1
|
Pu C, Guo J, Zhang J, Liu S, Cao G, Lu G. Nitrogen transformation and bacterial community response in O 3-SBR process for treating nitrogen-containing heterocyclic antibiotics. ENVIRONMENTAL RESEARCH 2025; 269:120924. [PMID: 39855411 DOI: 10.1016/j.envres.2025.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O3) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O3-coupled biological processes remain unclear. This study utilized an O3-coupled sequencing batch reactor (O3-SBR) to evaluate its treatment efficacy on three typical NHAs, namely fluconazole, sulfamethizole, and acyclovir, and explored nitrogen transformation and the effects of oxidation products (NHAs-OPs) on bacterial communities. The results showed that the O3-SBR process was more effective for treating NHAs than using O3 or SBR alone. O3 pretreatment converted nitrogen in difficult-to-degrade NHAs into inorganic nitrogen and other organic nitrogen compounds, improving the biodegradability of NHAs. Subsequently, NHAs-OPs were used as the nitrogen/carbon source for SBR. Unlike the low TN removal rate of 14.4-23.4% observed when treating pure NHAs wastewater, the TN and total organic carbon removal rates of the SBR treating NHAs-OPs wastewater reached 62.4-85.2% and 65.2-86.4%, respectively. High-throughput sequencing analysis revealed that the enhanced efficacy of the SBR process may be attributed to the dominance of bacterial genera adapted to NHAs-OPs within the system. Additionally, the abundance of denitrification functions under NHAs-OPs stress was found to be higher than that of nitrification functions. These results provide new theoretical support for the treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Chuan Pu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Junjie Guo
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Jiayue Zhang
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Siyang Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China
| | - Gang Cao
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| | - Gang Lu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Liu Z, Wang G, Xu T, Deng N, Xie H, Zhang X. Visible-light-driven peroxydisulfate activation by biochar-loaded Fe-Cu layered double hydroxide for penicillin G degradation: Performance, mechanism and application potential. ENVIRONMENTAL RESEARCH 2024; 263:120043. [PMID: 39307224 DOI: 10.1016/j.envres.2024.120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The biochar-loaded Fe-Cu layered double hydroxide (FeCu-LDH@BC) catalyst was synthesized via a simple hydrothermal method and used to activate peroxydisulfate (PDS) for penicillin G (PG) degradation under visible light. The physicochemical properties of FeCu-LDH@BC were characterized using SEM, XPS, UV-DRS, SEM-EDS, HRTEM, XRD, BET, PL spectrum, FT-IR, Raman spectrum, TG-DSC, TPD, and EIS, showing that biochar (BC) enhanced the optical properties of FeCu-LDH. Notably, the FeCu-LDH@BC + PDS + Light system achieved a 98.79% degradation efficiency for PG in just 10 min. Furthermore, FeCu-LDH@BC retained excellent activity after four reuse cycles. LSV results indicated enhanced electron transfer in the FeCu-LDH@BC + PDS + Light system, suggesting a synergistic effect between the photocatalytic and PDS activation systems. The interconversion of h+, SO4·⁻, 1O2, and ·OH species was found to play a key role in PG degradation. Density functional theory was used to identify PG sites susceptible to radical attack, and the possible degradation pathway was proposed based on liquid chromatography-mass spectrometry results. Toxicity evaluation using the TEST software confirmed that the intermediates formed were significantly less toxic than PG. Lastly, the FeCu-LDH@BC + PDS + Light system removed 37.45% of total organic carbon and 63.74% of chemical oxygen demand from real wastewater within 120 min. The type and transformation pathways of organic matter in the wastewater were analyzed using 3D Excitation Emission Matrix spectroscopy to assess the system's application potential.
Collapse
Affiliation(s)
- Zehua Liu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Guanghui Wang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang, 330013, China.
| | - Tianrui Xu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Nansheng Deng
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Xuewen Zhang
- Jiangxi Fucheng Ecological Environment Technology Group Co., Ltd., Fuzhou, 344000, China
| |
Collapse
|
3
|
Zhang Q, Chu L, Yang Q, Wo W, Xu A, He Y, Zhang Y. E-peroxone with a novel GDE decorated with hydrophobic membrane for the degradation of pyridine: Stability, byproducts and toxicity. CHEMOSPHERE 2024; 363:142789. [PMID: 38972461 DOI: 10.1016/j.chemosphere.2024.142789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
E-peroxone process is an emerging electrochemical oxidation process, based on ozone and the in-situ cathodic generation of H2O2, but the stability of cathode is one of the key restraining factors. In this study, we designed a multilayer gas diffusion electrode (GDE) decorated with a commercial hydrophobic membrane for the degradation of pyridine. It was found that a proper control of membrane pore sizes and hot-pressing temperature can significantly promote the GDE stability. Subsequently, key operational parameters of the constructed E-peroxone system were investigated, including the ozone concentration, current density, pH value, electrolyte type and initial concentration of pyridine. The degradation pathways were proposed according to six identified transformation products. The toxicity variation along the degradation progress was evaluated with microbial respiration tests and Toxicity Estimation Software Tool (T.E.S.T.) calculation and an efficient detoxification capacity of E-peroxone was observed. This research provides a theoretical basis and technical support for the development of highly efficient and stable E-peroxone system for the elimination of toxic organic contaminants.
Collapse
Affiliation(s)
- Qiqi Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Leping Chu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qin Yang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenqing Wo
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
4
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
5
|
Wroński M, Trawiński J, Skibiński R. Identification of New Hepatic Metabolites of Miconazole by Biological and Electrochemical Methods Using Ultra-High-Performance Liquid Chromatography Combined with High-Resolution Mass Spectrometry. Molecules 2024; 29:2160. [PMID: 38731651 PMCID: PMC11085085 DOI: 10.3390/molecules29092160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.
Collapse
Affiliation(s)
| | | | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.W.); (J.T.)
| |
Collapse
|
6
|
Wang WL, Jing ZB, Zhang YL, Wu QY, Drewes JE, Lee MY, Hübner U. Assessing the Chemical-Free Oxidation of Trace Organic Chemicals by VUV/UV as an Alternative to Conventional UV/H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7113-7123. [PMID: 38547102 DOI: 10.1021/acs.est.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.
