1
|
Guo N, Wang M, Shen Y, Li B, Zhao D, Zou S, Yang Y. Detection of extracellular antibiotic resistance genes in river water: Application of ultrafiltration-magnetic beads method. ENVIRONMENTAL RESEARCH 2024; 263:120259. [PMID: 39476925 DOI: 10.1016/j.envres.2024.120259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Antibiotic resistance genes (ARGs) are widespread contaminants that pose significant threats to public health. Rivers play a crucial role in the dissemination of ARGs within the aquatic environment. However, there are limitations in the current research on the differentiation of intracellular ARGs (iARGs) and extracellular ARGs (eARGs) in river water. In this study, we developed a method combining ultrafiltration and adsorption of silica-hydroxy magnetic beads for efficient extraction of extracellular DNA (eDNA) from river water. The conditions of adsorption, washing, desorption, and pretreatment were optimized to enhance eDNA recovery. By using only 90 mL of water sample, our method could collect sufficient eDNA for subsequent detection of eARGs through qPCR analysis. The eDNA recovery rate ranged from 51.4% to 69.8%. The occurrence of five prevalent ARGs (tetC, sulI, blaTEM, ermB, qnrS) as well as integrase gene intl1 were investigated in both iDNA and eDNA extracted from river water samples collected from two tributaries of the Pearl River. Our results revealed that the absolute abundance levels of eARGs ranged from 10-1 to 105 copies/mL, which were significantly higher than those observed for iARGs ranging from 10-1 to 104 copies/mL. Moreover, there was a significant difference in contamination profiles for ARGs between two tributaries. The ultrafiltration-magnetic beads method overcomes challenges associated with low efficiency extraction when working with water samples containing low nucleic acid concentrations. This approach provides an improved technique for extracting eARGs from river water while also generating valuable data supporting assessments related to eARG contamination in such environments.
Collapse
Affiliation(s)
- Nairong Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Minyan Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yijing Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Danna Zhao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
2
|
Wen L, Dai J, Song J, Ma J, Li X, Yuan H, Duan L, Wang Q. Antibiotic resistance genes (ARGs) and their eco-environmental response in the Bohai Sea sediments. MARINE POLLUTION BULLETIN 2024; 208:116979. [PMID: 39303552 DOI: 10.1016/j.marpolbul.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Antibiotic resistance genes (ARGs) are an important class of pollutants in the environment. This study investigated the characteristics and ecological effects of ARGs in the Bohai Sea sediments. The results showed that ARGs are widely distributed, and exhibit significant spatial and subtype variations, with absolute abundance following the decreasing order of Liaodong Bay, Laizhou Bay, Bohai Bay, and Bohai Strait. Tetracycline ARGs dominated, comprising 50 % to 62 % of all ARGs, with tetM having the highest abundance at 1.43 × 107 copies/g. Symbiotic network analysis revealed that the phyla Deinococcota, Dadabacteria were serve as the primary likely host of ARGs. The ARGs have a wide range of potential hosts, and bacteria often carry multiple ARGs, enhancing the mobility and ecological niche adaptation of ARGs. This study will provide an important reference for assessing ARGs pollution in semi-enclosed seas.
Collapse
Affiliation(s)
- Lilian Wen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China.
| | - Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
| | - Huamao Yuan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
| | - Liqin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
| | - Qidong Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
| |
Collapse
|
3
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
4
|
Zhuang M, Yan W, Xiong Y, Wu Z, Cao Y, Sanganyado E, Siame BA, Chen L, Kashi Y, Leung KY. Horizontal plasmid transfer promotes antibiotic resistance in selected bacteria in Chinese frog farms. ENVIRONMENT INTERNATIONAL 2024; 190:108905. [PMID: 39089095 DOI: 10.1016/j.envint.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
The emergence and dissemination of antibiotic resistance genes (ARGs) in the ecosystem are global public health concerns. One Health emphasizes the interconnectivity between different habitats and seeks to optimize animal, human, and environmental health. However, information on the dissemination of antibiotic resistance genes (ARGs) within complex microbiomes in natural habitats is scarce. We investigated the prevalence of antibiotic resistant bacteria (ARB) and the spread of ARGs in intensive bullfrog (Rana catesbeiana) farms in the Shantou area of China. Antibiotic susceptibilities of 361 strains, combined with microbiome analyses, revealed Escherichia coli, Edwardsiella tarda, Citrobacter and Klebsiella sp. as prevalent multidrug resistant bacteria on these farms. Whole genome sequencing of 95 ARB identified 250 large plasmids that harbored a wide range of ARGs. Plasmid sequences and sediment metagenomes revealed an abundance of tetA, sul1, and aph(3″)-Ib ARGs. Notably, antibiotic resistance (against 15 antibiotics) highly correlated with plasmid-borne rather than chromosome-borne ARGs. Based on sequence similarities, most plasmids (62%) fell into 32 distinct groups, indicating a potential for horizontal plasmid transfer (HPT) within the frog farm microbiome. HPT was confirmed in inter- and intra-species conjugation experiments. Furthermore, identical mobile ARGs, flanked by mobile genetic elements (MGEs), were found in different locations on the same plasmid, or on different plasmids residing in the same or different hosts. Our results suggest a synergy between MGEs and HPT to facilitate ARGs dissemination in frog farms. Mining public databases retrieved similar plasmids from different bacterial species found in other environmental niches globally. Our findings underscore the importance of HPT in mediating the spread of ARGs in frog farms and other microbiomes of the ecosystem.
Collapse
Affiliation(s)
- Mei Zhuang
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel; Department of Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Waner Yan
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, POB 12272, Jerusalem 91120, Israel
| | - Yifei Xiong
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, POB 12272, Jerusalem 91120, Israel
| | - Zhilin Wu
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, POB 12272, Jerusalem 91120, Israel
| | - Yuping Cao
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel; Department of Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Bupe A Siame
- Department of Biology, Trinity Western University, Langley, British Columbia V2Y 1Y1, Canada
| | - Liang Chen
- Department of Computer Science, College of Mathematics and Computer, Shantou University, Shantou 515063, China.
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ka Yin Leung
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel; Department of Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
5
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Su H, Li W, Okumura S, Wei Y, Deng Z, Li F. Transfer, elimination and accumulation of antibiotic resistance genes in decentralized household wastewater treatment facility treating total wastewater from residential complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169144. [PMID: 38070548 DOI: 10.1016/j.scitotenv.2023.169144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The fate and behavior of antibiotic resistance genes (ARGs) in decentralized household wastewater treatment facilities (DHWWTFs) are unclear. In this study, targeting on a representative DHWWTF that receive all wastewater from a residential complex having 150 households, the transfer, elimination and accumulation of tetG, tetM, sul1, sul2 and intl1 were quantitively studied through real-time PCR-based quantification, mass balance evaluation and the existing state analysis based on size fractionation. Significant abundance changes of the genes were observed in involved biological reactions and the sedimentation process due to microbial growth and decomposition as well as the accumulation of the genes to sludge. tetG and sul1 increased in their fluxes against respective input in the influent. Although substantial portions of the increased genes were found in excess sludge compared to the flux of genes in the influent, those remaining in the discharge were still high, with an average about 3.4 × 1014 copies/d. The abundance of all four genes (tetG, tetM, sul1and sul2) in both water and sludge phases showed a general trend of reduction as sludge accumulated gradually in its storage tank within two months after desludging. Classification of ARGs based on particle sizes (>250 μm, 125-250 μm, 75-125 μm, 25-75 μm, 3-25 μm, <3 μm) indicated that while the major part of ARGs were distributed in particles with larger sizes (125-250 μm), ARGs in smaller particles (3-25 μm) and free ARGs (<3 μm) still existed, which may pose a greater threat to water environment due to their poor settleability. The results of this study can benefit the optimization of on-site maintenance and operation of decentralized wastewater treatment facility for elimination of the transfer of ARGs.
