1
|
Liu N, Zhao J, Du J, Hou C, Zhou X, Chen J, Zhang Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174237. [PMID: 38942300 DOI: 10.1016/j.scitotenv.2024.174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Collapse
Affiliation(s)
- Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, PR China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Lu T, Wang L, Hu J, Wang W, Duan X, Qiu G. Enhanced reduction of Cd uptake by wheat plants using iron and manganese oxides combined with citrate in Cd-contaminated weakly alkaline arable soils. ENVIRONMENTAL RESEARCH 2024; 257:119392. [PMID: 38857857 DOI: 10.1016/j.envres.2024.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.
Collapse
Affiliation(s)
- Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Li Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiwen Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xianjie Duan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, China.
| |
Collapse
|
3
|
Zheng S, Wu B, Yang P, Li J, Shangguan Y, Hu J. Mercapto-functionalized palygorskite modified the growth of Ligusticum Chuanxiong and restrained the Cd migration in the soil-plant system. CHEMOSPHERE 2024; 362:142510. [PMID: 38908445 DOI: 10.1016/j.chemosphere.2024.142510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Ligusticum Chuanxiong is an essential medicinal and edible plant, but it is highly susceptible to the enrichment of soil Cadmium (Cd), which seriously affects its medical safety. However, the control of Cd uptake by Ligusticum Chuanxiong is little reported. In this study, we reported that a green Mercapto-functionalized palygorskite (MPAL) effectively promoted Ligusticum Chuanxiong growth, and restrained the Cd uptake by Ligusticum Chuanxiong both in the mildly contaminated soil (M-Soil) and severely contaminated soil (S-Soil). The experimental results demonstrated that the application of MPAL significantly increased the biomass and antioxidant enzyme activity of Ligusticum Chuanxiong. In the M-Soil, the Cd content in the roots, stems, and leaves of Ligusticum Chuanxiong decreased markedly by 82.46-86.66%, 64.17-71.73%, and 64.94-76.66%, respectively, after the MPAL treatment. In the S-Soil, MPAL application decreased the Cd content in roots, stems, and leaves by 89.43-98.92%, 24.19-86.22%, and 67.14-77.90%, respectively. Based on Diethylenetriamine Pentaacetic Acid (DTPA) extraction, the immobilization efficiency of MPAL for Cd in soils ranged from 22.01% to 77.04%. Additionally, the HOAc extractable Cd was transformed into reducible and oxidizable fractions. Furthermore, MPAL enhanced the activities of soil alkaline phosphatase, and urease, but decreased sucrase activity. Environmental toxicological analysis indicated that MPAL reduced the potential ecological risk of Cd in the soil. These findings revealed that MPAL can effectively reduce Cd accumulation in Ligusticum Chuanxiong and promote plant growth, suggesting its potential as a viable amendment for remediating Cd-contaminated soils.
Collapse
Affiliation(s)
- Shuai Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China; Agricultural Quality Standards and Testing Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet, 850000, PR China.
| | - Peng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuxian Shangguan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
| | - Junqi Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
4
|
Zhou C, Zhu L, Zhao T, Dahlgren RA, Xu J. Fertilizer application alters cadmium and selenium bioavailability in soil-rice system with high geological background levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124033. [PMID: 38670427 DOI: 10.1016/j.envpol.2024.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The co-occurrence of cadmium (Cd) pollution and selenium (Se) deficiency commonly exists in global soils, especially in China. As a result, there is great interest in developing practical agronomic strategies to simultaneously achieve Cd remediation and Se mobilization in paddy soils, thereby enhancing food quality/safety. To this end, we conducted a field-plot trial on soils having high geological background levels of Cd (0.67 mg kg-1) and Se (0.50 mg kg-1). We explored 12 contrasting fertilizers (urea, potassium sulfate (K2SO4), calcium-magnesium-phosphate (CMP)), amendments (manure and biochar) and their combinations on Cd/Se bioavailability. Soil pH, total organic carbon (TOC), soil available Cd/Se, Cd/Se fractions and Cd/Se accumulation in different rice components were determined. No significant differences existed in mean grain yield among treatments. Results showed that application of urea and K2SO4 decreased soil pH, whereas the CMP fertilizer and biochar treatments increased soil pH. There were no significant changes in TOC concentrations. Three treatments (CMP, manure, biochar) significantly decreased soil available Cd, whereas no treatment affected soil available Se at the maturity stage. Four treatments (CMP, manure, biochar and manure+urea+CMP+K2SO4) achieved our dual goal of Cd reduction and Se enrichment in rice grain. Structural equation modeling (SEM) demonstrated that soil available Cd and root Cd were negatively affected by pH and organic matter (OM), whereas soil available Se was positively affected by pH. Moreover, redundancy analysis (RDA) showed strong positive correlations between soil available Cd, exchangeable Cd and reducible Cd with grain Cd concentration, as well as between pH and soil available Se with grain Se concentration. Further, there was a strong negative correlation between residual Cd/Se (non-available fraction) and grain Cd/Se concentrations. Overall, this study identified the primary factors affecting Cd/Se bioavailability, thereby providing new guidance for achieving safe production of Se-enriched rice through fertilizer/amendment management of Cd-enriched soils.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lianghui Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
6
|
Ali W, Mao K, Shafeeque M, Aslam MW, Li W. Effects of selenium on biogeochemical cycles of cadmium in rice from flooded paddy soil systems in the alluvial Indus Valley of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168896. [PMID: 38042182 DOI: 10.1016/j.scitotenv.2023.168896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
This study delves into the pollution status, assesses the effects of Se on Cd biogeochemical pathways, and explores their interactions in nutrient-rich paddy soil-rice ecosystems through 500 soil-rice samples in Pakistan. The results showed that 99.6 % and 12.8 % of soil samples exceeded the World Health Organization (WHO) allowable Se and Cd levels (7 and 0.35 mg/kg). In comparison, 23 % and 6 % of the grain samples exceeded WHO's allowable Se and Cd levels (0.3 and 0.2 mg/kg), respectively. Geographically Weighted Regression (GWR) model results further revealed spatial nonstationarity, confirming diverse associations between dependent variables (Se and Cd in rice grain) and independent variables from paddy soil and plant tissues (root and shoot), such as Soil Organic Matter (SOM), pH, Se, and Cd concentrations. High Se:Cd molar ratios (>1) and a negative correlation (r = -0.16, p < 0.01) between the Cd translocation factor (Cd in rice grain/Cd in root) and Se in roots suggest that increased root Se levels inhibit the transfer of Cd from roots to grains. The inverse correlation between Se and Cd in paddy grains was further characterized as Se deficiency, no risk, high Cd risk, Se risk, Cd risk, and Se-Cd co-exposure risk. There was no apparent risk for human co-consumption in 42.6 % of grain samples with moderate Se and low Cd. The remaining categories indicate differing degrees of risk. In the study area, 31 % and 20 % of grain samples with low Se and Cd indicate Se deficiency and risk, respectively. High Se and low Cd levels in rice samples suggest a potential hazard for severe Se exposure due to frequent rice consumption. This study not only systematically evaluates the pollution status of paddy-soil systems in Pakistan but also provides a reference to thoroughly contemplate the development of a scientific approach for evaluating human risks and the potential dangers associated with paddy soils and rice, specifically in regions characterized by low Se and low Cd concentrations, as well as those with moderate Se and high Cd concentrations. SYNOPSIS: This study is significant for understanding the effects of Se on Cd geochemical cycles and their interactions in paddy soil systems in Pakistan.