Collapse
Affiliation(s)
- Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi-Lin Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| |
Collapse
|
7
|
Wroński M, Trawiński J, Skibiński R. Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133167. [PMID: 38064946 DOI: 10.1016/j.jhazmat.2023.133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Fungal infections pose a significant global health burden, resulting in millions of severe cases and deaths annually. The escalating demand for effective antifungal treatments has led to a rise in the wholesale distribution of antifungal drugs, which consequently has led to their release into the environment, posing a threat to ecosystems and human health. This article aims to provide a comprehensive review of the presence and distribution of antifungal drugs in the environment, evaluate their potential ecological and health risks, and assess current methods for their removal. Reviewed studies from 2010 to 2023 period have revealed the widespread occurrence of 19 various antifungals in natural waters and other matrices at alarmingly high concentrations. Due to the inefficiency of conventional water treatment in removing these compounds, advanced oxidation processes, membrane filtration, and adsorption techniques have been developed as promising decontamination methods.In conclusion, this review emphasizes the urgent need for a comprehensive understanding of the presence, fate, and removal of antifungal drugs in the environment. By addressing the current knowledge gaps and exploring future prospects, this study contributes to the development of strategies for mitigating the environmental impact of antifungal drugs and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
8
|
Sohn S, Kim MK, Lee YM, Sohn EJ, Choi GY, Chae SH, Zoh KD. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H 2O 2 processes used in drinking water treatment plant. CHEMOSPHERE 2024; 352:141360. [PMID: 38325620 DOI: 10.1016/j.chemosphere.2024.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Grace Y Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Seon-Ha Chae
- Korea Water Resources Corporation, K-water Institute, Deajeon, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
10
|
Ekande OS, Johnson I, Nagasai K, Kumar M. Single and multi-antibiotics removal via peroxymonosulfate activation using molybdenum disulfide (MoS 2): Central composite design and degradation pathway. CHEMOSPHERE 2023; 338:139554. [PMID: 37474040 DOI: 10.1016/j.chemosphere.2023.139554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The efficacy of molybdenum disulfide (MoS2) for the degradation of metronidazole (MET), tetracycline (TET), and ciprofloxacin (CIP) in single and multicomponent systems through peroxymonosulfate (PMS) activation was investigated. Several characterization techniques, such as SEM, XRD, XPS, and EPR were performed to understand the removal mechanism of the three antibiotics in PMS/MoS2 system. In single component system with an initial antibiotic concentration of 10 mg L-1, >95% removal of MET, TET, and CIP were observed within 60 min (PMS = 100 mg L-1; MoS2 = 0.5 g L-1). It was observed that sulfate radical (SO4.-) and reactive ≡Mo- OOSO3- complex played a major role in the removal of antibiotics. Adsorption on MoS2 and direct oxidation by PMS contributed to the removal of TET and CIP in MoS2/PMS system. A Central composite design (CCD) with response surface methodology (RSM) was used to model the removal of MET, TET, and CIP in a multi-antibiotic system. The presence of multiple antibiotics affected the performance of MoS2/PMS system as antibiotics competed for the adsorption sites on MoS2 and the generated reactive species. CIP predominantly deterred the removal of both MET and TET. On the other hand, MET removal was decreased up to 25-40% in the presence of both TET and CIP. Similarly, TET removal decreased up to 15-20% in the presence of MET and CIP. CIP removal decreased up to 15-25% in the presence of MET and TET. In the presence of multiple antibiotics, the deterring effect of one pollutant over another can be overcome by increasing the MoS2 concentration above 1200 mg L-1 and PMS above 200 mg L-1 to obtain 100% removal of all three pollutants. Overall, MoS2 could be an ideal catalyst for the removal of antibiotics through PMS activation.
Collapse
Affiliation(s)
- Onkar Sudhir Ekande
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Inigo Johnson
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Kadapa Nagasai
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
11
|
Liu J, Ge S, Shao P, Wang J, Liu Y, Wei W, He C, Zhang L. Occurrence and removal rate of typical pharmaceuticals and personal care products (PPCPs) in an urban wastewater treatment plant in Beijing, China. CHEMOSPHERE 2023; 339:139644. [PMID: 37495050 DOI: 10.1016/j.chemosphere.2023.139644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The occurrence and removal rate of 52 typical pharmaceuticals and personal care products (PPCPs) were investigated in a wastewater treatment plant in Beijing, China. Thirty-three PPCPs were found in the influent, with caffeine (CF, 11387.0 ng L-1) being the most abundant, followed by N,N-diethyl-meta-toluamide (DEET, 9568.4 ng L-1), metoprolol (MTP, 930.2 ng L-1), and diclofenac (DF, 710.3 ng L-1). After treatment processes, the cumulative concentration of PPCPs decreased from 2.54 × 104 ng L-1 to 1.44 × 103 ng L-1, with the overall removal efficiency (RE) of 94.3%. Different treatment processes showed varying contributions in removing PPCPs. PPCPs were efficiently removed in sedimentation, anoxic, and ultraviolet units. For individual compounds, a great variation in RE (52.1-100%) was observed. Twenty-two PPCPs were removed by more than 90%. The highly detected PPCPs in the influent were almost completely removed. Aerated grit chamber removed nearly 50% of fluoroquinolone (FQs) and more than 60% of sulfonamides. Most PPCPs showed low or negative removals during anaerobic treatment, except for CF which was eliminated by 64.9%. Anoxic treatment demonstrated positive removals for most PPCPs, with the exceptions of DF, MTP, bisoprolol, carbamazepine (CBZ), and sibutramine. DEET and bezafibrate were efficiently removed during the secondary sedimentation. Denitrification biological filter and membrane filtration also showed positive effect on most PPCPs removals. The remaining compounds were oxidized by 16-100% in ozonation. DF, sulpiride, ofloxacin (OFL), trimethoprim, and phenolphthalein were not amenable to ultraviolet. After the treatment, the residue OFL, CBZ, and CF in receiving water were identified to pose high risk to aquatic organisms. Considering the complex mixtures emitted into the environment, therapeutic groups psychotropics, stimulant, and FQs were classified as high risk. These findings provide valuable insights into adopting appropriate measures for more efficient PPCPs removals, and emphasize the importance of continued monitoring specific PPCPs and mixtures thereof to safeguard the ecosystem.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Simin Ge
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Peng Shao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China.
| | - Jianfeng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yanju Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Wei Wei
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing Center for Physical & Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Can He
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
12
|
Shi X, Zhang R, Sand W, Mathivanan K, Zhang Y, Wang N, Duan J, Hou B. Comprehensive Review on the Use of Biocides in Microbiologically Influenced Corrosion. Microorganisms 2023; 11:2194. [PMID: 37764038 PMCID: PMC10535546 DOI: 10.3390/microorganisms11092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
A microbiologically influenced corrosion (MIC) causes huge economic losses and serious environmental damage every year. The prevention and control measures for MIC mainly include physical, chemical, and biological methods. Among them, biocide application is the most cost-effective method. Although various biocides have their own advantages in preventing and treating MIC, most biocides have the problem of polluting the environment and increasing microorganism resistance. Therefore, it has stimulated the exploration of continuously developing new environmentally friendly and efficient biocides. In this review, the application advantages and research progress of various biocides used to prevent and control MIC are discussed. Also, this review provides a resource for the research and rational use of biocides regarding MIC mitigation and prevention.
