1
|
Kazim M, Saqib Z, Syed JH, Odabasi M, Kurt-Karakus PB. Characterization and distribution of brominated flame retardants in soils from informal E-waste recycling facilities: insights from Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:134. [PMID: 39760909 DOI: 10.1007/s10661-024-13551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021. The mean concentrations (ng/g) of ∑27PBDEs (polybrominated diphenyl ethers), ∑2PBB (polybrominated biphenyls), HBB (hexabromobiphenyl), and ∑HBCDD (hexabromocyclododecane) were 176 ( 0.76-11141), 31.0 (0.65-58.0), 1.39 (0.01-42.8), and 12.0 (0.22-461), respectively. These levels were significantly higher (6 to tenfold) than those at background sites. Karachi, Faisalabad, Gujranwala, and Lahore exhibited high levels of all BFRs. Notably, BDE-209 (mean = 45.5 ng/g) ranged (0.13-1152 ng/g) exhibited higher level in soil samples. Seasonally, total ΣBFR concentrations (ng/g) ranked higher in winter (11,620), followed by spring (3874), autumn (3139), and summer (1207) indicating a seasonal impact of recycling activities. The average daily dose for soil ingestion (ng/kg/day) was estimated for BDE-209 (0.10973) in Faisalabad, followed by BDE-47 (0.08616) and BDE-99 (0.06788) in Karachi. Our findings showed that these values were lower than RfD values, suggesting no ingestion risk from studied BFRs. However, the growing prevalence of such informal e-waste recycling facilities could lead to increased exposure to toxic chemicals in near future.
Collapse
Affiliation(s)
- Mureed Kazim
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Zafeer Saqib
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Tarlai Kalan Park Road 45550, Islamabad, Pakistan.
| | - Mustafa Odabasi
- Environmental Engineering Department, Faculty of Engineering, Dokuz Eylul University, İzmir, Turkey
| | - Perihan Binnur Kurt-Karakus
- Environmental Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
2
|
Eze OO, Ogbuene EB, Ibraheem O, Küster E, Eze CT. Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management. Toxicology 2024; 511:154037. [PMID: 39716513 DOI: 10.1016/j.tox.2024.154037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood. Exposure assessment as well as chemical safety testing should focus on prioritizing N(B)FRs for regulation and management. Here, the occurrence of N(B)FRs in the vicinity and surroundings of e-waste recycling sites are presented. Important knowledge gaps and prospects for a more integrated, harmonized, and mechanistically positioned risk assessment strategy for N(B)FRs as well as possible economically feasible and environmentally sustainable approaches for removing them from complex matrices are highlighted. Overall, data in the ng to µg-ranges of N(B)FR in soil, dust, sediment, water and fish were found. Dust and soil sample concentrations ranged from the low ng to low µg/g range while water concentrations were always in the low ng/L range (∼0.5 to ∼4 ng/L). Concentration in fish was usually in the range of 3- ∼300 ng/g with two substances in the low to medium-high µg/g range (DBDPE, BTBPE). From the 20 N(B)FR analysed in sediment samples only 10 were above detection limit. Most chemicals were found in a low ng/g range.
Collapse
Affiliation(s)
- Obianuju Oluchukwu Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany
| | - Emeka Bright Ogbuene
- Centre for Environmental Management and Control, University of Nigeria, Enugu Campus, Nigeria
| | - Omodele Ibraheem
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Eberhard Küster
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany.
| | - Chukwuebuka ThankGod Eze
- Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Pietron WJ, Warenik-Bany M. Brominated flame retardant in animal feeds from Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125180. [PMID: 39490512 DOI: 10.1016/j.envpol.2024.125180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The safety of food of animal origin is closely related to feed quality. Feed pollution by brominated flame retardants (BFRs) leads to the exposure of animals and consumers of food of animal origin to these substances. The study aimed to assess the concentration of ten PBDE (BDE-28, 47, 49, 99, 100, 138, 153, 154, 183, and 209) congeners and eight nBFRs (TBX, PBT, HBB, PBEB, EH-TBB, BTBPE, BEH-TBPH, and DBDPE) in 59 feed and feed materials from six different feed categories (277/2012/EU). The quantification of analytes was based on isotopic dilution and gas chromatography-high-resolution mass spectrometry (GC-HRMS). All 59 feed samples were contaminated with at least one of the analytes. PBDEs and nBFRs were found in 78% and 91% of the samples, respectively. BFR content ranged from 0.18 to 5.87 μg kg-1 in feed with a 12% moisture content, and the most contaminated category was vegetable oils, followed by fishmeal, feeds for fish, animal fats, and compound feeds for pigs. The least contaminated samples turned out to be compound feeds for chickens. This study confirms the general trend of decreasing PBDE concentrations in fishmeal. In the investigated samples, BDE-47 and BDE-209 contributed the most to the ∑PBDE content. DBDPE, HBB, and PBT contributed the most to the investigated ∑nBFRs. The widespread occurrence of nBFRs in feed seems disturbing because these compounds have replaced PBDEs. Their concentrations in the feed may most likely exceed those of PBDEs in the coming years.
Collapse
Affiliation(s)
- Wojciech Jerzy Pietron
- Radiobiology Department, National Veterinary Research Institute, Pulawy, 24-100, Poland.
| | | |
Collapse
|
4
|
Song C, You L, Tang J, Wang S, Ji C, Zhan J, Su B, Li F, Wu H. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136484. [PMID: 39536349 DOI: 10.1016/j.jhazmat.2024.136484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.
Collapse
Affiliation(s)
- Changlin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping You
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Shuang Wang
- School of Ocean, Yantai University, Yantai 264005, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Bo Su
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
5
|
Oumeddour H, Aldoori H, Bouberka Z, Mundlapati VR, Madhur V, Foissac C, Supiot P, Carpentier Y, Ziskind M, Focsa C, Maschke U. Degradation processes of brominated flame retardants dispersed in high impact polystyrene under UV-visible radiation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:1241-1252. [PMID: 38158834 PMCID: PMC11608518 DOI: 10.1177/0734242x231219626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024]
Abstract
In order to protect human health and the environment, several regulations have been introduced in recent years to reduce or even eliminate the use of some brominated flame retardants (BFRs) due to their toxicity, persistence and bioaccumulation. Dispersions of these BFRs in polymers are widely used for various applications. In this report, four different brominated molecules, decabromodiphenyl ether (DBDE), hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and tris(tribromophenoxy)triazine (TTBPT), were dispersed in the solid matrix of an industrial polymer, high impact polystyrene (HIPS). The possibility of degradation of these BFRs within HIPS under UV-visible irradiation in ambient air was investigated. The degradation kinetics of DBDE and HBCDD were followed by Fourier transform infrared spectroscopy (FTIR) and high-resolution two-step laser mass spectrometry (L2MS). The thermal properties of the pristine and irradiated polymer matrix were monitored by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), which showed that these properties were globally preserved. Volatile photoproducts from the degradation of DBDE, DBDPE and TTBPT were identified by headspace gas chromatography/mass spectrometry analysis. Under the chosen experimental conditions, BFRs underwent rapid degradation after a few seconds of irradiation, with conversions exceeding 50% for HIPS/DBDE and HIPS/HBCDD systems.
Collapse
Affiliation(s)
- Hanene Oumeddour
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Hussam Aldoori
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
- Physical Chemistry of Materials-Catalysis and Environment Laboratory, University of Science and Technology of Oran, Oran, Algeria
| | - Zohra Bouberka
- Physical Chemistry of Materials-Catalysis and Environment Laboratory, University of Science and Technology of Oran, Oran, Algeria
| | | | - Vikas Madhur
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Corinne Foissac
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Philippe Supiot
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| | - Yvain Carpentier
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Michael Ziskind
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Cristian Focsa
- University Lille, CNRS, UMR 8523 – Physique des Lasers Atomes et Molécules, Lille, France
| | - Ulrich Maschke
- University Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Materials and Transformations Unit, Lille, France
| |
Collapse
|
6
|
Xie Y, Li M, Ma J, Gong X, Tong Y, Wang D, Ai L, Gong Z. Occurrence and distribution of legacy and novel brominated flame retardants in river and sediments in southwest China: A seasonal investigation. ENVIRONMENTAL RESEARCH 2024; 262:119842. [PMID: 39187148 DOI: 10.1016/j.envres.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.
Collapse
Affiliation(s)
- Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China.
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
7
|
Hameed R, R D, Yadav KK, Debbarma P, Singh SV, Arabi AIA, Abbas A, Durgude SA, Alam MW, Wang C. A review on sustainable management strategies for navigating the piling e-waste crisis and associated environmental threats. Toxicology 2024; 511:154019. [PMID: 39617201 DOI: 10.1016/j.tox.2024.154019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
In today's fast-paced technological era, multifaceted technological advancements in our contemporary lifestyle are surging the use of electronic devices, which are significantly piling e-waste and posing environmental concerns. This stock of e-waste is expected to keep rising up to 50 mt year-1. Formal recycling of such humongous waste is a major challenge, especially in developing nations. Mishandling of e-waste poses serious threats to human health, soil, and water ecosystem, threatening ecological and environmental sustainability. Complex matrix of resourceful materials comprising valuable metals like gold, silver, and copper, and hazardous substances such as lead, mercury, cadmium, and brominated flame retardants make its judicious management even more crucial. Potential toxic elements such as Pb, Cd, Cr, As, and Hg, as well as plastic/microplastics, nanoparticles are prevalent in components like batteries, cathode ray tubes, circuit boards, glass and plastic components which are known to cause neurological, renal, and developmental damage in humans. Effective and sustainable management of these requires a comprehensive understanding of their sources, environmental behavior, and toxicological impacts. This review explores potential approached for sustainable e-waste recycling (recycling of glass, plastic, rare earth metals, and base metals), and resource recycling through pyrometallurgy, hydrometallurgy, biometallurgy, biohydrometallurgy, bioleaching and biodegradation plastic alongside challenges and prospects.