Collapse
Affiliation(s)
- Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | | | - Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Li
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China; Chongqing Field Observation Station for River and Lake Ecosystems, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Irshad MK, Zhu S, Javed W, Lee JC, Mahmood A, Lee SS, Jianying S, Albasher G, Ali A. Risk assessment of toxic and hazardous metals in paddy agroecosystem by biochar-for bio-membrane applications. CHEMOSPHERE 2023; 340:139719. [PMID: 37549746 DOI: 10.1016/j.chemosphere.2023.139719] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Toxic and carcinogenic metal (loid)s, such arsenic (As) and cadmium (Cd), found in contaminated paddy soils pose a serious danger to environmental sustainability. Their geochemical activities are complex, making it difficult to manage their contamination. Rice grown in Cd and As-polluted soils ends up in people's bellies, where it can cause cancer, anemia, and the deadly itai sickness. Solving this issue calls for research into eco-friendly and cost-effective remediation technology to lower rice's As and Cd levels. This research delves deeply into the origins of As and Cd in paddy soils, as well as their mobility, bioavailability, and uptake mechanisms by rice plants. It also examines the current methods and reactors used to lower As and Cd contamination in rice. Iron-modified biochar (Fe-BC) is a promising technology for reducing As and Cd toxicity in rice, improving soil health, and boosting rice's nutritional value. Biochar's physiochemical characteristics are enhanced by the addition of iron, making it a potent adsorbent for As and Cd ions. In conclusion, Fe-BC's biomembrane properties make them an attractive option for remediating As- and Cd-contaminated paddy soils. More efficient mitigation measures, including the use of biomembrane technology, can be developed when sustainable agriculture practices are combined with these technologies.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan; Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sihang Zhu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing, China; Agricultural Management Institute, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wasim Javed
- Punjab Bioenergy Institute, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Abid Mahmood
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Shang Jianying
- Department of Soil and Water Sciences China Agricultural University, Beijing, China.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Ali
- Department of plant breeding and genetics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Yi S, Li F, Wu C, Ge F, Feng C, Zhang M, Liu Y, Lu H. Co-transformation of HMs-PAHs in rhizosphere soils and adaptive responses of rhizobacteria during whole growth period of rice (Oryza sativa L.). J Environ Sci (China) 2023; 132:71-82. [PMID: 37336611 DOI: 10.1016/j.jes.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/21/2023]
Abstract
This study investigated the transformations of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in rhizosphere soils and adaptive responses of rhizobacterial community under the real field conditions during four growth stages (e.g., greening, tillering, heading, and maturity) of early rice (Zhongjiazao 17) and late rice (Zhongyou 9918) in Jiangshe village (JSV) and Yangji village (YJV). Results showed that rhizosphere soils of YJV were mildly polluted by Cd and PAHs compared to that of JSV. The relative abundance of bioavailable Cd (bio-Cd) and bioavailable As (bio-As) in rhizosphere soil increased before the heading stage but decreased at the subsequent growth stage, but the content of ΣPAHs in rhizosphere soil decreased gradually during whole growth period. The dominant rhizobacteria genera at YJV (e.g., Bacillus, Massilia, Sphingomonas, and Geobacter) increased at an abundance level from the tillering to heading stage. Rhizobacteria interacted with the above co-pollutant more intensely at the tillering and heading stage, where genes involved in HM-resistance and PAH-degradation appeared to have a significant enhancement. The contents of bio-Cd and bio-As in rhizosphere soil of early rice were higher than that of late rice at each growth stage, especially at the heading stage. Bio-Cd, ΣPAHs, and organic matter were key factors influencing the community structure of rhizobacteria. Results of this study provide valuable insights about the interactions between HM-PAH co-pollutant and rhizobacterial community under real field conditions and thus develop in-situ rhizosphere remediation techniques for contaminated paddy fields.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Chuang Feng
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yun Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Engineering Laboratory for High-Efficiency Purification Technology and its Application in Complex Heavy Metal Wastewater Treatment, Xiangtan 411105, China; Scientific Research Innovation Platform of Environmental Behavior and Control Principle about New Pollutants in Hunan Provincial Universities, Xiangtan 411105, China
| | - Hainan Lu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
9
|
Chen S, Xu J, Peng L, Cheng Z, Kuang X, Li D, Peng C, Song H. Cadmium accumulation in rice grains is mitigated by duckweed-like hydrophyte through adsorption and increased ammonia nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164510. [PMID: 37257595 DOI: 10.1016/j.scitotenv.2023.164510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although increasing attention has been paid to agronomic measures for reducing the heavy metal load in rice grain, the effects of duckweed-paddy co-cropping technology on the accumulation of cadmium (Cd) in rice grains remain unclear. To investigate its specific effects on Cd accumulation in paddy fields, three types of duckweed-like hydrophyte (DH), Azolla imbricata, Spirodela polyrrhiza, and Lemna minor were chosen for study. Their use resulted in a reduction of Cd content in rice grains from 0.40 mg/kg to <0.20 mg/kg, with A. imbricata yielding the best results (0.15 mg/kg). The three types of DH reduced the available Cd content in the soil by 10 % to 35 % after the paddy tillering stage. The reduction of available Cd content was attributed to the absorption, high pH, and increase of relative abundance of special bacteria of immobilizing Cd. In addition, DH could regulate soil nitrogen leading to ammonium nitrogen increased from 75 mg/kg to 100 mg/kg, while nitrate nitrogen decreased from 0.55 to 0.1-0.3 mg/kg. The increase of ammonium nitrogen content might induce the low Cd transfer ability in rice plant and then low Cd content in rice grain. This study demonstrated that DH has a good effect on the reduction of the Cd concentration in rice grains. Consequently, duckweed-paddy co-cropping technology offers a potential solution to heavy metal pollution and agricultural non-point source pollution, as it not only reduces Cd levels in rice plants, but also fixes nitrogen, reducing the need for nitrogen application.