Collapse
Affiliation(s)
- Xin Shi
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyong Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
- Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Wolfgang Sand
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Aquatic Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
- Institute of Biosciences, University of Mining and Technology, 09599 Freiberg, Germany
| | - Krishnamurthy Mathivanan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yimeng Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
| | - Nan Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
- Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| | - Baorong Hou
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (X.S.); (W.S.); (K.M.); (Y.Z.); (N.W.); (J.D.); (B.H.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao 266237, China
- Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
13
|
Yao J, Li DS, Li H, Yang Y, Yang HY. Mechanisms of interfacial catalysis and mass transfer in a flow-through electro-peroxone process. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131604. [PMID: 37343407 DOI: 10.1016/j.jhazmat.2023.131604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
To investigate the catalytic mechanism and mass transfer efficiency in the removal of amitriptyline using an electro-peroxide process, a CuFe2O4-modified carbon cloth cathode was prepared and utilized in a reaction unit. The results demonstrated a remarkable efficacy of the system, achieving 91.0% amitriptyline removal, 68.3% mineralization, 41.2% mineralization current efficiency, and 0.24 kWh/m3 energy consumption within just five minutes of treatment. The study revealed that the exposed Fe atoms of the ferrite nanoparticles, with a size of 22.7 nm and 89.7% crystallinity, functioned as mediators to bind the adsorbed O atoms. The 3dxy, 3dxz, and 3d2z orbitals of Fe atoms interacted with the 2pz orbital of O atoms of H2O2 and O3 to form σ and π bonds, facilitating the adsorption-activation of H2O2 and O3 into hydroxyl radicals. These hydroxyl radicals (∼ 1.15 × 1013 mol/L) were distributed at the cathode-solution interface and rapidly consumed along the direction of liquid flow. The flow-through cathode design improved the mass transfer of aqueous O3 and in-situ generated H2O2, leading to an increased yield of hydroxyl radicals, as well as the contact time and space between hydroxyl radicals and amitriptyline. Ultimately, this resulted in a higher degradation efficiency of the system.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
14
|
Li Z, Wang J, Chang J, Fu B, Wang H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159172. [PMID: 36208734 DOI: 10.1016/j.scitotenv.2022.159172] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The enrichment and transport of antibiotics in the environments pose many potential hazards to aquatic animals and humans, which has become one of the public health challenges worldwide. As a widely used class of antibiotics, fluoroquinolones (FQs) generally accumulated in the environments as traditional sewage treatment plants cannot completely remove them. Advanced oxidation processes (AOPs) have been shown to be a promising method for the abatement of antibiotic contamination. In this review, influencing factors and relevant mechanisms of FQs removal by various AOPs were summarized. Compared with other AOPs, photocatalytic ozone may be considered as a cost-effective method for degrading FQs. Finally, the benefits and application restrictions of AOPs were discussed, along with proposed research directions to provide new insights into the control of FQs pollutant via AOPs in practical applications.
Collapse
Affiliation(s)
- Zonglin Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Junsen Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Jiajun Chang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| |
Collapse
|
15
|
Baladi E, Davar F, Hojjati-Najafabadi A. Synthesis and characterization of g-C 3N 4-CoFe 2O 4-ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic. ENVIRONMENTAL RESEARCH 2022; 215:114270. [PMID: 36100101 DOI: 10.1016/j.envres.2022.114270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, antibiotic water pollution is an increasingly dangerous environmental threat. Thus, water treatment is essential for their reduction and removal. In recent decades, photocatalysts have attracted much attention due to their influential role in solving this issue. The photocatalytic process, which is one of the green processes and part of advanced oxidation processes, can be a good choice for treating contaminated water containing non-degradable organic matter. However, the design of high-performance photocatalysts under free sunlight can be challenging. In this study, g-C3N4-Ca, Mg codoped CoFe2O4-ZnO (gCN-CFO-ZnO) nanocomposite photocatalyst was applied in removing penicillin G (PENG) from drug effluents. Also, the effects of contaminant concentration, initial pH, irradiation time, and zinc oxide ratio in the nanocomposites were investigated. The hydrothermal method was carried out to prepare the appropriate composites. Then, the obtained products were characterized by powder X-Ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), Raman, field-emission scanning and transmission electron microscope (FE-SEM&TEM), energy dispersive X-Ray (EDX), diffuse reflectance spectroscopy (DRS), vibrating sample magnetometer (VSM) and Photoluminescence (PL) techniques. According to the findings, the degradation of PENG in an acidic environment occurred remarkably; under the same conditions, with decreasing pH from 9 to 5 in the gCN-CFO-ZnO (33.33%) nanocomposite, the degradation efficiency grew from 47% to 74%. Also, the degradation rate of PENG in gCN-CFO-ZnO (16.66%) and gCN-CFO-ZnO (50%) nanocomposites under optimal conditions (pH = 5, PENG the concentration of 10 ppm, and irradiation time of 120 min) was achieved 52% and 60%, respectively. Further, gCN-CFO-ZnO (33.33%) nanocomposite showed higher efficiency in PENG degradation compared to the other two nanocomposites.