Collapse
Affiliation(s)
- Rashida Hameed
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Divyabharathi R
- Department of Renewable Energy Engineering, AECandRI, Tamil Nadu Agricultural University, Coimbatore, India
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Prasenjit Debbarma
- Department of Botany, Iswar Chandra Vidyasagar College, Belonia, Tripura 799155, India
| | - Shiv Vendra Singh
- Department of Agronomy, College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, U.P. 294003, India.
| | - Amir Ibrahim Ali Arabi
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Adeel Abbas
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Chongqing Wang
- School of Chemical Engineering, Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Yang L, Zhang Y, Hua J, Song G, Li F, Zheng N, Zhang T, Xu Z, Ren X, Zhu B, Han Y, Guo Y, Han J, Zhou B. Integrated Studies on Male Reproductive Toxicity of Decabromodiphenyl Ethane in Zebrafish Spermatozoa Ex Vivo, Male Zebrafish in Vivo, and GC-1 Cells in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117005. [PMID: 39570742 PMCID: PMC11580837 DOI: 10.1289/ehp14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/06/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Legacy brominated flame retardants have been recognized as risky factors leading to declined sperm quality. The widespread utilization of decabromodiphenyl ethane (DBDPE) as a replacement for decabromodiphenyl ether has given rise to considerable concern over its potential risks to reproductive health. OBJECTIVES The objectives were to quickly determine whether DBDPE affects sperm quality upon ex vivo exposure, to reveal the reproductive outcomes and underlying molecular mechanisms using an in vivo zebrafish model exposed to DBDPE, and to validate the potential impact on DNA damage and energy metabolism balance in vitro. METHODS Zebrafish spermatozoa were treated with DBDPE (0.01, 0.1, 1, 10 μ M ) for 3 h, and the spermatozoa motility and fertilization ability with normal eggs were evaluated. Then adult male zebrafish were treated with DBDPE (0.1, 1, 10, and 100 nM ) for 2 months, and their reproductive performance was examined. Four-dimensional label-free proteome and phosphoproteome were performed in zebrafish testes, and the findings were validated by multiple indicators. Finally, mouse spermatogonial GC-1 cells were treated with DBDPE (0.1, 1 μ M ) for 72 h, and DNA damage was examined, as well as the energy production of glycolysis and oxidative phosphorylation. RESULTS Ex vivo exposure to DBDPE caused lower motility and fertilization rates of zebrafish spermatozoa. In vivo exposure to DBDPE caused lower sperm motility and abnormal spermatogenesis in male zebrafish testes. Integrated whole-proteome and phosphoproteome analysis revealed DNA damage responses and energy metabolic disorders in zebrafish testes. A dosage window characterized by higher mitochondrial membrane potential (MMP) in combination with unchanged reactive oxygen species and apoptosis rates was observed in both zebrafish testes and GC-1 cells. DISCUSSION This study suggests that in zebrafish, DBDPE exposure could impair sperm quality and spermatogenesis, and the underlying mechanism could be related to DNA damage and energy metabolic reprogramming in testicular germ cells. https://doi.org/10.1289/EHP14426.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianghuan Hua
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, People’s Republic of China
| | - Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Na Zheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, People’s Republic of China
| | - Xinxin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Biran Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Yanna Han
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Pan Y, Chen Q, Yu Y, Yang H, Liu Z, Xie B, Huang Y, He B, Yan F, Chen F, Li Y. Association between brominated flame retardants (BFRs) and periodontitis: Results from a large population-based study. BMC Oral Health 2024; 24:1025. [PMID: 39215278 PMCID: PMC11365261 DOI: 10.1186/s12903-024-04796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brominated flame retardants (BFRs) are widely utilized to mitigate the flammability of various materials. Previous studies have revealed the impact of BFRs exposure on hormonal disruption and bone metabolism which are closely related to periodontitis. However, it remains unknown the potential relationship between BFRs and periodontitis. This study aimed to explore the association between BFRs exposure and periodontitis in US adults. METHODS The data analyzed in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2009-2014. Twelve serum BFRs were quantified using isotope dilution gas chromatography high-resolution mass spectrometry. Univariable and multivariable logistic regression was employed to evaluate the association between serum BFRs and periodontitis. Bayesian kernel machine regression (BKMR) analyses were utilized to assess the association between mixtures of BFRs and periodontitis. RESULTS A total of 3311 eligible participants were included. Serum BFRs (PBDE-47, PBDE-99, and PBDE-154) were significantly associated with periodontitis, and the odds ratios (ORs) and corresponding 95% confidence intervals(CIs) were 1.15(1.01,1.29), 1.10(1.01,1.20), and 1.12(1.01,1.25), respectively. Notably, these three BFRs were also significantly associated with the severity of periodontitis. Additionally, the BKMR model revealed a significant association between the mixture of all twelve BFRs and periodontitis. CONCLUSIONS This preliminary study suggests a significant association between specific serum BFRs (PBDE-47, PBDE-99, and PBDE-154) and periodontitis and its severity. Further prospective and experimental studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Yanhong Pan
- Operating Theatre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiansi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yiming Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zilin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Bingqin Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Fa Chen
- Clinical Research Unit, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Li M, Gong X, Tan Q, Xie Y, Tong Y, Ma J, Wang D, Ai L, Gong Z. A review of occurrence, bioaccumulation, and fate of novel brominated flame retardants in aquatic environments: A comparison with legacy brominated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173224. [PMID: 38763187 DOI: 10.1016/j.scitotenv.2024.173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.
Collapse
Affiliation(s)
- Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
11
|
Li T, Xu W, Zhang Y, Ding X, Liu L, Xu P, Xing H, Ma Y, Keerman M, Niu Q. Age, Gender, and BMI Modulate the Hepatotoxic Effects of Brominated Flame Retardant Exposure in US Adolescents and Adults: A Comprehensive Analysis of Liver Injury Biomarkers. TOXICS 2024; 12:509. [PMID: 39058161 PMCID: PMC11280492 DOI: 10.3390/toxics12070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Brominated flame retardants (BFRs), commonly found in consumer products, have been identified as potential hazards to liver function. While the individual effects of specific BFRs are somewhat understood, there is limited evidence on how mixtures of these chemicals, especially when influenced by demographic factors, interact to affect liver function. This study utilized data from 10,828 participants aged 12 and above from the National Health and Nutrition Examination Survey (2005-2016) to investigate the associations between BFRs (both individually and in combinations) and biomarkers of liver injury. The study focused on how age, gender, and body mass index (BMI) modify modulate these effects. Multivariate linear regression, restricted cubic spline function, weighted quantile sum (WQS) regression, and quantile g-computation (qgcomp) models were used to analyze the linear, non-linear, and joint associations between BFR levels and liver function parameters. We found positive associations between the mixed BFRs index and AST, ALT, GGT, ALP, and TBIL levels and a negative association with ALB levels. PBDE28, PBDE47, and PBB153 consistently contributed to the top weight in both the WQS and qgcomp models. Most critically, the study demonstrated that the relationship between co-exposure to BFRs and liver function parameters was modified by age, gender, and BMI. Therefore, our study highlights the importance of considering demographic diversity in assessing the risk of BFR-induced liver damage and supports the implementation of tailored preventive and intervention strategies.
Collapse
Affiliation(s)
- Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Mulatibieke Keerman
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, China; (T.L.); (W.X.); (Y.Z.); (X.D.); (L.L.); (P.X.); (H.X.); (Y.M.)
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| |
Collapse
|
12
|
Li Y, Zhen X, Liu L, Zhang J, Tang J. Species-specific and habitat-dependent bioaccumulation of halogenated flame retardants in marine organisms from estuary to coastal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134529. [PMID: 38723482 DOI: 10.1016/j.jhazmat.2024.134529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.
Collapse
Affiliation(s)
- Yanan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Xiaomei Zhen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Nanjing 210000, China; Research and Development Project of Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210000, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266071, China
| | - Jian Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes YICCAS, Yantai 264003, China; Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
13
|
Ahkola H, Junttila V, Kauppi S. Do hazardous substances in demolition waste hinder circular economy? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121362. [PMID: 38878568 DOI: 10.1016/j.jenvman.2024.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Hazardous substances in demolition waste are often deemed a barrier to a circular economy owing to concerns about their fate in recycled materials. However, with the growing demand for recycling materials, it is essential to find circular solutions for construction materials but still protect health and the environment by managing hazardous substances. In this study, selected hazardous substance groups were analysed from demolition waste samples. Most of the concentrations did not raise any concerns when the safety of recycling materials was considered. However, the detection limits of laboratory chemical analysis can be discussed, as bromine was found in samples by an X-ray fluorescence (XRF)-analyser, but only one laboratory detected brominated flame retardants (BRFs). New technologies and practices are needed to follow the chemical content of materials used in the construction phase. Detecting hazardous substances in recyclable materials is the only way to achieve harmless material cycles.