Collapse
Affiliation(s)
- Haoning Su
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Wenjiao Li
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Shinya Okumura
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
7
|
Duan S, Su H, Xu W, Hu X, Xu Y, Cao Y, Wen G. Concentrations, distribution, and key influencing factors of antibiotic resistance genes and bacterial community in water and reared fish tissues in a typical tilapia farm in South China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 59:21-35. [PMID: 38009809 DOI: 10.1080/03601234.2023.2284617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Although previous studies have investigated the occurrence of antibiotic resistance genes (ARGs) in aquaculture, few have monitored the concentrations and propagation of ARGs in biological tissues or investigated the key factors influencing their spread in aquaculture. This study investigated the concentration, propagation, and distribution of ARGs and bacterial communities in water sources, pond water, and tilapia tissues, and their key influencing factors, in a typical tilapia farm. ErmF, sul1, and sul2 were the dominant ARGs with high concentrations. The total concentrations of ARGs (TCAs) in tilapia tissues decreased in the following order: stomach > scales > intestine > gills (P < 0.05). Redundancy analysis and multiple linear regression revealed that suspended solids (SS) and chemical oxygen demand (COD) were positively correlated with the dominant ARGs ermF sul2, and the TCAs (P < 0.05); additionally, Chloroflexi and Bacteroidetes in tilapia aquaculture water were positively correlated with the dominant ARGs ermF and sul2, as well as the TCAs (P < 0.05). This study suggests that SS and COD were the key factors driving the distribution and spread of ARGs in tilapia aquaculture water. Additionally, Chloroflexi and Bacteroidetes were the key bacterial flora affecting the propagation of ARGs in tilapia aquaculture systems.
Collapse
Affiliation(s)
- Sijia Duan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Haochang Su
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Guoliang Wen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
8
|
Yang Y, Zhou J, Shi D, Yang Z, Zhou S, Yang D, Chen T, Li J, Li H, Jin M. Landscape of antibiotic resistance genes and bacterial communities in groundwater on the Tibetan Plateau, and distinguishing their difference with low-altitude counterparts. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132300. [PMID: 37595466 DOI: 10.1016/j.jhazmat.2023.132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Groundwater is a vital source of drinking water for Tibetans. Antibiotic resistance genes (ARGs) and bacterial communities in groundwater on the Tibetan Plateau remain unclear. Furthermore, the characterization of their differences between high-altitude and low-altitude groundwater is still unrevealed. Herein, 32 groundwater samples were collected on the plateau, and intra- and extracellular ARGs (iARGs and eARGs), and bacterial communities were characterised through qPCR assays to 19 ARGs and 16S rRNA sequencing. It showed top four abundant intra- and extracellular last-resort ARGs (LARGs) were blaOXA-48, mcr-1, vanA, and vanB, whereas dominant common ARGs (CARGs) were tetA and ermB, respectively. CARGs had higher abundances than LARGs, and iARGs were more frequently detected than eARGs. Proteobacteria, an invasive resident phylum, and Firmicutes dominated eDNA release. Network analysis revealed all observed LARGs co-occurred with pathogenic and non-pathogenic bacteria. Community diversity was significantly associated with longitude and elevation, while nitrate correlated with ARGs. Comparative analysis demonstrated eARG frequencies and abundances were higher at high altitudes than at low altitudes. Additionally, Acinetobacter and Pseudomonas specifically dominated at high altitudes. This study reveals the widespread prevalence of ARGs, particularly LARGs, in groundwater on the less-disturbed Tibetan Plateau and underlines the potential risks associated with the LARG-carrying bacteria. ENVIRONMENTAL IMPLICATION: Antibiotic resistance genes (ARGs), which are defined as emerging environmental contaminants, are becoming a global concern due to their ability to confer antibiotic resistance to pathogens. Our findings highlight the prevalence of ARGs, particularly LARGs, in groundwater on the Tibetan Plateau, and the possibility that naturally-occurring pathogenic and non-pathogenic bacteria carry multiple LARGs. In addition, we further reveal differences in the distribution of ARGs and bacterial community between high-altitude and low-altitude groundwater. Collectively, our findings offer an important insight into the potential public risks related to groundwater on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yidi Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jiake Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
9
|
Zhao L, Lv Z, Lin L, Li X, Xu J, Huang S, Chen Y, Fu Y, Peng C, Cao T, Ke Y, Xia X. Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122133. [PMID: 37399936 DOI: 10.1016/j.envpol.2023.122133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023]
Abstract
The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, blaOXA, sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, blaNDM, and blaKPC during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.
Collapse
Affiliation(s)
- Liang Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Liangqiang Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Evangelista PA, Lourenço FMDO, Chakma D, Shaha CK, Konate A, Pimpinato RF, Louvandini H, Tornisielo VL. Bioaccumulation and Depletion of the Antibiotic Sulfadiazine 14C in Lambari ( Astyanax bimaculatus). Animals (Basel) 2023; 13:2464. [PMID: 37570273 PMCID: PMC10417336 DOI: 10.3390/ani13152464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Antibiotics are present in the environment, primarily due to their release through wastewater treatment plants, agricultural practices, and improper disposal of unused medications. In the environment, these drugs can be bioaccumulated by organisms and transferred along the food chain. This is a problem when considering the consumption of fish meat. In the United States, legislation stipulates that the maximum residue limit for sulfadiazine (SDZ) should not exceed 100 μg kg-1. Lambari fishes have potential economic importance in aquaculture, as they are relatively easy to breed and can be raised in small-scale operations. Finally, studying the biology and ecology of lambari could provide valuable information about freshwater ecosystems and their inhabitants. The current work aimed to measure the bioaccumulation and depletion of the antibiotic SDZ 14C in lambari (Astyanax bimaculatus). For this purpose, the tests were divided into two stages; seven days of exposure and seven days of depletion, where one fish was randomly selected and sampled every day. In the exposure phase, the fish were fed the medicated feed three times a day at a concentration of 2.5 mg·g-1. The control fish were fed uncontaminated feed. For the depletion phase, the remaining lambari were transferred to clean tanks and fed uncontaminated feed three times a day. The fish samples were burned in the Oxidizer and the reading of radioactivity was performed in a liquid scintillation spectrometer. It is worth noting that on day 7 and day 14, the water in the aquariums was filtered through filter paper to collect the metabolic excrement. SDZ concentrations increased over the days and accumulation occurred in the fish, with day seven presenting the maximum accumulation value of 91.7 ng·g-1 due to feeding uptake. After the depletion phase on day 13, the value found was 0.83 ng·g-1. The bioconcentration factor calculated was 20 L·kg-1. After the bioaccumulation period, the concentrations of SDZ in the water and excreta were 4.5 µg·L-1 and 363.5 ng·g-1, respectively. In the depletion period, the concentrations in the water and excreta were 0.01 µg·L-1 and 5.96 ng·g-1, respectively. These results imply that there was little SDZ bioaccumulation in the fish, but that it was distributed in larger amounts in the water. This is due to the physicochemical properties of the molecule with the low Log P value. Regarding the maximum residue limit, the value was below the established value. This study contributes to understanding SDZ dynamics in an aquatic species native to Brazil.