Collapse
Affiliation(s)
- Elham Baladi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, PR China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; College of Rare Earths, Jiangxi University of Science and Technology, No.86, Hongqi Ave., Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
16
|
Cheshmeh Soltani RD, Abolhasani E, Mashayekhi M, Jorfi N, Boczkaj G, Khataee A. Degradation of tetracycline antibiotic utilizing light driven-activated oxone in the presence of g-C 3N 4/ZnFe LDH binary heterojunction nanocomposite. CHEMOSPHERE 2022; 303:135201. [PMID: 35660053 DOI: 10.1016/j.chemosphere.2022.135201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the present study, a binary heterojunction nanocomposite composed of graphitic carbon nitride (g-C3N4) and Zn/Fe-contained layered double hydroxide (ZnFe LDH) was employed as heterogeneous catalyst for the decomposition of tetracycline (TC) antibiotic utilizing Oxone and UV light irradiation. The sole use of g-C3N4/ZnFe LDH as adsorbent led to the negligible elimination of TC. In addition, the sole use of Oxone or UV (photolysis) and even their combination were not effective enough to degrade the target pollutant, while the combined process of g-C3N4/ZnFe LDH/Oxone/photolysis revealed significantly enhanced (synergistic) degradation of TC (92.4% within 30 min). Indirect detection tests for the identification of free radical species indicated the major role of both hydroxyl (•OH) and sulfate (SO4•-) radicals in the degradation of TC by the g-C3N4/ZnFe LDH/Oxone/photolysis system. The elimination of TC followed a pseudo-first order kinetic model. The complete degradation of TC (degradation efficiency of 100%) was achieved within the reaction time of 25 min when ultrasound (US) was applied as enhancing agent. Furthermore, the results of total organic carbon (TOC) analysis were used to exhibit progress in the mineralization of the pollutant. The bioassay results indicated the decreased toxicity of the process effluent toward microbial population of Escherichia coli after the treatment.
Collapse
Affiliation(s)
| | - Elham Abolhasani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Masoumeh Mashayekhi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Najla Jorfi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
17
|
Hong AJ, Lee J, Cha Y, Zoh KD. Propiconazole degradation and its toxicity removal during UV/H 2O 2 and UV photolysis processes. CHEMOSPHERE 2022; 302:134876. [PMID: 35551935 DOI: 10.1016/j.chemosphere.2022.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole (PRO) is a triazole fungicide that is frequently detected in the water. In this study, we investigated the kinetics and degradation mechanism of PRO during the UV photolysis and UV/H2O2 processes. PRO was removed by the pseudo-first-order kinetics in both processes. The removal of PRO was enhanced by increasing H2O2 concentration in the UV/H2O2 process. The highest removal under neutral conditions, and lower removal of PRO were observed in acidic and alkaline pHs in the UV/H2O2 process. The presence of natural water ingredients such as Cl-, NO3-, humic acid acted as radical scavengers, but HCO3- ion acted as both radical promoter and scavenger in the UV/H2O2 process. The transformation products (TPs) of PRO during both processes were identified using LC-QTOF/MS. Four TPs ([M+H]+ = 238, 256, 306, and 324) were identified during UV photolysis, and six TPs ([M+H]+ = 238, 256, 306, 324, 356, and 358) were identified in the UV/H2O2 process. Among the identified TPs, TP with [M+H]+ values of 356 and 358 were newly identified in the UV/H2O2 process. In addition, ionic byproducts, such as Cl-, NO3-, formate (HCOO-), and acetate (CH3COO-), were newly identified, indicating that significant mineralization was achieved in the UV/H2O2 process. Based on the identified TPs and ionic byproducts, the degradation mechanisms of PRO during two processes were proposed. The major reactions in both processes were ring cleavage and cyclization, and hydroxylation by OH radicals. The Microtox test with Vibrio fischeri showed that, while the toxicity of the reaction solution increased first, then gradually decreased during UV photolysis, the UV/H2O2 process initially increased toxicity at 10 min due to the production of TPs, but toxicity was completely removed as the reaction progressed. The results obtained in this study imply that the UV/H2O2 process is an effective treatment for eliminating PRO, its TPs, and the resulting toxicity in water.
Collapse
Affiliation(s)
- Ae-Jung Hong
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Jaewon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Youngho Cha
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Piras F, Nakhla G, Murgolo S, De Ceglie C, Mascolo G, Bell K, Jeanne T, Mele G, Santoro D. Optimal integration of vacuum UV with granular biofiltration for advanced wastewater treatment: Impact of process sequence on CECs removal and microbial ecology. WATER RESEARCH 2022; 220:118638. [PMID: 35640512 DOI: 10.1016/j.watres.2022.118638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study explored process synergies attainable by integrating a vacuum ultraviolet-based advanced oxidation process with biofiltration. A comparison using granular activated carbon or granular zeolite as filtration media were examined in context of advanced wastewater treatment for potable reuse. Six biofiltration columns, three with granular activated carbon and three with granular zeolite, were operated in parallel and batch-fed daily with nitrified secondary effluent. After achieving a pseudo-steady state through the filter columns, vacuum ultraviolet treatment was applied as pre-treatment or as post-treatment, at two different applied energies (i.e., VUV-E1=1 kWh/m3 and VUV-E10=10 kWh/m3). Once granular activated carbon had transitioned to biologically activated carbon, as determined based on soluble chemical oxygen demand removal, adsorption was still observed as the main mechanism for contaminants of emerging concern and nitrate removal. Vacuum ultraviolet pre-treatment markedly improved contaminants of emerging concern removal through the integrated system, achieving 40% at VUV-E1 and 90% at VUV-E10. When applied as post-treatment to zeolite column effluents, VUV-E1 and VUV-E10 further increased contaminants of emerging concern removal by 20% and 90%, respectively. In the zeolite system, vacuum ultraviolet pre-treatment also increased soluble chemical oxygen demand removal efficiency, indicating that higher energy vacuum ultraviolet increased biodegradability. Total prokaryotes were two-fold more abundant in biologically activated carbon than in zeolite, with vacuum ultraviolet pretreatment markedly affecting microbial diversity, both in terms of richness and composition. Media type only marginally affected microbial richness in the biofilters but showed a marked impact on structural composition. No clear relationship between compositional structure and depth was observed.