Collapse
Affiliation(s)
- Heidi Ahkola
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Ville Junttila
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Sari Kauppi
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| |
Collapse
|
14
|
Qiu YW, Li J, Zhao MX, Yu KF, Zhang G. The emerging and legacy persistent organic contaminants in corals of the South China Sea. CHEMOSPHERE 2024; 359:142324. [PMID: 38740339 DOI: 10.1016/j.chemosphere.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mei-Xia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke-Fu Yu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
15
|
Hoffman K, Tang X, Cooper EM, Hammel SC, Sjodin A, Phillips AL, Webster TF, Stapleton HM. Children's exposure to brominated flame retardants in the home: The TESIE study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124110. [PMID: 38723705 PMCID: PMC11170763 DOI: 10.1016/j.envpol.2024.124110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Due to differences in chemical properties and half-lives, best practices for exposure assessment may differ for legacy versus novel brominated flame retardants (BFRs). Our objective was to identify the environment matrix that best predicted biomarkers of children's BFR exposures. Paired samples were collected from children aged 3-6 years and their homes, including dust, a small piece of polyurethane foam from the furniture, and a handwipe and wristband from each child. Biological samples collected included serum, which was analyzed for 11 polybrominated diphenyl ethers (PBDEs), and urine, which was analyzed for tetrabromobenzoic acid (TBBA), a metabolite of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Significant positive correlations were typically observed between BFRs measured in dust, handwipes and wristbands, though wristbands and handwipes tended to be more strongly correlated with one another than with dust. PBDEs, EH-TBB and BEH-TEBP were detected in 30% of the sofa foam samples, suggesting that the foam was treated with PentaBDE or Firemaster® 550/600 (FM 550/600). PBDEs were detected in all serum samples and TBBA was detected in 43% of urine samples. Statistically significant positive correlations were observed between the environmental samples and serum for PBDEs. Urinary TBBA was 6.86 and 6.58 times more likely to be detected among children in the highest tertile of EH-TBB exposure for handwipes and wristbands, respectively (95 % CI: 2.61, 18.06 and 1.43, 30.05 with p < 0.001 and 0.02, respectively). The presence of either PentaBDE or FM 550/600 in furniture was also associated with significantly higher levels of these chemicals in dust, handwipes and serum (for PBDEs) and more frequent detection of TBBA in urine (p = 0.13). Our results suggest that children are exposed to a range of BFRs in the home, some of which likely originate from residential furniture, and that silicone wristbands are a practical tool for evaluating external exposure to both legacy and novel BFRs.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of Environment, Duke University, Durham, NC, United States; Children's Health Discovery Initiative, Duke School of Medicine, North Carolina, United States.
| | - Xuening Tang
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Ellen M Cooper
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Stephanie C Hammel
- Nicholas School of Environment, Duke University, Durham, NC, United States; National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Andreas Sjodin
- Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Allison L Phillips
- Nicholas School of Environment, Duke University, Durham, NC, United States.
| | - Thomas F Webster
- Boston University School of Public Health, Boston University, Boston, MA, United States.
| | - Heather M Stapleton
- Nicholas School of Environment, Duke University, Durham, NC, United States; Children's Health Discovery Initiative, Duke School of Medicine, North Carolina, United States.
| |
Collapse
|
16
|
Santini S, Baini M, Martellini T, Bissoli M, Galli M, Concato M, Fossi MC, Cincinelli A. Novel ultrasound assisted extraction and d-SPE clean-up for the analysis of multiple legacy and emerging organic contaminants in edible fish. Food Chem 2024; 443:138582. [PMID: 38301567 DOI: 10.1016/j.foodchem.2024.138582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), phthalate esters (PAEs) are pervasive environmental pollutants, posing threats to both ecosystems and human health. Although several analytical methods were developed for these compounds, they are not performed simultaneously. This study addresses the need for a sustainable, novel, analytical approach capable of simultaneously determining these diverse chemical classes in edible fish muscles. Employing ultrasound extraction coupled with dispersive solid-phase extraction (d-SPE) as a cleanup procedure, the method was compared to conventional techniques, revealing significant improvements. Analytical parameters were thoroughly assessed, and the innovative method demonstrated notable advantages, reducing extraction and purification times by approximately 74-80 % and solvent consumption by around 94-97 %. Applied to Mediterranean Sea fish samples, the results underscore the method's potential as a viable, sustainable alternative to traditional approaches, promising enhanced efficiency and reduced environmental impact.
Collapse
Affiliation(s)
- Saul Santini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matteo Baini
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli 4, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matteo Bissoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Matteo Galli
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli 4, Siena, Italy
| | - Margherita Concato
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli 4, Siena, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli 4, Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
17
|
Broniatowski M, Wydro P. Interactions of Brominated Flame Retardants with Membrane Models of Dehalogenating Bacteria: Langmuir Monolayer and Grazing Incidence X-ray Diffraction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10600-10614. [PMID: 38721840 PMCID: PMC11112749 DOI: 10.1021/acs.langmuir.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department
of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| | - Paweł Wydro
- Department
of Physical Chemistry and Electrochemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, ul. Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
18
|
Hoang AQ, Tue NM, Goto A, Karyu R, Tuyen LH, Viet PH, Matsukami H, Suzuki G, Takahashi S, Kunisue T. Bioaccessibility of halogenated flame retardants and organophosphate esters in settled dust: Influences of specific dust matrices from informal e-waste and end-of-life vehicle processing areas in Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172045. [PMID: 38554968 DOI: 10.1016/j.scitotenv.2024.172045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
19
|
Lv H, Wang J, Geng Y, Xu T, Han F, Gao XJ, Guo MY. Green tea polyphenols inhibit TBBPA-induced lung injury via enhancing antioxidant capacity and modulating the NF-κB pathway in mice. Food Funct 2024; 15:3411-3419. [PMID: 38470815 DOI: 10.1039/d4fo00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1β, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.
Collapse
Affiliation(s)
- Hongli Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jingjing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Yuan Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Tianchao Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Fuxin Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Yin W, Xu R, Zou J, Wang Y, Zhang Y. Single and combined association between brominated flame retardants and cardiovascular disease: a large-scale cross-sectional study. Front Public Health 2024; 12:1357052. [PMID: 38596517 PMCID: PMC11002127 DOI: 10.3389/fpubh.2024.1357052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The single and combined association between brominated flame retardants (BFRs) and cardiovascular diseases (CVD) has remained unelucidated. This research aimed at exploring the associations between mixture of BFRs and CVD. Methods This research encompassed adult participants from the National Health and Nutrition Examination Survey in 2005-2016. The weighted quantile sum (WQS) model and quantile g-computation (QGC) model were applied to examine the combined effects of BFRs mixture on CVD. Results In this research, overall 7,032 individuals were included. In comparison with the lowest quartile, the highest quartile of PBB153 showed a positive association with CVD, with odds ratio (OR) values and 95% confidence intervals (CI) of 19.2 (10.9, 34.0). Furthermore, the acquired data indicated that PBB153 (OR: 1.23; 95% CI: 1.02, 1.49), PBB99 (OR: 1.29; 95% CI: 1.06, 1.58), and PBB154 (OR: 1.29; 95% CI: 1.02, 1.63) were linked to congestive heart failure. PBB153 was also related to coronary heart disease (OR: 1.29; 95% CI: 1.06, 1.56). Additionally, a positive correlation between the BFRs mixture and CVD (positive model: OR: 1.23; 95% CI: 1.03, 1.47) was observed in the weighted quantile sum (WQS) model and the quantile g-computation (QGC) model. Discussion Therefore, exposure to BFRs has been observed to heighten the risk of cardiovascular disease in US adults, particularly in the case of PBB153. Further investigation is warranted through a large-scale cohort study to validate and strengthen these findings.
Collapse
Affiliation(s)
- Wenhao Yin
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Rui Xu
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiyu Zou
- Department of Respiratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yaqin Wang
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
21
|
Wang YY, Luo WK, Tang SX, Xiang J, Dang Y, Tang B, Lu QY, Cai FS, Ren MZ, Yu YJ, Zheng J. Bioaccumulation and biotransformation of 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123460. [PMID: 38290655 DOI: 10.1016/j.envpol.2024.123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the increasing production, use, and ubiquitous occurrence of novel brominated flame retardants (NBFRs), little information is available regarding their fate in aquatic organisms. In this study, the bioaccumulation and biotransformation of two typical NBFRs, i.e., 1,2-bis (2,4,6-tribromophenoxyethane) (BTBPE) and 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH), were investigated in tissues of zebrafish (Danio rerio) being administrated a dose of target chemicals through their diet. Linear accumulation was observed for both BTBPE and TBECH in the muscle, liver, gonads, and brain of zebrafish, and the elimination of BTBPE and TBECH in all tissues followed pseudo-first-order kinetics, with the fastest depuration rate occurring in the liver. BTBPE and TBECH showed low bioaccumulation potential in zebrafish, with biomagnification factors (BMFs) < 1 in all tissues. Individual tissues' function and lipid content are vital factors affecting the distribution of BTBPE and TBECH. Stereoselective accumulation of TBECH enantiomers was observed in zebrafish tissues, with first-eluting enantiomers, i.e. E1-α-TBECH and E1-β-TBECH, preferentially accumulated. Additionally, the transformation products (TPs) in the zebrafish liver were comprehensively screened and identified using high-resolution mass spectrometry. Twelve TPs of BTBPE and eight TPs of TBECH were identified: biotransformation pathways involving ether cleavage, debromination, hydroxylation, and methoxylation reactions for BTBPE and hydroxylation, debromination, and oxidation processes for TBECH. Biotransformation is also a vital factor affecting the bioaccumulation potential of these two NBFRs, and the environmental impacts of NBFR TPs should be further investigated in future studies. The findings of this study provide a scientific basis for an accurate assessment of the ecological and environmental risks of BTBPE and TBECH.