Collapse
Affiliation(s)
- Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Junhui Xu
- Agriculture and Rural Bureau of Heshan District, Yiyang City, Hunan Province Yiyang 413002, PR China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China.
| | - Ziyi Cheng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Dan Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Cheng Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
10
|
Wang L, Cheng WC, Xue ZF, Rahman MM, Xie YX, Hu W. Immobilizing lead and copper in aqueous solution using microbial- and enzyme-induced carbonate precipitation. Front Bioeng Biotechnol 2023; 11:1146858. [PMID: 37051271 PMCID: PMC10083330 DOI: 10.3389/fbioe.2023.1146858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Inappropriate irrigation could trigger migration of heavy metals into surrounding environments, causing their accumulation and a serious threat to human central nervous system. Traditional site remediation technologies are criticized because they are time-consuming and featured with high risk of secondary pollution. In the past few years, the microbial-induced carbonate precipitation (MICP) is considered as an alternative to traditional technologies due to its easy maneuverability. The enzyme-induced carbonate precipitate (EICP) has attracted attention because bacterial cultivation is not required prior to catalyzing urea hydrolysis. This study compared the performance of lead (Pb) and copper (Cu) remediation using MICP and EICP respectively. The effect of the degree of urea hydrolysis, mass and species of carbonate precipitation, and chemical and thermodynamic properties of carbonates on the remediation efficiency was investigated. Results indicated that ammonium ion (NH4+) concentration reduced with the increase in lead ion (Pb2+) or copper ion (Cu2+) concentration, and for a given Pb2+ or Cu2+ concentration, it was much higher under MICP than EICP. Further, the remediation efficiency against Cu2+ is approximately zero, which is way below that against Pb2+ (approximately 100%). The Cu2+ toxicity denatured and even inactivated the urease, reducing the degree of urea hydrolysis and the remediation efficiency. Moreover, the reduction in the remediation efficiency against Pb2+ and Cu2+ appeared to be due to the precipitations of cotunnite and atacamite respectively. Their chemical and thermodynamic properties were not as good as calcite, cerussite, phosgenite, and malachite. The findings shed light on the underlying mechanism affecting the remediation efficiency against Pb2+ and Cu2+.
Collapse
Affiliation(s)
- Lin Wang
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
- *Correspondence: Wen-Chieh Cheng,
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Md Mizanur Rahman
- UniSA STEM, SIRM, University of south Australia, Adelaide, SA, Australia
| | - Yi-Xin Xie
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| | - Wenle Hu
- School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an, China
| |
Collapse
|
11
|
Peera Sheikh Kulsum PG, Khanam R, Das S, Nayak AK, Tack FMG, Meers E, Vithanage M, Shahid M, Kumar A, Chakraborty S, Bhattacharya T, Biswas JK. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. ENVIRONMENTAL RESEARCH 2023; 220:115098. [PMID: 36586716 DOI: 10.1016/j.envres.2022.115098] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.
Collapse
Affiliation(s)
| | - Rubina Khanam
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Shreya Das
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Amaresh Kumar Nayak
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Mohammad Shahid
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Anjani Kumar
- ICAR-Crop Production Division, National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Sukalyan Chakraborty
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Tanushree Bhattacharya
- Environmental Engineering Laboratory, Department of Civil & Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies &International Centre for Ecological Engineering, Universityof Kalyani, Kalyani, Nadia, 741235, West Bengal, India.
| |
Collapse
|
12
|
Zeng P, Liu J, Zhou H, Wei B, Gu J, Liao Y, Liao B, Luo X. Co-application of combined amendment (limestone and sepiolite) and Si fertilizer reduces rice Cd uptake and transport through Cd immobilization and Si-Cd antagonism. CHEMOSPHERE 2023; 316:137859. [PMID: 36649896 DOI: 10.1016/j.chemosphere.2023.137859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Limestone and sepiolite combined amendment (LS) and silicon (Si) fertilizers are commonly applied for the remediation of Cd-polluted paddy soil. However, it is difficult to further decrease cadmium (Cd) accumulation in rice grains by the individual application of LS or Si fertilizer to heavily Cd-polluted paddy fields. Two seasons of continuous field experiments were conducted in heavily Cd-polluted soil to study how the co-application of LS and Si fertilizer (namely soil-applied Si and foliar-sprayed Si) influences Cd and Si bioavailability in soil and Cd uptake and transport in rice. The results indicated that LS co-applied with soil-applied Si fertilizer treatments can enhance pH, cation exchange capacity (CEC), and available Si content in soil by 0.56-1.26 units, 19.3%-57.2%, and 14.7%-58.9% (p < 0.05), respectively, and reduce the toxicity characteristic leaching procedure (TCLP) extractable Cd content in soil by 26.5%-49.8% (p < 0.05) relative to the control. Furthermore, the co-application of LS and soil and foliar-sprayed Si fertilizer treatments reduced the Cd content in brown rice by 18.8%-70.6% (p < 0.05) compared with the control. Particularly, the brown rice Cd content under the co-application treatment (4500 kg/ha of soil applied LS, 90 kg/ha of Si fertilizer, and 0.4 g/L of foliar-sprayed Si fertilizer) was below 0.20 mg/kg in both seasons. Meanwhile, the Si content in rice was considerably enhanced by LS co-applied with Si fertilizer and negatively (p < 0.05) correlated with the rice Cd content. Therefore, the reduction of Cd bioavailability in soil and the antagonistic effect between Cd and Si in rice might be the key factors regulating Cd accumulation in rice via the co-application of LS and Si fertilizer.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Jiawei Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Binyun Wei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Ye Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Xufeng Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
13
|
Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11378-11398. [PMID: 36529801 PMCID: PMC9760545 DOI: 10.1007/s11356-022-24776-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/11/2022] [Indexed: 04/12/2023]
Abstract
The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| |
Collapse
|
14
|
Chen W, Kang Z, Yang Y, Li Y, Qiu R, Qin J, Li H. Interplanting of rice cultivars with high and low Cd accumulation can achieve the goal of "repairing while producing" in Cd-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158229. [PMID: 36007654 DOI: 10.1016/j.scitotenv.2022.158229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Interplanting has been highlighted as a promising, cost-effective, and environmentally friendly solution for the remediation of contaminated soil. In this study, field experiments were conducted to study growth and cadmium (Cd) uptake in monoculture and interplanting systems with rice varieties Changliangyou 772 (C-772) and Changxianggu (Cho-ko-koku). And a pot culture experiment was conducted to investigate the response of the rhizosphere microecology of these two rice varieties. In the interplanting system of the field study, the Cd concentration in the grains of C-772 was significantly reduced (P < 0.05) from 0.30 mg kg-1 to 0.16 mg kg-1 and reached the national food safety standard of China (GB2762-2017, 0.20 mg kg-1), whereas the bioconcentration amount (BCA) per plant of Cd in Cho-ko-koku was significantly increased by 68.18 % (P < 0.05). The land equivalent ratio (LER) and Cd metal removal equivalent ratio (MRER) of the interplanting system were 1.03 and 1.05, illustrating that the interplanting system was superior in terms of yield and Cd elimination. In the pot experiment, the interplanting system significantly (P < 0.05) reduced the iron plaque content on the root surface and organic acids content in the rhizosphere environment of C-772 while markedly increasing those levels in Cho-ko-koku. At ripening stage, the interplanting system significantly decreased the rhizosphere available Cd concentration of C-772 from 0.38 mg kg-1 to 0.22 mg kg-1 (P < 0.05), while significantly increased the rhizosphere available Cd concentration of Cho-ko-koku from 0.27 mg kg-1 to 0.32 mg kg-1 (P < 0.05). Thus, Cd uptake of C-772 and Cho-ko-koku showed apparent differences. Oxalic and tartaric acid were identified as the most crucial factors affecting Cd uptake by C-772 and Cho-ko-koku in the interplanting system, respectively. In summary, this interplanting system is a promising planting pattern that can simultaneously improve land use efficiency and alleviate Cd pollution.
