1
|
Li J, Yang L, Ding Y, Yang F, Tan H, Tang S, Chen D. Declining trends and regional variations of organophosphate ester contamination in indoor dust from mainland China: Insights from a filed study and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178088. [PMID: 39705955 DOI: 10.1016/j.scitotenv.2024.178088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the presence of 20 organophosphate esters (OPEs) in indoor dust samples collected from the Chinese cities of Lanzhou, Xining, and Lhasa. The results demonstrate the ubiquitous presence of most OPEs in these three cities, with the highest concentrations of ΣOPEs found in Xining. We also summarized the occurrence of OPEs in indoor environments from 38 studies with 1875 samples collected across various regions of mainland China from 2012 to 2023. The weighted-median concentration of ΣOPEs in indoor dust exhibited region-specific variations, range from 381.9 to 6622.5 ng/g. Chloroalkyl-OPEs (Cl-OPEs) (e.g., tris(2-chloroethyl) phosphate (TCEP), tri(1-chloro-2-propyl) phosphate (TCIPP), and tri (1,3-dichloro-2-propyl) phosphate (TDCIPP)) predominated in all seven regions (range: 38.9 %-71.4 %). TCIPP was predominant in the Central China, North China, Northeast China, Northwest China, Southwest China, and Southwest China regions, while TCEP dominated in the Eastern China region. A significant downward trend in OPE concentrations in indoor environments was observed during the investigated period. Dust ingestion was identified as the predominant pathway of human exposure to OPEs indoors. The hazard quotients for Cl-OPEs were below the non-carcinogenic threshold, suggesting significant health risks are unlikely. This study underscores the widespread occurrence of OPEs in indoor dust across mainland China, emphasizing the necessity for ongoing monitoring and regulation of these chemicals.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Liu Yang
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yuying Ding
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hongli Tan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Wang LJ, Chao HR, Chen CC, Chen CM, You HL, Tsai CC, Tsai CS, Chou WJ, Li CJ, Tsai KF, Cheng FJ, Kung CT, Li SH, Wang CC, Ou YC, Lee WC, Huang WT. Effects of urinary organophosphate flame retardants in susceptibility to attention-deficit/hyperactivity disorder in school-age children. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117281. [PMID: 39509783 DOI: 10.1016/j.ecoenv.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Our previous studies have revealed a correlation between urinary phthalates (PAE) metabolites and parabens and PM2.5 exposure and susceptibility to attention-deficit/hyperactivity disorder (ADHD) in school-age children. Our goal was to examine the relationships between urinary organophosphate flame retardants (OPFRs) and their metabolites and the susceptibility to ADHD in the same cohort of children. We recruited 186 school children, including 132 with ADHD and 54 normal controls, living in southern Taiwan to investigate five OPFRs (1,3-dichloro-2-propyl phosphate (TDCPP), tri-n-butyl phosphate (TnBP), tris (2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPHP)) and five OPFR metabolites (bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-n-butyl phosphate (DNBP), bis(2-chloroethyl) hydrogen phosphate (BCEP), di-(2-butoxyethyl) phosphate (DBEP), and diphenyl phosphate (DPHP)) in urine. ADHD patients' behavioral symptoms and neuropsychological function were assessed using the Swanson, Nolan, and Pelham Version IV Scale (SNAP-IV) and the Conners' Continuous Performance Test 3rd Edition (Conners CPT3), respectively. BCEP was predominant among urinary OPFRs and the metabolites in both the ADHD and control groups. ADHD children had significantly higher levels of urinary BDCPP, BCEP, DBEP, DPHP, TCEP, TBEP, TNBP, TPHP, and Σ10OPFR compared to the controls. After controlling for age, gender, body mass index, PM2.5 exposure scenarios, and urinary phthalate metabolites, parabens, bisphenol-A and creatinine, levels of urinary BDCPP, TDCPP, and TBEP in ADHD children showed significant and dose-dependent effects on core behavioral symptoms of inattention. DNBP levels were positively correlated with neuropsychological deficits (CPT detectability, omission, and commission), while urinary DPHP in ADHD children were negatively related to CPT detectability and commission. Hyperactivity and impulsivity were not correlated with urinary OPFRs and their metabolites in ADHD children. In conclusion, the ADHD symptom of inattention and CPT performance may be closely associated with certain urinary OPFRs and their metabolites, independent of urinary PAE metabolites, parabens, and bisphenol-A in school-age-ADHD children.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Taiwan; Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung 83301, Taiwan
| | - Ching-Me Chen
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Jung Li
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| |
Collapse
|
3
|
Zhao Y, Zhao M, Li Q, Li H, Yang R, Yin N, Faiola F. Development of a TBXT-EGFP iPS cell model for screening the early developmental toxicity of typical environmental pollutants. Food Chem Toxicol 2024; 193:115039. [PMID: 39389444 DOI: 10.1016/j.fct.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
In our daily lives, we are inevitably exposed to a variety of environmental pollutants in numerous ways. Fortunately, recent years have witnessed significant advancements in the field of stem cell toxicology, which have provided new opportunities for research in environmental toxicology. Applying stem cell technology to environmental toxicology, overcomes some of the limitations of traditional screening methods and we can more accurately predict the toxicity of environmental pollutants. However, there are still several aspects of stem cell toxicology models that require improvement, such as increasing the throughput of detection and simplifying detection methods. Consequently, we developed an environmental pollutant toxicity detection model based on TBXT-EGFP iPS cells and screened the developmental toxicity of 38 typical environmental pollutants. Our results indicate that TBBPA-BDBPE, TBBPA-BHEE, DG, and AO2246 may interfere with the expression of TBXT, a critical marker gene for early human embryo development, implying that these environmental pollutants could lead to developmental abnormalities.
Collapse
Affiliation(s)
- Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qingyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanyue Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Benmammar RK, Bouberka Z, Malas C, Carpentier Y, Haider KM, Mundlapati VR, Ziskind M, Focsa C, Khelifi S, Poutch F, Laoutid F, Supiot P, Foissac C, Maschke U. Degradation of Decabromodiphenyl Ether Dispersed in Poly (Acrylo-Butadiene-Styrene) Using a Rotatory Laboratory Pilot Under UV-Visible Irradiation. Molecules 2024; 29:5037. [PMID: 39519678 PMCID: PMC11547912 DOI: 10.3390/molecules29215037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The growing volume of plastics derived from electronic waste (e-waste) underscores the imperative for environmentally sustainable strategies for the management of this waste. In light of the paramount importance of this issue, a pilot demonstrator for the decontamination of polymers containing Brominated Flame Retardants (BFRs) has been developed. The objective is to investigate the potential for decontaminating BFR-containing polymers from e-waste via UV-visible irradiation using a rotatory laboratory pilot operating under primary vacuum conditions. This report focuses on binary model blends composed of 90 weight% (wt%) poly(Acrylo-Butadiene-Styrene) (ABS) pellets and 10 wt% Deca-Bromo-Diphenyl Ether (DBDE), which is one of the most toxic BFRs. The efficiency of the irradiation process was evaluated as a function of pellet diameter and irradiation time using Fourier Transform InfraRed spectroscopy (FTIR) and High-Resolution Laser Desorption/Ionization Mass Spectroscopy (HR-LDI-MS). As a consequence, ABS + DBDE achieved a decontamination efficiency of 97% when irradiated with pellets of less than 1 mm in diameter for a period of 4 h. Additionally, the thermal behavior of the irradiated samples was investigated through thermogravimetric analysis and differential scanning calorimetry. It was thus established that the application of UV-visible irradiation had no significant impact on the overall thermal properties of ABS.
