shi P, Jia K, Yin H, Xu J, Yan X, Liao K. Triflumizole Induces Developmental Toxicity, Liver Damage, Oxidative Stress, Heat Shock Response, Inflammation, and Lipid Synthesis in Zebrafish. TOXICS 2022; 10:698. [PMID: 36422906 PMCID: PMC9699234 DOI: 10.3390/toxics10110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Triflumizole (TFZ) toxicity must be investigated in the aquatic environment to understand the potential risks to aquatic species. Accordingly, the adverse effects of TFZ exposure in zebrafish were investigated. Results demonstrate that, after TFZ exposure, the lethal concentration 50 (LC50) in 3 d post-fertilization (dpf) embryos and 6 dpf larvae were 4.872 and 2.580 mg/L, respectively. The development (including pericardium edema, yolk sac retention, and liver degeneration) was apparently affected in 3 dpf embryos. Furthermore, the alanine aminotransferase (ALT) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) content in 6 dpf larvae were significantly increased. Additionally, the expression of heat shock response genes (including hsp70, grp78, hsp90, and grp94), inflammatory genes (including p65-nfκb, il-1β, and cox2a), and lipid synthetic genes (including srebp1, fas, acc, and ppar-γ) in 3 dpf embryos was significantly increased, which was also partially observed in the intestinal cell line form Pampus argenteus. Taken together, TFZ could affect the development of zebrafish, accompanied by disturbances of oxidative stress, heat shock response, inflammation, and lipid synthesis. Our findings provide an original insight into the potential risks of TFZ to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lina Bai
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kun Jia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hua Yin
- Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
23
|
Pamiparib Induces Neurodevelopmental Defects and Cerebral Haemorrhage in Zebrafish Embryos via Inhibiting Notch Signalling. Mol Neurobiol 2022; 59:6652-6665. [PMID: 35982279 DOI: 10.1007/s12035-022-02988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Pamiparib is a poly ADP-ribose polymerase (PARP) inhibitor used in clinical studies, which can penetrate the blood-brain barrier efficiently. At present, there are few studies on its effect on vertebrate neurodevelopment. In this study, we exposed zebrafish embryos to 1, 2 and 3 µM of Pamiparib from 6 to 72 h post-fertilisation (hpf). Results showed that pamiparib can specifically induce cerebral haemorrhage, brain atrophy and movement disorders in fish larvae. In addition, pamiparib exposure leads to downregulation of acetylcholinesterase (AChE) and adenosine triphosphate (ATPase) activities, and upregulation of oxidative stress which then leads to apoptosis and disrupts the gene expression involved in the neurodevelopment, neurotransmitter pathways and Parkinson's disease (PD) like symptoms. Meanwhile, astaxanthin can partially rescue neurodevelopmental defects by downregulating oxidative stress. After exposure to pamiparib, the Notch signalling is downregulated, and the use of an activator of Notch signalling can partially rescue neurodevelopmental toxicity. Therefore, our research indicates that pamiparib may induce zebrafish neurotoxicity by downregulating Notch signalling and provides a reference for the potential neurotoxicity of pamiparib during embryonic development.
Collapse
|
24
|
Chen C, Zheng Y, Li X, Zhang L, Liu K, Sun S, Zhong Z, Hu H, Liu F, Xiong G, Liao X, Lu H, Bi Y, Chen J, Cao Z. Cysteamine affects skeletal development and impairs motor behavior in zebrafish. Front Pharmacol 2022; 13:966710. [PMID: 36059963 PMCID: PMC9437517 DOI: 10.3389/fphar.2022.966710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chao Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongliang Zheng
- Department of Hematology, Affiliated Hospital of Jinggangshan University, Ji’an, JX, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Xue Li
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangyu Liu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sujie Sun
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zilin Zhong
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongmei Hu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Jianjun Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| |
Collapse
|
25
|
Jia K, Chen G, Zeng J, Liu F, Liao X, Guo C, Luo J, Xiong G, Lu H. Low trifloxystrobin-tebuconazole concentrations induce cardiac and developmental toxicity in zebrafish by regulating notch mediated-oxidative stress generation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113752. [PMID: 35709675 DOI: 10.1016/j.ecoenv.2022.113752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Trifloxystrobin-tebuconazole (TFS-TBZ) is a novel, broad-spectrum fungicide that has been frequently detected in both the environment and agricultural products. However, its adverse effects on aquatic organisms remain unknown. In this study, the adverse effects of ecologically relevant TFS-TBZ concentrations (i.e., 75.0, 112.5, and 150.0 μg/L) on the heart and development of zebrafish were investigated. TFS-TBZ was found to substantially hinder development, inhibit growth, and cause significant abnormity at higher concentrations. Moreover, TFS-TBZ caused severe pericardial edema, heart loop failure, cardiac linearization, and ultra-slow heartbeat, implying that TFS-TBZ might induce congenital heart disease. TFS-TBZ inhibited Notch signaling and increased the intracellular generation of reactive oxygen species, resulting in decreased myocardial cell proliferation and increased apoptosis. The use of sodium valproate and Gadofullerene illustrated the relevance of the Notch signaling system and oxidative stress. Finally, TFS-TBZ exposure conveys severe developmental toxicity to the zebrafish heart. The underlying mechanism is regulation notch mediated-oxidative stress generation, implying that TFS-TBZ may be potentially hazardous to aquatic organisms in the environment.