Collapse
Affiliation(s)
- Weizhen Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Zhiming Kang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Yanan Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Yinshi Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| |
Collapse
|
15
|
Liu X, Wang X, Xu T, Ma H, Xia T. The combined application of γ-PGA-producing bacteria and biochar reduced the content of heavy metals and improved the quality of tomato (Solanum lycopersicum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88938-88950. [PMID: 35840836 DOI: 10.1007/s11356-022-21842-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant growth-promoting bacteria and biochar have been widely used as immobilizers to remediate heavy metal contaminated soil. However, few studies have unraveled the effect and synergistic mechanism of combined application of plant growth-promoting bacteria and biochar on in situ heavy metal contaminated soil remediation and plant yield and quality improvement under heavy metal pollution stress. In this study, the effects of biochar, γ-PGA-producing bacteria (Bacillus amyloliquefaciens strain W25) and their combined application on Cd and Pb immobilization, γ-PGA production in soil filtrate, the bacterial community in rhizosphere soil, physicochemical properties of soil, heavy metal uptake, and quality and yield of tomato in heavy metal-contaminated soil were investigated. The application of W25, biochar, and their combinations significantly reduced Cd content in mature tomato fruits by 22-60%, increased the single fruit weight and lycopene content by 7-21% and 23-48%, respectively, and the combination of biochar and W25 had the best effect. All the treatments significantly reduced DTPA-Cd and DTPA-Pb contents in rhizosphere soil (42-53% and 6.5-35%), increased the pH value and the activities of urease-alkaline phosphatase of soil, but did not affect the expression of heavy metal transporter gene LeNRAMP1 in tomato roots. Biochar + W25 increased the relative abundance of plant growth-promoting bacteria such as Bacillus and Streptomyces. Biochar-enhanced plant growth-promoting bacteria to settle and colonize in soil significantly improved the ability of strain W25 to produce γ-PGA, and immobilized Cd in soil filtrate. The combination of biochar and plant growth-promoting bacteria ensures safe crop production in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Xingwang Liu
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Tianyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, College of Biological Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Bandara T, Krohn C, Jin J, Chathurika JBAJ, Franks A, Xu J, Potter ID, Tang C. The effects of biochar aging on rhizosphere microbial communities in cadmium-contaminated acid soil. CHEMOSPHERE 2022; 303:135153. [PMID: 35640695 DOI: 10.1016/j.chemosphere.2022.135153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 05/16/2023]
Abstract
Biochars are widely used in the remediation of Cd-contaminated soils. However, changes in the bacterial communities in the rhizosphere contaminated with Cd in response to biochar aging are poorly studied. Addressing this gap in knowledge is important to improving micro-ecological services on healthy growth of plants with mitigation strategies against Cd contamination. An aging experiment (270 days) was conducted with biochars derived from poultry litter and sugar-gum wood added to a Cd-contaminated acid soil. Bacterial communities in the rhizosphere of Brassica rapa and bulk soils were investigated after 1, 90 and 270 days of biochar aging. There was no significant difference (P > 0.05) in bacterial Shannon and Simpson indices between the control and biochar treatments. However, compared to the no-Cd control, the addition of Cd decreased the relative abundances of Firmicutes, Chloroflexi and Acidobacteriota but increased those of Actinobacteriota and Proteobacteria. Poultry-litter biochar had the largest effect on bacterial community composition, especially in the rhizosphere. Aging of poultry-litter biochar increased the abundance of Armatimonadota over time more than the sugar-gum-wood biochar, which was attributed to a lower pH and higher bioavailability of Cd in the sugar-gum-wood biochar treatment. The addition of poultry-litter biochar to the contaminated soil mitigated the bioaccumulation of Cd by increasing soil pH and restoring soil bacterial ecology in contaminated acid soils over time.
Collapse
Affiliation(s)
- Tharanga Bandara
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| | - Christian Krohn
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| | - J B A J Chathurika
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Ashley Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ian D Potter
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
17
|
Shi L, Guo Z, Liu S, Xiao X, Peng C, Feng W, Ran H, Zeng P. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2451-2463. [PMID: 34282515 DOI: 10.1007/s10653-021-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Excessive Cd content and high Cd/Zn ratio in rice grains threaten human health. To study the reduction effects of combined soil amendments on Cd content and Cd/Zn ratio in rice planting in soils with different Cd contamination levels, we conducted field trials in three regions of Hunan province, China. Six field treatments were designed in each study area, including control (CK), lime alone (L), lime combined with sepiolite (LS), phosphate fertilizer (LP), organic fertilizer (LO) and phosphate fertilizer + organic fertilizer (LPO). The application of the combined amendments reduced the Cd content in rice grains to less than the Food Health Standard of China (0.2 mg/kg) and the Cd/Zn ratio to less than the safety threshold of 0.015. The average reduction rates of grain Cd content under the combined treatments among the three regions increased with the increase in Cd content in the soil. Meanwhile, the amendments also decreased the soil available Cd and Zn concentration significantly. The LO had the highest efficiency on decreasing Cd content in rice grains among these amendments, which is ranged from 44.6% to 52.8% in the three regions compared with CK. Similarly, high reduction rates of Cd/Zn ratio were found in the LO treatment, with an average value of 57.3% among the three regions. The grain Cd contents and Cd/Zn ratios were significantly correlated with the soil available Cd concentrations, plant uptake factor and the straw to rice grain translocation factor (TFgs) (P < 0.05). The results indicated that the combined soil amendments, especially lime combined with organic fertilizer, would be an effective way to control Cd content in rice.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Shuaixia Liu
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Peng Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
18
|
Li J, Wu B, Luo Z, Lei N, Kuang H, Li Z. Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119400. [PMID: 35525516 DOI: 10.1016/j.envpol.2022.119400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.