Collapse
Affiliation(s)
| | | | - Darmin Chakma
- Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh; (D.C.); (C.K.S.)
| | | | - Almamy Konate
- Institute for the Environment and Agriculture Research (INERA), National Centre for Scientific & Technological Research (CNRST), Ouagadougou 04 BP 8645, Burkina Faso
| | | | - Helder Louvandini
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba 13416-000, Brazil (H.L.)
| | - Valdemar Luiz Tornisielo
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba 13416-000, Brazil (H.L.)
| |
Collapse
|
11
|
Li S, Gao H, Zhang H, Wei G, Shu Q, Li R, Jin S, Na G, Shi Y. The fate of antibiotic resistance genes in the coastal lagoon with multiple functional zones. J Environ Sci (China) 2023; 128:93-106. [PMID: 36801045 DOI: 10.1016/j.jes.2022.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/18/2023]
Abstract
Coastal lagoons provide many important services to human society, but their year-round use for aquaculture introduces large amounts of sewage. The contamination of antibiotic resistance genes (ARGs) is therefore of great concern. In this study, 50 ARGs subtypes, two integrase genes (intl1, intl2), and 16S rRNA genes were detected by high-throughput quantitative PCR, and standard curves of all target genes were prepared for quantification. The occurrence and distribution of ARGs in a typical coastal lagoon (XinCun lagoon, China) were comprehensively explored. We detected 44 and 38 subtypes of ARGs in the water and sediment, respectively, and discuss the various factors influencing the fate of ARGs in the coastal lagoon. Macrolides-lincosamides-streptogramins B was the primary ARG type, and macB was the predominant subtype. Antibiotic efflux and antibiotic inactivation were the main ARG resistance mechanisms. The XinCun lagoon was divided into eight functional zones. The ARGs showed a distinct spatial distribution owing to the influence of microbial biomass and anthropogenic activity in different functional zones. Fishing rafts, abandoned fish ponds, the town sewage zone, and mangrove wetlands provided a large quantity of ARGs to the XinCun lagoon. Nutrients and heavy metals also significantly correlated with the fate of the ARGs, especially NO2--N and Cu, which cannot be ignored. It is noteworthy that lagoon-barrier systems coupled with persistent pollutant inputs result in coastal lagoons acting as a "buffer pool" for ARGs, which can then accumulate and threaten the offshore environment.
Collapse
Affiliation(s)
- Shisheng Li
- National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Gao
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Haibo Zhang
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Guangke Wei
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan provincet/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qin Shu
- National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ruijing Li
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Guangshui Na
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan provincet/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
12
|
Huang Q, Zhu J, Qu C, Wang Y, Hao X, Chen W, Cai P, Huang Q. Dichotomous Role of Humic Substances in Modulating Transformation of Antibiotic Resistance Genes in Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:790-800. [PMID: 36516830 DOI: 10.1021/acs.est.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Li Z, Wang M, Fang H, Yao Z, Liu H, Zhao W, Chen J. Solid-liquid interface adsorption of antibiotic resistance plasmids induced by nanoplastics aggravates gene pollution in aquatic ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120456. [PMID: 36279997 DOI: 10.1016/j.envpol.2022.120456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) and nanoplastics (NPs) have been identified as emerging pollutants in water environment; the interactions between antibiotic resistance plasmids (ARPs) and NPs will influence ARG transport in sediments. Herein, the adsorption experiments of a typical ARP onto polystyrene nanoplastics (PS-NPs) in river and lake sediments were conducted to elucidate the adsorption mechanisms and the effects of environmental factors. Results indicated that the adsorption amounts of PS-NPs increased with the dosages while decreased with the particle size of sediments. Multi-layer adsorption of PS-NPs was found to exist mainly in sand and silt sediments, whereas the filling adsorption dominated in the clay. Moreover, the adsorbed PS-NPs enhanced the physisorption of ARPs in sediments through stimulating the intraparticle diffusion of ARPs induced by electrostatic force. Besides, the adsorption amounts of ARPs onto the PS-NPs decreased with the increasing pH and dissolve organic matter due to the enhanced electrostatic repulsion and competitive adsorption. The ion strength played catalytic roles by increasing the electrostatic attraction and adsorption sites of ARPs on PS-NPs. The adsorbed ARPs in sediments were closely related with the ARGs in extra/intracellular DNA of biofilms, influencing the distribution and proliferation of ARGs largely. The findings indicate that ARG-associated pollution might be enhanced by the solid-liquid interface adsorption induced by NPs, which was controlled by pH, ion strength and dissolve organic matter. This study provides supplementary insights into the roles of NPs as carriers of ARP in sediments, and advances our understanding on the risks of NP-ARG co-occurring contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Mengjun Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Hong Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zhangchao Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
14
|
Leung KY, Wang Q, Zheng X, Zhuang M, Yang Z, Shao S, Achmon Y, Siame BA. Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Virulence 2022; 13:5-18. [PMID: 34969351 PMCID: PMC9794015 DOI: 10.1080/21505594.2021.2006890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings.
Collapse
Affiliation(s)
- Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel,CONTACT Ka Yin Leung
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiaochang Zheng
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China
| | - Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Zhiyun Yang
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion – Israel Institute of Technology, Shantou, China,Faculty of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Bupe A. Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada,Bupe A. Siame
| |
Collapse
|
15
|
Chowdhury NN, Hicks E, Wiesner MR. Investigating and Modeling the Regulation of Extracellular Antibiotic Resistance Gene Bioavailability by Naturally Occurring Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15044-15053. [PMID: 35853206 PMCID: PMC9979080 DOI: 10.1021/acs.est.2c02878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular antibiotic resistance genes (eARGs) are widespread in the environment and can genetically transform bacteria. This work examined the role of environmentally relevant nanoparticles (NPs) in regulating eARG bioavailability. eARGs extracted from antibiotic-resistant B. subtilis were incubated with nonresistant recipient B. subtilis cells. In the mixture, particle type (either humic acid coated nanoparticles (HASNPs) or their micron-sized counterpart (HASPs)), DNase I concentration, and eARG type were systematically varied. Transformants were counted on selective media. Particles decreased bacterial growth and eARG bioavailability in systems without nuclease. When DNase I was present (≥5 μg/mL), particles increased transformation via chromosomal (but not plasmid-borne) eARGs. HASNPs increased transformation more than HASPs, indicating that the smaller nanoparticle with greater surface area per volume is more effective in increasing eARG bioavailability. These results were also modeled via particle aggregation theory, which represented eARG-bacteria interactions as transport leading to collision, followed by attachment. Using attachment efficiency as a fitting factor, the model predicted transformant concentrations within 35% of experimental data. These results confirm the ability of NPs to increase eARG bioavailability and suggest that particle aggregation theory may be a simplified and suitable framework to broadly predict eARG uptake.