Collapse
Affiliation(s)
- F Piras
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce 73100, Italy
| | - G Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - S Murgolo
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - C De Ceglie
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - G Mascolo
- Water Research Institute, National Research Council (IRSA - CNR), via F. de Blasio 5, Bari 70132, Italy
| | - K Bell
- Brown & Caldwell, 220 Athens Way #500, Nashville, TN 37228, USA
| | - T Jeanne
- Institut de recherche et de développement en agroenvironnement (IRDA), 2700 rue Einstein, Quebec City, QC G1P 3W8, Canada
| | - G Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce 73100, Italy
| | - D Santoro
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
19
|
Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: A new hybrid process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
21
|
Dong Z, Zhang Y, Yao J. Enhancement of H 2O 2 yield and TOC removal in electro-peroxone process by electrochemically modified graphite felt: Performance, mechanism and stability. CHEMOSPHERE 2022; 295:133896. [PMID: 35134398 DOI: 10.1016/j.chemosphere.2022.133896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Electro-peroxone (EP) is an emerging advanced oxidation process which combines electro-generation H2O2 and ozone for removing organic contaminants. In this paper, a platinum plate as anode, a method of electrochemical oxidation is adopted to modify graphite felt (GF) cathode to promote H2O2 yield and TOC removal from oxalic acid solution in EP process, its performance, mechanism and stability were discussed. Compared with original GF cathode, 2.6 times H2O2 yield can be achieved by the 5 min electrochemically modified GF (GF-5). The high electrochemical activity of the modified GF can be ascribed to introducing numerous surface oxygen-containing functional groups (OGs), which not only decreased the impedance, but also increased the amount of active site of O2 reduction. The production of H2O2 with GF-5 cathode improved with the increased initial pH, cathodic potential and O2 flow rate, while this promoting effect was not observed in GF cathode. Compared with GF cathode, TOC removal rate was improved by 21.5% with GF-5 cathode due to higher H2O2 yield in EP process. The primary pathway of TOC removal is electrochemically-driven peroxone process, and hydroxyl radical (·OH) is the dominant reactive species. Furthermore, GF-5 cathode had a good stability due to the protection of H2O2 and free electrons injected. The results indicate that the electrochemically modified GF severed as the cathode of EP processes has significant efficiency and stability in the removal of ozone-refractory organic contaminants.
Collapse
Affiliation(s)
- Zekun Dong
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| | - Jie Yao
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
22
|
Sewage-Water Treatment and Sewage-Sludge Management with Power Production as Bioenergy with Carbon Capture System: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10040788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sewage-water treatment comprehends primary, secondary, and tertiary steps to produce reusable water after removing sewage contaminants. However, a sewage-water treatment plant is typically a power and energy consumer and produces high volumes of sewage sludge mainly generated in the primary and secondary steps. The use of more efficient anaerobic digestion of sewage water with sewage sludge can produce reasonable flowrates of biogas, which is shown to be a consolidated strategy towards the energy self-sufficiency and economic feasibility of sewage-water treatment plants. Anaerobic digestion can also reduce the carbon footprint of energy sources since the biogas produced can replace fossil fuels for electricity generation. In summary, since the socio-economic importance of sewage treatment is high, this review examined works that contemplate: (i) improvements of sewage-water treatment plant bioenergy production and economic performances; (ii) the exploitation of technology alternatives for the energy self-sufficiency of sewage-water treatment plants; (iii) the implementation of new techniques for sewage-sludge management aiming at bioenergy production; and (iv) the implementation of sewage-water treatment with bioenergy production and carbon capture and storage.
Collapse
|
23
|
Wu QY, Yang ZW, Du Y, Ouyang WY, Wang WL. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126327. [PMID: 34116271 DOI: 10.1016/j.jhazmat.2021.126327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozone (O3) and chemical reagents (such as H2O2) shows synergies on the radical formation and micropollutant degradation. The promoting performance was associated with various parameters including chemical reagents, micropollutants, solution pH, and the water matrix. In this review, we summarized existing knowledge on radical formation pathways, radical yields, and radical oxidation for different synergistic ozonation processes in various water matrices (such as groundwater, surface water, and wastewater). The increase of radical yields by synergistic ozonation processes was positively related to the increase of O3-decay, with the increase being 1.1-4.4 folds than ozonation alone (0.2). Thus, synergistic ozonation can promote the degradation rate and efficiency of O3-resistant micropollutants (second order rate constant, kP,O3 < 200 M-1 s-1), but only slightly affects or even minorly inhibits the degradation of O3-reactive micropollutants (kP,O3 > 200 M-1 s-1). The water matrices, such as the dissolved organic matters, negatively suppressed the degradation of micropollutant by quenching O3-oxidation and radical oxidation (i.e. maximum promoting was decreased by 1.3 times), but may positively extend the promoting effects of synergistic ozonation to micropollutants that are more reactive to O3 (i.e. kP,O3 was extended from <200 to <2000 M-1 s-1). The formation of bromate would be increased through increasing radical oxidation by synergistic ozonation, but can be depressed by relative higher H2O2 as the reducing agent of HOBr/OBr- intermediate. The increase in bromate formation by O3/permononsulfate is a considerable concern due to permononsulfate cannot reduce the HOBr/OBr- intermediate.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Zheng-Wei Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Ye Du
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
24
|
Wang S, Liu D, Yu J, Zhang X, Zhao P, Ren Z, Sun Y, Li M, Han S. Photocatalytic Penicillin Degradation Performance and the Mechanism of the Fragmented TiO 2 Modified by CdS Quantum Dots. ACS OMEGA 2021; 6:18178-18189. [PMID: 34308049 PMCID: PMC8296572 DOI: 10.1021/acsomega.1c02079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/24/2021] [Indexed: 06/02/2023]
Abstract
In this study, a novel method was adopted to construct a CdS-TiO2 heterostructure to degrade penicillin under sunlight. A potato extract was used during the synthesis process of CdS QDs as a stabilizer and a modifier. The CdS-TiO2 composite with a heterostructure delivers high photocatalytic degradation efficiency. In detail, 0.6 mg/mL of CdS-TiO2 can successfully decompose penicillin after 2 h, and 5‰ CdS-TiO2 shows the optimal degradation efficiency with the degradation rate reaching 88%. Furthermore, the underlying mechanisms of the penicillin decomposition reaction were investigated by the EPR test and trapping experiment. It was found that the high photocatalytic degradation efficiency was attributed to the heterojunction of CdS-TiO2, which successfully suppresses the recombination of the conduction band of CdS and the valence band of TiO2. Moreover, it was confirmed that the reaction is the O2-consuming process, and introducing O2 can greatly accelerate the generation of a superoxide radical during the photocatalytic degradation process, which eventually improves the degradation of penicillin and shortens the degradation time. Finally, this work provides the possible penicillin degradation pathways, which will inspire the researchers to explore and design novel photocatalysts in the field of wastewater treatment in the future.