Collapse
Affiliation(s)
- Rachida Khadidja Benmammar
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Zohra Bouberka
- Laboratoire Physico-Chimique des Matériaux, Catalyse et Environnement (LPMCE), Université des Sciences et de la Technologie d’Oran «Mohamed Boudiaf» (USTO-MB), Oran 31000, Algeria
| | - Christian Malas
- Institut Chevreul, CNRS, INRAE, Université de Lille, 59850 Villeneuve d’Ascq, France
| | - Yvain Carpentier
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Kawssar Mujtaba Haider
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Venkateswara Rao Mundlapati
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
- Department of Chemistry, School of Applied Science, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Michael Ziskind
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Cristian Focsa
- Physique des Lasers Atomes et Molécules (PhLAM), UMR 8523, CNRS, Université de Lille, 59000 Lille, France
| | - Skander Khelifi
- CREPIM, Rue Christophe Colomb, Parc de la Porte Nord, 62700 Bruay-la-Buissière, France
| | - Franck Poutch
- CREPIM, Rue Christophe Colomb, Parc de la Porte Nord, 62700 Bruay-la-Buissière, France
| | - Fouad Laoutid
- Materia Nova Innovation Center, Avenue Copernic 3, 7000 Mons, Belgium
| | - Philippe Supiot
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Corinne Foissac
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| | - Ulrich Maschke
- Unité Matériaux et Transformations (UMET), UMR 8207, CNRS, INRAE, Université de Lille, 59000 Lille, France
| |
Collapse
|
5
|
Li H, Tong J, Wang X, Lu M, Yang F, Gao H, Gan H, Yan S, Gao G, Huang K, Cao Y, Tao F. Associations of prenatal exposure to individual and mixed organophosphate esters with ADHD symptom trajectories in preschool children: The modifying effects of maternal Vitamin D. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135541. [PMID: 39154480 DOI: 10.1016/j.jhazmat.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of environmental chemicals with endocrine-disrupting properties. Epidemiologic studies have demonstrated that prenatal OPEs exposure is associated with neurodevelopmental disorders in offspring. However, studies assessing the effects of prenatal OPEs exposure on the dynamic changes in attention deficit hyperactivity disorder (ADHD) symptoms in preschoolers are scarce. Since vitamin D has been demonstrated to have a "neuroprotective" effect, the modifying effects of maternal vitamin D were estimated. METHODS The present study included 2410 pregnant women from the Ma'anshan Birth Cohort. The levels of OPEs in the mothers' urine were examined in the three trimesters. The Chinese version of the Conners Abbreviated Symptom Questionnaire was used to examine preschoolers' ADHD symptoms at 3, 5, and 6 years of age. ADHD symptom trajectories were fitted via group-based trajectory modeling. We used multinomial logistic regression, Bayesian kernel machine regression, quantile-based g-computation, and generalized linear models to assess individual and mixed relationships between OPEs during pregnancy and preschoolers' ADHD symptoms and trajectories. RESULTS Preschoolers' ADHD symptom scores were fitted to 3 trajectories, including the low-score, moderate-score, and high-score groups. First-trimester dibutyl phosphate (DBP), second-trimester bis(2-butoxyethyl) phosphate (BBOEP), and third-trimester diphenyl phosphate (DPHP) were associated with an increased risk in the high-score group (p < 0.05). BBOEP in the third trimester was associated with decreased risk in the moderate-score group (OR = 0.89, 95% CI: 0.79, 1.00). For mothers with 25(OH)D deficiency, a positive relationship was observed between OPEs during pregnancy and symptom trajectories. Our results did not reveal any mixed effects of OPEs on ADHD symptom trajectories. CONCLUSION Prenatal exposure to OPEs had heterogeneous associations with ADHD symptom trajectories in preschoolers. Additionally, the effect of individual OPEs on symptom trajectories was intensified by vitamin D deficiency.
Collapse
Affiliation(s)
- Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Fengyu Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Balasch A, Peris A, Reche C, Moreno T, Eljarrat E. Dermal exposure assessment of formal e-waste dismantlers to flame retardants and plasticizers using passive sampling methodologies. ENVIRONMENT INTERNATIONAL 2024; 192:109021. [PMID: 39312840 DOI: 10.1016/j.envint.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The recycling of e-waste can lead to the release of organic chemicals when materials containing additives are subjected to dismantling and grinding. In this context, the exposure of workers from a Catalonian e-waste facility to flame retardants and plasticizers (including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs) and dechloranes) was assessed using T-shirts and wristbands as passive samplers. The study area includes an area exclusively dedicated to cathodic ray-tube (CRT) TVs dismantling, and a grinding area where the rest of e-waste is ground. All the families of compounds were detected in both T-shirts and wristbands, with the highest concentration levels corresponding to OPEs, followed by PBDEs, NBFRs, and dechloranes. The CRT area presented higher concentration levels than the grinding area. The compounds with higher concentrations in T-shirts were 2-ethylhexyl diphenyl phosphate (EHDPP), diphenyl cresyl phosphate (DCP) and triphenyl phosphate (TPHP), and the total concentration of all groups ranged between 293 and 8324 ng/dm2-h (hour). In the case of the wristbands, the most abundant compounds were DCP, TPHP, and BDE-209, with total concentrations between 188 and 2248 ng/dm2-h. The two sampling methods appear to be complementary, as T-shirts collect coarser particles, while wristbands also capture volatile compounds. Based on normalized surface and time concentrations, the estimated daily intake (EDI) through dermal contact was calculated and carcinogenic and non-carcinogenic risks (CR and non-CR) associated with this activity assessed. The results show median CR 29 and 16 times below the threshold in CRT and grinding areas respectively. The non-CR medians were 2 and 3 times below the threshold, although in the CRT area one exceptional value surpassed the threshold, suggesting that risk can exist for some workers in the facility.
Collapse
Affiliation(s)
- A Balasch
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - A Peris
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
7
|
Zhao Y, Deng Y, Shen F, Huang J, Yang J, Lu H, Wang J, Liang X, Su G. Characteristics and partitions of traditional and emerging organophosphate esters in soil and groundwater based on machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135351. [PMID: 39088951 DOI: 10.1016/j.jhazmat.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.
Collapse
Affiliation(s)
- Yanjie Zhao
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Fang Shen
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Yang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jun Wang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaoyang Liang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
8
|
Zhou X, Wang C, Huang M, Zhang J, Cheng B, Zheng Y, Chen S, Xiang M, Li Y, Bedia J, Belver C, Li H. A review of the present methods used to remediate soil and water contaminated with organophosphate esters and developmental directions. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134834. [PMID: 38889460 DOI: 10.1016/j.jhazmat.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Organophosphate esters (OPEs) are widely used commercial additives, but their environmental persistence and toxicity raise serious concerns necessitating associated remediation strategies. Although there are various existing technologies for OPE removal, comprehensive screening for them is urgently needed to guide further research. This review provides a comprehensive overview of the techniques used to remove OPEs from soil and water, including their related influencing factors, removal mechanisms/degradation pathways, and practical applications. Based on an analysis of the latest literature, we concluded that (1) methods used to decontaminate OPEs include adsorption, hydrolysis, photolysis, advanced oxidation processes (AOPs), activated sludge processes, and microbial degradation; (2) factors such as the quantity/characteristics of the catalysts/additives, pH value, inorganic ion concentration, and natural organic matter (NOM) affect OPE removal; (3) primary degradation mechanisms involve oxidation induced by reactive oxygen species (ROS) (including •OH and SO4•-) and degradation pathways include hydrolysis, hydroxylation, oxidation, dechlorination, and dealkylation; (5) interference from the pH value, inorganic ion and the presence of NOM may limit complete mineralization during the treatment, impacting practical application of OPE removal techniques. This review provides guidance on existing and potential OPE removal methods, providing a theoretical basis and innovative ideas for developing more efficient and environmentally friendly techniques to treat OPEs in soil and water.
Collapse
Affiliation(s)
- Xuan Zhou
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Biao Cheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuai Chen
- School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Minghui Xiang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jorge Bedia
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Carolina Belver
- Chemical Engineering Department, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus Cantoblanco, Madrid E-28049, Spain
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Royano S, Navarro I, de la Torre A, Martínez MÁ. Occurrence and human risk assessment of pharmaceutically active compounds (PhACs) in indoor dust from homes, schools and offices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49682-49693. [PMID: 39080161 PMCID: PMC11324665 DOI: 10.1007/s11356-024-34459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the current situation and possible health risks due to pharmaceutically active compounds (PhACs) including analgesics, antibiotics, antifungals, anti-inflammatories, psychiatric and cardiovascular drugs, and metabolites, in indoor environments. To achieve this objective, a total of 85 dust samples were collected in 2022 from three different Spanish indoor environments: homes, classrooms, and offices. The analytical method was validated meeting SANTE/2020/12830 and SANTE/12682/2019 performance criteria. All indoor dust samples except one presented at least one PhAC. Although concentration levels ranged from < LOQ to 18 µg/g, only acetaminophen, thiabendazole, clotrimazole, and anhydroerythromycin showed quantification frequencies (Qf %) above 19% with median concentrations of 166 ng/g, 74 ng/g, 25 ng/g and 14 ng/g, respectively. The PhAC distribution between dust deposited on the floor and settled on elevated (> 0.5 m) surfaces was assessed but no significant differences (p > 0.05, Mann-Whitney U-test) were found. However, concentrations quantified at the three types of locations showed significant differences (p < 0.05, Kruskal-Wallis H-test). Homes turned out to be the indoor environment with higher pharmaceutical concentrations, especially acetaminophen (678 ng/g, median). The use of these medicines and their subsequent removal from the body were identified as the main PhAC sources in indoor dust. Relationships between occupant habits, building characteristics, and/or medicine consumption and PhAC concentrations were studied. Finally, on account of concentration differences, estimated daily intakes (EDIs) for inhalation, ingestion and dermal adsorption exposure pathways were calculated for toddlers, adolescents and adults in homes, classrooms and offices separately. Results proved that dust ingestion is the main route of exposure, contributing more than 99% in all indoor environments. Moreover, PhAC intakes for all studied groups, at occupational locations (classrooms and offices) are much lower than that obtained for homes, where hazard indexes (HIs) obtained for acetaminophen (7%-12%) and clotrimazole (4%-7%) at the worst scenario (P95) highlight the need for continuous monitoring.