Collapse
Affiliation(s)
- Yu-Yu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Song-Xiong Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Qi-Yuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ming-Zhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
22
|
Wang S, Chen Y, Long M, Li W, Huang Y, Lai S, Yang G, Song Y, Chen J, Yu G. Fabrication of well-aligned Co-MOF arrays through a controlled and moderate process for the development of a flexible tetrabromobisphenol A sensor. Analyst 2024; 149:1807-1816. [PMID: 38334483 DOI: 10.1039/d3an01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has attracted a great deal of attention due to its side effects and potential bioaccumulation properties. It is of great importance to construct and develop novel electrochemical sensors for the sensitive and selective detection of TBBPA. In the present study, cobalt (Co) based metal-organic frameworks (MOFs) were synthesized on carbon cloth (CC) by using cobalt nitrate hexahydrate and 2-methylimidazole. The morphological characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that Co-MOFs/CC have a leaf-like structure and abundant surface functional groups. The electrochemical properties of the sensor were investigated by differential pulse voltammetry (DPV). The effects of different ratios of metal ions to organic ligands, reaction temperature, time, concentration, pH value of the electrolyte, and incubation time on the oxidation peak current of TBBPA were studied. Under the optimal conditions, the linear range of the designed sensor was 0.1 μM-100 μM, and the limit of detection was 40 nM. The proposed sensor is simple, of low cost and efficient, which can greatly facilitate the detection tasks of environmental monitoring workers.
Collapse
Affiliation(s)
- Shiyuan Wang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yao Chen
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Long
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Wanyu Li
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yiran Huang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Shiyi Lai
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guiping Yang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yang Song
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Jinfa Chen
- The Center of Laboratory, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
23
|
Mahmudiono T, Fakhri Y, Ranaei V, Pilevar Z, Limam I, Sahlabadi F, Rezaeiarshad N, Torabbeigi M, Jalali S. Concentration of Tetrabromobisphenol-A in fish: systematic review and meta-analysis and probabilistic health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0157. [PMID: 38386608 DOI: 10.1515/reveh-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, 148005 Universitas Airlangga , Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, 14656 Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Zahra Pilevar
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, 125609 Birjand University of Medical Sciences , Birjand, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Marzieh Torabbeigi
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Samaneh Jalali
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
24
|
Rawn DFK, Corrigan C, Ménard C, Sun WF, Breton F, Arbuckle TE. Novel halogenated flame retardants in Canadian human milk from the MIREC study (2008-2011). CHEMOSPHERE 2024; 350:141065. [PMID: 38159732 DOI: 10.1016/j.chemosphere.2023.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Novel halogenated flame retardants (NHFRs) have been developed to replace those brominated flame retardants that have been restricted due to their persistence, bioaccumulation potential and toxicity, therefore, it is important to determine whether these replacement products are present at detectable concentrations in Canadians. NHFRs were measured in human milk samples (n = 541) collected from across Canada between 2008 and 2011, which is the first pan-Canadian dataset for these chemicals in human milk. Among the 15 measured NHFRs and eight methoxy-polybrominated diphenyl ethers (MeO-PBDEs), nine NHFRs and two MeO-PBDEs (6-MeO-PBDE 47 and 2-MeO-PBDE 68) were detected at a frequency of more than 9%. Despite benzene, 1,1'-(1,2-ethanediyl)bis [2,3,4,5,6-pentabromo-]/decabromodiphenylethane [DBDPE] being detected less frequently than the other observed NHFRs, its relative contribution to the sum of nine NHFRs was important when it was present. The maximum ΣNHFR concentration in Canadian human milk was 6930 pg g-1 lipid while the maximum ΣMeO-PBDEs was 1600 pg g-1 lipid. While most NHFR concentrations were significantly correlated with each other, no relationships between maternal age, parity or pre-pregnancy BMI were identified with ΣNHFR concentrations in the milk. In contrast, maternal age was significantly correlated with ΣMeO-PBDE concentrations (r = 0.237, p < 0.001). ΣNHFR concentrations were similarly not related to maternal education, although ΣMeO-PBDE concentrations were found to be higher in milk from women who had graduated from trade schools relative to the other education levels considered. NHFR detection frequency and concentrations observed in the Canadian human milk seem to align well with Europe.
Collapse
Affiliation(s)
- Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada.
| | - Catherine Corrigan
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Cathie Ménard
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Wing-Fung Sun
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - François Breton
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, 251 Sir Frederick Banting Driveway, Address Locator 2203C, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada; Generic Drugs Division, Bureau of Pharmaceutical Sciences, Health Products and Food Branch, Health Canada, 101 Tunney's Pasture Driveway, Address Locator 0201D, Tunney's Pasture, Ottawa, ON, K1A 0K9, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 269 Laurier Ave, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
25
|
Huang C, Zeng Y, Liu YE, Zhang Y, Guo J, Luo X, Mai B. Historical Occurrence and Composition of Novel Brominated Flame Retardants and Dechlorane Plus in Sediments from an Electronic Waste Recycling Site in South China. TOXICS 2024; 12:84. [PMID: 38251039 PMCID: PMC10821507 DOI: 10.3390/toxics12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Novel brominated flame retardants (NBFRs) and dechlorane plus (DP) have been widely used as alternatives to traditional BFRs. However, little is known about the temporal trends of NBFR and DP pollution in e-waste recycling sites. In the current study, three composite sediment cores were collected from an e-waste-polluted pond located in a typical e-waste recycling site in South China to investigate the historical occurrence and composition of NBFRs and DP. The NBFRs and DP were detected in all layers of the sediment cores with concentration ranges of 5.71~180,895 and 4.95~109,847 ng/g dw, respectively. Except for 2,3,5,6-tetrabromo-p-xylene (pTBX) and 2,3,4,5,6-pentabromoethylbenzene (PBEB), all the NBFR compounds and DP showed a clear increasing trend from the bottom to top layers. These results implied the long-term and severe contamination of NBFRs and DP. Decabromodiphenyl ethane (DBDPE) was the most abundant NBFR with the contribution proportions of 58 ± 15%, 73 ± 15%, and 71 ± 18% in three sediment cores, followed by 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) and pentabromobenzene (HBB). The ratios of BTBPE/Octa-BDEs and DBDPE/Deca-BDEs varied from 0.12 to 60 and from 0.03 to 0.49, respectively, which had no clear increase trends with a decrease in sediment depth. As for DP, the fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) in sediment cores ranged from 0.41 to 0.83, almost falling in the range of those in DP technical products, suggesting that DP degradation did not occur in sediment cores. The environmental burdens of DBDPE, BTBPE, HBB, PBT, PBEB, pTBX, and DP were estimated to be 34.0, 5.67, 10.1, 0.02, 0.02, 0.01, and 34.8 kg, respectively. This work provides the first insight into the historical contamination status of NBFRs and DP in the sediments of an e-waste recycling site.