Collapse
|
25
|
Pelalak R, Heidari Z, Alizadeh R, Ghareshabani E, Nasseh N, Marjani A, Albadarin AB, Shirazian S. Efficient oxidation/mineralization of pharmaceutical pollutants using a novel Iron (III) oxyhydroxide nanostructure prepared via plasma technology: Experimental, modeling and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125074. [PMID: 33461011 DOI: 10.1016/j.jhazmat.2021.125074] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
High-performance novel iron oxyhydroxide (limonite) nanostructure, with improved surface reactive sites, was prepared via one-pot, eco-friendly, free precursor and cold glow discharge N2-plasma technique. Natural and plasma treated (PTNL/N2) limonite samples were characterized by FESEM, XPS, XRD, FTIR, AAS, EDX, BET/BJH and pHpzc to confirm the successful synthesis. Central composite design (CCD) and artificial neural network (ANN, topology of 4:8:1) methods were utilized to study the oxidation/mineralization of phenazopyridine (PhP) as a hazardous contaminant by heterogeneous catalytic ozonation process (HCOP). The obtained results indicated that PTNL/N2 had the highest catalytic performance in PhP degradation (98.6% in 40 min) and mineralization (80.4% in 120 min). The degradation mechanism in different processes was investigated by dissolved ozone concentration, various organic scavengers (BQ and TBA) and inorganic salts (NaNO3, NaCl, Na2CO3 and NaH2PO4). Moreover, reusability-stability, Fe and nitrogen (NO3- and NH4+) ions release were assessed during different AOPs. Furthermore, toxicity tests indicated that the HCOP using PTNL/N2 was able to detoxify the PhP solutions efficiently. Finally, Density Functional Theory (DFT) studies were employed to introduce the most plausible contaminant degradation pathway, reactive sites and byproducts. This research provided a new insight into the improvement of wastewater treatment studies by a combination of experiment and computer simulation.
Collapse
Affiliation(s)
- Rasool Pelalak
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Zahra Heidari
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Reza Alizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Eslam Ghareshabani
- Physics Faculty, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran
| | - Negin Nasseh
- Social Determinants of Health Research Center, Faculty of Health, Environmental Health Engineering Department, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, Chelyabinsk 454080, Russia
| |
Collapse
|
26
|
Mass transfer phenomenon in baffled reactor using electro-peroxone process: Effects of electrode arrangement and flow rate. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Lindberg RH, Namazkar S, Lage S, Östman M, Gojkovic Z, Funk C, Gentili FG, Tysklind M. Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater. CHEMOSPHERE 2021; 271:129763. [PMID: 33736225 DOI: 10.1016/j.chemosphere.2021.129763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 05/25/2023]
Abstract
Active pharmaceutical ingredients (APIs) are vital to human health and welfare, but following therapeutic use, they may pose a potential ecological risk if discharged into the environment. Today's conventional municipal wastewater treatment plants are not designed to remove APIs specifically, and various techniques, preferably cost-effective and environmentally friendly, are being developed and evaluated. Microalgae-based treatment of wastewater is a sustainable and low-cost approach to remove nutrients and emerging contaminants. In this study, a North Sweden high-rate algal pond (HRAP) using municipal untreated wastewater as medium, was investigated in terms of API distribution and fate. Three six-day batches were prepared during 18 days and a total of 36 APIs were quantified within the HRAP of which 14 were removed from the aqueous phase above 50% and seven removed above 90% of their initial concentrations. Twelve APIs of a hydrophobic nature were mostly associated with the algal biomass that was harvested at the end of each batch. HRAPs treatment successfully removed 69% of studied APIs (25 of 36 studied) in six day time. The distribution of various APIs between the aqueous phase and biomass suggested that several removal mechanisms may occur, such as hydrophobicity driven removal, passive biosorption and active bioaccumulation.
Collapse
Affiliation(s)
| | - Shahla Namazkar
- Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden
| | - Sandra Lage
- Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden; Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Marcus Östman
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden; Department of Medical Biosciences, Umeå University, 901 85, Umeå, Sweden
| | - Zivan Gojkovic
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Francesco G Gentili
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
28
|
Cornejo OM, Ortiz M, Aguilar ZG, Nava JL. Degradation of Acid Violet 19 textile dye by electro-peroxone in a laboratory flow plant. CHEMOSPHERE 2021; 271:129804. [PMID: 33736209 DOI: 10.1016/j.chemosphere.2021.129804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with the degradation of Acid Violet 19 (AV19) textile dye by the electro-peroxone (E-peroxone) process in a laboratory flow plant using a filter press cell fitted with a 3D gas diffusion electrode (3D GDE) containing a graphite felt positioned on carbon-cloth PTFE as cathode, and a Ti|IrSnSb-oxides plate as anode. H2O2 was formed by the oxygen reduction reaction (ORR) in the cathode; the air was supplied by an external compressor. The O3 produced externally by an ozonator was added in the pipeline at the outlet of the electrolyzer to promote the reaction between the H2O2 and O3 to produce OH, which is the responsible for the mineralization of the dye. The effect of electrolyte flow rate (Q), current density (j), and initial concentration of AV19 dye on its degradation was addressed. The best electrolysis in a solution containing 40 mg TOC L-1, 0.05 M Na2SO4, at pH 3, was obtained at j = 20 mA cm-2, Q = 2.0 L min-1, using a pressure of the air fed to the 3D GDE of PGDE = 3 psi, and an ozone inlet mass flow rate of [Formula: see text] = 14.5 mg L-1, achieving 100% discoloration, 60% mineralization, with mineralization current efficiency and energy consumption of 36% and 0.085 kWh(gTOC)-1. The degradation of AV19 dye was also performed by anodic oxidation plus H2O2 electrogenerated (AO-H2O2) and ozonation. The oxidation power was AO-H2O2 < ozonation < E-peroxone. Three carboxylic acids were quantified by chromatography as oxidation end products.