Collapse
Affiliation(s)
- Silvia Royano
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
- International Doctoral School of the UNED (EIDUNED), National University of Distance Education (UNED), Madrid, Spain
| | - Irene Navarro
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Adrián de la Torre
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
| | - María Ángeles Martínez
- Unit of Persistent Organic Pollutants and Emerging Pollutants in the Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
10
|
Stelzer VB, da Silva AA, Penteado CSG, Cristale J. Organophosphate esters in inert landfill soil: A case study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:583-590. [PMID: 37638685 DOI: 10.1177/0734242x231190813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Organophosphate esters (OPEs) used as flame retardants and plasticizers are additives in building and construction materials, decorations, furniture, electronic equipment, among other applications. The presence of materials containing these substances in construction and demolition waste (CDW) from weak waste management practices can result in environmental contamination. In this study, OPEs' presence in soil samples collected from a CDW landfill in Brazil was evaluated. Soil samples were collected in areas adjacent to CDW from an inert landfill, and the samples were analysed by gas chromatography coupled to mass spectrometry. The OPEs were detected in all soil samples at quantifiable concentrations ranging from 21 to 251 ng g-1, and detected compounds were tris(phenyl) phosphate, tris(2-butoxyethyl) phosphate, tris(1,3-dichloroisopropyl) phosphate, tris(2-chloroisopropyl) phosphate and 2-ethylhexyl diphenyl phosphate. The presence of these compounds in a CDW landfill is probably due to the lack of control of the materials sent to and deposited in the landfill, which, results in part from the lack of sampling and screening systems that can help identify the presence of contaminants in the CDW waste stream. This is partially due to OPEs not being considered controlled compounds under current regulations, thus screening or separation for handling of OPEs at construction and demolition work sites is rare to non-existent. The data generated in this study reveals the need for improving CDW management to minimize, if not eliminate, environmental contamination by OPEs.
Collapse
Affiliation(s)
| | | | | | - Joyce Cristale
- School of Technology, University of Campinas, Limeira, Sao Paulo, Brazil
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
11
|
Feng Y, Li M, Yin J, Shi J, Jiang Q, Zhang J. Tris(1,3-dichloro-2-propyl) phosphate-induced cytotoxicity and its associated mechanisms in human A549 cells. Toxicol Ind Health 2024; 40:387-397. [PMID: 38729922 DOI: 10.1177/07482337241255711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant and has been detected in various environmental matrices including indoor dust. Inhalation of indoor dust is one of the most important pathways for human exposure to TDCIPP. However, its adverse effects on human lung cells and potential impacts on respiratory toxicity are largely unknown. In the current study, human non-small cell carcinoma (A549) cells were selected as a cell model, and the effects of TDCIPP on cell viability, cell cycle, cell apoptosis, and underlying molecular mechanisms were investigated. Our data indicated a concentration-dependent decrease in the cell viability of A549 cells after exposure to TDCIPP for 48 h, with half lethal concentration (LC50) being 82.6 µM. In addition, TDCIPP caused cell cycle arrest mainly in the G0/G1 phase by down-regulating the mRNA expression of cyclin D1, CDK4, and CDK6, while up-regulating the mRNA expression of p21 and p27. In addition, cell apoptosis was induced via altering the expression levels of Bcl-2, BAX, and BAK. Our study implies that TDCIPP may pose potential health risks to the human respiratory system and its toxicity should not be neglected.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Qian Jiang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
12
|
Zhang Z, Dai L, Yang K, Luo J, Zhang Y, Ding P, Tian J, Tuo X, Chi B. Molecular insight on the binding of halogenated organic phosphate esters to human serum albumin and its effect on cytotoxicity of halogenated organic phosphate esters. Int J Biol Macromol 2024; 270:132383. [PMID: 38754667 DOI: 10.1016/j.ijbiomac.2024.132383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.
Collapse
Affiliation(s)
- Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lulu Dai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yue Zhang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jianwen Tian
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
13
|
Wang X, Song F. The neurotoxicity of organophosphorus flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCPP): Main effects and its underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123569. [PMID: 38369091 DOI: 10.1016/j.envpol.2024.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
As a major alternative to the brominated flame retardants, the production and use of organophosphorus flame retardants (OPFRs) are increasing. And tris (1,3-dichloro-2-propyl) phosphate (TDCPP), one of the most widely used OPFRs, is now commonly found in a variety of products, such as building materials, furniture, bedding, electronic equipment, and baby products. TDCPP does not readily degrade in the water and tends to accumulate continuously in the environment. It has been detected in indoor dust, air, water, soil, and human samples. Considered as an emerging environmental pollutant, increasing studies have demonstrated its adverse effects on environmental organisms and human beings, with the nerve system identified as a sensitive target organ. This paper systematically summarized the progress of TDCPP application and its current exposure in the environment, with a focus on its neurotoxicity. In particular, we highlighted that TDCPP can be neurotoxic (including neurodevelopmentally toxic) to humans and animals, primarily through oxidative stress, neuroinflammation, mitochondrial damage, and epigenetic regulation. Additionally, this paper provided an outlook for further studies on neurotoxicity of TDCPP, as well as offered scientific evidence and clues for rational application of TDCPP in daily life and the prevention and control of its environmental impact in the future.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
14
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
15
|
Feng Y, Wang Z, Duan H, Shao B. Tris(1,3-dichloro-2-propyl) phosphate induces endoplasmic reticulum stress and mitochondrial-dependent apoptosis in mouse spermatocyte GC-2 cells. Food Chem Toxicol 2024; 185:114506. [PMID: 38331085 DOI: 10.1016/j.fct.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a frequently detected organophosphorus flame retardants (OPFRs) in various environmental media, and has been evidenced as reproductive toxicity. However, its adverse effects on spermatogenic cells are unknown. In this study, mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model, and the impact of mitochondrial structure and function, endoplasmic reticulum (ER) stress, cell apoptosis and the related molecular mechanisms were investigated. Our study indicated that cell viability was decreased significantly in a dose-dependent manner after TDCIPP treatment with the half lethal concentration (LC50) at 82.8 μM, 50.0 μM and 39.6 μM for 24 h, 48 h and 72 h, respectively. An apoptosis was observed by Annexin V-FITC/PI stain. In addition, fragmentation of mitochondrial structure, an increase of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, release of cytochrome c and activation of Caspase-3 and Caspase-9 activity implicated that Caspase-3 dependent mitochondrial pathway might play a key role in the process of GC-2 cell apoptosis. Furthermore, ER stress induction was convinced by altered morphology of ER and up-regulation of ER targeting genes, including (Bip, eIF2α, ATF4, XBP1, CHOP, ATF6 and Caspase-12). Taken together, these results demonstrate that both mitochondrial apoptotic pathways and ER stress apoptotic pathways might play important roles in the process of apoptosis in GC-2 cells induced by TDCIPP treatment. Therefore, the potential reproductive toxicity of TDCIPP should not be ignored.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Zisong Wang
- Western Reserve Academy, 115 College Street, Hudson, OH, 44236, USA
| | - Hejun Duan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.
| |
Collapse
|
16
|
Chen Z, Li F, Fu L, Xia Y, Luo Y, Guo A, Zhu X, Zhong H, Luo Q. Role of inflammatory lipid and fatty acid metabolic abnormalities induced by plastic additives exposure in childhood asthma. J Environ Sci (China) 2024; 137:172-180. [PMID: 37980005 DOI: 10.1016/j.jes.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 11/20/2023]
Abstract
Lipid metabolism play an essential role in occurrence and development of asthma, and it can be disturbed by phthalate esters (PAEs) and organophosphate flame retardants (OPFRs). As a chronic inflammatory respiratory disease, the occurrence risk of childhood asthma is increased by PAEs and OPFRs exposure, but it remains not entirely clear how PAEs and OPFRs contribute the onset and progress of the disease. We have profiled the serum levels of PAEs and OPFRs congeners by liquid chromatography coupled with mass spectrometry, and its relationships with the dysregulation of lipid metabolism in asthmatic, bronchitic (acute inflammation) and healthy (non-inflammation) children. Eight PAEs and nine OPFRs congeners were found in the serum of children (1 - 5 years old) from Shenzhen, and their total median levels were 615.16 ng/mL and 17.06 ng/mL, respectively. Moreover, the serum levels of mono-methyl phthalate (MMP), tri-propyl phosphate (TPP) and tri-n-butyl phosphate (TNBP) were significant higher in asthmatic children than in healthy and bronchitic children as control. Thirty-one characteristic lipids and fatty acids of asthma were screened by machine-learning random forest model based on serum lipidome data, and the alterations of inflammatory characteristic lipids and fatty acids including palmitic acids, 12,13-DiHODE, 14,21-DiHDHA, prostaglandin D2 and LysoPA(18:2) showed significant correlated with high serum levels of MMP, TPP and TNBP. These results imply PAEs and OPFRs promote the occurrence of childhood asthma via disrupting inflammatory lipid and fatty acid metabolism, and provide a novel sight for better understanding the effects of plastic additives on childhood asthma.