Collapse
Affiliation(s)
- Nadratun N Chowdhury
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ethan Hicks
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
16
|
Hu X, Waigi MG, Yang B, Gao Y. Impact of Plastic Particles on the Horizontal Transfer of Antibiotic Resistance Genes to Bacterium: Dependent on Particle Sizes and Antibiotic Resistance Gene Vector Replication Capacities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14948-14959. [PMID: 35503986 DOI: 10.1021/acs.est.2c00745] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plastic particles impact the propagation of antibiotic resistance genes (ARGs) in environmental media, and their perturbation on the horizontal gene transfer (HGT) of ARGs is recognized as a critical influencing mechanism. However, studies concerning the influence and influencing mechanisms of plastic particles on the HGT of ARGs were limited, particularly for the effect of particle sizes and ARG vector-associated mechanisms. This study explored the impact of polystyrene (PS) particles with sizes of 75, 90, 100, 1000, and 10000 nm on the HGT (via transformation) of ARGs mediated by pUC19, pSTV29, and pBR322 plasmids into Escherichia coli cells. PS particles with sizes ≤100 nm impacted the transformation of ARGs, but large particles (1000 and 10000 nm) showed no obvious effects. Effects of PS particles on the transfer of three plasmids were vastly distinct. For pUC19 with high replication capacities, the transfer was monotonously promoted. However, for pSTV29 and pBR322 with low replication capacities, suppressing effects were observed. This was attributed to two competing mechanisms. The enhancing mechanism was that the direct interaction of PS particles with membrane lipids and the indirect effect associated with bacterial oxidative stress response induced pore formation on the cell membrane and increased membrane permeability, thus enhancing plasmid entrance. The inhibiting mechanism was that PS particles interfered with plasmid replication inside E. coli, thus decreasing the bacterial tranformation. This study deepened our understanding of the environmental dissemination of ARGs in plastic contamination.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, P.R. China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, P.R. China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, P.R. China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, P.R. China
| |
Collapse
|
17
|
Ye M, Zhang Z, Sun M, Shi Y. Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. IMETA 2022; 1:e34. [PMID: 38868707 PMCID: PMC10989830 DOI: 10.1002/imt2.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Extracellular DNA (eDNA) and intracellular DNA (iDNA) extensively exist in both terrestrial and aquatic environment systems and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, eDNA is able to present stability in the environment from the ribosome enzyme lysis, therein acting as the historical genetic information archive of the microbiome. As a consequence, both eDNA and iDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, eDNA is a ubiquitous composition of the cell membrane, which exerts a great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, pesticides, and so on. This study focuses on the environmental dynamics and the ecological functions of the eDNA and iDNA from the perspectives of environmental behavior, genetic information transmission, resistance to the environmental contaminants, and so on. By reviewing the status quo and the future vista of the e/iDNAs research, this article sheds light on exploring the ecological functioning of the e/iDNAs in the environmental microbiome.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
18
|
Zuo X, Suo P. Distribution of typical antibiotic resistance genes in underlying surface sediments from urban commercial public squares and their potential hosts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155730. [PMID: 35525346 DOI: 10.1016/j.scitotenv.2022.155730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Increasing attention has been paid to antibiotic resistance genes (ARGs) in environments. However, no available literature could be found on ARGs contamination in urban underlying surface sediments. In this study, sediments from commercial public squares around Nanjing (China) were selected for the investigation of target ARGs distribution, showing that intracellular ARGs (iARGs) in particles were the dominant with their relative abundances in descending order of 4.82 × 10-2 copies/16S rRNA (<0.063 mm), 4.18 × 10-2 copies/16S rRNA (0.063-0.125 mm), 3.70 × 10-2 copies/16S rRNA (0.25-0.5 mm), 3.44 × 10-2 copies/16S rRNA (0.5-1 mm), 3.20 × 10-2 copies/16S rRNA (0.125-0.25 mm) and 9.53 × 10-3 copies/16S rRNA (1-2 mm), which was different with that of extracellular ARGs (eARGs). The influence of street sweeping on ARGs levels indicated that the species and relative abundances for both iARGs and eARGs in sediments from different sites were not consistent with the corresponding population densities. The correlation between ARGs and dominant bacterial communities implied that both Firmicutes and Bacteroidetes were positively correlated with ARGs (P < 0.01). The role of solar UV disinfection demonstrated that UV irradiation could inactivate antibiotic resistance bacteria (ARB) slightly with 0.5-1.0 log reduction, implying a considerable risk of ARB after solar irradiation. Our results suggested that it would need the more effective sweeping modes for the cleaning of small particles (<0.25 mm) and the higher disinfection to ARGs potential hosts (like Firmicutes and Blastocatella).
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - PengCheng Suo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
19
|
Hu F, Zhang T, Liang J, Xiao J, Liu Z, Dahlgren RA. Impact of biochar on persistence and diffusion of antibiotic resistance genes in sediment from an aquaculture pond. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57918-57930. [PMID: 35355188 DOI: 10.1007/s11356-022-19700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture sediments are a purported sizable pool of antibiotic resistance genes (ARGs). However, the pathways for transmission of ARGs from sediments to animals and humans remain unclear. We conducted an ARG survey in sediments from a bullfrog production facility located in Guangdong, China, and simulated zebrafish breeding systems were constructed, with or without biochar addition in sediments, to explore the effects of biochar on ARGs and their precursors of the sediment and zebrafish gut. After 60 days, 6 subtypes of ARGs and intI1 were detected, with sediments harboring more ARGs than zebrafish gut. The addition of biochar reduced the abundance of ARGs in the sediment and zebrafish gut, as well as suppressed the horizontal transmission of ARGs from sediment to zebrafish gut. Network analysis and partial least squares path modeling revealed that ARG enrichment was mainly affected by bacterial groups dominated by Nitrospirae, Gemmatimonades, Chloroflexi, and Cyanobacteria and intI1. Our findings provide insights into the transmission of ARGs from sediment to animals and highlight the efficacy of biochar amendments to aquaculture sediments to reduce the transmission of ARGs.
Collapse
Affiliation(s)
- Fengjie Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Taiping Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
| | - Jinni Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiahui Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zidan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Mursalim MF, Budiyansah H, Raharjo HM, Debnath PP, Sakulworakan R, Chokmangmeepisarn P, Yindee J, Piasomboon P, Elayaraja S, Rodkhum C. Diversity and antimicrobial susceptibility profiles of Aeromonas spp. isolated from diseased freshwater fishes in Thailand. JOURNAL OF FISH DISEASES 2022; 45:1149-1163. [PMID: 35598068 DOI: 10.1111/jfd.13650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Motile Aeromonas septicemia (MAS), a disease caused by Aeromonas spp., is recognized as a major disease in freshwater aquaculture. This study aimed to investigate the distribution and diversity of Aeromonas spp. and their antimicrobial susceptibility patterns. A total of 86 isolates of Aeromonas spp. were recovered from diseased freshwater fishes from 13 farms in Thailand. All isolates were identified using biochemical characteristics, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), polymerase chain reaction assays, and the gyrB gene sequence analysis. The result of MALDI-TOF MS showed 100% (86 isolates) accuracy at genus-level identification, and 88.4% (76 isolates) accuracy at species-level identification. Six species of Aeromonas were confirmed through nucleotide sequencing and phylogenetic analysis of the gyrB gene Aeromonas veronii (72.1%), Aeromonas jandaei (11.6%), Aeromonas schubertii (9.3%), Aeromonas diversa (3.5%), Aeromonas hydrophila (2.3%), and Aeromonas punctata (1.2%). Antimicrobial susceptibility tests for all isolates revealed resistance against amoxicillin (99%), ampicillin (98%), oxolinic acid (81.4%), oxytetracycline (77%), trimethoprim-sulfamethoxazole (24%), and enrofloxacin (21%). The multiple antibiotic resistance (MAR) index varied between 0.14 and 0.86, with MAR values more than 0.2 in 99% of isolates. Furthermore, four diverse multidrug-resistant (MDR) patterns were found among Aeromonas isolates. Our finding show that A. veronii is the most abundant species in Thai cultured freshwater fish with the highest MDR patterns.