Collapse
Affiliation(s)
- Chenchen Huang
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yin-E Liu
- School of Environmental Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian Guo
- Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
26
|
Mendy A, Percy Z, Braun JM, Lanphear B, La Guardia MJ, Hale RC, Yolton K, Chen A. Prenatal exposure to replacement flame retardants and organophosphate esters and childhood adverse respiratory outcomes. ENVIRONMENTAL RESEARCH 2024; 240:117523. [PMID: 37925128 PMCID: PMC10696592 DOI: 10.1016/j.envres.2023.117523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND The association of prenatal exposure to organophosphate esters (OPEs) and replacement brominated flame retardants (RBFRs) with respiratory outcomes has not been previously investigated in humans, despite reports that these chemicals can cross the placenta and alter lung development as well as immune functions. METHODS In a cohort of 342 pregnant women recruited between 2003 and 2006 in the greater Cincinnati, Ohio Metropolitan area, we measured indoor dust OPEs and RBFRs at 20 weeks of gestation and urinary OPEs at 16 and 26 weeks of gestation and at delivery. We performed generalized estimating equations and linear mixed models adjusting for covariates to determine the associations of prenatal OPEs and RBFRs exposures with adverse respiratory outcomes in childhood, reported every six months until age 5 years and with lung function at age 5 years. We used multiple informant modeling to examine time-specific associations between maternal urinary OPEs and the outcomes. RESULTS Dust concentrations of triphenyl phosphate (TPHP) (RR: 1.40, 95% CI: 1.18-1.66), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (RR: 1.51, 95% CI: 1.23-1.85), and bis(2-ethylhexyl) tetrabromophthalate (RR: 1.57, 95% CI: 1.28-1.94) were associated with higher risk of wheezing during childhood. Dust TPHP concentrations were associated with higher risk of respiratory infections (RR: 1.43, 95% CI: 1.08-1.94), and dust tris-(2-chloroethyl) phosphate concentrations were associated with hay fever/allergies (RR: 1.11, 95% CI: 1.01-1.21). We also found that dust tris-(2-chloroethyl) phosphate loadings were associated with lower lung function. Urinary OPEs mainly at week 16 of gestation tended to be associated with adverse respiratory outcome, while bis(1-chloro-2-propyl) phosphate and diphenyl phosphate at delivery were associated with lower risk of hay fever/allergies. CONCLUSIONS In-utero exposure to OPEs and RBFRs may be a risk factor for adverse respiratory outcomes in childhood, depending on the timing of exposure.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Zana Percy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly Yolton
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
de Boer J, Harrad S, Sharkey M. The European Regulatory Strategy for flame retardants - The right direction but still a risk of getting lost. CHEMOSPHERE 2024; 347:140638. [PMID: 37981017 DOI: 10.1016/j.chemosphere.2023.140638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Flame retardants (FRs) are a major group of chemicals used to protect against fast developing fires and comply with fire regulations. Many of them have a negative impact on the environment and human health. Some have been phased out, but the vast majority remain on the market including a substantial number of harmful ones. The European Chemicals Agency (ECHA) presented a strategy to phase out harmful flame retardants, based on a group approach. While this approach will help to finally overcome the loop of banning individual chemicals, which are then replaced by similar ones, which need to be banned again, the proposed strategy also contains several flaws, which may inadvertently weaken the strategy. A stronger grouping system is discussed and proposed, in which additional criteria for the evaluation of FRs as groups are included, e.g., more attention for toxic effects, mobility, recyclability and waste production. This discussion paper is intended to contribute to a sustainable approach as proposed in the European Chemicals Sustainability Strategy. It should also help create a truly circular economy.
Collapse
Affiliation(s)
- Jacob de Boer
- Amsterdam Institute for Life and Environment, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Martin Sharkey
- School of Natural Sciences, University of Galway, University Road, Galway H91 CF50, Ireland
| |
Collapse
|
28
|
Xu X, Zhang D, Zhao K, Liu Z, Ren X, Zhang X, Lu Z, Qin C, Wang J, Wang S. Comprehensive analysis of the impact of emerging flame retardants on prostate cancer progression: The potential molecular mechanisms and immune infiltration landscape. Toxicology 2024; 501:153681. [PMID: 38006928 DOI: 10.1016/j.tox.2023.153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Emerging flame retardants have been used to replace traditional flame retardants, but their potential impact on cancer, especially prostate cancer, is not well understood. Our study aimed to explore the link between flame retardants and prostate cancer, and identify potential carcinogenic mechanisms among populations exposed to emerging flame retardants. We screened flame retardant interacting genes differentially expressed in prostate cancer patients and identified hub genes by protein-protein interaction (PPI) analysis based on the STRING database. Univariate and multivariate Cox regression analyses were performed to construct risk models and identify flame retardant-related prognostic genes. We calculated the proportion of immune cell infiltration to explore the potential mechanism of the prognostic gene, and verified the target cell population of the prognostic gene in the single-cell transcriptome dataset. Our study revealed a significant link between emerging flame retardants and prostate cancer. We constructed a risk model with good predictive ability for prostate cancer prognosis using TCGA dataset, and identified six flame retardant-related prognostic genes validated in the GSE70769 dataset. We found that the expression of M2 macrophages was up-regulated in patients with high expression of prognostic genes, and the single-cell dataset confirmed the expression of prognostic genes in macrophages. Our study confirms the link between emerging flame retardants and prostate cancer, and highlights the role of immune-related pathways in the high-risk population exposed to these flame retardants.
Collapse
Affiliation(s)
- Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China; Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China
| | - Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Kai Zhao
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhanpeng Liu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui Province 241000, China.
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China.
| |
Collapse
|
29
|
Bralewska K. Air pollution inside fire stations: State-of-the-art and future challenges. Int J Hyg Environ Health 2024; 255:114289. [PMID: 37976582 DOI: 10.1016/j.ijheh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Firefighters are frequently exposed to products of combustion and pyrolysis. Exposure to these substances occurs not only during fires but also at fire stations, particularly where fire equipment and fire uniforms are stored after firefighting operations. The aims of this study were to review the research on the concentrations of various air pollutants in fire stations, identify the limitations and strengths of such research, identify research gaps and related future challenges, and highlight potential solutions for reducing firefighter exposure to air pollution at fire stations. A total of 32 articles published in international journals during 1987-2023 were selected for analysis. The most frequently studied pollutants in fire stations were polycyclic aromatic hydrocarbons, particulate matter, and diesel particulate matter. Research was most often conducted on changing rooms and garages. Firefighting equipment, personal protective equipment, fire trucks, and combustion tools were identified as the main sources of pollution at fire stations. Recommendations aimed at reducing the concentration of pollutants in fire stations were mainly concerned with the systematic decontamination of equipment and the introduction of ventilation solutions that would remove exhaust fumes from garages. This in-depth literature review indicates a lack of comprehensive research on the state and quality of air at fire stations. It also highlights the emerging need for more knowledge on the concentrations of air pollutants in fire stations, health exposure related to these substances, and an analysis of the effectiveness of the proposed solutions.
Collapse
Affiliation(s)
- Karolina Bralewska
- Institute of Safety Engineering, Fire University (formerly Main School of Fire Service), 52/54 Slowackiego Street, Warsaw, 01-629, Poland.
| |
Collapse
|
30
|
Li F, Song G, Wang X, Sun Y, Zhou S, Zhang Y, Hua J, Zhu B, Yang L, Zhang W, Zhou B. Evidence for Adverse Effects on Liver Development and Regeneration in Zebrafish by Decabromodiphenyl Ethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19419-19429. [PMID: 37946494 DOI: 10.1021/acs.est.3c06747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a ubiquitous emerging pollutant, could be enriched in the liver of organisms, but its effects and mechanisms on liver development and regeneration remain largely unknown. In the present study, we first investigated the adverse effects on liver development and found decreased area and intensity of fluorescence in transgenic zebrafish larvae exposed to DBDPE; further results in wild-type zebrafish larvae revealed a possible mechanism involving disturbed MAPK/Fox O signaling pathways and cell cycle arrest as indicated by decreased transcription of growth arrest and DNA-damage-inducible beta a (gadd45ba). Subsequently, an obstructed recovery process of liver tissue after partial hepatectomy was characterized by the changing profiles of ventral lobe-to-intestine ratio in transgenic female adults upon DBDPE exposure; further results confirmed the adverse effects on liver regeneration by the alterations of the hepatic somatic index and proliferating cell nuclear antigen expression in wild-type female adults and also pointed out a potential role of a disturbed signaling pathway involving cell cycles and glycerolipid metabolism. Our results not only provided novel evidence for the hepatotoxicity and underlying mechanism of DBDPE but also were indicative of subsequent ecological and health risk assessment.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
31
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
32
|
Michel ME, Wen CC, Yee SW, Giacomini KM, Hamdoun A, Nicklisch SCT. TICBase: Integrated Resource for Data on Drug and Environmental Chemical Interactions with Mammalian Drug Transporters. Clin Pharmacol Ther 2023; 114:1293-1303. [PMID: 37657924 DOI: 10.1002/cpt.3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023]
Abstract
Environmental health science seeks to predict how environmental toxins, chemical toxicants, and prescription drugs accumulate and interact within the body. Xenobiotic transporters of the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies are major determinants of the uptake and disposition of xenobiotics across the kingdoms of life. The goal of this study was to integrate drug and environmental chemical interactions of mammalian ABC and SLC proteins in a centralized, integrative database. We built upon an existing publicly accessible platform-the "TransPortal"-which was updated with novel data and searchable features on transporter-interfering chemicals from manually curated literature data. The integrated resource TransPortal-TICBase (https://transportal.compbio.ucsf.edu) now contains information on 46 different mammalian xenobiotic transporters of the ABC- and SLC-type superfamilies, including 13 newly added rodent and 2 additional human drug transporters, 126 clinical drug-drug interactions, and a more than quadrupled expansion of the initial in vitro chemical interaction data from 1,402 to 6,296 total interactions. Based on our updated database, environmental interference with major human and rodent drug transporters occurs across the ABC- and SLC-type superfamilies, with kinetics indicating that some chemicals, such as the ionic liquid 1-hexylpyridinium chloride and the antiseptic chlorhexidine, can act as strong inhibitors with potencies similar or even higher than pharmacological model inhibitors. The new integrated web portal serves as a central repository of current and emerging data for interactions of prescription drugs and environmental chemicals with human drug transporters. This archive has important implications for predicting adverse drug-drug and drug-environmental chemical interactions and can serve as a reference website for the broader scientific community of clinicians and researchers.