Collapse
Affiliation(s)
- Zhiyu Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lei Fu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xia
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ying Luo
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ang Guo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaona Zhu
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Li Z, Hales BF, Robaire B. Impact of Exposure to a Mixture of Organophosphate Esters on Adrenal Cell Phenotype, Lipidome, and Function. Endocrinology 2024; 165:bqae024. [PMID: 38376928 PMCID: PMC10914377 DOI: 10.1210/endocr/bqae024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Organophosphate esters (OPEs) are used primarily as flame retardants and plasticizers. Previously, we reported that adrenal cells are important targets of individual OPEs. However, real-life exposures are to complex mixtures of these chemicals. To address this, we exposed H295R human adrenal cells to varying dilutions (1/1000K to 1/3K) of a Canadian household dust-based OPE mixture for 48 hours and evaluated effects on phenotypic, lipidomic, and functional parameters. Using a high-content screening approach, we assessed phenotypic markers at mixture concentrations at which there was greater than 70% cell survival; the most striking effect of the OPE mixture was a 2.5-fold increase in the total area of lipid droplets. We then determined the response of specific lipid species to OPE exposures with novel, nontargeted lipidomic analysis of isolated lipid droplets. These data revealed that house dust OPEs induced concentration-dependent alterations in the composition of lipid droplets, particularly affecting the triglyceride, diglyceride, phosphatidylcholine, and cholesterol ester subclasses. The steroid-producing function of adrenal cells in the presence or absence of a steroidogenic stimulus, forskolin, was determined. While the production of 17β-estradiol remained unaffected, a slight decrease in testosterone production was observed after stimulation. Conversely, a 2-fold increase in both basal and stimulated cortisol and aldosterone production was observed. Thus, exposure to a house dust-based mixture of OPEs exerts endocrine-disrupting effects on adrenal cells, highlighting the importance of assessing the effects of environmentally relevant mixtures.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
18
|
Liu Y, Xie Y, Tian Y, Liao J, Fang D, Wang L, Zeng R, Xiong S, Liu X, Chen Q, Zhang Y, Yuan H, Li Q, Shen X, Zhou Y. Exposure levels and determinants of placental polybrominated diphenyl ethers in Chinese pregnant women. ENVIRONMENTAL RESEARCH 2024; 241:117615. [PMID: 37949289 DOI: 10.1016/j.envres.2023.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are a group of widely used chemicals and humans are exposed to them in their daily life. PBDEs exposure during pregnancy may have adverse effects on pregnant women and their fetuses. Nevertheless, limited information is available on the levels and determinants of PBDEs exposure in Chinese pregnant women. METHODS The internal exposure levels of eight PBDEs (BDE-28, 47, 99, 100, 153, 154, 183, and 209) in placental samples of 1280 pregnant women from Zunyi birth cohort were analyzed using gas chromatography tandem mass spectrometry. All PBDEs concentrations were lipid adjusted (ng/g lw). Determinants of exposure were assessed by multivariable logistic regression model. RESULTS Eight PBDE homologues were quantifiable in more than 70% of the samples. The highest median concentrations were found for BDE-209 (2.78 ng/g lw), followed by BDE-153 (1.00 ng/g lw) and BDE-183 (0.93 ng/g lw). The level of ΣPBDEs ranged from 0.90 to 308.78 ng/g lw, with a median concentration of 10.02 ng/g lw. Multivariate logistic regression analysis showed that maternal age older than 30 years old (OR: 1.59; 95% CI: 1.14, 2.23), pre-pregnancy obesity (1.51; 1.08, 2.10), home renovation within 2 years (1.43; 1.08, 1.91), spending more time outdoors during pregnancy (0.70; 0.55, 0.89), high consumption of fish/seafood (1.46; 1.13, 1.90) and eggs (1.44; 1.04, 2.00), male infant sex (1.69; 1.18, 2.42) were associated with PBDEs exposure. CONCLUSION The study population is generally exposed to PBDEs, of which BDE-209 is the dominant congener, indicating extensive application of products containing deca-BDE mixtures. Maternal age, pre-pregnancy BMI, home decoration, average outdoor time during pregnancy, fish, seafood, eggs consumption, and fetal sex were exposure-determinning factors. This study contributes to the knowledge on region-specific PBDEs contamination in pregnant women and related risk factors.
Collapse
Affiliation(s)
- Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- People's Hospital of Xingyi City, Qianxinan, 562400, Guizhou, China
| | - Juan Liao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Derong Fang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Linglu Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Qing Chen
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Ya Zhang
- People's Hospital of Xishui County, Zunyi, 564600, Guizhou, China
| | - Hongyu Yuan
- People's Hospital of Xishui County, Zunyi, 564600, Guizhou, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - XuBo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
19
|
Su Y, Luan M, Huang W, Chen H, Chen Y, Miao M. Determinants of organophosphate esters exposure in pregnant women from East China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122767. [PMID: 37863257 DOI: 10.1016/j.envpol.2023.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Organophosphate esters (OPEs) have been broadly used in various industrial and consumer products, resulting in global distribution and human exposure. Gestational exposure to OPEs may adversely affect the health of both pregnant women and their offspring. To better understand OPE exposure in pregnant women, our study determined eight urinary metabolites of major OPEs in pregnant women (n = 733) recruited at 12-16 weeks of gestation from Shanghai, China, and explored the determinants of OPE exposure among various sociodemographic characteristics, lifestyles, and dietary factors. Urinary metabolites of OPEs, including bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), bis (1-chloro-2-propyl) phosphate (BCIPP), dicresyl phosphate (DCP), diphenyl phosphate (DPP), dibutyl phosphate (DBP), bis (2-ethylhexyl) phosphate (BEHP), and bis (2-butoxyethyl) phosphate (BBOEP), exhibited a detection rate ranging from 69.30% to 99.32%. Multivariate linear regression models indicated that pregnant women who were multiparous, had a higher family income per capita, worked in white-collar jobs, and took nutritional supplements such as milk powder and fish oil tended to have higher urinary OPE metabolite concentrations. Besides, independent of sociodemographic characteristics and lifestyle factors, consumption of more aquatic products, soy products, pork, and puffed food, as well as drinking of purified tap water versus tap water, were associated with increased urinary OPEs metabolite concentrations. Our study demonstrated that OPE exposure was ubiquitous in pregnant women from Shanghai, and provided new insights into the potential factors influencing OPE exposure during pregnancy.
Collapse
Affiliation(s)
- Yingqian Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Luan
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China
| |
Collapse
|
20
|
Balasch A, Moreno T, Eljarrat E. Assessment of Daily Exposure to Organophosphate Esters through PM 2.5 Inhalation, Dust Ingestion, and Dermal Contact. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20669-20677. [PMID: 38035633 PMCID: PMC10720386 DOI: 10.1021/acs.est.3c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Inhalation of airborne fine particulate matter (PM2.5), dust ingestion, and dermal contact with dust are important pathways for human exposure to different contaminants, such as organophosphate esters (OPE), compounds that are widely used as flame retardants and plasticizers. There are limited studies assessing the extent of the contamination of OPE in indoor airborne PM2.5. This study offers a novel approach by examining various indoor environments, such as homes, workplaces, and means of transport, where people typically spend their daily lives. The goal is to provide a comprehensive assessment of daily exposure to these pollutants. Both PM2.5 and dust samples were collected in order to determine the concentration levels of 17 different OPEs. Fifteen OPEs in PM2.5 and 16 in dust samples were detected. Concentration levels in indoor air ranged from 4.37 to 185 ng/m3 (median 24.4 ng/m3) and from 3.02 to 36.9 μg/g for the dust samples (median 10.2 μg/g). Estimated daily intakes (EDIs) of OPEs were calculated for adults, yielding median values of 3.97 ng/(kg bw × day) for EDIInhalation, 5.89 ng/(kg bw × day) for EDIDermal, and 1.75 ng/(kg bw × day) for EDIIngestion. Such levels lie below human health threshold risk limits, although in some cases they could be only 2 times below the threshold for carcinogenic risk, with a main contribution from tris(2-chloroethyl) phosphate (TCEP). Given this threshold proximity, additional exposure to these chemicals from other pathways, such as food ingestion, gas phase exposure, and/or inhalation of coarser particles (PM10-2.5), could therefore lead to health limit exceedances.