Collapse
Affiliation(s)
- Muhammad Fadhlullah Mursalim
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Hendri Budiyansah
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hartanto Mulyo Raharjo
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Partho Pratim Debnath
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Sakulworakan
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Patharapol Piasomboon
- Department of Veterinary Medicine, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sivaramasamy Elayaraja
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases Research Unit (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Fu C, Ding H, Zhang Q, Song Y, Wei Y, Wang Y, Wang B, Guo J, Qiao M. Comparative analysis of antibiotic resistance genes on a pig farm and its neighboring fish ponds in a lakeside district. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119180. [PMID: 35307495 DOI: 10.1016/j.envpol.2022.119180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics usage in animal production is considered a primary driver of the occurrence, supply and spread of antibiotic resistance genes (ARGs) in the environment. Pig farms and fish ponds are important breeding systems in food animal production. In this study, we compared and analyzed broad ARGs profiles, mobile genetic elements (MGEs) and bacterial communities in a representative pig farm and neighboring fish ponds around Poyang Lake, the largest freshwater lake in China. The factors influencing the distribution of ARGs were also explored. The results showed widespread detection of ARGs (from 57 to 110) among 283 targeted ARGs in the collected water samples. The differences in the number and relative abundance of ARGs observed from the pig farm and neighboring fish ponds revealed that ARG contamination was more serious on the pig farm than in the fish ponds and that the water treatment plant on the pig farm was not very effective. Based on the variance partition analysis (VPA), MGEs, bacterial communities and water quality indicators (WIs) codrive the relative abundance of ARGs. Based on network analysis, we found that total phosphorus and Tp614 were the most important WIs and MGEs affecting ARG abundance, respectively. Our findings provide fundamental data on farms in lakeside districts and provide insights into establishing standards for the discharge of aquaculture wastewater.
Collapse
Affiliation(s)
- Chenxi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Academy of Water Science and Engineering, Nanchang, Jiangxi, 330029, China
| | - Qianqian Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yaqiong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yuguang Wei
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs/Department of Resource and Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Yao Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs/Department of Resource and Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Boming Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs/Department of Resource and Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs/Department of Resource and Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
22
|
Zou Y, Wu M, Liu J, Tu W, Xie F, Wang H. Deciphering the extracellular and intracellular antibiotic resistance genes in multiple environments reveals the persistence of extracellular ones. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128275. [PMID: 35093750 DOI: 10.1016/j.jhazmat.2022.128275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The extracellular and intracellular antibiotic resistance genes (eARGs and iARGs) together constitute the entire resistome in environments. However, the systematic analysis of eARGs and iARGs was still inadequate. Three kinds of environments, i.e., livestock manure, sewage sludge, and lake sediment, were analyzed to reveal the comprehensive characteristics of eARGs and iARGs. Based on the metagenomic data, the diversities, relative abundances, and compositions of eARGs and iARGs were similar. The extracellular and intracellular integrons and insertion sequences (ISs) also did not show any significant differences. However, the degree and significance of the correlation between total relative abundances of integrons/ISs and ARGs were lower outside than inside the cells. Gene cassettes carried by class 1 integron were amplified in manure and sludge samples, and sequencing results showed that the identified ARGs extracellularly and intracellularly were distinct. By analyzing the genetic contexts, most ARGs were found located on chromosomes. Nevertheless, the proportion of ARGs carried by plasmids increased extracellularly. qPCR was employed to quantify the absolute abundances of sul1, sul2, tetO, and tetW, and their extracellular proportions were found highest in sludge samples. These findings together raised the requirements of considering eARGs and iARGs separately in terms of risk evaluation and removal management.
Collapse
Affiliation(s)
- Yina Zou
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Menghan Wu
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayu Liu
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Fengxing Xie
- Tianjin Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Science, Tianjin 300384, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Zhou A, Xie S, Tang H, Zhang L, Zhang Y, Zuo Z, Li X, Zhao W, Xu G, Zou J. The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23806-23822. [PMID: 34817812 DOI: 10.1007/s11356-021-17578-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.
Collapse
Affiliation(s)
- Aiguo Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI, C1A 5T1, Canada
| | - Shaolin Xie
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huijuan Tang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Zhang
- Departments of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Zhiheng Zuo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI, C1A 5T1, Canada
| | - Wenyu Zhao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Yuan PB, Zhan Y, Zhu JH, Ling JH, Chen EZ, Liu WT, Wang LJ, Zhong YX, Chen DQ. Pan-Genome Analysis of Laribacter hongkongensis: Virulence Gene Profiles, Carbohydrate-Active Enzyme Prediction, and Antimicrobial Resistance Characterization. Front Microbiol 2022; 13:862776. [PMID: 35432229 PMCID: PMC9008761 DOI: 10.3389/fmicb.2022.862776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Laribacter hongkongensis is a new emerging foodborne pathogen that causes community-acquired gastroenteritis and traveler’s diarrhea. However, the genetic features of L. hongkongensis have not yet been properly understood. A total of 45 aquatic animal-associated L. hongkongensis strains isolated from intestinal specimens of frogs and grass carps were subjected to whole-genome sequencing (WGS), along with the genome data of 4 reported human clinical strains, the analysis of virulence genes, carbohydrate-active enzymes, and antimicrobial resistance (AMR) determinants were carried out for comprehensively understanding of this new foodborne pathogen. Human clinical strains were genetically more related to some strains from frogs inferred from phylogenetic trees. The distribution of virulence genes and carbohydrate-active enzymes exhibited different patterns among strains of different sources, reflecting their adaption to different host environments and indicating different potentials to infect humans. Thirty-two AMR genes were detected, susceptibility to 18 clinical used antibiotics including aminoglycoside, chloramphenicol, trimethoprim, and sulfa was checked to evaluate the availability of clinical medicines. Resistance to Rifampicin, Cefazolin, ceftazidime, Ampicillin, and ceftriaxone is prevalent in most strains, resistance to tetracycline, trimethoprim-sulfamethoxazole, ciprofloxacin, and levofloxacin are aggregated in nearly half of frog-derived strains, suggesting that drug resistance of frog-derived strains is more serious, and clinical treatment for L. hongkongensis infection should be more cautious.
Collapse
|
25
|
Chen J, Yang Y, Jiang X, Ke Y, He T, Xie S. Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. J Environ Sci (China) 2022; 113:345-355. [PMID: 34963542 DOI: 10.1016/j.jes.2021.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 06/14/2023]
Abstract
To meet the rapidly growing global demand for aquaculture products, large amounts of antibiotics were used in aquaculture, which might accelerate the evolution of antibiotic-resistant bacteria (ARB) and the propagation of antibiotic genes (ARGs). In our research, we revealed the ARGs profiles, their co-occurrence with mobile genetic elements (MGEs), and potential hosts in sediments of a crab pond wastewater purification system based on metagenomic analysis. The residual antibiotic seems to increase the propagation of ARGs in the crab pond, but there was no clear relationship between a given antibiotic type and the corresponding resistance genes. The effect of aquaculture on sediment was not as profound as that of other anthropogentic activities, but increased the relative abundance of sulfonamide resistance gene. A higher abundance of MGEs, especially plasmid, increased the potential ARGs dissemination risk in crab and purification ponds. Multidrug and sulfonamide resistance genes had greater potential to transfer because they were more frequently carried by MGEs. The horizontal gene transfer was likely to occur among a variety of microorganisms, and various ARGs hosts including Pseudomonas, Acinetobacter, Escherichia, and Klebsiella were identified. Bacterial community influenced the composition of ARG hosts, and Proteobacteria was the predominant hosts. Overall, our study provides novel insights into the environmental risk of ARGs in sediments of aquaculture wastewater treatment system.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Tao He
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Mitchell J, Purohit M, Jewell CP, Read JM, Marrone G, Diwan V, Stålsby Lundborg C. Trends, relationships and case attribution of antibiotic resistance between children and environmental sources in rural India. Sci Rep 2021; 11:22599. [PMID: 34799577 PMCID: PMC8604955 DOI: 10.1038/s41598-021-01174-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial antibiotic resistance is an important global health threat and the interfaces of antibiotic resistance between humans, animals and the environment are complex. We aimed to determine the associations and overtime trends of antibiotic resistance between humans, animals and water sources from the same area and time and estimate attribution of the other sources to cases of human antibiotic resistance. A total of 125 children (aged 1-3 years old) had stool samples analysed for antibiotic-resistant bacteria at seven time points over two years, with simultaneous collection of samples of animal stools and water sources in a rural Indian community. Newey-West regression models were used to calculate temporal associations, the source with the most statistically significant relationships was household drinking water. This is supported by use of SourceR attribution modelling, that estimated the mean attribution of cases of antibiotic resistance in the children from animals, household drinking water and wastewater, at each time point and location, to be 12.6% (95% CI 4.4-20.9%), 12.1% (CI 3.4-20.7%) and 10.3% (CI 3.2-17.3%) respectively. This underlines the importance of the 'one health' concept and requires further research. Also, most of the significant trends over time were negative, suggesting a possible generalised improvement locally.