Collapse
Affiliation(s)
- Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Junquan Zeng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Jiaqi Luo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of life sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
26
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
27
|
High throughput metabolomics explores the mechanism of Jigucao capsules in treating Yanghuang syndrome rats using ultra-performance liquid chromatography quadrupole time of flight coupled with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123185. [DOI: 10.1016/j.jchromb.2022.123185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 12/23/2022]
|
28
|
Huang Y, Wang Z, Peng Y, Xu R, Yan J, Xiong C, Ma J, Zhong K, Lu H. Carboxin can induce cardiotoxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113318. [PMID: 35182799 DOI: 10.1016/j.ecoenv.2022.113318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Carboxin is a heterocyclic systemic fungicide, mainly used to prevent and control grain smut and wheat rust. Although its mammalian toxicity has been reported, its toxicity to acute exposure to aquatic animals is unknown. In our study, we used zebrafish as aquatic organisms to study Carboxin toxicity. Carboxin can cause developmental toxicity and cardiotoxicity in zebrafish embryos. Histopathological staining of cardiac sections reveals structural changes in zebrafish hearts, and fluorescence quantitative PCR results shows the heart developmental genes mRNA expression levels were disrupted significantly. Besides, carboxin can also cause oxidative stress and reactive oxygen species (ROS) accumulation in zebrafish embryos. The accumulation of ROS causes mitochondrial damage, which is where ATP energy is produced. So ATPase activities and gene expression level were measured and significantly decreased after exposure to carboxin. From the confocal images, the number of blood cells in the heart were decreased significantly after carboxin exposure. Besides, Carboxin exposure can inhibit myocardial cell proliferation. These are all causes to the heart failure, eventually leading to embryos death.
Collapse
Affiliation(s)
- Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Rong Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Jiajie Yan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
29
|
Macirella R, Curcio V, Ahmed AIM, Pellegrino D, Brunelli E. Effect of short-term exposure to low concentration of tebuconazole: morphological, histometric and functional modifications in Danio rerio liver. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2043469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- R. Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - V. Curcio
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - A. I. M. Ahmed
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - D. Pellegrino
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - E. Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| |
Collapse
|
30
|
Xu R, Huang Y, Lu C, Lv W, Hong S, Zeng S, Xia W, Guo L, Lu H, Chen Y. Ticlopidine induces cardiotoxicity in zebrafish embryos through AHR-mediated oxidative stress signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113138. [PMID: 34995907 DOI: 10.1016/j.ecoenv.2021.113138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Ticlopidine has inhibitory effects on platelet aggregation via ADP (adenosine diphosphate), platelet release reaction and depolymerization. In clinical practice, it is commonly used to prevent heart, cerebrovascular and other thromboembolic diseases. However, ticlopidine has also been reported to have teratogenic effects on the heart, though its specific molecular mechanism remains unclear. In this study, zebrafish embryos were used as model organisms to examine the toxicity effect of ticlopidine. Zebrafish embryos exposed to 6, 7.5, and 9 mg/L ticlopidine solutions manifested several abnormalities, including body curvature, smaller eyes, slower absorption of the vitella sac, pericardial edema, slower heart rate, increased mortality, longer venous sinus - arterial ball (SV-BA) distance, and increased oxidative stress, which indicated developmental and cardiac toxicity. Abnormal expression of key genes related to heart development was observed, and the level of apoptotic gene expression was up-regulated. Further experiments revealed up-regulation of embryonic oxidative stress following ticlopidine exposure, leading to a decrease in cardiomyocyte proliferation. Conversely, the aromatic hydrocarbon receptor (AHR) inhibitor CH223191 protected embryos from the cardiotoxicity effect of ticlopidine, confirming further the role of up-regulated oxidative stress as the molecular mechanism of ticlopidine-induced cardiotoxicity in zebrafish. In conclusion, ticlopidine exposure leads to developmental and cardiotoxicity in zebrafish embryos. Therefore, further studies are warranted to ascertain such potential harms of ticlopidine in humans, which are vital in providing guidance in the safe use of drugs in clinical practice.