Collapse
Affiliation(s)
- Matthew E Michel
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | | | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| |
Collapse
|
33
|
Lan Y, Liu Y, Cai Y, Du Q, Zhu H, Tu H, Xue J, Cheng Z. Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 238:117172. [PMID: 37729961 DOI: 10.1016/j.envres.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
As alternatives for legacy brominated flame retardants, novel brominated flame retardants (NBFRs) have a wide array of applications in the electronic and electrical fields. The shift of recycling modes of electronic and electrical waste (e-waste) from informal recycling family workshop to formal recycling facilities might come with the change the chemical landscape emitted including NBFRs, however, little information is known about this topic. This study investigated the occurrence characteristics, distribution, and exposure profiles of eight common NBFRs and their derivatives in an e-waste recycling industrial park in central China and illustrated the differences in various functional zones in the recycling park. The highest level of ΣNBFRs in dust samples was found in e-waste storage area at median concentration of 27,400 ng/g, followed by e-waste dismantling workshops (23,300 ng/g), workshop outdoor area (7770 ng/g), and residential area outdoor (536 ng/g). In the e-waste dismantling associated dust samples, tetrabromobisphenol A bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), tetrabromobisphenol A (TBBPA) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) were the predominant components. This paper presented the first evidence regarding the occurrence characteristic and distribution of tetrabromobisphenol S (TBBPS), tetrabromobisphenol A bismethyl ether (TBBPA-BME) and tetrabromobisphenol S bis(2,3-dibromopropyl ether) (TBBPS-BDBPE) in the e-waste associated dust samples. By comparing with previous studies performed in China, this paper also noticed the significant decrease of TBBPA concentrations in the dust probably due to the shift of e-wastes sources and recycling modes. We further assessed the risk of occupational workers exposure to NBFRs. The median EDI (estimated daily intake) value of ΣNBFRs among e-waste dismantling workers was 9.71 ng/kg BW/d with the maximum EDI value being 19.6 ng/kg BW/d, hundreds of times higher than those exposed by general population. The study raises great concern for the health risk of occupational exposure to NBFRs in the e-waste recycling industrial park.
Collapse
Affiliation(s)
- Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qingping Du
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haitao Tu
- Division of Nephrology, The First affiliated hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Wu Y, Fenech A, Li X, Gu W, Li Y. Multi-process regulation of novel brominated flame retardants: Environmentally friendly substitute design, screening and environmental risk regulation. ENVIRONMENTAL RESEARCH 2023; 237:116924. [PMID: 37598838 DOI: 10.1016/j.envres.2023.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Novel brominated flame retardants (NBFRs), one of the most widely used synthetic flame-retardant materials, have been considered as a new group of pollutants that potentially affect human health. To overcome the adverse effects of NBFRs, a systematic approach for molecular design, screening, and performance evaluation was developed to generate environmentally friendly NBFR derivatives with unaltered functionality. In the present study, the features of NBFRs (long-distance migration, biotoxicity, bioenrichment, and environmental persistence) were determined and characterized by the multifactor comprehensive characterization method with equal weight addition, and the similarity index analysis (CoMSIA) model was constructed. Based on the three-dimensional equipotential diagram of the target molecule 2-ethylhexyl tetrabromobenzoic acid (TBB), 23 TBB derivatives were designed. Of these, 22 derivatives with decreased environmental impact and unaltered functional properties (i.e., flame retardancy and stability) were selected using 3D-QSAR models and density functional theory methods. The health risks of these derivatives to humans were assessed by toxicokinetic analysis; the results narrowed down the number of candidates to three (Derivative-7, Derivative-10, and Derivative-15). The environmental impact of these candidates was further evaluated and regulated in the real-world environment by using molecular dynamics simulation assisted by the Taguchi experimental design method. The relationship between the binding effects and the nonbonding interaction resultant force (TBB derivatives-receptor proteins) was also studied, and it was found that the larger the modulus of the binding force, the stronger the binding ability of the two. This finding indicated that the environmental impact of the designed NBFR derivatives was decreased. The present study aimed to provide a new idea and method for designing NBFR substitutes and to provide theoretical support for restraining the potential environmental risks of NBFRs.
Collapse
Affiliation(s)
- Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Adam Fenech
- School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, C1A 4P3, Canada.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Wenwen Gu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
35
|
Sun Y, Wang X, Zhou S, Zhou Y, Hua J, Guo Y, Wang Y, Zhang W, Yang L, Zhou B. Evaluation and Mechanistic Study of Transgenerational Neurotoxicity in Zebrafish upon Life Cycle Exposure to Decabromodiphenyl Ethane (DBDPE). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16811-16822. [PMID: 37880149 DOI: 10.1021/acs.est.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.
Collapse
Affiliation(s)
- Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
36
|
Leung G, Akiki C, Bilamjian S, Tian L, Liu L, Bayen S. Targeted and non-targeted screening of flame retardants in rural and urban honey. CHEMOSPHERE 2023; 341:139908. [PMID: 37634584 DOI: 10.1016/j.chemosphere.2023.139908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Flame retardants (FRs) are often added to commercial products to achieve flammability resistance, but they are not chemically bonded to the materials, so, they can be easily released into the environment during the production and disposal processes. When honeybees travel to collect nectar during the pollination process, they are prone to be contaminated by chemicals in the air. Therefore, honey contamination has been proposed as an indicator of the pollution status in a particular region. To date, the occurrence of flame retardants in urban honey has yet to be explored. In this study, a direct injection method was used, coupled with LC-QTOF-MS, to analyze honey samples. This method was applied to urban (n = 100) and rural (n = 100) honey samples from the Quebec province (Canada), and the levels of flame retardants in urban and rural honey samples were not significantly different. In the targeted approach, two of the target FRs, tris(2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP), were detected and confirmed at an average trace concentration (<1 ng mL-1). Additionally, a non-targeted screening workflow with an in-house-built library was developed and validated to screen for flame retardants in honey. Tris (2-chloropropyl) phosphate (TCIPP) was identified in honey using the non-targeted screening workflow and confirmed using a pure analytical standard, but there are other compounds detected in the non-targeted analysis that have yet to be validated. This study was the first to report FR compounds based on a direct injection method, coupled with a non-targeted screening workflow, at a trace level in a honey matrix. It also showed that a non-targeted workflow was effective to detect and identify unknown compounds present in the honey sample; hence, this provided a novel angle for the occurrence of FRs in air, with honey as a bio-indicator.
Collapse
Affiliation(s)
- Gabriel Leung
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - Caren Akiki
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - Shaghig Bilamjian
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - Lei Tian
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9 Canada.
| |
Collapse
|
37
|
Li YY, Xiong YM, Chen XY, Sheng JY, Lv L, Li XH, Qin ZF. Extended exposure to tetrabromobisphenol A-bis(2,3-dibromopropyl ether) leads to subfertility in male mice at the late reproductive age. Arch Toxicol 2023; 97:2983-2995. [PMID: 37606655 DOI: 10.1007/s00204-023-03589-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Tetrabromobisphenol A-bis(2,3-dibromopropyl ether) (TBBPA-BDBPE), a commonly used brominated flame retardant as a decabromodiphenyl ether substitute, has been detected in various environmental compartments, but its health hazards remain largely unknown. Our recent study showed that low-dose exposure of male mice to TBBPA-BDBPE from postnatal day (PND) 0 to 56 caused remarkable damage to the microtubule skeleton in Sertoli cells and the blood-testis barrier (BTB) but exerted little effect on conventional reproductive endpoints in adulthood. To investigate whether TBBPA-BDBPE may cause severe reproductive impairments at late reproductive age, here, we extended exposure of historically administrated male mice to 8-month age and allowed them to mate with non-treated females for the evaluation of fertility, followed by a general examination for the reproductive system. As expected, we found that 8-month exposure to 50 μg/kg/d as well as 1000 μg/kg/d TBBPA-BDBPE caused severe damage to the reproductive system, including reduced sperm counts, increased sperm abnormality, histological alterations of testes. Moreover, microtubule damage and BTB-related impairment were still observed following 8-month exposure. Noticeably, high-dose TBBPA-BDBPE-treated mice had fewer offspring with a female-biased sex ratio. All results show that long-term exposure to TBBPA-BDBPE caused severe reproductive impairment, including poor fertility at late reproductive age. It is therefore concluded that slight testicular injuries in early life can contribute to reproductive impairment at late reproductive age, highlighting that alterations in certain non-conventional endpoints should be noticed as well as conventional endpoints in future reproductive toxicity studies.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yi Sheng
- The High School Affiliated to Renmin, University of China, Beijing, 100080, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Life Sciences, Hengshui University, Hebei, 053000, China.
| |
Collapse
|
38
|
Tao F, Sjöström Y, de Wit CA, Hagström K, Hagberg J. Organohalogenated flame retardants and organophosphate esters from home and preschool dust in Sweden: Pollution characteristics, indoor sources and intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165198. [PMID: 37391153 DOI: 10.1016/j.scitotenv.2023.165198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
This study analysed settled dust samples in Sweden to assess children's combined exposure to 39 organohalogenated flame retardants (HFRs) and 11 organophosphate esters (OPEs) from homes and preschools. >94 % of the targeted compounds were present in dust, indicating widespread use of HFRs and OPEs in Swedish homes and preschools. Dust ingestion was the primary exposure pathway for most analytes, except BDE-209 and DBDPE, where dermal contact was predominant. Children's estimated intakes of ∑emerging HFRs and ∑legacy HFRs from homes were 1-4 times higher than from preschools, highlighting higher exposure risk for HFRs in homes compared to preschools. In a worst-case scenario, intakes of tris(2-butoxyethyl) phosphate (TBOEP) were 6 and 94 times lower than the reference dose for children in Sweden, indicating a potential concern if exposure from other routes like inhalation and diet is as high. The study also found significant positive correlations between dust concentrations of some PBDEs and emerging HFRs and the total number of foam mattresses and beds/m2, the number of foam-containing sofas/m2, and the number of TVs/m2 in the microenvironment, indicating these products as the main source of those compounds. Additionally, younger preschool building ages were found to be linked to higher ΣOPE concentrations in preschool dust, suggesting higher ΣOPE exposure. The comparison with earlier Swedish studies indicates decreasing dust concentrations for some banned and restricted legacy HFRs and OPEs but increasing trends for several emerging HFRs and several unrestricted OPEs. Therefore, the study concludes that emerging HFRs and OPEs are replacing legacy HFRs in products and building materials in homes and preschools, possibly leading to increased exposure of children.