Collapse
Affiliation(s)
- Joseph Mitchell
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Manju Purohit
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Pathology, R.D. Gardi Medical College, Ujjain, 456006, India.
| | - Chris P Jewell
- Faculty of Health and Medicine, Lancaster Medical School, Lancaster University, Lancaster, England, UK
| | - Jonathan M Read
- Faculty of Health and Medicine, Lancaster Medical School, Lancaster University, Lancaster, England, UK
| | - Gaetano Marrone
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Vishal Diwan
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
- Division of Environmental Monitoring and Exposure Assessment (Water and Soil), ICMR - National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Cecilia Stålsby Lundborg
- Department of Global Public Health, Health Systems and Policy (HSP): Improving Use of Medicines, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
27
|
Zhuang M, Achmon Y, Cao Y, Liang X, Chen L, Wang H, Siame BA, Leung KY. Distribution of antibiotic resistance genes in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117402. [PMID: 34051569 DOI: 10.1016/j.envpol.2021.117402] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 05/12/2023]
Abstract
The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990-2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the 'omics' tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.
Collapse
Affiliation(s)
- Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuping Cao
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaomin Liang
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China; Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Bupe A Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada
| | - Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Cheng X, Lu Y, Song Y, Zhang R, ShangGuan X, Xu H, Liu C, Liu H. Analysis of Antibiotic Resistance Genes, Environmental Factors, and Microbial Community From Aquaculture Farms in Five Provinces, China. Front Microbiol 2021; 12:679805. [PMID: 34248893 PMCID: PMC8264556 DOI: 10.3389/fmicb.2021.679805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
The excessive use of antibiotics speeds up the dissemination and aggregation of antibiotic resistance genes (ARGs) in the environment. The ARGs have been regarded as a contaminant of serious environmental threats on a global scale. The constant increase in aquaculture production has led to extensive use of antibiotics as a means to prevent and treat bacterial infections; there is a universal concern about the environmental risk of ARGs in the aquaculture environment. In this study, a survey was conducted to evaluate the abundance and distributions of 10 ARGs, bacterial community, and environmental factors in sediment samples from aquatic farms distributed in Anhui (AP1, AP2, and AP3), Fujian (FP1, FP2, and FP3), Guangxi (GP1, GP2, and GP3), Hainan (HP1, HP2, and HP3), and Shaanxi (SP1, SP2, and SP3) Province in China. The results showed that the relative abundance of total ARGs was higher in AP1, AP2, AP3, FP3, GP3, HP1, HP2, and HP3 than that in FP1, FP2, GP1, GP2, SP1, SP2, and SP3. The sul1 and tetW genes of all sediment samples had the highest abundance. The class 1 integron (intl1) was detected in all samples, and the result of Pearson correlation analysis showed that the intl1 has a positive correlation with the sul1, sul2, sul3, blaOXA, qnrS, tetM, tetQ, and tetW genes. Correlation analysis of the bacterial community diversity and environmental factors showed that the Ca2+ concentration has a negative correlation with richness and diversity of the bacterial community in these samples. Of the identified bacterial community, Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidota were the predominant phyla in these samples. Redundancy analysis showed that environmental factors (TN, TP, Cl–, and Ca2+) have a positive correlation with the bacterial community (AP1, GP1, GP2, GP3, SP1, SP2, and SP3), and the abundance of ARGs (sul1, tetW, qnrS, and intl1) has a positive correlation with the bacterial community (AP2, AP3, HP1, HP2, and HP3). Based on the network analysis, the ARGs (sul1, sul2, blaCMY, blaOXA, qnrS, tetW, tetQ, tetM, and intl1) were found to co-occur with bacterial taxa from the phyla Chloroflexi, Euryarchaeota, Firmicutes, Halobacterota, and Proteobacteria. In conclusion, this study provides an important reference for understanding the environmental risk associated with aquaculture activities in China.
Collapse
Affiliation(s)
- Xu Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ruifang Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinyan ShangGuan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
29
|
Zou HY, He LY, Gao FZ, Zhang M, Chen S, Wu DL, Liu YS, He LX, Bai H, Ying GG. Antibiotic resistance genes in surface water and groundwater from mining affected environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145516. [PMID: 33571766 DOI: 10.1016/j.scitotenv.2021.145516] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/05/2023]
Abstract
Mining activities are known to generate a large amount of mine tailings and acid mine drainage which contain varieties of heavy metals. Heavy metals play an important role in co-selection for bacterial antibiotic resistance. However, the characteristics of antibiotic resistance genes (ARGs) in mining-affected water environments are still unclear. Here we investigated the pollution of metals, profiles of ARGs, mobile genetic elements (MGEs) and microbial community in mining-affected surface water and groundwater. The results showed that in the tested water samples, the concentrations of Zn and Mn were the highest, and Ni was the lowest. Higher abundances of ARGs with great proportion of sulfonamides, chloramphenicols and tetracyclines resistance genes were found in mining-affected water when compared with those without mining activities. Additionally, there were positive correlations between heavy metals (especially Ni, Zn and Mn) and these ARGs. Linear regression analysis suggested that MGEs were positively correlated with ARGs. In addition, total phosphorus was correlated with ARGs (p < 0.05). The microbial community was different between the mining-affected water and the reference (p < 0.05). Proteobacteria, Bacteroidetes and Actinobacteria were dominant phyla in the surface water and groundwater. Network analysis showed that many ARGs were significantly associated with these dominant bacteria, which suggested they might be potential hosts for these ARGs. These findings provide a clear evidence that the mining activities in the study area had a significant impact on surface water and groundwater to different degrees.
Collapse
Affiliation(s)
- Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Shuai Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5723. [PMID: 34073520 PMCID: PMC8198758 DOI: 10.3390/ijerph18115723] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Silvano Focardi
- Department of Environmental Sciences, Università di Siena, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
31
|
Prevalence, Virulence Gene Distribution and Alarming the Multidrug Resistance of Aeromonas hydrophila Associated with Disease Outbreaks in Freshwater Aquaculture. Antibiotics (Basel) 2021; 10:antibiotics10050532. [PMID: 34064504 PMCID: PMC8147934 DOI: 10.3390/antibiotics10050532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/15/2023] Open
Abstract
The study aims to evaluate the infection prevalence, virulence gene distribution and antimicrobial resistance of Aeromonas hydrophila associated in diseased outbreaks of cultured freshwater fish in Northern Vietnam. The confirmed A. hydrophila were screened for the presence of the five pitutative-virulence genes including aerolysin (aerA), hemolysin (hlyA), cytotonic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), and heat-stable enterotoxin (ast), and examined the susceptibility to 16 antibiotics. A total of 236 A. hydrophila isolates were recovered and confirmed from 506 diseased fish by phenotypic tests, PCR assays, and gyrB, rpoB sequenced analyses, corresponding to the infection prevalence at 46.4%. A total of 88.9% of A. hydrophila isolates harbored at least one of the tested virulence genes. The genes aerA and act were most frequently found (80.5% and 80.1%, respectively) while the ast gene was absent in all isolates. The resistance to oxacillin, amoxicillin and vancomycin exhibited the highest frequencies (>70%), followed by erythromycin, oxytetracycline, florfenicol, and sulfamethoxazole/trimethoprim (9.3–47.2%). The multiple antibiotic resistance (MAR) index ranged between 0.13–0.88 with 74.7% of the isolates having MAR values higher than 0.2. The results present a warning for aquaculture farmers and managers in preventing the spread of A. hydrophila and minimizing antibiotic resistance of this pathogen in fish farming systems.