Collapse
Affiliation(s)
- Rong Xu
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weiming Lv
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shihua Hong
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Shuqin Zeng
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Wenyan Xia
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Li Guo
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| | - Yijian Chen
- Medical College of Soochow University, Suzhou 215123, Jiangsu, P.R.China; The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, P.R.China.
| |
Collapse
|
31
|
Li Z, Guo J, Jia K, Zheng Z, Chen X, Bai Z, Yang Y, Chen B, Yuan W, Chen W, Yang J. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113140. [PMID: 34979306 DOI: 10.1016/j.ecoenv.2021.113140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxyfluorfen (OXY) is widely used in agriculture as a herbicide, resulting in its continuous accumulation in the environment. The presence of OXY can be detected in soil and rivers. However, until now, the potential toxicity of OXY to aquatic organisms has not been evaluated. In this study, zebrafish was used as a model animal to evaluate OXY-induced liver toxicity. The study found that 0.25, 0.5, and 1 mg/L of OXY affected the early development of zebrafish and severely damaged the lipid and sugar metabolism in the liver of zebrafish larvae. Furthermore, a metabolic function disorder caused liver damage. OXY also caused inflammation by upregulating the inflammatory factors IL-6, IL-8, and TNF-α, and activated the apoptotic pathway to inhibit hepatocyte proliferation, resulting in zebrafish liver toxicity. Our research showed that OXY had certain toxic effects on zebrafish development and liver and could cause potential harm to other aquatic organisms and humans.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 30031, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Zhonghui Bai
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China
| | - Bo Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Weihua Chen
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
32
|
Liu J, Xia W, Wan Y, Xu S. Azole and strobilurin fungicides in source, treated, and tap water from Wuhan, central China: Assessment of human exposure potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149733. [PMID: 34467936 DOI: 10.1016/j.scitotenv.2021.149733] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
33
|
Wang K, Deng Y, Zhang J, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae. ENVIRONMENTAL TOXICOLOGY 2021; 36:2062-2072. [PMID: 34227734 DOI: 10.1002/tox.23323] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Quercetin is a flavonoid compound with a variety of biological properties that is widely distributed throughout the plant kingdom. Studies have found that quercetin has anti-inflammatory, antioxidant, and liver-protective effects, while thioacetamide (TAA) can cause inflammation and liver damage in zebrafish larvae. The purpose of this study was to evaluate whether quercetin can prevent TAA-induced inflammation and liver damage in zebrafish larvae and to investigate the molecular mechanisms involved. Zebrafish Tg transgenic lines were used as the experimental animals. Behavioral, oxidative stress level, proliferative antigen chromogenic antibody, and western blot analyses were carried out on zebrafish larvae in the control group and groups treated with TAA and 12 μM quercetin. The results indicated that quercetin promoted the development of zebrafish larvae damaged by TAA, exhibited antioxidant and anti-inflammatory properties, and promoted cell proliferation. Quercetin reduced the expression of p53 protein in zebrafish larvae injured by TAA, resulting in decreased levels of Bax and increased levels of Bcl-2. The findings suggested quercetin has antiapoptotic action. Quercetin reduced the expression of DKK1 and DKK2 genes related to the Wnt signaling pathway in zebrafish larvae damaged by TAA and increased the expression of Lef1 and wnt2bb. Quercetin may regulate the development of zebrafish larvae damaged by TAA through the Wnt signaling pathway. This study provides the scientific basis for the development and utilization of quercetin and the development of new related drugs.