Collapse
Affiliation(s)
- Aleix Balasch
- Institute of Environmental Assessment
and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment
and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment
and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
21
|
Zhu L, Fauser P, Mikkelsen L, Sanderson H, Vorkamp K. Suspect and non-target screening of semi-volatile emerging contaminants in indoor dust from Danish kindergartens. CHEMOSPHERE 2023; 345:140451. [PMID: 37839752 DOI: 10.1016/j.chemosphere.2023.140451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Indoor dust is a sink of hundreds of organic chemicals, and humans may potentially be exposed to these via indoor activities. This study investigated potentially harmful semi-volatile organic contaminants in indoor dust from Danish kindergartens using suspect and non-target screening on gas chromatography (GC)-Orbitrap, supported by target analyses using GC-low resolution mass spectrometry (LRMS). A suspect list of 41 chemicals with one or more toxicological endpoints, i.e. endocrine disruption, carcinogenicity, neurotoxicity and allergenicity, known or suspected to be present in indoor dust, was established including phthalate and non-phthalate plasticizers, flame retardants, bisphenols, biocides, UV filters and other plastic additives. Of these, 29 contaminants were detected in the indoor dust samples, also including several compounds that had been banned or restricted for years. In addition, 22 chemicals were tentatively identified via non-target screening. Several chemicals have not previously been detected in Danish indoor dust. Most of the detected chemicals are known to be potentially harmful for human health while hazard assessment of the remaining compounds indicated limited risks to human. However, children were not specifically considered in this hazard assessment.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Environmental Science, Aarhus University, Denmark.
| | - Patrik Fauser
- Department of Environmental Science, Aarhus University, Denmark
| | - Lone Mikkelsen
- Green Transition Denmark, Kompagnistræde 22, Copenhagen K, 1208, Denmark
| | - Hans Sanderson
- Department of Environmental Science, Aarhus University, Denmark
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Denmark
| |
Collapse
|
22
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
23
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
24
|
Tian YX, Wang Y, Chen HY, Ma J, Liu QY, Qu YJ, Sun HW, Wu LN, Li XL. Organophosphate esters in soils of Beijing urban parks: Occurrence, potential sources, and probabilistic health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162855. [PMID: 36931520 DOI: 10.1016/j.scitotenv.2023.162855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Organophosphate esters (OPEs) are an emerging contaminant widely distributed in the soil. OPEs have drawn increasing attention for their biological toxicity and possible threat to human health. This research investigated the pollution characteristics of two typical OPEs, organophosphate triesters (tri-OPEs) and organophosphate diesters (di-OPEs), in soils of 104 urban parks in Beijing. The median concentrations of Σ11tri-OPEs and Σ8di-OPEs were 157 and 17.9 ng/g dw, respectively. Tris(2-chloroisopropyl) phosphate and bis(2-ethylhexyl) phosphate were the dominant tri-OPE and di-OPE, respectively. Consumer materials (such as building insulation and decorative materials), traffic emissions, and reclaimed water irrigation may be critical sources of tri-OPEs in urban park soils. Di-OPEs mainly originated from the degradation of parent compounds and industrial applications. Machine learning models were employed to determine the influencing factors of OPEs and predict changes in their concentrations. The predicted OPEs concentrations in Beijing urban park soils in 2025 and 2030 are three times and five times those in 2018, respectively. According to probabilistic health risk assessment, non-carcinogenic and carcinogenic risks of OPEs can be negligible for children and adults. Our results could inform measures for preventing and controlling OPEs pollution in urban park soils.
Collapse
Affiliation(s)
- Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y J Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - H W Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - L N Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - X L Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
25
|
Tian YX, Chen HY, Ma J, Liu QY, Qu YJ, Zhao WH. A critical review on sources and environmental behavior of organophosphorus flame retardants in the soil: Current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131161. [PMID: 37030217 DOI: 10.1016/j.jhazmat.2023.131161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 05/03/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been widely used in industrial and commercial applications. Unfortunately, the chemical constituents of OPFRs, organophosphate esters (OPEs), which have been proven to be carcinogenic and biotoxic, can release into the environment and pose potential risks to human health. This paper reviews the research progress of OPEs in the soil through bibliometric analysis and comprehensively elaborates on their pollution status, potential sources, and environmental behaviors. The OPE pollution is widely distributed in the soil at concentrations ranging from several to tens of thousands of ng/g dw. Some novel OPEs, newly discovered OPEs in the environment in recent years, are also detected. OPE concentrations vary substantially among landuses, and waste processing areas are important point sources of OPE pollution in the soil. Emission source intensity, physicochemical properties of compounds, and soil properties play important roles in the transfer process of OPEs in the soil. Biodegradation, especially microbial degradation, has potential application prospects in the remediation of OPE-contaminated soil. Brevibacillus brevis, Sphingomonas, Sphingopyxis, Rhodococcus, and other microorganisms can degrade some OPEs. This review helps clarify the pollution status of OPEs in the soil and highlights perspectives for future research.
Collapse
Affiliation(s)
- Y X Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - H Y Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - J Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Q Y Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Y J Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - W H Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
26
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
27
|
Feng Y, Shi J, Li M, Duan H, Shao B. Evaluation of the cytotoxic activity of triphenyl phosphate on mouse spermatocytes cells. Toxicol In Vitro 2023; 90:105607. [PMID: 37149271 DOI: 10.1016/j.tiv.2023.105607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Triphenyl phosphate (TPhP) is one of the most commonly found organophosphorus flame retardants (OPFRs) in the environment and the general population. Continuous daily exposure to TPhP may adversely impact male reproductive health. However, few researches were conducted to investigate the direct effects of TPhP on the progress of sperm growth and development. In this study, mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model, the impact of oxidative stress, mitochondrial impairment, DNA damage, cell apoptosis and the related molecular mechanisms were investigated using high content screening (HCS) system. Our study indicated that cell viability was decreased significantly in a dose-dependent manner after TPhP treatment with the half lethal concentration (LC50) at 105.8, 61.61 and 53.23 μM for 24, 48 and 72 h. A concentration-related apoptosis occurrence was observed in GC-2 cells after TPhP exposure for 48 h. In addition, the elevated intracellular reactive oxygen species (ROS) and the total antioxidant capacity (T-AOC) also observed after exposing to 6, 30 and 60 μM of TPhP. Furthermore, based on the enhancement of pH2AX protein and alteration of nuclear morphology or DNA content, DNA damage might be induced by higher concentration of TPhP treatment. Simultaneously, alteration of mitochondrial structure, enhancement of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, altered expression of Bcl-2 family proteins, release of cytochrome c and increase of caspase-3 and caspase-9 activity demonstrated that caspase-3 dependent mitochondrial pathway might play a key role in the process of GC-2 cell apoptosis. Taken together, these results showed that TPhP was a mitochondrial toxicant and apoptotic inducer, which might trigger alike responses in human spermatogenic cells. Therefore, the potential reproductive toxicity of TPhP should not be ignored.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Jiachen Shi
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Ming Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Hejun Duan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China.
| |
Collapse
|
28
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Sanguos CL, Suárez OL, Martínez-Carballo E, Couce ML. Postnatal exposure to organic pollutants in maternal milk in north-western Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120903. [PMID: 36549446 DOI: 10.1016/j.envpol.2022.120903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Evaluation of postnatal exposure to organic pollutants is especially important for suckling infants during breastfeeding, a crucial perinatal growth period when organs and hormonal systems develop. We determined levels of 60 pollutants, including organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), pyrethroids (PYRs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs), in 81 breast milk samples from breastfeeding mothers from Santiago de Compostela (north-western Spain). For most detected organic pollutants, levels were correlated with the season of milk sampling, maternal age at delivery, and place of residence. Dietary consumption habits (eggs, molluscs, and vegetable oils) were also correlated with OCP, OPP, PCB, PBDE and PYR levels. We also assessed the risk to infant health of exposure to organic pollutants in breast milk. PAHs, OCPs, OPPs, and PYRs accounted for almost 95% of the targeted organic pollutants in the samples analysed.