Collapse
Affiliation(s)
- Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
39
|
Mendy A, Percy Z, Braun JM, Lanphear B, La Guardia MJ, Hale R, Yolton K, Chen A. Exposure to dust organophosphate and replacement brominated flame retardants during infancy and risk of subsequent adverse respiratory outcomes. ENVIRONMENTAL RESEARCH 2023; 235:116560. [PMID: 37419195 PMCID: PMC10528780 DOI: 10.1016/j.envres.2023.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Children are highly exposed to flame retardants in indoor environments, partly through inhalation. However, the associations of early life exposure to novel organophosphate (OPFRs) and replacement brominated flame retardants (RBFRs) with adverse respiratory outcomes during childhood are unclear. METHODS We used a prospective birth cohort of 234 children recruited from the greater Cincinnati, Ohio metropolitan area between 2003 and 2006. OPFRs and RBFRs were analyzed in dust sampled from the homes' main activity room and the children's bedroom floor at child age 1 year. Caregivers reported subsequent respiratory symptoms every six months until child age 5 years and we measured forced expiratory volume in 1 s as well as peak expiratory flow (PEF) at child age 5 years. We performed generalized estimating equations and linear regression modeling adjusted for covariates to examine the exposure-outcome associations. RESULTS Geometric means (GMs) (standard error [SE]) for dust concentrations were 10.27 (0.63) μg/g for total OPFRs (ΣOPFRs) and 0.48 (0.04) μg/g for total RBFRs (ΣRBFRs); GMs (SE) for dust loadings were 2.82 (0.26) μg/m2 for ΣOPFRs and 0.13 (0.01) μg/m2 for ΣRBFRs. Dust ∑OPFRs concentrations at age 1 year were associated with higher subsequent risks of wheezing (relative risk [RR]: 1.68, 95% confidence interval [CI]: 1.20-2.34), respiratory infections (RR: 4.01, 95% CI: 1.95-8.24), and hay fever/allergies (RR: 1.33, 95% CI: 1.10-1.60), whereas ∑OPFRs dust loadings at age 1 year were associated with higher risks of subsequent respiratory infections (RR: 1.87, 95% CI: 1.05-3.34) and hay fever/allergies (RR: 1.34, 95% CI: 1.19-1.51). PEF (mL/min) was lower with higher ∑OPFRs dust loadings (β: -12.10, 95% CI: -21.10, -3.10) and with the RBFR bis(2-ethylhexyl) tetrabromophthalate (β: -9.05, 95% CI: -17.67, -0.43). CONCLUSIONS Exposure to OPFRs and RBFRs during infancy may be a risk factor for adverse respiratory outcomes during childhood.
Collapse
Affiliation(s)
- Angelico Mendy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Zana Percy
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Robert Hale
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kimberly Yolton
- Department of General Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
41
|
Kuttiyathil MS, Ali L, Ahmed OH, Altarawneh M. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98300-98313. [PMID: 37606772 DOI: 10.1007/s11356-023-29428-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently acquired through thermal recycling operations involving the pyrolysis of BFRs-containing materials with metal oxides. Nonetheless, the debromination capacity toward NBFRs is yet to be established. Thus, this study aims to address these two crucial gaps in the current knowledge pertaining to the plausible formation of brominated toxicants from the thermal decomposition of NBFRs and their thermal recycling potential. Herein, we investigate the pyrolysis of a mixture of 2,4,6-tribromophenol (TBP), allyl 2,4,6-tribromophenyl ether (ATE) and Tetrabromobisphenol A-bis (2,3-dibromo propyl ether) (TBBPA-DBPE) in the presence of acrylonitrile butadiene styrene (ABS) polymers at various loads. To demonstrate a viable debromination route, pyrolysis of NBFRs-ABS mixture with Ca(OH)2 was also investigated. The latter is a potent debromination agent for legacy BFRs. Upon pyrolysis with Ca(OH)2, the bromine content in the collected oil was reduced up to 80.49% between 25-500 °C. Products of the co-pyrolysis process generally feature non-brominated aromatic and aliphatic compounds; a finding that indicates an effective thermal recycling approach. As evident by IC measurements, no HBr emission could be detected when Ca(OH)2 is added to the mixture. As XRD patterns show, Ca(OH)2 is partially converted into CaBr2. DFT calculations provide pathways for the observed surface debromination characterized by surface-assisted fission of aromatic C-Br bonds and the formation of CaBr sites. Outcomes reported herein are instrumental to designing and operating a thermal recycling facility of polymeric materials contaminated with high loads of bromine, i.e., most notably during scenarios encountered in the thermal recycling of e-waste.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates
| | - Oday H Ahmed
- Department of Physics, College of Education, Al- Iraqia University, Baghdad, Iraq
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
42
|
Zhou S, Fu M, Ling S, Qiao Z, Luo K, Peng C, Zhang W, Lei J, Zhou B. Legacy and novel brominated flame retardants in a lab-constructed freshwater ecosystem: Distribution, bioaccumulation, and trophic transfer. WATER RESEARCH 2023; 242:120176. [PMID: 37301001 DOI: 10.1016/j.watres.2023.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
43
|
Chen A, Chen C, Zhang S, Li L, Zhang Z, Chen J, Jing Q, Liu J. Emission and environmental distribution of decabromodiphenyl ethane (DBDPE) in China from 2006 to 2026: Retrospection, forecasting, and implications for assessment and management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121536. [PMID: 37003589 DOI: 10.1016/j.envpol.2023.121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is the main alternative to decabromodiphenyl ether (deca-BDE) in commercial use. However, there is increasing evidence show that DBDPE is a potential persistent organic pollutant, and it has been found ubiquitously in environmental media across China in recent years. Monitoring studies have not been able to determine the overall levels and temporal trends of DBDPE contamination in China, and have been unable to explain how emission patterns can affect their environmental distribution. Therefore, this study estimated the temporal variance of DBDPE emissions and environmental concentrations in five regions of China from 2006 to 2026 using the PROduction-To-EXposure (PROTEX) mass balance model. The results showed that Guangdong Province was the greatest DBDPE pollution hotspot in China due to emissions from plastics manufacturing and e-waste disposal; there was also severe pollution in Shandong Province, where almost all the DBDPE in China is produced. The DBDPE concentrations in indoor and outdoor environments increased substantially in all regions during 2006-2021. Furthermore, in Guangdong Province and Shandong Province, the ratio of indoor/outdoor air concentrations was greater than or close to 1, indicative of significant outdoor emission sources of DBDPE. In contrast, the ratios for the Beijing-Tianjin-Hebei region, East China, and Southwest China were below 1 due to the indoor use of electronic equipment containing DBDPE. The temporal trends of these ratios indicated that DBDPE contamination has gradually spread from high-concentration environments with strong emission sources to low-concentration environments. The outcomes of this study have important implications for the risk assessment of DBDPE use in China and can be used to establish contamination-mitigation actions.
Collapse
Affiliation(s)
- Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Jiazhe Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
44
|
Wang Q, Ruan Y, Jin L, Kot BCW, Leung KMY, Lam PKS. Temporal Trends and Suspect Screening of Halogenated Flame Retardants and Their Metabolites in Blubbers of Cetaceans Stranded in Hong Kong Waters during 2013-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37295780 DOI: 10.1021/acs.est.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Brian C W Kot
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
45
|
Zhang S, Liu J, Hou X, Zhang H, Zhu Z, Jiang G. Sensitive method for simultaneous determination of TBBPA and its ten derivatives. Talanta 2023; 264:124750. [PMID: 37290335 DOI: 10.1016/j.talanta.2023.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives are regarded as new contaminants, raising much attention on their environmental occurrence and fates. However, the sensitive detection of TBBPA and its main derivatives is still a great challenge. This study investigated a sensitive method for simultaneous detection of TBBPA and its ten derivatives using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-MS/MS) with atmospheric pressure chemical ionization (APCI) source. The method exhibited much better performance than previously reported methods. Furthermore, it was successfully applied in determining complicated environmental samples, including sewage sludge, river water and vegetable samples with concentration range from undetected (n.d.) to 25.8 ng g-1 dry weight (dw). For sewage sludge, river water and vegetable samples, the spiking recoveries of TBBPA and its derivatives ranged from 69.6 ± 7.0% to 86.1 ± 12.9%, 69.5 ± 13.9% to 87.5 ± 6.6%, and 68.2 ± 5.6% to 80.2 ± 8.3%, respectively; the accuracy ranged from 94.9 ± 4.6% to 113 ± 5%, 91.9 ± 10.9% to 112 ± 7%, and 92.1 ± 5.1% to 106 ± 6%, and the method quantitative limits ranged from 0.00801 to 0.224 ng g-1 dw, 0.0104-0.253 ng L-1, and 0.00524-0.152 ng g-1 dw, respectively. Moreover, the present manuscript describes for the first time the simultaneous detection of TBBPA and ten derivatives from various environmental samples, providing fundamental work for further research on their environmental occurrences, behaviors and fates.