Collapse
Affiliation(s)
- Jia Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Bin Wu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Zhi Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ningfei Lei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Hongjie Kuang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Ziqing Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| |
Collapse
|
19
|
Tao Y, Zhang Q, Long S, Li X, Chen J, Li X. Shifts of lipid metabolites help decode immobilization of soil cadmium under reductive soil disinfestation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154592. [PMID: 35314227 DOI: 10.1016/j.scitotenv.2022.154592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/27/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) contamination in soil can cause serious environmental problems and threaten human health. Previous studies have shown that the reductive soil disinfestation (RSD) is regarded as an effective soil disinfection technology, which will affect the bioavailability of Cd. However, the influence of soil microorganisms and their metabolites on the morphologies of Cd during RSD treatment are still poorly understood. Here, a laboratory incubation experiment that composed of untreated soil (CK), two RSD treatments with flooded soil (FL) and added 2% bean dregs soil (BD) was conducted. After the treatment, the content of different morphologies of Cd in the soil and the molecular characteristics (the composition of the microbial community, functional enzymes and metabolites) of the soil were measured. The study found that, compared to CK treatment, the dominant phyla, such as Acidobacteria, Bacteroidetes, Firmicutes, etc., were significantly increased in BD treatment, and enzymes related to metabolism also showed noticeable enhancement. The differential accumulated metabolite (DAM) analysis revealed that the abound of lipids and lipid-like molecules involved with fatty acyls, steroids and steroid derivatives, glycerophospholipids, fatty acids and conjugates, glycerolipids, and sphingolipids were significant different among treatments. The correlation analysis showed the exchangeable fraction cadmium contents (EX-Cd) were negatively correlated with the content of glycerophospholipids and sphingolipids, and positively correlated with glycerolipids content. However, the relationship between the residual cadmium (RS-Cd) and these three metabolites was just the opposite. Compared with another two treatments, the BD treatment significantly reduced EX-Cd contents. Biological interaction network analysis indicated that the phyla Gemmatimonadetes and Proteobacteria assumed the primary responsibility for the morphological transformation of Cd through their corresponding functional enzymes. Overall, this study provided a new perspective on RSD-mediated soil Cd immobilization, and the findings should be beneficial to further applications of RSD technology on the remediation of Cd-polluted soils.
Collapse
Affiliation(s)
- Yu Tao
- Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Institute of Vegetable Research, Changsha 410125, China
| | | | - Shiping Long
- Hunan Institute of Agricultural Environment and Ecology, Changsha 410125, Hunan, China
| | - Xuefeng Li
- Hunan Institute of Vegetable Research, Changsha 410125, China
| | - Jie Chen
- Hunan Institute of Agricultural Environment and Ecology, Changsha 410125, Hunan, China.
| | - Xin Li
- Hunan Academy of Agricultural Science, Changsha 410125, China; Hunan Institute of Vegetable Research, Changsha 410125, China.
| |
Collapse
|
20
|
The Potential Application of Natural Clinoptilolite-Rich Zeolite as Support for Bacterial Community Formation for Wastewater Treatment. MATERIALS 2022; 15:ma15103685. [PMID: 35629710 PMCID: PMC9143755 DOI: 10.3390/ma15103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the use of natural zeolite as support for microbial community formation during wastewater treatment. Scanning electron microscopy (SEM), thermal decomposition and differential thermogravimetric curves (TGA/DGT) techniques were used for the physicochemical and structural characterization of zeolites. The chemical characterization of wastewater was performed before and after treatment, after 30 days of using stationary zeolite as support. The chemical composition of wastewater was evaluated in terms of the products of nitrification/denitrification processes. The greatest ammonium (NH4+) adsorption was obtained for wastewater contaminated with different concentrations of ammonium, nitrate and nitrite. The wastewater quality index (WWQI) was determined to assess the effluent quality and the efficiency of the treatment plant used, showing a maximum of 71% quality improvement, thus suggesting that the treated wastewater could be discharged into aquatic environments. After 30 days, NH4+ demonstrated a high removal efficiency (higher than 98%), while NO3+ and NO2+ had a removal efficiency of 70% and 54%, respectively. The removal efficiency for metals was observed as follows (%): Mn > Cd > Cr > Zn > Fe > Ni > Co > Cu > Ba > Pb > Sr. Analysis of the microbial diversity in the zeolite samples indicated that the bacteria are formed due to the existence of nutrients in wastewater which favor their formation. In addition, the zeolite was characterized by SEM and the results indicated that the zeolite acts as an adsorbent for the pollutants and, moreover, as a support material for microbial community formation under optimal conditions. Comparing the two studied zeolites, NZ1 (particle size 1−3 mm) was found to be more suitable for wastewater treatment. Overall, the natural zeolite demonstrated high potential for pollutant removal and biomass support for bacteria community growth in wastewater treatment.
Collapse
|
21
|
Zhao S, Ye X, Chen D, Zhang Q, Xiao W, Wu S, Hu J, Gao N, Huang M. Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. TOXICS 2022; 10:toxics10050259. [PMID: 35622672 PMCID: PMC9143787 DOI: 10.3390/toxics10050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022]
Abstract
To fulfill sustainability principles, a three-site field experiment was conducted to screen suitably mixed passivators from lime + biochar (L + C, 9000 kgha−1 with a rate of 1:1) and lime + biochar + sepiolite (L + C + S, 9000 kg ha−1 with a rate of 1:1:1), in Yuecheng (YC), Zhuji (ZJ), and Fuyang (FY), where there are typical contaminated soils, in South China. Treated with passivators in soil, DTPA-extractable Cd, Cr and Pb in soil were decreased by 9.87–26.3%, 37.2–67.5%, and 19.0–54.2%, respectively; Cd, Cr, and Pb in rice were decreased by 85.9–91.5%, 40.0–76.5%, and 16.4–45.4%, respectively; and these were followed by slightly higher efficacy of L + C + S than L + C. The differences between L + C and L + C + S mainly lie in soil microbial communities, enzymes, and fertility. In YC, treatment with L + C + S increased microbial carbon and activities of urease (EC3.5.1.5) and phosphatase (EC3.1.3.1) by 21.0%, 85.5%, and 22.3%; while treatment with L + C decreased microbial carbon and activities of phosphatase and sucrose (EC3.2.1.26) by 1.31%, 34.9%, and 43.4%, respectively. Moreover, the treatment of FY soils with L + C + S increased microbial carbon and activities of urease, phosphatase, and sucrase by 35.4%, 41.6%, 27.9%, and 7.37%; and L + C treatment only increased the microbial carbon and the activity of phosphatase by 3.14% and 30.3%, respectively. Furthermore, the organic matter and available nitrogen were also increased by 8.8–19.0% and 7.4–14.6% with L + C + S treatments, respectively. These suggested that the combination of L + C + S stimulated the growth of soil microbial communities and increased the activity of soil enzymes. Therefore, the L + C + S strategy can be a practical and effective measure for safe rice production as it was more suitable for the remediation of heavy metals in our experimental sites.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
- Correspondence: ; Tel.: +86-0571-8641-5206
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Shaofu Wu
- Shaoxing Grain and Oil Crop Technology Extension Center, Shaoxing Agricultural Bureau, Shaoxing 312000, China;
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.Z.); (D.C.); (Q.Z.); (W.X.); (J.H.); (N.G.); (M.H.)