Collapse
Affiliation(s)
- Carolina López Sanguos
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Olalla López Suárez
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Martínez-Carballo
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain; Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense, 32004, Spain.
| | - María Luz Couce
- Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, 15704, Spain; IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, 15704, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
30
|
Dou M, Wang L. A review on organophosphate esters: Physiochemical properties, applications, and toxicities as well as occurrence and human exposure in dust environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116601. [PMID: 36326529 DOI: 10.1016/j.jenvman.2022.116601] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in the world. The use of OPEs has increased rapidly due to the prohibition of polybrominated diphenyl ethers. However, OPEs are mainly added to various materials by physical mixing, they are therefore easy to be released into the environment through volatilization, leaching, and abrasion during their production, use, transportation, and after disposal. Dust, as an important medium for human exposure to OPEs, has attracted extensive attention. Here, this article reviewed the current knowledge on the physiochemical properties, consumptions and applications, and ecotoxicities of OPEs, also synthesized the available data on the occurrence of 13 OPEs in outdoor and indoor dust environments around the world over the past decade. The results showed that the sum of OPEs (ΣOPEs) was the highest in outdoor dust from an e-waste disposal area in Tianjin of China (range: 1390-42700 ng/g dw; mean: 11500 ng/g dw). The highest ΣOPEs was found in Japan for home dust (range: 9300-11000000 ng/g dw; mean: 266543 ng/g dw), Sweden for office dust (range: 14000-1600000 ng/g dw; mean: 360100 ng/g dw) and daycare center dust (range: 40000-4600000 ng/g dw; mean: 1990800 ng/g dw), and Brazil for car dust (range: 108000-2050000 ng/g dw; mean: 541000 ng/g dw). The use pattern of OPEs differed in different regions and countries. The exposure and risk assessment based on the data of OPEs in home dust indicated that the average daily intakes of OPEs via dust ingestion for children and adults were lower than the corresponding reference doses; and that the current human exposure to OPEs through indoor dust ingestion were not likely to pose risks to human health. Finally, the review pointed out the gaps of current research and provided the directions for further study on OPEs in dust environment.
Collapse
Affiliation(s)
- Mingshan Dou
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
31
|
Yan M, Zhu H, Shi Y, Xu K, Chen S, Zou Q, Sun H, Kannan K. Profiling of multiple classes of flame retardants in house dust in China: Pattern analysis and human exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120012. [PMID: 36007786 DOI: 10.1016/j.envpol.2022.120012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Legacy [e.g., brominated- (BFRs)] and alternative [e.g., organophosphate- (OPFRs) and nitrogenous- (NFRs)] flame retardants have a propensity to migrate out of consumer products, and thus are dispersed in indoor microenvironments. In this study, simultaneous presence of 11 BFRs, 18 OPFRs and 11 NFRs were measured in house dust collected from Tianjin, China. OPFRs were found at the highest concentrations, with a median value of 3200 ng/g, followed by NFRs (2600) and BFRs (1600). Tris(2-butoxyethyl) phosphate (median: 1800 ng/g), melamine (1100), and BDE-209 (870) were the top three most abundant chemicals in the respective groups. Location-specific patterns of flame retardant concentrations were found with 30%, 20% and 10% of samples were predominated by OPFRs, NFRs and BFRs, respectively, and the remaining samples contained by two or more of the chemical groups occurring concurrently. Network and cluster analysis results indicated the existence of multiple sources of flame retardants in the indoor microenvironment. Estimated human daily intakes via indoor dust ingestion were approximately several tens of ng/kg bw/day and were below their respective reference dose values. Our results indicate widespread occurrence of multiple flame retardant families in indoor dust and suggest need for continued monitoring and efforts to reduce exposures through dust ingestion.
Collapse
Affiliation(s)
- Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ke Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shucong Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
32
|
Hoang AQ, Karyu R, Tue NM, Goto A, Tuyen LH, Matsukami H, Suzuki G, Takahashi S, Viet PH, Kunisue T. Comprehensive characterization of halogenated flame retardants and organophosphate esters in settled dust from informal e-waste and end-of-life vehicle processing sites in Vietnam: Occurrence, source estimation, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119809. [PMID: 35931384 DOI: 10.1016/j.envpol.2022.119809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Viet Nam
| | - Ryogo Karyu
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Le Huu Tuyen
- University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305- 8506, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
33
|
Feng Y, Cui X, Yin J, Shao B. Chlorinated organophosphorus flame retardants-induced mitochondrial abnormalities and the correlation with progesterone production in mLTC-1 cells. Food Chem Toxicol 2022; 169:113432. [PMID: 36115506 DOI: 10.1016/j.fct.2022.113432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/13/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Environmental monitoring data have indicated that three chlorinated organophosphorus flame retardants (Cl-OPFRs), including tris(2-chloroethyl)-phosphate (TCEP), tris(2-chloropropyl)-phosphate (TCPP), and tris(1,3-dichloro-2-propyl)-phosphate (TDCPP) are the predominant chemicals in various environmental matrices and exhibit reproductive endocrine disrupting activities. Currently, mitochondrial abnormality is a new paradigm for evaluating chemical-mediated cell dysfunction. However, a comprehensive correlation between these two aspects of Cl-OPFRs remains unclear. In this research, the effects of TCEP, TCPP, and TDCPP on progesterone production and mitochondrial impairment were investigated by using mouse Leydig tumor cells (mLTC-1). The half maximal inhibitory concentration (IC50) values at 48 h exposure indicated that the rank order of anti-androgenic activity was TDCPP > TCPP. Whereas, TCEP exhibited elevation of progesterone production. At concentrations close to IC50 of progesterone production by TCPP and TDCPP, the elevation of intracellular reactive oxygen species (ROS), depletion of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, and alteration of mitochondrial structures was observed. In addition, the expression of main genes related to progesterone synthesis was dramatically down-regulated by TCPP and TDCPP treatments. These results imply that the inhibition effect of TCPP and TDCPP on progesterone production might be related to mitochondrial damage and down-regulated steroidogenic genes.
Collapse
Affiliation(s)
- Yixing Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Xia Cui
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, 100013, China; School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
34
|
Louis LM, Quirós-Alcalá L, Kuiper JR, Diette G, Hansel NN, McCormack MC, Meeker JD, Buckley JP. Variability and predictors of urinary organophosphate ester concentrations among school-aged children. ENVIRONMENTAL RESEARCH 2022; 212:113192. [PMID: 35346652 PMCID: PMC9232954 DOI: 10.1016/j.envres.2022.113192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPE) are flame retardants and plasticizers used in a wide range of consumer products. Despite their widespread use, few studies have characterized pediatric exposures. We assessed variability and predictors of OPE exposures in a cohort panel study of 179 predominantly Black school-aged children with asthma in Baltimore City, MD. The study design included up to four seasonal week-long in-home study visits with urine sample collection on days 4 and 7 of each visit (nsamples = 618). We quantified concentrations of 9 urinary OPE biomarkers: bis(2-chloroethyl) phosphate (BCEtp), bis(1-chloro-2-propyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), di-benzyl phosphate (DBuP), di-benzyl phosphate, di-o-cresylphosphate, di-p-cresylphosphate (DPCP), di-(2-propylheptyl) phthalate (DPHP), 2,3,4,5-tetrabromo benzoic acid. We assessed potential predictors of exposure, including demographic factors, household characteristics, and cleaning behaviors. We calculated Spearman/tetrachoric correlations and intraclass correlation coefficients (ICCs) to examine within-week and seasonal intra-individual variability, respectively. We assessed OPE predictors using linear models for continuous log2 concentrations (BDCPP and DPHP) and logistic models for odds of detection (BCEtP, DBuP, DPCP), with generalized estimating equations to account for repeated measures. For all OPEs, we observed moderate within-week correlations (rs: 0.31-0.63) and weak to moderate seasonal reliability (ICC: 0.18-0.38). BDCPP and DPHP concentrations were higher in the summer compared to other seasons. DPHP concentrations were lower among males than females (%diff: -53.5%; 95% CI: -62.7, -42.0) and among participants spending >12 h/day indoors compared to ≤12 h (%diff: -20.7%; 95% CI: -32.2, -7.3). BDCPP concentrations were lower among children aged 8-10 years compared to 5-7 years (%diff: -39.1%; 95% CI: -55.9, -15.9) and higher among children riding in a vehicle on the day of sample collection compared to those who had not (%diff: 28.5%; 95% CI: 3.4, 59.8). This study is the first to characterize within-week and seasonal variability and identify predictors of OPE biomarkers among Black school-aged children, a historically understudied population.