Collapse
|
32
|
Chowdhury NN, Cox AR, Wiesner MR. Nanoparticles as vectors for antibiotic resistance: The association of silica nanoparticles with environmentally relevant extracellular antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143261. [PMID: 33223180 DOI: 10.1016/j.scitotenv.2020.143261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 05/09/2023]
Abstract
A relevant but yet unconsidered subset of particles that may alter the fate of extracellular antibiotic resistance genes (eARGs) are nano-scale particles (NPs), which are ubiquitous in natural environments and have unique properties. In this study, sorption isotherms were developed describing the association of linear DNA fragments isolated from widespread eARGs (blaI and nptII) with either micon-sized kaolinite or silica nanoparticles (SNPs), to determine if sorption capacity was enhanced at the nanoscale. For each isotherm, eARG fragments were added at five starting concentrations (5-40 μg/mL) to mixed batch systems with 0.25 g of particles and nuclease-free water. Sorption was quantified by the removal of DNA from solution, as detected by a Qubit fluorimeter. Isotherms were developed for eARGs of various fragment lengths (508, 680 and 861 bp), guanine-cytosine (GC) contents (34%, 47% and 54%) and both double and single stranded eARGs, to assess the impact of DNA properties on particle association. Sorption isotherms were also developed in systems with added humic acid and/or CaCl2, to assess the impact of these environmental parameters on sorption. FTIR analysis was performed to analyze the conformation of sorbed eARGs. Desorption of eARGs was studied by quantifying the removal of eDNA from washed and vortexed post-sorption particles. Statistically significant irreversible sorption of eARGs to environmentally relevant NPs (humic acid functionalized silica nanoparticles) was demonstrated for the first time. Nano-emergent properties did not increase sorption capacity of eARGs, but led to a unique compressed conformation of sorbed eARGs. The addition of humic acid, increased CaCl2 concentration and small DNA fragment size favored sorption. NPs showed a slight preference for the sorption of single-stranded DNA over double-stranded DNA. These findings suggest that NP association with eARGs may be a significant and unique environmental phenomenon that could influence the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Nadratun N Chowdhury
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.
| | - Akylah R Cox
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke Hudson Hall, Box 90287, Durham, NC 27708-0287, USA
| |
Collapse
|
33
|
Li W, Su H, Li J, Bhat SA, Cui G, Han ZM, Nadya DS, Wei Y, Li F. Distribution of extracellular and intracellular antibiotic resistance genes in sludge fractionated in terms of settleability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143317. [PMID: 33223182 DOI: 10.1016/j.scitotenv.2020.143317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The widespread proliferation of antibiotic resistance genes (ARGs) is a serious environmental and human health issue. Wastewater treatment facilities (WWTFs) are potential sources to spread ARGs to natural environment, for which, the presence state of ARGs in the sludge, as extracellular ones (eARGs) or intracellular ones (iARGs), along with the sludge settleability, are very important factors. The sludge settleability is closely associated with its floc size and density, bacterial activity, and the proportion of intact/damaged bacterial cells that aggregate together to form flocs for separation in the sedimentation process. It is reasonable to hypothesize that the distribution of eARGs and iARGs may differ with the sludge fractions of different settleability, a topic of great academic and practical significance requiring clarification. In this study, sludge samples from the aerobic contact tank of six household WWTFs were fractionated into fractions with different settling velocities: sludge of low settleability (LS), medium settleability (MS) and high settleability (HS); and the distribution of eARGs and iARGs in the obtained fractions for the widely detected tet G, tet M and sul 1 in water environment was evaluated based on the PMA-qPCR method, together with the evaluation for the well reported mobile genomic element intl 1 and total bacterial 16S rDNA. For the LS fractions, which contained more damaged bacterial cells, the distribution percentages of eARGs were generally higher than those of iARGs. For the HS fractions, which contained flocs with larger sizes formed by both intact and damaged bacterial cells, the relative abundances of ARGs and intl 1 were found apparently lower even if the presence percentages of eARGs were comparatively higher. It is thus inferable that sludge fractions of LS may possess higher transfer potential for ARGs and enhancing their settleability through optimization of the operation conditions is important for mitigating the proliferation of ARGs.
Collapse
Affiliation(s)
- Wenjiao Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haoning Su
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jiefeng Li
- Department of Architecture, Lu Liang University, Lishi, Shanxi 033000, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Guangyu Cui
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Zaw Min Han
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Diva Sagita Nadya
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Sánchez-Baena AM, Caicedo-Bejarano LD, Chávez-Vivas M. Structure of Bacterial Community with Resistance to Antibiotics in Aquatic Environments. A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2348. [PMID: 33673692 PMCID: PMC7957730 DOI: 10.3390/ijerph18052348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Aquatic environments have been affected by the increase in bacterial resistant to antibiotics. The aim of this review is to describe the studies carried out in relation to the bacterial population structure and antibiotic resistance genes in natural and artificial water systems. We performed a systematic review based on the PRISMA guideline (preferred reporting items for systematic reviews and meta-analyzes). Articles were collected from scientific databases between January 2010 and December 2020. Sixty-eight papers meeting the inclusion criteria, i.e., "reporting the water bacterial community composition", "resistance to antibiotics", and "antibiotic resistance genes (ARG)", were evaluated according to pre-defined validity criteria. The results indicate that the predominant phyla were Firmicutes and Bacteroidetes in natural and artificial water systems. Gram-negative bacteria of the family Enterobacteraceae with resistance to antibiotics are commonly reported in drinking water and in natural water systems. The ARGs mainly reported were those that confer resistance to β-lactam antibiotics, aminoglycosides, fluoroquinolones, macrolides and tetracycline. The high influence of anthropogenic activity in the environment is evidenced. The antibiotic resistance genes that are mainly reported in the urban areas of the world are those that confer resistance to the antibiotics that are most used in clinical practice, which constitutes a problem for human and animal health.
Collapse
Affiliation(s)
- Ana María Sánchez-Baena
- Department of Natural Sciences, Exact and Statistics, Faculty of Basic Sciences, Campus Pampalinda, Universidad Santiago de Cali, Cali Calle 5 # 62-00, Colombia;
| | - Luz Dary Caicedo-Bejarano
- Department of Natural Sciences, Exact and Statistics, Faculty of Basic Sciences, Campus Pampalinda, Universidad Santiago de Cali, Cali Calle 5 # 62-00, Colombia;
| | - Mónica Chávez-Vivas
- Department of Biomedical Sciences, Faculty of Health, Campus Pampalinda, Universidad Santiago de Cali, Cali Calle 5 # 62-00, Colombia;
| |
Collapse
|
35
|
Zarei-Baygi A, Smith AL. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies. BIORESOURCE TECHNOLOGY 2021; 319:124181. [PMID: 33254446 DOI: 10.1016/j.biortech.2020.124181] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) are present as both intracellular and extracellular fractions of DNA in the environment. Due to the poor yield of extracellular DNA in conventional extraction methods, previous studies have mainly focused on intracellular ARGs (iARGs). In this review, we evaluate the prevalence/persistence and horizontal transfer of iARGs and extracellular ARGs (eARGs) in different environments, and then explore advanced mitigation strategies in wastewater treatment plants (WWTPs) for preventing the spread of antibiotic resistance in the environment. Although iARGs are the main fraction of ARGs in nutrient-rich environments, eARGs are predominant in receiving aquatic environments. In such environments, natural transformation of eARGs occurs with a comparable frequency to conjugation of iARGs. Further, eARGs can be adsorbed by soil and sediments particles, protected from DNase degradation, and consequently persist longer than iARGs. Collectively, these characteristics emphasize the crucial role of eARGs in the spread of antibiotic resistance in the environment. Fate of iARGs and eARGs through advanced treatment technologies (disinfection and membrane filtration) indicates that different mitigation strategies may be required for each ARG fraction to be significantly removed. Finally, comprehensive risk assessment is needed to evaluate/compare the effect of iARGs versus eARGs in the environment.