| |
Collapse
|
22
|
Gao B, Chen Q, Liu K, Li F, Fang L, Zhu Z, Tran MT, Peng J. Biogeochemical Fe(II) generators as a new strategy for limiting Cd uptake by rice and its implication for agricultural sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153306. [PMID: 35077783 DOI: 10.1016/j.scitotenv.2022.153306] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This work has developed a new strategy of biogeochemical Fe(II) generators for activating microbial Fe(II) generation to immobilize Cd in soils through protons scavenging and coprecipitation. A new biochar modified magnetite (FeBC15) has been fabricated through a top-down method, with which microbial respiration can be stimulated in paddy soil. The FeBC15 exhibits a higher adsorption capacity for Cd than pristine magnetite (1.7 times). The results show that the available Cd can be reduced by 14.4% after adding FeBC15 compared to the control. More importantly, FeBC15 particles promote the conversion of MgCl2 - Cd to stable crystalline Fe/Al bound Cd under the incubation period. The enhanced pH and Fe(II) leads to a comparably lower Cd availability in soils than in pristine soils, which are supported by the enhanced relative abundance of Geobacter and Clostridium with the FeBC15 treatment (i.e. up to 7.44-7.68 × 109 copies/g soil). The Diffusive Gradients in Thin-films (DGT) study indicates that FeBC15 can lower the replenish capacity of soils (i.e. KdL values of 0.2-3.6 mL/g) to soil pore waters and limit root absorption. Pot experiments demonstrate that this strategy can alleviate the rice Cd content by 38.4% (< 0.2 mg/kg). This work paves a new pathway for reducing Cd uptake in rice, enabling sustainable remediation of paddy soil.
Collapse
Affiliation(s)
- Baolin Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Zhenlong Zhu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Minh Tien Tran
- Soils and Fertilizers Research Institute (SFRI), Dong Ngac, Tu Liem, Hanoi, Viet Nam
| | - Jiming Peng
- China National Hybrid Rice R&D Center, Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
23
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Li SQ, Li GD, Peng KM, Yang LH, Huang XF, Lu LJ, Liu J. The combined effect of Diversispora versiformis and sodium bentonite contributes on the colonization of Phragmites in cadmium-contaminated soil. CHEMOSPHERE 2022; 293:133613. [PMID: 35032512 DOI: 10.1016/j.chemosphere.2022.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
To promote the colonization of Phragmites in Cd polluted, nutrient deprived and structural damaged soil, the combined remediation using chemical and microbial modifiers were carried out in potting experiments. The co-application of Diversispora versiformis and sodium bentonite significantly improved the soil structure and phosphorus utilization of the plant, while decreasing the content of cadmium bound by diethylenetriaminepentaacetic acid by 77.72%. As a result, the Phragmites height, tillers, and photosynthetic capacity were increased by 71.60%, 38.37%, and 17.54%, respectively. Further analysis suggested the co-application increased the abundance of phosphorus-releasing microbial communities like Pseudomonassp. and Gemmatimonadetes. Results of rhizosphere metabolites also proved that the signal molecule of lysophosphatidylcholine regulated the phosphorus fixation and utilization by the plant. This work finds composite modifiers are effective in the colonization of Phragmites in Cd contaminated soil by decreasing the bioavailable Cd, increasing the abundance of functional microbial communities and regulating the phosphorus fixation.
Collapse
Affiliation(s)
- Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Gen-Dong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayan Nur, 015000, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
25
|
Han H, Wu X, Bolan N, Kirkham MB, Yang J, Chen Z. Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions. CHEMOSPHERE 2022; 293:133534. [PMID: 34999099 DOI: 10.1016/j.chemosphere.2022.133534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In heavy metal-contaminated farmland, microorganisms or organic fertilizers can be used to minimize heavy metal uptake by crops to ensure food safety. However, the mechanisms by which urease-producing and metal-immobilizing bacteria combined with manure inhibit Cd uptake in wheat (Triticum aestivum L.) remain unclear. Herein, the effects of Enterobacter bugandensis TJ6, sheep manure (SM), and TJ6 combined with SM on Cd uptake by wheat and the mechanisms involved were investigated under field conditions. The results showed that strain TJ6 increased the urease activity and the proportion of strains with a high Cd adsorption capacity in SM, thereby enhancing the Cd adsorption capacity of SM in solution. Strain TJ6 combined with SM improved the rhizosphere soil urease activity, NH4+/NO3- ratio, and pH, thus reducing the Cd content (75.9%) in wheat grain. In addition, TJ6+SM reduced the bacterial community diversity but shifted the structure of the bacterial community in rhizosphere soil. Interestingly, the relative abundances of urease-producing bacteria and metal-immobilizing bacteria (Enterobacter, Bacillus, Exiguobacterium, Rhizobium, and Serratia) in rhizosphere soil were enriched, which enhanced wheat resistance to Cd toxicity. These results showed that urease-producing and metal-immobilizing bacteria combined with sheep manure can inhibit the uptake of Cd by wheat.