Collapse
Affiliation(s)
- Oscar M Cornejo
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Mariela Ortiz
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| | - Zaira G Aguilar
- Departamento de Ingeniería Química, Tecnológico Nacional de Mexico-Instituto Tecnológico de Celaya, Av. García Cubas 600, 38010, Celaya, Guanajuato, Mexico.
| | - José L Nava
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
29
|
Wang H, Sun L, Yan K, Wang J, Wang C, Yu G, Wang Y. Effects of coagulation-sedimentation-filtration pretreatment on micropollutant abatement by the electro-peroxone process. CHEMOSPHERE 2021; 266:129230. [PMID: 33316471 DOI: 10.1016/j.chemosphere.2020.129230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The electro-peroxone (EP) process has been considered an attractive alternative to conventional ozonation for micropollutant abatement in water treatment. However, how to integrate the EP process into the water treatment trains in water utilities has yet to be investigated. This study compared micropollutant abatement during the EP treatment of potable source water with and without pretreatment of biological oxidation, flocculation, sedimentation, and filtration. Results show that this pretreatment train removed 39% of dissolved organic carbon (DOC) and 28% of the UV254 absorbance of the raw water, leading to higher ozone (O3) stability in the treated water. By electrochemically generating hydrogen peroxide to accelerate O3 decomposition to hydroxyl radicals (•OH), the EP process considerably shortened the time required for ozone depletion and micropollutant abatement during the treatment of both the raw and pretreated water to ∼1 min, compared to ∼3 and 7.5 min during conventional ozonation of the raw and treated water, respectively. For the same specific ozone dose of 1 mg O3 mg-1 DOC (corresponding to 4.3 and 2.8 mg O3 L-1 for the raw and treated water, respectively), the abatement efficiencies of micropollutants with moderate and low ozone reactivity were increased by ∼10-15%, while the energy consumption for micropollutant abatement was decreased by ∼24-56% during the EP treatment of the treated water than the raw water. These results indicate that partial removal of DOC and ammonia from the raw water by the pretreatment train has a beneficial effect on enhancing micropollutant abatement and reducing energy consumption of the EP process. Therefore, it is more cost-effective to integrate the EP process after the pretreatment train in water utilities for micropollutant abatement.
Collapse
Affiliation(s)
- Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Linzhao Sun
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Kai Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510006, China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Li Y, Yang L, Chen X, Han Y, Cao G. Transformation kinetics and pathways of sulfamonomethoxine by UV/H 2O 2 in swine wastewater. CHEMOSPHERE 2021; 265:129125. [PMID: 33276994 DOI: 10.1016/j.chemosphere.2020.129125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Sulfamonomethoxine (SMM), as one of the most predominant antibiotics in animal wastewater, is pending for effective control to minimize its environmental risks. Transformation kinetics and pathways of SMM by UV/H2O2 in swine wastewater were systematically investigated in this study. Direct UV photolysis (as a dominant role) and ∙OH oxidation contributed to SMM degradation in UV/H2O2 system. The less effective reaction rate of SMM in real wastewater than synthetic wastewater (0.1-0.17 vs. ∼0.2-1.5 min-1, despite higher H2O2 dosage and extended reaction time) resulted mainly from the abundant presence of conventional contaminants (indicated by COD, a notable competitor of SMM) in real wastewater. SMM degradation benefited from higher H2O2 dosage and neutral and weak alkaline conditions. However, the effect of initial SMM concentration on SMM degradation in synthetic and real wastewater showed opposite trends, owning to the different probability of SMM molecules to interact with UV and H2O2 in different matrices. Carbonate had an inhibitory effect on SMM degradation by scavenging ∙OH and pH-variation induced effect, while nitrate promoted SMM degradation by generating more ∙OH. The removal efficiency of SMM in real wastewater reached 91% under the reaction conditions of H2O2 of 10 mM, reaction time of 60 min, and pH 6.7-6.9. SMM degradation pathway was proposed as hydroxylation of benzene and pyrimidine rings, and secondary amine, and the subsequent cleavage of S-N bond.
Collapse
Affiliation(s)
- Yejin Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xueming Chen
- College of Environment and Resources, Fuzhou University, Fujian, 350116, China
| | - Yuefei Han
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
31
|
Cornejo OM, Nava JL. Mineralization of the antibiotic levofloxacin by the electro-peroxone process using a filter-press flow cell with a 3D air-diffusion electrode. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Dogruel S, Cetinkaya Atesci Z, Aydin E, Pehlivanoglu-Mantas E. Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45460-45475. [PMID: 32794092 DOI: 10.1007/s11356-020-10339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 05/25/2023]
Abstract
The objective of this study was the experimental evaluation of ozonation as an additional treatment step for the removal emerging contaminants from secondary effluents of two wastewater treatment plants (WWTPs), one receiving a primarily domestic wastewater (WWTP-A), and the other one domestic sewage together with pretreated tannery wastewater streams (WWTP-B). The experimental runs were conducted at two different pH values (i.e., original pH and adjusted pH of 10) and at six different ozone doses ranging between 0.2 and 1.5 mg O3/mg DOC. A total of 20 compounds, including 12 micropollutants (MPs) and 8 metabolites, were selected as the target analytes for the evaluation of ozonation performance. When the tested MPs and metabolites were considered individually, the maximum elimination level for each compound was reached at different doses; therefore, optimum ozone doses were determined based on the reduction of the total MP content. Ozonation at the original pH with an ozone dose in the range of 0.4-0.6 and 0.8-1.0 mg O3/mg DOC was selected as the optimum operating condition for WWTP-A and WWTP-B, respectively, both resulting in an average overall removal efficiency of 55%. Ozone treatment yielded only poor elimination for o-desmethyl naproxen (15%), which was found to be by far the main contributor accounting alone for approximately 30% of the total MP concentration in the secondary effluents. The systematic approach used in this study could well be adopted as a guide to other domestic and municipal WWTPs, which are thought to have a highly variable composition in terms of the MPs and metabolites.