Collapse
Affiliation(s)
- Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hongrui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanao Zhu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| |
Collapse
|
46
|
Wang G, Guo P, Liu Y, Li C, Wang X, Wang H. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: Implication by compound-specific stable isotope analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117622. [PMID: 36867899 DOI: 10.1016/j.jenvman.2023.117622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
As a novel brominate flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) has been extensively used in various consumer products, and frequently detected in various environmental matrices. However, the microbial degradation of BTBPE remains unclear in the environment. This study comprehensively investigated the anaerobic microbial degradation of BTBPE and therein stable carbon isotope effect in the wetland soils. BTBPE degradation followed the pseudo-first-order kinetic, with degradation rate of 0.0085 ± 0.0008 day-1. Based on identification of degradation products, stepwise reductive debromination was the main transformation pathway of BTBPE, and tended to keep the stable of 2,4,6-tribromophenoxy group during the microbial degradation. The pronounced carbon isotope fractionation was observed for BTBPE microbial degradation, and carbon isotope enrichment factor (εC) was determined to be -4.81 ± 0.37‰, indicating cleavage of C-Br bond as the rate-limiting step. Compared to previously reported isotope effects, carbon apparent kinetic isotope effect (AKIEC = 1.072 ± 0.004) suggested that the nucleophilic substitution (SN2 reaction) was the potential reaction mechanism for reductive debromination of BTBPE in the anaerobic microbial degradation. These findings demonstrated that BTBPE could be degraded by the anaerobic microbes in wetland soils, and the compound-specific stable isotope analysis was a robust method to discover the underlying reaction mechanisms.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
47
|
Parizek O, Gramblicka T, Parizkova D, Polachova A, Bechynska K, Dvorakova D, Stupak M, Dusek J, Pavlikova J, Topinka J, Sram RJ, Pulkrabova J. Assessment of organohalogenated pollutants in breast milk from the Czech Republic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161938. [PMID: 36740074 DOI: 10.1016/j.scitotenv.2023.161938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
This biomonitoring survey brings new information on the occurrence of a total of 94 organohalogenated pollutants in 231 human breast milk samples collected in 2019 and 2021 from women living in two regions of the Czech Republic (Karvina and Ceske Budejovice). This study aimed to evaluate the concentrations of 6 indicator polychlorinated biphenyls (PCBs), 10 organochlorine pesticides (OCPs), 34 halogenated flame retardants (HFRs), 29 perfluoroalkyl and polyfluoroalkyl substances (PFAS) and 15 polychlorinated naphthalenes (PCNs). PCBs, OCPs, most of HFRs and PCNs were identified/quantified by gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)), while PFAS, hexabromocyclododecane isomers (HBCD), brominated phenols, and tetrabromobisphenol A (TBBPA) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The mean value of the sum of the 6 indicator PCBs was 123.12 nanogram per gram of lipid weight (ng g-1 lw). Hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE) were the most abundant OCPs, detected in 100 % (mean 11.8 ng g-1 lw), 94.8 % (mean 6.1 ng g-1 lw) and 100 % (mean 101.5 ng g-1 lw) of samples, respectively. PCN congeners 20, 52 and 66 were detected in <1 % of the samples. The HFRs concentrations were relatively low compared to the levels of OCP; The detection rate of polybrominated diphenyl ethers (PBDEs, # 47, 99 and 153) ranged 21-68 % with a mean concentrations of 0.34 ng g-1 lw - 0.42 ng g-1 lw. PFAS concentrations were also low, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) dominant in this group (means of 22 pg ml-1 and 21 pg ml-1, respectively). Our results confirmed the long-term trend of declining levels of banned POPs in Czech mothers. The amounts of PCBs and OCPs were higher in older breastfeeding primiparous women.
Collapse
Affiliation(s)
- Ondrej Parizek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Denisa Parizkova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Andrea Polachova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Kamila Bechynska
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Michal Stupak
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jiri Dusek
- Hospital Ceske Budejovice, a.s., 370 01 Ceske Budejovice, Czech Republic
| | - Jitka Pavlikova
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
48
|
de Boer J, van Dijk R, Abalos M, Abad E. Persistent organic pollutants in air from Asia, Africa, Latin America, and the Pacific. CHEMOSPHERE 2023; 324:138271. [PMID: 36878366 DOI: 10.1016/j.chemosphere.2023.138271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In support of the United Nations Environment Programme (UNEP) global monitoring plan under the Stockholm Convention concentrations of persistent organic pollutants (POPs) were determined during two years in air from 42 countries in Asia, Africa, Latin America, and the Pacific by using polyurethane foams installed in passive samplers. The compounds included were polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenylethers (PBDEs), one polybrominated biphenyl and hexabromocyclododecane (HBCD) diastereomers. Total-DDT and PCBs were the highest in concentrations in about 50% of the samples, which shows their high persistency. Total DDT in air from the Solomon Islands ranged from 200 to 600 ng/polyurethane foam disk (PUF). However, at most locations, a decreasing trend is observed for PCBs, DDT and most other OCPs. Patterns varied per country with e.g. elevated dieldrin in air from Barbados and chlordane in air from the Philippines. A number of OCPs, such as heptachlor and its epoxides, some other chlordanes, mirex and toxaphene have decreased down to almost undetectable levels. PBB153 was hardly found and penta and octa--mix related PBDEs were also relatively low at most locations. HBCD and the decabromodiphenylether were more prominent at many locations and may even still increase. To draw more holistic conclusions more colder climate countries should be included in this program.
Collapse
Affiliation(s)
- Jacob de Boer
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands.
| | - Rianne van Dijk
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Manoli Abalos
- Consejo Superior de Investigaciones Científicas, Dioxins Laboratory (IDAEA-CSIC), Carrer de Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Esteban Abad
- Consejo Superior de Investigaciones Científicas, Dioxins Laboratory (IDAEA-CSIC), Carrer de Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
49
|
Zhang G, Meng L, Guo J, Guan X, Liu M, Han X, Li Y, Zhang Q, Jiang G. Exposure to novel brominated and organophosphate flame retardants and associations with type 2 diabetes in East China: A case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162107. [PMID: 36764545 DOI: 10.1016/j.scitotenv.2023.162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The alternative flame retardants, novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment and biota and may induce endocrine disruption effects. Associations between traditional endocrine-disrupting chemicals and type 2 diabetes have been extensively reported in epidemiological studies. However, the effects of NBFRs and OPFRs in humans have not been reported to date. This paper reports a case-control study of 344 participants aged 25-80 years from Shandong Province, East China, where potential associations between serum NBFR and OPFR concentrations and type 2 diabetes are assessed for the first time. After adjusting for covariates (i.e., age, sex, body mass index, smoking status, alcohol consumption, triglycerides, and total cholesterol), serum concentrations of pentabromotoluene, 2,3-dibromopropyl 2,4,6-tribromophenyl ether, tri-n-propyl phosphate, triphenyl phosphate, and tris (2-ethylhexyl) phosphate were significantly positively associated with type 2 diabetes. In the control group, decabromodiphenyl ethane and triphenyl phosphate were significantly positively associated with fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol. In the quantile g-computation model, significant positive mixture effect was found between the flame retardants mixtures and high-density lipoprotein cholesterol levels, and decabromodiphenyl ethane contributed the largest positive weights to the mixture effect. Overall, these findings suggest that exposure to NBFRs and OPFRs may promote type 2 diabetes.
Collapse
Affiliation(s)
- Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiehong Guo
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, MI 49931, USA
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- Sinopec Research Institute of Petroleum Processing CO., LTD., Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
50
|
Li X, Liu Y, Yin Y, Wang P, Su X. Occurrence of some legacy and emerging contaminants in feed and food and their ranking priorities for human exposure. CHEMOSPHERE 2023; 321:138117. [PMID: 36775031 DOI: 10.1016/j.chemosphere.2023.138117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The "feed-to-food" pathway is one of the most important routes for human exposure to manmade contaminants. The contaminants could threaten human health through the "feed-to-food" route and have recently become of great public concern. This review selects the representative legacy and emerging contaminants (ECs), such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), organophosphate esters (OPEs), short-chain chlorinated paraffins (SCCPs), and per- and polyfluoroalkyl substances (PFASs), regarding their occurrence in feed and food, as well as their metabolites and transport in farming and livestock ecosystems. Factors that might influence their presence and behavior are discussed. This review raises an approach to rank the priority of ECs using the EC concentrations in feed and food and using the hazard quotient (HQ) method for human health. Although SCCPs have the highest levels in feed and food, their potential risks appear to be the lowest. PFASs have the highest HQs on account of human exposure risk. Future research should pay more attention to the combined effects of multiple ECs.
Collapse
Affiliation(s)
- Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Yifei Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|