Collapse
Affiliation(s)
- Lydia M Louis
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Diette
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Development of magnetic molecularly imprinted solid-phase extraction and ultra-high performance liquid chromatography tandem mass spectrometry for rapid and selective determination of urinary diphenyl phosphate of college students. J Chromatogr A 2022; 1678:463344. [PMID: 35872539 DOI: 10.1016/j.chroma.2022.463344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022]
Abstract
Organophosphate esters (OPEs), known as novel alternative flame retardants, are a class of environmental endocrine disruptors. Long-term exposure to OPEs may bring a non-negligible health risk to human. Urinary OPE metabolites (mOPEs) are generally used as biomarkers to evaluate the internal exposure to OPEs. Diphenyl phosphate (DPHP), the main metabolite of aryl-OPEs, exhibited high detection rates and concentrations in urine samples. To establish a selective and simple analytical method for biomonitoring urinary DPHP, a specific magnetic molecular imprinted polymer (MMIP) was fabricated via a sol-gel method. Under optimum magnetic solid-phase extraction (MSPE) conditions, the resultant MMIP exhibited selective recognition ability, ideal adsorption capacity and good reusability on urinary DPHP enrichment. The developed MSPE method coupled with ultra-high performance liquid chromatography tandem mass spectrometry (U-HPLC-MS/MS) exhibited good precision and accuracy (spiked recoveries of 85.8%-109% with relative standard deviations (RSDs) ranged from 5.1%-13%), low detection limit of 0.035 ng/mL, and negligible matrix inhibition. Then we used this proposed method to detect urinary DPHP levels of recruited 30 college students and investigate the time variability and potential determinants. All urine samples revealed the presence of DPHP at a median concentration of 0.56 μg/g Creatinine (Cr). Moderate reproducibility of DPHP level was observed in first morning urine samples (ICC>0.40). Significant correlations were found between urinary DPHP levels and gender (β=0.72; 95% CI: 0.48∼0.96), sampling time (β=0.36; 95% CI: 0.08∼0.65) as well as the frequency for take-out food (β=0.45; 95% CI: 0.07∼0.74) (p< 0.05). Hence, a fast and sensitive MSPE-U-HPLC-MS/MS method was successfully built to quantify urinary DPHP.
Collapse
|
36
|
Bai L, lu: K, Shi Y, Li J, Wang Y, Jiang G. 北京市运动场灰尘中有机磷酸酯:季节差异和人体暴露研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Zhang Q, Wang Y, Zhang C, Yao Y, Wang L, Sun H. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism. ENVIRONMENTAL RESEARCH 2022; 204:112122. [PMID: 34563524 DOI: 10.1016/j.envres.2021.112122] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Organophosphate esters (OPEs) are widely used around the world as flame retardants and plasticizers with a growing production in the last 15 years due to the phase-out of polybrominated diphenyl ethers. Multiple papers reported the occurrences of OPEs in various environmental matrices and elevated concentrations of OPEs (0.1-10,000 ng/g dry weight) were documented in different types of soils which were regarded as both the "sink" and "source" of OPEs. In this study, the source, transfer, and transformation mechanisms of OPEs are systematically reviewed from the perspective of the soil environment. The wet/dry deposition, air-soil exchange, sewage irrigation, sludge application, and indirect oxidization of organophosphate antioxidants are the possible sources of OPEs in soil. Meanwhile, the OPEs in the soil environment may also migrate into other environmental media via plant uptake, air-soil exchange, desorption, and infiltration to cause relevant ecological risk, which depends much on the chemical properties of these compounds. The trimethylphenyl phosphate (TMPP) (mixture of isomers) and triphenyl phosphate (TPHP), which have strong hydrophobicity, pose a higher ecological risk for the soil environment than other OPEs. Further, the hydrolysis, indirect photolysis, and biodegradation of OPEs in the soil environment may be affected by the soil pH, organic acid, dissolved metals and metal oxides, active oxygen species, and microorganisms significantly. Besides that, the human exposure risks of OPEs from the soil are limited compared to those via indoor dust and food ingestion pathways. Finally, this study identifies the knowledge gaps and generated the future perspectives of the OPEs in soil.
Collapse
Affiliation(s)
- Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
38
|
Esplugas R, Rovira J, Mari M, Fernández-Arribas J, Eljarrat E, Domingo JL, Schuhmacher M. Emerging and legacy flame retardants in indoor air and dust samples of Tarragona Province (Catalonia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150494. [PMID: 34844308 DOI: 10.1016/j.scitotenv.2021.150494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely used in consumer products including furniture foam and electronic equipment such as computers, monitors and TVs. Over time, FRs can easily migrate into the surrounding environments. Since brominated FRs (BFRs) has been determined of high concern due to their environmental persistence, bioaccumulation and potential toxicity, novel FRs have emerged. The present study was aimed at identifying and quantifying the indoor levels of 41 legacy and novel FRs, which include 20 OPFRs and 21 HFRs (8 PBDEs, 3 HBCDDs, 5 NBFRs and 5 DECs) in Tarragona Province (Catalonia, Spain). The results have confirmed the presence of both legacy and novel FRs in air and dust of homes, schools and offices. To the best of our knowledge, this is the first European study measuring OPFRs at office environments and also confirming the presence of the following OPFRs: TEP, TCIPP, T2IPPP, TPPO, DCP, TMCP and B4IPPPP in indoor air, even some of them at high levels. OPFRs in general and TCIPP in particular showed high concentrations in air (94,599 pg/m3 and 72,281 pg/m3, respectively) and dust (32,084 ng/g and 13,496 ng/g, respectively) samples collected in indoor environments. HBCDDs were found at high levels in dust (32,185 ng/g), whereas the presence of PBDEs and DECs were low in both matrices (<160 pg/m3 in air and <832 ng/g in dust). NBFRs showed higher levels than the two legacy FRs groups, which is supported by the current restrictions of these FRs (640 pg/m3 in air and 1291 ng/g in dust). Samples of schools had significantly lower levels of NBFRs, but significantly higher concentrations of HFRs in air than in home samples, while dust levels of HFRs were significantly lower than those in samples of offices. Regarding human health risks, the current assessment suggests that those derived from exposure to FRs were lower -although close- to assumable risks, evidencing the potential of FRs for non-carcinogenic and carcinogenic risks, mainly due to the exposure to TCIPP, which was the main contributor together with ΣHBCDDs and also EHDPP.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Joaquim Rovira
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| | - Montse Mari
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| | - Julio Fernández-Arribas
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - Ethel Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
39
|
Yang J, Ching YC, Kadokami K. Occurrence and exposure risk assessment of organic micropollutants in indoor dust from Malaysia. CHEMOSPHERE 2022; 287:132340. [PMID: 34826953 DOI: 10.1016/j.chemosphere.2021.132340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Indoor dust is an important source of human exposure to hazardous organic micropollutants (OMPs) because humans spend about 90 % of their time in the indoor environments. This study initially analyzed the concentrations and compositions of OMPs in the dust of different indoor environments from Kuala Lumpur, Malaysia. A total of 57 OMPs were detected and assigned to 7 chemical classes in this study. The total concentration of OMPs ranged from 5980 to 183,000 ng/g, with the median concentration of 46,400 ng/g. Personal care products, organophosphate esters, and pesticides were the dominant groups, with their median concentrations at 12,000, 10,000, and 5940 ng/g, respectively. The concentrations and compositions of influential OMPs varied in different microenvironments, suggesting different sources and usage patterns in the house. Then, the noncarcinogenic and carcinogenic risks of exposure to these substances for diverse age groups were assessed based on the median concentration. Cumulative noncarcinogenic risks of these OMPs via ingestion pathway were estimated to be negligible (1.41 × 10-4 - 1.87 × 10-3). The carcinogenic risks of these OMPs were higher than 10-6 (1.63 × 10-6 - 6.17 × 10-6) and should be noted. Theobromine accounted for more than 89 % of the cumulative cancer risk, implying that the carcinogenic risk of theobromine needs further monitoring in the future. Toddler was the most affected group for cancer risk among all the age groups, regardless of the microenvironments. These findings from this study may provide a benchmark for future efforts to ensure the safety of indoor dust for the local residents.
Collapse
Affiliation(s)
- Jianlei Yang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
40
|
Organophosphate Esters in China: Fate, Occurrence, and Human Exposure. TOXICS 2021; 9:toxics9110310. [PMID: 34822701 PMCID: PMC8620853 DOI: 10.3390/toxics9110310] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers. OPEs have been released into various environments (e.g., water, sediments, dust and air, and soil). To investigate the occurrence and distribution of OPEs in various environments in China, this review collects and discusses the published scientific studies in this field. Chlorinated OPEs, as flame retardants, are the predominant OPEs found in the environment. The analysis of data revealed large concentration variations among microenvironments, including inflowing river water (range: 0.69-10.62 µgL-1), sediments (range: 0.0197-0.234 µg/g), dust (range: 8.706-34.872 µg/g), and open recycling sites' soil (range: 0.122-2.1 µg/g). Moreover, OPEs can be detected in the air and biota. We highlight the overall view regarding environmental levels of OPEs in different matrices as a starting point to monitor trends for China. The levels of OPEs in the water, sediment, dust, and air of China are still low. However, dust samples from electronic waste workshop sites were more contaminated. Human activities, pesticides, electronics, furniture, paint, plastics and textiles, and wastewater plants are the dominant sources of OPEs. Human exposure routes to OPEs mainly include dermal contact, dust ingestion, inhalation, and dietary intake. The low level of ecological risk and risk to human health indicated a limited threat from OPEs. Furthermore, current challenges and perspectives for future studies are prospected. A criteria inventory of OPEs reflecting the levels of OPEs contamination association among different microenvironments, emerging OPEs, and potential impact of OPEs on human health, particularly for children are needed in China for better investigation.