Collapse
Affiliation(s)
- Kexin Wang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| |
Collapse
|
34
|
Martins RX, Vieira L, Souza JACR, Silva MGF, Muniz MS, Souza T, Queiroga FR, Machado MRF, da Silva PM, Farias D. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109110. [PMID: 34144256 DOI: 10.1016/j.cbpc.2021.109110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide is the main ingredient in over 1500 commercially available products such as Weedestroy® AM40 and DMA® 4 IVM. Although the liver has been identified as one of the organs that are affected by this herbicide, reports on its hepatotoxic effects available in the literature are restricted to rats. Thus, there is a gap in information on other organisms that may be vulnerable to 2,4-D exposure, such as fish. Therefore, the present work aimed to assess the hepatotoxic potential of 2,4-D in fish using zebrafish (Danio rerio) larvae as a model system. For this purpose, its acute toxicity to zebrafish embryos was assessed, as well as its sublethal effects (< LC50) on the activity of enzymes related to oxidative (GST, CAT and GPX) and metabolic (LDH) stress and liver parameters (AST, ALT and ALP) after 48 h of exposure. Morphological analyses of the liver were also assessed in zebrafish larvae. As a result, 2,4-D reduced larvae survival (LC50 15.010 mg/L in 96 h of exposure), induced malformations, altered the activity of LDH, GST and CAT enzymes and significantly increased the activity of all biomarkers for liver damage. Although no changes in the color or size of larval liver were observed, histopathological analysis revealed that treatment with 2,4-D caused severe changes in liver tissue, such as vacuolization of the cytosol, eccentric cell nucleus, loss of tissue architecture and cellular boundaries. Thus, the results showed that 2,4-D altered the enzymatic profile related to oxidative stress, and induces liver damage.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marília Guia Flor Silva
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
35
|
Huang L, Liu J, Li W, Liu F, Wan M, Chen G, Su M, Guo C, Han F, Xiong G, Liao X, Lu H, Cao Z. Lenvatinib exposure induces hepatotoxicity in zebrafish via inhibiting Wnt signaling. Toxicology 2021; 462:152951. [PMID: 34534561 DOI: 10.1016/j.tox.2021.152951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022]
Abstract
Lenvatinib is a multi-kinase inhibitor for widely treating thyroid cancer. However, little studies have been done about it or its toxicity on embryonic development of vertebrate. In this study, we used zebrafish to assess the effect of lenvatinib on early embryonic development. Exposure of zebrafish embryos to 58, 117, 176 nM lenvatinib induced abnormal embryonic development, such as decreased heart rate, pericardial edema, delayed yolk absorption, and bladder atrophy. Lenvatinib exposure reduced liver area and down-regulated liver developmental related genes. The proliferation of hepatocytes and the expression of apoptosis-related genes were significantly reduced.by Lenvatinib. Furthermore, the imbalance of liver metabolism and abnormal liver tissue structure were observed in adult zebrafish after Lenvatinib exposure. Oxidative stress was up-regulated by lenvatinib and astaxanthin partially rescued hepatic developmental defects via downregulating oxidative stress. After lenvatinib exposure, Wnt signaling was down-regulated, and activation of Wnt signaling partially rescued hepatic developmental defects. Therefore, these results suggested that lenvatinib might induce zebrafish hepatotoxicity by down-regulating Wnt signaling related genes and inducing oxidative stress. This study provides a reference for the potential hepatotoxicity of lenvatinib during embryonic development and raises health concern about the potential harm of exposure to lenvatinib for foetuses.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
36
|
Weng Y, Huang Z, Wu A, Yu Q, Lu H, Lou Z, Lu L, Bao Z, Jin Y. Embryonic toxicity of epoxiconazole exposure to the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146407. [PMID: 34030390 DOI: 10.1016/j.scitotenv.2021.146407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Epoxiconazole (EPX), as a broad-spectrum triazole fungicide, is widely used in agriculture to resist pests and diseases, while it may have potential toxicity to non-target organisms. In the present study, early developmental stage zebrafish were used as the subject organisms to assess the toxicity of EPX, and the possible mechanism of toxicity was also discussed by biochemical and transcriptomic analysis. Through embryo toxicity test, we had made it clear that the 96 h LC50 of embryo was 7.204 mg/L, and acute exposure to EPX effected hatching rate, heartbeats, body length and even morphological defects. Then, by being exposed to EPX for 7 days at concentrations of 175 (1/40 LC50), 350 (1/20 LC50) and 700 (1/10 LC50), biochemical parameters were affected, mainly manifested as increase of the triglyceride (TG) level and decrease of glucose content. Correspondingly, the transcription of genes related of glucose metabolism, lipid metabolism and cholesterol metabolism were also affected significantly in larval zebrafish. Moreover, some pathways, including lipid metabolism, glucose metabolism and amino acid metabolism were affected through transcriptome sequencing analysis in the larval zebrafish. Further data analysis based on the sequencing, EPX exposure also affected the expression of genes related to cell apoptosis. We further conformed that the bright fluorescence on the liver and bright spots near the liver by acridine orange staining. In addition, the mRNA levels of apoptosis related genes were also significantly affected in the EPX exposed larval zebrafish. Taken together, the work could provide an insight into toxic effects of EPX on the zebrafish larvae at embryo toxicity and transcriptional levels, providing some evidences for the toxic effects of triazole fungicides on non-target organisms.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Longxi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang 310051, China.