Collapse
Affiliation(s)
- Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Xuejiao Wu
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan Campus, NSW, 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China
| |
Collapse
|
26
|
Tan C, Luo Y, Fu T. Soil microbial community responses to the application of a combined amendment in a historical zinc smelting area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13056-13070. [PMID: 34564816 DOI: 10.1007/s11356-021-16631-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Farmland soils that surround a historical zinc smelting area in northwestern Guizhou, China, are characterized by high levels of heavy metal accumulation. Previous studies have mainly focused on the potential risk evaluations of heavy metals in soil and crops. However, at present, the effects of amendment applications on the bioavailability of heavy metals and on microbial community in the heavily contaminated soils of the mining region are still unclear. A pot experiment was conducted to determine the effect of applying a combined amendment (e.g. lime, sepiolite, and vermicompost) on the diversity and composition of microbial community in the contaminated soil. The results showed that the contents of DTPA- and TCLP-extractable heavy metals (e.g. Cd, Pb, and Zn) decreased and that the pH, SWC, EC, and soil available nutrient (e.g. AN, AP, and AK) contents increased after the application of the combined amendment. Furthermore, application of the combined amendment decreased the diversity of soil bacterial and fungal communities and increased the relative abundances of the dominant bacterial and fungal communities such as Proteobacteria, Bacteroidetes, and Ascomycota; however, the relative abundances of Acidobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and structural equation model (SEM) analysis showed that the bioavailability of heavy metals decreased and that soil physicochemical characteristics improved and had positive or negative effects on the diversity and composition of soil microbial community.
Collapse
Affiliation(s)
- Chuanjiang Tan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang, 550025, China.
- Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Tianling Fu
- Guizhou Kast Environmental Ecosystem Observation and Research Station, Ministry of Education, Guiyang, 550025, China
- The New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
27
|
Xiao X, Pei M, Zhou J, Sun S, Li C, Zhu X, Zhao Y. Soil amendments inhibited the cadmium accumulation in Ligusticum striatum DC. and improved the plant growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67788-67799. [PMID: 34264494 DOI: 10.1007/s11356-021-15332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Soil aggregates display a significant influence on the bioavailability of heavy metals in soil. In this study, we conducted a field experiment in the main producing area of Ligusticum striatum DC. to explore the effects of the amendments on cadmium (Cd) distribution in soil aggregates and plant growth. L. striatum was planted in natural Cd-polluted soils added with mixed amendments, composed of heavy/light calcium carbonate (Type 1/Type 2 amendments), calcium-bentonite, potassium dihydrogen phosphate, biochar, sodium silicate, and attapulgite, with the application rate of 0.5 t ha-1, 1.5 t ha-1, and 5.0 t ha-1. The results demonstrated that the application of the amendments promoted the formation of soil macroaggregates (250-2000 μm and >2000 μm) and, altered soil Cd distribution among aggregates fractions by translocating Cd from macroaggregates into small one (microaggregate; <250 μm). Soil amendments addition greatly alleviated the phytotoxic effects of Cd on plants and promoted the biomass of the rhizome of L. striatum by 14.38-53.47%. Based on the structural equation modeling, the decrease of available Cd in the fraction of large macroaggregates greatly contributed to the less accumulation of Cd in plants (r = 0.70; p < 0.05). In general, the amendments inhibited the plant Cd accumulation by re-distribution of Cd among soil aggregates and, improved the plant growth by supplying available nutrients.
Collapse
Affiliation(s)
- Xian Xiao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, China
| | - Meng Pei
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Junjie Zhou
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Shuo Sun
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Chengcheng Li
- Jiangsu Yiyue Environmental Technology Co., Ltd., Wuxi, 214200, China
| | - Xuesong Zhu
- Jiangsu Puze Environmental Engineering Co., Ltd., Changzhou, 213164, China
| | - Yuan Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
28
|
Kuang X, Si K, Song H, Peng L, Chen A. Lime-Phosphorus Fertilizer Efficiently Reduces the Cd Content of Rice: Physicochemical Property and Biological Community Structure in Cd-Polluted Paddy Soil. Front Microbiol 2021; 12:749946. [PMID: 34867869 PMCID: PMC8638080 DOI: 10.3389/fmicb.2021.749946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Due to the biomagnifying effect in the food chains, heavy metals will cause serious harm to the food produced in paddy soil, and then threaten human health. The remediation of soil heavy metals by the addition of amendments is a common method. However, the combination of the two amendments has been less studied and its effect is unknown. In this study, we investigated the effects of different concentrations of a lime and calcium-magnesium phosphate (CMP) amendments metal availability and paddy soil bacteria biodiversity. The experiment proves that the addition of 0.5 and 1.0‰ amendment can effectively reduce cadmium (Cd) availability and the cadmium content in rice to be below 0.2 mg/kg, meeting the national food safety level. The results demonstrate that increasing pH and phosphorous (P) in soil were two important factors decreasing available cadmium. Furthermore, biodiversity analysis of the treated soil showed that the amendment increased biodiversity. Proteobacteria and Chloroflex were the most abundant bacteria at the phylum level, followed by Acidobacterium and Nitrospirae. The abundance of Bacterodietes-vadinHA17, Syntrophaceae, and Thiobacillus increased as phosphorous increased. Cadmium passivation might induce those species.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Department of Environmental Science and Engineering, Hunan Agricultural University, Changsha, China
- Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, China
| | - Kangying Si
- Department of Environmental Science and Engineering, Hunan Agricultural University, Changsha, China
- Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, China
| | - Huijuan Song
- Department of Environmental Science and Engineering, Hunan Agricultural University, Changsha, China
- Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, China
| | - Liang Peng
- Department of Environmental Science and Engineering, Hunan Agricultural University, Changsha, China
- Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, China
| | - Anwei Chen
- Department of Environmental Science and Engineering, Hunan Agricultural University, Changsha, China
- Hunan Engineering and Technology Research Center for Irrigation Water Purification, Changsha, China
| |
Collapse
|
29
|
Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. ENVIRONMENT INTERNATIONAL 2021; 156:106749. [PMID: 34247006 DOI: 10.1016/j.envint.2021.106749] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 659, B-9000 Gent, Belgium
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
An M, Chang D, Hong D, Fan H, Wang K. Metabolic regulation in soil microbial succession and niche differentiation by the polymer amendment under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126094. [PMID: 34492903 DOI: 10.1016/j.jhazmat.2021.126094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination seriously threatens the agricultural production, so exploring the response of soil microenvironment to amendments in Cd-contaminated soils is of importance. In this study, the mechanism of remediation of Cd-contaminated soil using the polymer amendment was studied in cotton flowering stage. The results showed that the concentration of Cd in cotton root and various Cd forms in Cd-contaminated soils were obviously high. High concentration of Cd, especially exchangeable Cd, could seriously affect the soil microenvironment. The root growth of cotton could be promoted, the carbon and nitrogen concentration and storage in soil were increased by 21.72-50.00%, while the exchangeable Cd concentration in soil were decreased by 41.43%, after applying the polymer amendment. In addition, the polymer amendment affected the soil microbial niche, increased the relative abundance of soil bacteria (Flaviaesturariibacter, Rubellimicrobium, and Cnuella), fungi (Verticillium and Tricharina), actinomycetes (Blastococcus and Nocardioides), and fungivores nematodes (Aphelenchus), and improved soil microbial metabolic functions (metabolism of nucleotides and carbohydrates). Therefore, this polymer amendment could be used to remediate severe Cd-contaminated soils, and the changes in the microbial and nematode communities help us understand the detoxification mechanism of the polymer amendment in Cd-contaminated soils.