Collapse
Affiliation(s)
- Ali Zarei-Baygi
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, United States
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 920 Downey Way, Los Angeles, CA 90089, United States.
| |
Collapse
|
36
|
Extracellular DNA (eDNA): Neglected and Potential Sources of Antibiotic Resistant Genes (ARGs) in the Aquatic Environments. Pathogens 2020; 9:pathogens9110874. [PMID: 33114079 PMCID: PMC7690795 DOI: 10.3390/pathogens9110874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.
Collapse
|
37
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
38
|
Zhang Y, Lu J, Wu J, Wang J, Lin Y. Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137712. [PMID: 32325606 DOI: 10.1016/j.scitotenv.2020.137712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Extensive and improper overuse of antibiotics resulted in the prevalence of antibiotic resistance genes (ARGs). As the typical semi-enclosed continental shelf sea, the Bohai Sea has been considered as one of the most polluted marine areas in China. However, no comprehensive investigation on the spatial distribution of ARGs in sediments from the Bohai Sea has been reported. A large-scale sampling was performed in the Bohai Sea areas. The abundances of ARGs (6 classes, 29 ARG subtypes), class 1 integron-integrase gene (intI1), hmt-DNA and 16S rRNA gene were evaluated. IntI1 was detected with higher abundances in coastal areas ranging from 2.8 × 105 to 2.5 × 108 copies/g. The total ARGs abundances varied over 3 orders of magnitude in different sampling sites with the maximum at 4.9 × 108 copies/g. Sulfonamides resistance genes were ubiquitous and abundant with the abundances ranging from 5.7 × 104 to 1.8 × 107 copies/g, and quinolones resistance genes varied greatly in different samples. The contour map demonstrated that ARGs were more abundant in the Laizhou Bay, the south of Bohai Bay and the eastern of central sea basin. Most of the target ARG subtypes were detected with 100% detection frequencies. The genes of sul1, sul2 and tetX were detected with both higher absolute and relative abundance, while the abundance of β-lactams ARG subtypes was lower. Principal component analysis (PCA) and redundancy analysis (RDA) indicated that no significant differences in the ARGs abundance existed in different samples, and the sediment qualities played important roles in the distribution of ARGs. Bacterial communities were investigated and 768 strong and significant connections between ARGs and bacteria were identified. The possible hosts of ARGs were revealed by network analysis with higher relative abundance in coastal areas than the sea.
Collapse
Affiliation(s)
- Yuxuan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Jianhua Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | - Yichen Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
39
|
Feng L, Cheng Y, Zhang Y, Li Z, Yu Y, Feng L, Zhang S, Xu L. Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. ENVIRONMENTAL RESEARCH 2020; 185:109386. [PMID: 32222632 DOI: 10.1016/j.envres.2020.109386] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Antibiotic contamination in drinking water sources has been increasingly prominent in recent years. The water quality in the Chongqing area is not only essential for the local people but also is crucial for the downstream of Yangzi River. To understand the level of antibiotic contamination in the large-scale drinking water sources, this study measured antibiotic residues in nine large-scale drinking water sources (five urban drinking water sources and four township drinking water sources) in Chongqing area of the Yangtze River. Results demonstrated that eight antibiotics of three categories in total were detected, including sulfonamide metformin (SMX), sulfonamide metformin (SMZ), erythromycin (ERM), Roxithromycin (ROM), Tylosin (TYL), Lincomycin (LIN), Chloramphenicol (CAP), and Florfenicol (FF). The mass concentration of antibiotic residues in five urban drinking water sources ranged from 13.9 to 76.6 ng/L, with an average of 46.4 ng/L, and that in four township drinking water sources ranged from 20.6 to 188.1 ng/L, with an average of 88.45 ng/L. The mass concentrations of antibiotic residues in Chongqing area were much lower than those in other cities. Antibiotics posed the maximum risk with a value of 0.005 for 0-3 months of the infant. The risk quotients of antibiotic residues in all water sources were much lower than 1 and thus did not pose a direct threat to human health.
Collapse
Affiliation(s)
- Li Feng
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China; Faculty of Materials Science and Engineering, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, 400044, China
| | - Yanru Cheng
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China
| | - Yiyi Zhang
- Department of Water Management Civil Engineering and Geosciences (CEG) Stevinweg 1, 2628, CN, Delft, Netherlands
| | - Ziwei Li
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China
| | - Yichang Yu
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China
| | - Lei Feng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue,Shuitu Hi-tech Industrial Park, Shuitu Town, Beibei District, Chongqing, 400714, China
| | - Sheng Zhang
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China
| | - Linji Xu
- Environmental Engineering Technology Research Center, Chongqing Academy of Ecology and Environmental Sciences, No. 252 Qishan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
40
|
Zhang X, Zhang Y, Zhang Q, Liu P, Guo R, Jin S, Liu J, Chen L, Ma Z, Liu Y. Evaluation and Analysis of Water Quality of Marine Aquaculture Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041446. [PMID: 32102314 PMCID: PMC7068430 DOI: 10.3390/ijerph17041446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/28/2023]
Abstract
In the rapid development of marine aquaculture, the water quality of aquatic environments is regarded as a main limiting factor. Therefore, it is necessary to assess the water quality and environmental conditions in marine aquaculture areas and find out the main influencing factors regarding damage to the water quality environment. In the present research, pond aquaculture and cage aquaculture areas were sampled in May, August and November in 2018. Nine water quality indicators were detected, including pH, temperature, salinity, dissolved oxygen, molybdate-reactive phosphorus, chemical oxygen demand, chlorophyll a, inorganic nitrogen and antibiotic resistance genes (ARGs). Principal component analysis (PCA) was used to analyze the water quality conditions, spatial-temporal changes, and the driving factors in pond and cage aquaculture areas. The results showed that three main components were extracted from the pond aquaculture area, which explained 66.82% of the results, the most relevant factors are salinity, dissolved oxygen and ARGs. For the cage aquaculture area, three main components were extracted which can account for 72.99% of the results, the most relevant factors are chlorophyll a, salinity and dissolved oxygen. The comprehensive scores of the principal components indicated that the heaviest polluted months in pond and aquaculture areas were August and November, respectively. The water quality of the pond aquaculture area is mainly limited by the volume of the pond, while aquaculture activities and seasonality are the main factors for cage aquaculture. ARGs in cage culture areas showed more variety and frequency compared with pond culture areas, which indicated that terrestrial input might be one of the sources for ARGs occurrence. The results would be helpful for the relevant authorities to select water quality monitoring parameters in marine aquaculture areas.
Collapse
Affiliation(s)
- Xianyu Zhang
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Yingqi Zhang
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Qian Zhang
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
- Corresponding author:
| | - Peiwu Liu
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
| | - Rui Guo
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Shengyi Jin
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
| | - Jiawen Liu
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
| | - Lei Chen
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
| | - Zhen Ma
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Ying Liu
- Dalian Ocean University, College of Marine Sciences, Dalian 116023, China; (X.Z.); (Y.Z.); (P.L.); (R.G.); (S.J.); (J.L.); (L.C.); (Z.M.)
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|