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
37
|
Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, Yang Y. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125243. [PMID: 33524730 DOI: 10.1016/j.jhazmat.2021.125243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Monobutyl phthalate (MBP) can exist in biological organisms for a long time because of its excellent fat solubility, and it has been found to have certain toxic effects. In this study, the acute effects of MBP on endoplasmic reticulum (ER) stress and metabolism in the zebrafish liver were studied. After continuous exposure to MBP (5 and 10 mg / L) for 96 h, ER damage and the appearance of apoptotic bodies and autophagosomes were found in liver. This is because MBP stimulated the ire-xbp1 pathway of ER stress, thus leading to apoptosis and autophagy. Also, through analysis of metabolic enzymes and genes, it was found that the activated ire-xbp1 pathway could promote lipid synthesis and cause the accumulation of lipid droplets. The gene pparγ related to lipid storage affected the level of insulin, which can also further affect the glucose metabolism process, that is, glycolysis and aerobic respiration were inhibited. And the pentose phosphate pathway (PPP) was activated as a compensation mechanism to alleviate glycogen accumulation. The abnormal supply of energy and the death of excessive cells will eventually severely damage the zebrafish liver. This study will enrich the knowledge about the toxic effects of MBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
38
|
Bai Z, Jia K, Chen G, Liao X, Cao Z, Zhao Y, Zhang C, Lu H. Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116688. [PMID: 33611196 DOI: 10.1016/j.envpol.2021.116688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Collapse
Affiliation(s)
- Zhonghui Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kun Jia
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yangqi Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chunping Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Huiqiang Lu
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
39
|
Wang B, Liu L, Li Y, Zou J, Li D, Zhao D, Li W, Sun W. Ustilaginoidin D induces hepatotoxicity and behaviour aberrations in zebrafish larvae. Toxicology 2021; 456:152786. [PMID: 33872729 DOI: 10.1016/j.tox.2021.152786] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Ustilaginoidins, a group of bis-naphtho-γ-pyrones, are one of the major mycotoxins produced by Ustilaginoidea virens. This group of bis-naphtho-γ-pyrone mycotoxins has been demonstrated to have antibacterial and immunological inhibitory activities and strong cytotoxicity to human oral epidermoid carcinoma. However, little is yet known about the toxicity of ustilaginoidins to animals or toxicity mechanisms. In this study, toxicity assays to zebrafish larvae show that ustilaginoidin D is highly toxic to zebrafish with an LC50 of ∼7.50 μM. Ustilaginoidin D causes an obvious yolk sac absorption delay and liver damage in zebrafish, which is indicated by liver atrophy and the increased alanine and aspartate transaminase activities. Interestingly, different doses of ustilaginoidin D can alter zebrafish movement behavior in a distinct manner. Transcriptome analyses show that global gene expression profiling in zebrafish is significantly changed in response to ustilaginoidin D exposure. KEGG pathway analyses reveal that differentially expressed genes are enriched in the pathways related to lipid metabolism and hyperbilirubinemia, which are indicators of severe liver injury. Consistently, the expression of the marker genes for hepatotoxic responses is significantly induced by ustilaginoidin D. The findings indicate that ustilaginoidin D induces lipid metabolism disorders and hepatotoxicity in zebrafish larvae and poses a potential risk to food safety.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ling Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yuejiao Li