Collapse
|
41
|
Li YW, Ma WL. Photocatalytic oxidation technology for indoor air pollutants elimination: A review. CHEMOSPHERE 2021; 280:130667. [PMID: 34162075 DOI: 10.1016/j.chemosphere.2021.130667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
As more people are spending the majority of their daily lives indoors, indoor air quality has been acknowledged as an important factor influencing human health, with increasing research attention in recent decades. Indoor air pollutants (IAPs), such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), can cause acute irritation and chronic diseases. Photocatalytic oxidation (PCO) technology is an efficient approach for eliminating IAPs. In this review, the development of PCO technology was explained and discussed to promote future development of PCO technology for IAP elimination. First, the health effects and the measured concentrations of typical VOCs and SVOCs in indoor environments worldwide were briefly introduced. Subsequently, the development and limitations of some typical photocatalytic reactors (including packed-bed reactors, monolithic reactors, optical fiber reactors, and microreactors) were summarized and compared. Then, the influences of operating parameters (including initial concentration of contaminants, relative humidity, space velocity, light source and intensity, catalyst support materials, and immobilization method) and the degradation pathways as well as intermediates of PCO technology were elucidated. Finally, the possible challenges and future development directions regarding PCO technology for IAP elimination were critically proposed and addressed.
Collapse
Affiliation(s)
- Yu-Wei Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
42
|
Vishnu Sreejith M, Aradhana KS, Varsha M, Cyrus MK, Aravindakumar CT, Aravind UK. ATR-FTIR and LC-Q-ToF-MS analysis of indoor dust from different micro-environments located in a tropical metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147066. [PMID: 34088116 DOI: 10.1016/j.scitotenv.2021.147066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Indoor dust is an important matrix that exposes humans to a broad spectrum of chemicals. The information on the occurrence of contaminants of emerging concern (CECs), their metabolites, and re-emerging contaminants in indoor dust is rather limited. As the indoor environment is exposed to various chemicals from personal care products, furniture, building materials, machineries and cooking/cleaning products, there is a high chance of the presence of hazardous contaminants in indoor dust. In the present study, dust samples were collected from four different micro indoor environments (photocopying centres, residential houses, classrooms, and ATM cabins) located in an urban environment located in India's southwestern part. The collected samples were subjected to ATR - FTIR and LC-Q-ToF-MS analyses. The ATR - FTIR analysis indicated the presence of aldehydes, anhydrides, carboxylic acids, esters, sulphonic acids, and asbestos - a re-emerging contaminant. A total of 19 compounds were identified from the LC-Q-ToF-MS analysis. These compounds belonged to various classes such as plasticisers, plasticiser metabolites, photoinitiators, personal care products, pharmaceutical intermediates, surfactants, and pesticides. To the best of our knowledge, this is the first report regarding the presence of CECs in indoor environments in Kerala and also the suspected occurrence of pesticides (metaldehyde and ethofumesate) in classroom dust in India. Another important highlight of this work is the demonstration of ATR-FTIR as a complementary technique for LC-Q-ToF-MS in the analysis of indoor pollution while dealing with totally unknown pollutants. These results further highlight the occurrence of probable chemically modified metabolites in the tropical climatic conditions in a microenvironment.
Collapse
Affiliation(s)
- M Vishnu Sreejith
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - K S Aradhana
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M Varsha
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - M K Cyrus
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India
| | - C T Aravindakumar
- Schoool of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India..
| |
Collapse
|
43
|
Wang W, Zhou S, Li R, Peng Y, Sun C, Vakili M, Yu G, Deng S. Preparation of magnetic powdered carbon/nano-Fe 3O 4 composite for efficient adsorption and degradation of trichloropropyl phosphate from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125765. [PMID: 33839504 DOI: 10.1016/j.jhazmat.2021.125765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Trichloropropyl phosphate (TCPP) as a widely used typical chlorinated organophosphate flame retardant has received significant attention because of its widespread presence in water and negative effects on human health. In this study, a ball-milling method was used to prepare a magnetic powdered carbon adsorbent (PC/nano-Fe3O4 composite) for TCPP removal via adsorption and catalytic degradation. The effect of Fe3O4 content on TCPP adsorption and degradation performance by PC/nano-Fe3O4 composite was investigated. The PC/nano-Fe3O4 composite prepared by high Fe3O4 content (25%) was not favorable for TCPP adsorption and degradation. However, the PC/Fe3O4 containing low Fe3O4 content (10%) had insufficient magnetic separation ability from water. The synthesized PC/nano-Fe3O4 composite with a Fe3O4/PC mass ratio of 1/5 exhibited a maximum adsorption capacity of 2682.1 μg/g as well as a complete TCPP degradation within 3 h in a Fenton-like system. Moreover, the possible break sites of TCPP and its degradation pathway were proposed based on theoretical calculation and experimental analysis. Regeneration studies showed that PC/nano-Fe3O4 composite had high reusability and adsorption capacity in six cycles, while its catalytic performance declined in the multiple reuse cycles. This strategy could be extended to prepare other magnetic powdered adsorbents for organic pollutant adsorption and degradation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Rui Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Yongjun Peng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Chang Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Mohammadtaghi Vakili
- Green intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China
| | - Gang Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Xie Q, Guan Q, Li L, Pan X, Ho CL, Liu X, Hou S, Chen D. Exposure of children and mothers to organophosphate esters: Prediction by house dust and silicone wristbands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117011. [PMID: 33823314 DOI: 10.1016/j.envpol.2021.117011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.
Collapse
Affiliation(s)
- Qitong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qingxia Guan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Minister of Environmental Protection, Guangzhou, Guangdong, 510655, China
| | - Xiongfei Pan
- Department of Epidemiology & Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cheuk-Lam Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China, PolyU Shenzhen Research Institute, Shenzhen, 518057, China; Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Sen Hou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
45
|
Bukowska B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. MATERIALS 2021; 14:ma14133675. [PMID: 34279245 PMCID: PMC8269848 DOI: 10.3390/ma14133675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
46
|
Olivero-Verbel R, Moreno T, Fernández-Arribas J, Reche C, Minguillón MC, Martins V, Querol X, Johnson-Restrepo B, Eljarrat E. Organophosphate esters in airborne particles from subway stations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145105. [PMID: 33485201 DOI: 10.1016/j.scitotenv.2021.145105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
For the first time, the concentrations of 19 organophosphate esters (OPEs) were measured in airborne fine particulate matter (PM2.5) from subway stations in Barcelona (Spain) to investigate their occurrence, contamination profiles and associated health risks. OPEs were detected in all PM2.5 samples with levels ranging between 1.59 and 202 ng/m3 (mean value of 39.9 ng/m3). Seventeen out of 19 tested analytes were detected, with TDClPP, TClPP and TCEP being those presenting the highest concentrations. OPE concentrations are not driven by the same factors that determine the ambient PM2.5 concentrations of other constituents in the subway. Newer stations presented higher OPE levels, probably due to the materials used in the design of the platforms, with greater use of modern plastic materials versus older stations with tiles and stones. Estimated daily intakes via airborne particles inhalation during the time expended in subway stations were calculated, as well as the carcinogenic and non-carcinogenic health risks (CR and non-CR), all being much lower than the threshold risk values. Thus, subway inhalation exposure when standing on the platform to OPE's per se is not considered to be dangerous for commuters.
Collapse
Affiliation(s)
- R Olivero-Verbel
- University of Atlántico, Engineering School, Agroindustrial Engineering Program, Barranquilla, Colombia; Environmental Chemistry Research Group, School of Exact and Natural Sciences, San Pablo University Campus, University of Cartagena, 130015 Cartagena, Colombia
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - J Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M C Minguillón
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V Martins
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - B Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, San Pablo University Campus, University of Cartagena, 130015 Cartagena, Colombia
| | - E Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
47
|
Dong Z, Fan X, Li Y, Wang Z, Chen L, Wang Y, Zhao X, Fan W, Wu F. A Web-Based Database on Exposure to Persistent Organic Pollutants in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57701. [PMID: 33945299 PMCID: PMC8096379 DOI: 10.1289/ehp8685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 05/26/2023]
Affiliation(s)
- Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xiarui Fan
- School of Space and Environment, Beihang University, Beijing, China
| | - Yao Li
- School of Space and Environment, Beihang University, Beijing, China
| | - Ziwei Wang
- School of Space and Environment, Beihang University, Beijing, China
| | - Lili Chen
- Beijing Academy of Edge Computing, Beijing, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - FengChang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
48
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|