Collapse
Affiliation(s)
- Mengjie An
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Doudou Chang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Dashuang Hong
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Hua Fan
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Kaiyong Wang
- Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
31
|
Li X, Li X, Li Y, Dai X, Zhang Q, Zhang M, Zhang Z, Tao Y, Chen W, Zhang M, Zhou X, Yang S, Ma Y, Zhran M, Zou X. Improved immobilization of soil cadmium by regulating soil characteristics and microbial community through reductive soil disinfestation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146222. [PMID: 33714838 DOI: 10.1016/j.scitotenv.2021.146222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination arising from industrialization has attracted increasing attention in recent years. Reductive soil disinfestation (RSD) as an effective agricultural practice has been widely applied for soil sterilization. However, there is little research regarding RSD affecting Cd immobilization. Here, five treatments, namely untreated soil (CK), flooding-treated soil (FL), RSD with 2% ethyl alcohol (EA), 2% sugarcane bagasse (SB), and 2% bean dregs (BD) were designed to detect their performance for Cd immobilization in contaminated soils, and the change of soil properties and microbial communities were monitored. The results revealed that pH significantly increased in FL and RSD-treated soils, but was negatively correlated with the exchangeable fraction of Cd (EX-Cd), while Oxidation-Reduction Potential (Eh) significantly decreased in FL and RSD-treated soils, and was positively correlated with EX-Cd. BD treatment might contribute to the increase of CaCO3 as shown by X-Ray Diffractomer analysis and strongly decreased the EX-Cd in the soil, but increased the relative abundances of Firmicutes, Planctomycetes, Acidobacteria, and Gemmatimonadetes, which may promote Fe (III) reduction or induce resistance to Cd. Bacterial communities at the phylum and genus levels were closely related to Cd fraction. The FL and RSD treatments moderately altered bacterial specific functions, including iron respiration, which may contribute to remediation of Cd-polluted soil by Fe (III) reduction. Field experiments were conducted to confirm that BD treatment resulted in a significant increase in pH whereas the content of total available Cd was reduced in soils. Compared to the control, concentration of total available Cd of red amaranth, sweet potato, towel gourd, and cowpeas were reduced by approximately 46%, 74%, 72%, and 76% in a BD-treated field, respectively. Our study highlights the potential of RSD as an effective method for Cd immobilization in contaminated soils by improving soil characteristics and altering the composition of the microbial community.
Collapse
Affiliation(s)
- Xin Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yueyue Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xiongze Dai
- Hunan Agricultural University, Changsha 410000, China
| | - Qingzhuang Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Mi Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Zhuqing Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yu Tao
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Wenchao Chen
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Mingxing Zhang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Xiangyu Zhou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Sha Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China
| | - Yanqing Ma
- Department of Agriculture and Rural Affairs of Hunan Province, Changsha 410000, China
| | - Mostafa Zhran
- Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zaabl 13759, Egypt
| | - Xuexiao Zou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410000, China; Hunan Agricultural University, Changsha 410000, China.
| |
Collapse
|
32
|
Li H, Abbas T, Cai M, Zhang Q, Wang J, Li Y, Di H, Tahir M. Cd bioavailability and nitrogen cycling microbes interaction affected by mixed amendments under paddy-pak choi continued planting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116542. [PMID: 33582635 DOI: 10.1016/j.envpol.2021.116542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is the most concerning soil pollutant, and a threat to human health, especially in China. The in-situ immobilization of Cadmium by amendments is one of the most widely adopted methods to remedy soil contamination. The study was designed to evaluate the effect of organo-chemical amendments on soil Cd bioavailability and nitrogen cycling microbes under continuous planting of rice (Oryza sativa) and pak choi (Brassica chinensis L.). The experiment was carried out using four amendments, Lime, Zeolite, Superphosphate, and Biochar, at two different ratios; M1: at the ratio of 47:47:5:1, and M2 at the ratio of 71:23:5:1, respectively. Moreover, both M1 and M2 were enriched at four levels (T1: 0.5%; T2: 1%; T3: 2%; T4: 4%). Results showed that compared with CK (Cd enriched soils), the yield of rice under treatments of M1T1 and M2T1 increased by 8.93% and 8.36%, respectively. While the biomass (fresh weight) of pak choi under M1 and M2 amendments increased by 2.52-2.98 times and 0.76-2.89 times respectively, under enrichment treatments T1, T2, and T3. The total Cd concentrations in rice grains treated with M1T3 and M2T3 decreased by 89.25% and 93.16%, respectively, compared with CK. On the other hand, the total Cd concentrations in pak choi under M1T3 and M2T2 decreased by 92.86% and 90.23%, respectively. The results showed that soil pH was the main factor affecting Cd bioavailability in rice and pak choi. The Variance partitioning analysis (VPA) of rice and pak choi showed that soil pH was the most significant contributing factor. In the rice season, the contribution of soil pH (P) on Cd bioavailability was 10.14% (P = 0.102), and in the pak choi season, the contribution of soil pH was 8.38% (P = 0.133). Furthermore, the abundance of ammonia oxidation and denitrifying microorganisms had significantly correlation with soil pH and exchange Cd. In rice season, when the enrichment level of amendments increased from 0.5% (T1) to 2% (T3), the gene abundance of AOA, AOB, nirK, nirS and nosZ (І) tended to decrease. While in pak choi season, when the enrichment level increased at the level of 0.5% (T1), 1% (T2), and 2% (T3), the gene abundance of AOB, nirS, and nosZ (І) increased. Additionally, the gene abundance of AOA and nirK showed a reduction in the pak choi season contrasting to rice. And the mixed amendment M2 performed better at reducing Cd uptake than M1, which may have correlation with the ratio of lime and zeolite in them. Finally, we conclude that between these two amendments, when applied at a moderate level M2 type performed better than M1 in reducing Cd uptake, and also showed positive effects on both gene abundance and increase soil pH.
Collapse
Affiliation(s)
- Houfu Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China
| | - Touqeer Abbas
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China
| | - Mei Cai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China.
| | - Jingwen Wang
- Hangzhou Plant Protection and Fertilizer Station Hangzhou, 310020, PR China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 311300, China
| | - Muhammad Tahir
- Department of Soil, Water, & Climate, Univ. of Minnesota, 1991 Upper Buford Cir, Falcon Heights, MN, 55108, USA
| |
Collapse
|
33
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|