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jiaying Zou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Ma J, Huang Y, Peng Y, Xu Z, Wang Z, Chen X, Xie S, Jiang P, Zhong K, Lu H. Bifenazate exposure induces cardiotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116539. [PMID: 33549839 DOI: 10.1016/j.envpol.2021.116539] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Bifenazate is a novel acaricide for selective foliar spraying and is widely used to control mites in agricultural production. However, its toxicity to aquatic organisms is unknown. Here, a zebrafish model was used to study bifenazate toxicity to aquatic organisms. Exposure to bifenazate was found to cause severe cardiotoxicity in zebrafish embryos, along with disorders in the gene expression related to heart development. Bifenazate also caused oxidative stress. Cardiotoxicity caused by bifenazate was partially rescued by astaxanthin (an antioxidant), accompanied by cardiac genes and oxidative stress-related indicators becoming normalized. Our results showed that exposure to bifenazate can significantly change the ATPase activity and gene expression levels of the calcium signaling pathway. These led to heart failure, in which the blood accumulated outside the heart without entering it, eventually leading to death. The results indicated that bifenazate exposure caused cardiotoxicity in zebrafish embryos through the induction of oxidative stress and inhibition of the calcium signaling pathway.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000 Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
41
|
Cheng B, Zou L, Zhang H, Cao Z, Liao X, Shen T, Xiong G, Xiao J, Liu H, Lu H. Effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish (Danio rerio). CHEMOSPHERE 2021; 263:127849. [PMID: 33297003 DOI: 10.1016/j.chemosphere.2020.127849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/12/2023]
Abstract
Cyhalofop-butyl is a kind of aromatic phenoxypropionic acid herbicide widely used in agriculture. However, studies on its immunotoxicity to aquatic organisms have not been reported. In this study paper, morphological, immunological, cytological, biochemical and molecular biology methods were used to study the effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish. After cyhalofop-butyl exposed, the results showed that the zebrafish embryos had shorter length, yolk sac edema, significantly reduced number of immune cells, inflammatory response and immunocytes apoptosis. In addition, we found that the expression of immune-related genes and pro-apoptotic genes were up-regulated, and the JAK-STAT signaling pathway mediated the immunotoxicity induced by cyhalofop-butyl. Therefore, our results indicate that cyhalofop-butyl has developmental toxicity and immunotoxicity to zebrafish, and this study offer new contents for the effects of cyhalofop-butyl exposure on aquatic organisms.
Collapse
Affiliation(s)
- Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lufang Zou
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Hua Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Tianzhu Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Huasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China.
| |
Collapse
|
42
|
Huang Y, Chen Z, Meng Y, Wei Y, Xu Z, Ma J, Zhong K, Cao Z, Liao X, Lu H. Famoxadone-cymoxanil induced cardiotoxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111339. [PMID: 32961491 DOI: 10.1016/j.ecoenv.2020.111339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Famoxadone-cymoxanil is a new protective and therapeutic fungicide, but little research has been done on it or its toxicity in aquatic organisms. In this study, we used zebrafish to investigate the cardiotoxicity of famoxadone-cymoxanil and the potential mechanisms involved. Zebrafish embryos were exposed to different concentrations of famoxadone-cymoxanil until 72 h post-fertilization (hpf), then changes of heart morphology in zebrafish embryos were observed. We also detected the levels of oxidative stress, myocardial-cell proliferation and apoptosis, ATPase activity, and the expression of genes related to the cardiac development and calcium-signaling pathway. After famoxadone-cymoxanil exposure, pericardial edema, cardiac linearization, and reductions in the heart rate and cardiac output positively correlated with concentration. Although myocardial-cell apoptosis was not detected, proliferation of the cells was severely reduced and ATPase activity significantly decreased, resulting in a severe deficiency in heart function. In addition, indicators of oxidative stress changed significantly after exposure of the embryos to the fungicide. To better understand the possible molecular mechanisms of cardiovascular toxicity in zebrafish, we studied the transcriptional levels of cardiac development, calcium-signaling pathways, and genes associated with myocardial contractility. The mRNA expression levels of key genes in heart development were significantly down-regulated, while the expression of genes related to the calcium-signaling pathway (ATPase [atp2a1], cardiac troponin C [tnnc1a], and calcium channel [cacna1a]) was significantly inhibited. Expression of klf2a, a major endocardial flow-responsive gene, was also significantly inhibited. Mechanistically, famoxadone-cymoxanil toxicity might be due to the downregulation of genes associated with the calcium-signaling pathway and cardiac muscle contraction. Our results found that famoxadone-cymoxanil exposure causes cardiac developmental toxicity and severe energy deficiency in zebrafish.