Collapse
Affiliation(s)
- Serdar Dogruel
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Egemen Aydin
- Agat Laboratories, 9770 Route Transcanadienne, St. Laurent, Quebec, H4S 1V9, Canada
| | - Elif Pehlivanoglu-Mantas
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
33
|
Yu X, Tang Y, Pan J, Shen L, Begum A, Gong Z, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1751-1769. [PMID: 32762110 DOI: 10.1002/wer.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
By summarizing 187 relevant research articles published in 2019, the review is focused on the research progress of physicochemical processes for wastewater treatment. This review divides into two sections, physical processes and chemical processes. The physical processes section includes three sub-sections, that is, adsorption, granular filtration, and dissolved air flotation, whereas the chemical processes section has five sub-sections, that is, coagulation/flocculation, advanced oxidation processes, electrochemical, capacitive deionization, and ion exchange. PRACTITIONER POINTS: Totally 187 research articles on wastewater treatment have been reviewed and discussed. The review has two major sections with eight sub-topics.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- China Construction Science & Technology Co. Ltd., Shenzhen Branch, Shenzhen, China
| | - Yao Tang
- Ebo Environmental Protection Group, Guangzhou, China
| | - Jian Pan
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, China
- Environmental Technology Innovation Center of Jiande, Hangzhou, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | | | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| |
Collapse
|
34
|
Huang X, Tian J, Li Y, Yin X, Wu W. Preparation of a Three-Dimensional Porous Graphene Oxide-Kaolinite-Poly(vinyl alcohol) Composite for Efficient Adsorption and Removal of Ciprofloxacin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10895-10904. [PMID: 32844658 DOI: 10.1021/acs.langmuir.0c00654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the widespread presence of antibiotics in water, soil, and other environments, they pose great potential risks to the environment, threatening human and animal health. In this study, graphene oxide-kaolinite homogeneous dispersion was prepared by simple liquid phase exfoliation. The three-dimensional (3D) porous graphene oxide-kaolinite-poly(vinyl alcohol) composites were prepared by the cross-linking of poly(vinyl alcohol) and the formation of ice crystals during the freezing-drying process. Three influencing factors [adsorbent dosage, ciprofloxacin (CIP) initial concentration, and time] of CIP adsorption and removal were systematically analyzed by the response surface method. The order of significance for response values (CIP removal rate) was adsorbent dosage > CIP initial concentration > time. The 3D porous material showed good adsorption capacity of CIP, the theoretical maximum adsorption capacity was 408.16 mg/g, and it had good recyclability. By Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy analysis, it was found the composite adsorbs CIP by hydrogen bonding and π-π interaction. In conclusion, the graphene oxide-kaolinite-poly(vinyl alcohol) porous composite is a good candidate for efficient antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Huang
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Tian
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuewei Li
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianglu Yin
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Wu
- Research Center of the Ministry of Education for High Gravity of Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
35
|
Deniz F, Bural H. Sustainable environmental remediation approach for biocide removal from water medium: a model biosorption study using activated biological waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:111-118. [PMID: 32723073 DOI: 10.1080/15226514.2020.1798872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Within the scope of sustainable environmental remediation approach, a biosorbent prepared from the waste of Zostera marina coastal plant with chemical activation was used to effectively remove malachite green as a common biocidal agent from water environment in this work. The biocide treatment ability of activated biosorbent was interpreted through the characterization, optimization, equilibrium, thermodynamic, and kinetic studies. The characterization research showed that the biosorbent has an uneven surface and various active groups for the retention of biocide molecules. Langmuir isotherm was found to be the most appropriate model for the experimental equilibrium data. The maximum monolayer biosorption capacity was obtained as 103.834 mg g-1 under the optimum conditions (time of 6 h, pH of 4, temperature of 25 °C, biosorbent amount of 10 mg, and biocide concentration of 15 mg L-1). The biosorption system was determined to be spontaneous and exothermic in thermodynamic aspect. The experimental kinetic data were best described by the pseudo-second-order model. All these results indicated that the activated biological residue could be used as an environmentally friendly and effective biosorbent for the biocide removal from water environment in a sustainable way.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University, Bozova/Sanliurfa, Turkey
| | - Hatice Bural
- Department of Environmental Engineering, Graduate School of Natural and Applied Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|
36
|
Tamaddon F, Mosslemin MH, Asadipour A, Gharaghani MA, Nasiri A. Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole. Int J Biol Macromol 2020; 154:1036-1049. [DOI: 10.1016/j.ijbiomac.2020.03.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
37
|
Qi Y, Guo C, Xu X, Gao B, Yue Q, Jiang B, Qian Z, Wang C, Zhang Y. Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: Preparation, characterization and kinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136982. [PMID: 32014786 DOI: 10.1016/j.scitotenv.2020.136982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
In this work, Co/Fe and Co/Al layered double oxides (Co/Fe-LDO and Co/Al- LDO)ozone catalysts were obtained from Co/Fe and Co/Al layered double hydroxides intermediates (Co/Fe-LDH and Co/Al-LDH). Firstly, the optimal preparation parameters of the two intermediates were determined, then the morphology and mineralogy microstructure of the derived Co/Fe-LDO and Co/Al- LDO ozone catalysts were systematically studied. Finally, the reaction kinetics of the two ozone catalysts for the deep degradation of aniline wastewater in catalysts/ozone systems were established. The results showed that the optimal preparation conditions were set as pH 12, temperature 60 °C, cobalt‑iron ratio 3:1 for Co/Fe-LDH intermediate, and pH 12, temperature 70 °C, cobalt‑aluminum ratio 3:1 for Co/Al-LDH intermediate. During calcination treatment, the dehydration and recrystallization effect impelled LDH intermediate to form LDO catalyst. The derived ozone catalysts Co/Fe-LDO and Co/Al-LDO possess layered structure, and Co species was mainly based on Co3O4 as the main mineral phase of the two ozone catalysts. The addition of catalyst can realize the deep ozonation catalysis of aniline wastewater. The kinetic models established on the aniline oxidized by ozone or catalyst/ozone systems were both fitted the first-order reactions, and the reaction activation energy for CODCr and TOC degradation were significantly reduced in catalyst/ozone system.
Collapse
Affiliation(s)
- Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China; Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China.
| | - Ce Guo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xing Xu
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China; Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China
| | - Baoyu Gao
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Qinyan Yue
- School of Environmental Science and Technology, Shandong University, Qingdao, 266237, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zhou Qian
- Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China; Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, PR China
| | - Changzhi Wang
- Zhejiang Heze Envrionmental Tech Shares Co.,LTD, Huzhou, 313100, PR China; Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, PR China
| | - Yanqing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| |
Collapse
|
38
|
Preparation of the Mn-Fe-Ce/γ-Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. WATER 2019. [DOI: 10.3390/w12010102] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, the application of advanced oxidation processes (AOPs) for the removal of antibiotics from water has been reviewed. The present concern about water has been exposed, and the main problems derived from the presence of emerging pollutants have been analyzed. Photolysis processes, ozone-based AOPs including ozonation, O3/UV, O3/H2O2, and O3/H2O2/UV, hydrogen peroxide-based methods (i.e., H2O2/UV, Fenton, Fenton-like, hetero-Fenton, and photo-Fenton), heterogeneous photocatalysis (TiO2/UV and TiO2/H2O2/UV systems), and sonochemical and electrooxidative AOPs have been reviewed. The main challenges and prospects of AOPs, as well as some recommendations for the improvement of AOPs aimed at the removal of antibiotics from wastewaters, are pointed out.
Collapse
|