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zhiyong Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zhaopeng Xu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
43
|
Ramesh M, Angitha S, Haritha S, Poopal RK, Ren Z, Umamaheswari S. Organophosphorus flame retardant induced hepatotoxicity and brain AChE inhibition on zebrafish (Danio rerio). Neurotoxicol Teratol 2020; 82:106919. [DOI: 10.1016/j.ntt.2020.106919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
|
44
|
Zhang J, Deng Y, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Protective effects and molecular mechanisms of baicalein on thioacetamide-induced toxicity in zebrafish larvae. CHEMOSPHERE 2020; 256:127038. [PMID: 32470728 DOI: 10.1016/j.chemosphere.2020.127038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Baicalein is a flavonoid that is widely found in plants. Studies have shown that baicalein has anti-inflammatory, anti-cancer, and liver-protective effects. However, the effects of baicalein on TAA-induced toxicity and the underlying molecular mechanisms in zebrafish larvae are still unknown. Here, we investigated the effects of baicalein on liver development and its anti-inflammatory effects in zebrafish larvae. The results showed that baicalein has significant anti-embryonic developmental toxicity and significant antioxidant and anti-inflammatory capabilities in TAA-induced zebrafish larvae and promotes liver development and cell proliferation, reduces the expression of apoptotic proteins, and induces the expression of anti-apoptotic proteins. At the molecular level of TAA-treated zebrafish larvae, there was a decrease in the relative expression levels of mRNAs of three subfamilies, P38, ERK1, and ERK2, of the MAPK-signaling pathway and of the products of peroxisome proliferator-activated receptor (PPAR)α. Compared with TAA-treated zebrafish larvae, zebrafish larvae treated with baicalein showed an increase in the relative expression levels of P38, ERK1, and ERK2 mRNAs and the downstream products of PPARα. When MAPK signal inhibitor (SB203580) was added, it was found that liver development was inhibited and baicalin had no protective effect on TAA induced hepatotoxicity in zebrafish larvae. The results showed baicalein can protect the zebrafish larvae against toxicity induced by TAA through MAPK signal pathway. Several molecular mechanisms discovered in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
45
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
46
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2020; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
47
|
Jia K, Cheng B, Huang L, Xiao J, Bai Z, Liao X, Cao Z, Shen T, Zhang C, Hu C, Lu H. Thiophanate-methyl induces severe hepatotoxicity in zebrafish. CHEMOSPHERE 2020; 248:125941. [PMID: 32004883 DOI: 10.1016/j.chemosphere.2020.125941] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Thiophanate-methyl (TM) is widely used all over the world and is a typical example of pesticide residues, which can be detected in the soil, and even in vegetables and fruits. However, the molecular mechanisms underlying the hepatotoxicity of TM are not well understood. In this study, we utilized zebrafish to comprehensively evaluate the hepatotoxicity of TM and explore how the molecular mechanisms of hepatotoxicity are induced. The zebrafish larvae were exposed in 6.25, 12.5 and 25 mg/L TM from 72 to 144 hpf, while the adults were exposed in 2, 4 and 6 mg/L TM for 28 days. Here, we found that 12.5 and 25 mg/L TM induces specifically serious hepatotoxicity but not the toxicity of other organs in zebrafish larvae and adults. Moreover, it might triggered hepatotoxicity by activating the caspase-3 through apoptotic pathways and oxidative stress in zebrafish. Subsequently, this resulted in a metabolic imbalance in the zebrafish's liver. In conclusion, our results disclosed the fact that TM may induce severe hepatotoxicity by mediating activation of caspase-3 and oxidative stress in zebrafish.
Collapse
Affiliation(s)
- Kun Jia
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Lirong Huang
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Zhonghui Bai
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xinjun Liao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Tianzhu Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Chunping Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
48
|
Cheng B, Zhang H, Hu J, Peng Y, Yang J, Liao X, Liu F, Guo J, Hu C, Lu H. The immunotoxicity and neurobehavioral toxicity of zebrafish induced by famoxadone-cymoxanil. CHEMOSPHERE 2020; 247:125870. [PMID: 31931321 DOI: 10.1016/j.chemosphere.2020.125870] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As a new protective and therapeutic fungicide, studies on famoxadone-cymoxanil are rare, and its toxicity to aquatic organisms has not been reported. In the present study, zabrafish embryos were exposed to several concentrations of famoxadone-cymoxanil at 10 hpf. Then, the changes of their shape, heart rate, development and function of innate and adaptive immune cells, oxidative stress, apoptosis, the expression of apoptosis-related genes and immune-related genes, the locomotor behavior were observed and detected in acute toxicity of famoxadone-cymoxanil. Our studies showed that, after exposure to famoxadone-cymoxanil, zebrafish embryos had decreased heart rate, shortened body length, swollen yolk sac. Secondly, the number of innate and adaptive immune cells was significantly reduced; and neutrophil migration and retention at the injury area were inhibited, indicating the developmental toxicity and immunotoxicity of famoxadone-cymoxanil on the zebrafish. We also found that the oxidative stress related indicators of embryos were changed significantly, and apoptosis were substantially increased. Further investigation of changes of some key genes in TLR signaling including TLR4, MYD88 and NF-κB p65 revealed that the mRNA expression of these genes was up-regulated. Meanwhile, the mRNA expression of some proinflammatory cytokines such as TNF-α, IFN-γ, IL6 and IL-1β was also up-regulated. In addition, the activity, the total distance, time and average speed were decreased along with the increase of exposure concentration. The absolute turn angle, sinuosity and the enzymatic activity of acetylcholinesterase (AChE) were also increased. These results suggested that famoxadone-cymoxanil can induce developmental toxicity, immunotoxicity and neurobehavioral toxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Hua Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jihuan Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatology Hospital of Nan Chang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China; Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
49
|
Gonçalves ÍFS, Souza TM, Vieira LR, Marchi FC, Nascimento AP, Farias DF. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10185-10204. [PMID: 32062774 DOI: 10.1007/s11356-020-07902-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.
Collapse
Affiliation(s)
- Íris Flávia Sousa Gonçalves
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Leonardo Rogério Vieira
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil
| | - Filipi Calbaizer Marchi
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Adailton Pascoal Nascimento
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, Campus I, CEP, João Pessoa, 58051-900, Brazil.
- Post-Graduation Program in Biochemistry, Federal University of Ceara, Campus Pici, CEP, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
50
|
Cao Z, Huang Y, Xiao J, Cao H, Peng Y, Chen Z, Liu F, Wang H, Liao X, Lu H. Exposure to diclofop-methyl induces cardiac developmental toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113926. [PMID: 31935613 DOI: 10.1016/j.envpol.2020.113926] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Diclofop-methyl (DM) is one of the most widely used herbicides in agriculture production and has been frequently detected in both freshwater and environments, even agricultural products. However, the potential toxic effects of DM on organisms and the underlying mechanisms are still poorly understood. In this study, we utilized zebrafish to evaluate the toxicity of DM during the cardiovascular developmental process. Exposure of zebrafish embryos to 0.75, 1.0 and 1.25 mg/L DM induced cardiac defects, such as pericardial edema, slow heart rate and long SV-BA distance but the vascular development in zebrafish larvae was not influenced by DM treatment. The expression of cardiac-related genes were disordered and DM exposure initiated disordering cardiogenesis from the period of precardiac mesoderm formation. Moreover, the apoptosis and proliferation of cardiomyocytes were not influenced but the levels of oxidative stress were upregulated by DM exposure. Fullerenes and astaxanthin was able to rescue cardiac defects caused by DM via downregulating oxidative stress. Wnt signaling was downregulated after DM treatment and activation of Wnt signaling could rescue cardiac defects. Therefore, our results suggest that DM has the potential to induce cardiac developmental toxicity through upregulation of Wnt-Mediated (reactive oxygen species) ROS generation in zebrafish larvae.
Collapse
Affiliation(s)
- Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Yong Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Hao Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Yuyang Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zhiyong Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Honglei Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|