1
|
Bing W, Li X, Zhao Y, Wang Y, Zhang J, Zhang J, Liang J. Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. Chem Biol Interact 2024; 399:111153. [PMID: 39029858 DOI: 10.1016/j.cbi.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Mixed culture of microorganisms is an effective method to remove high concentration of phenol in wastewater. At present, it is still a challenge for microorganisms to remove high-concentration phenol from wastewater. In this study, a phenol-degrading consortium was isolated, which could rapidly degrade 1800 mg/L phenol within 30 h, and the highest phenol degradation concentration was 2000 mg/L. Further exploration of how microbial consortium cooperates to promote phenol biodegradation was studied: the core bacteria of the microbial consortium was relatively stable during phenol degradation; the bacteria could improve the adaptability to environment and metabolic ability of phenol, by producing more surfactants and betaine, thereby improving the degradation rate. The determination coefficient (R2) in the machine learning model showed that the back propagation artificial neural network (BP-ANN) can predict the biodegradation of phenol under different conditions, saving time and economic costs. This study explains how microbial consortium cooperates to degrade phenol from the aspects of microbial consortium composition and metabolic analysis, which provides a theoretical basis for mixed culture microorganisms to degrade pollutants.
Collapse
Affiliation(s)
- Wenrong Bing
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; College of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xinyu Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yunxing Zhao
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yao Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Markam SS, Raj A, Kumar A, Khan ML. Microbial biosurfactants: Green alternatives and sustainable solution for augmenting pesticide remediation and management of organic waste. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100266. [PMID: 39257939 PMCID: PMC11385824 DOI: 10.1016/j.crmicr.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Pesticide pollution remains a significant environmental challenge, necessitating the exploration of sustainable alternatives. Biosurfactants are a class of unconventional surface-active chemicals that are produced by microorganisms. Biosurfactants have many applications in treating oil spills, emulsifiers, pharmaceuticals, and agriculture. Compared to chemical surfactants, they have benefits such as biodegradability, less toxicity, and a greener option because they are derived from microbes. Biosurfactants have recently been shown to have the potential to speed up pesticide cleanup. Biosurfactants are used in pesticide remediation because of their exceptional foaming ability, high selectivity, and wide range of pH, salinity, and temperature operating windows. Microbial biosurfactants emerged as potential agents for the treatment of organic waste and agricultural residue. This review unfolds the promising realm of microbial biosurfactants as green solutions for environmental sustainability, particularly in agricultural practices, with special reference to pesticide remediation. This article highlights the escalating need for eco-friendly alternatives, paving the way for discussing biosurfactants. Moreover, the articles discuss in detail various advancements in the field of rapid screening of biosurfactants, either using a conventional approach or via advanced instruments such as GC-MS, HPLC, NMR, FTIR, etc. Furthermore, the article unveils the molecular mechanisms and the microbial genes driving biosurfactant synthesis, offering insights into enhancing production efficiency. Moreover, the article explores diverse applications of microbial biosurfactants in sustainable agriculture, ranging from soil remediation to crop protection. The article also highlights the various functions of microbial biosurfactants for enhancing the decomposition and recycling of organic waste and agricultural residues, emphasizing their potential for sustainable waste management strategies. Overall, the review underscores the pivotal role of microbial biosurfactants as green alternatives for addressing pesticide pollution and advancing environmental sustainability.
Collapse
Affiliation(s)
- Shiv Shankar Markam
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, Uttar Pradesh, India
| | - Mohammed Latif Khan
- Forest Ecology and Ecosystems Laboratory, Department of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
4
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
5
|
Cheng H, Sun Q, Bian Y, Han J, Jiang X, Xue J, Song Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172802. [PMID: 38679093 DOI: 10.1016/j.scitotenv.2024.172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.
Collapse
Affiliation(s)
- Hu Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
6
|
Nagy KK, Takács K, Németh I, Varga B, Grolmusz V, Molnár M, Vértessy BG. Novel enzymes for biodegradation of polycyclic aromatic hydrocarbons identified by metagenomics and functional analysis in short-term soil microcosm experiments. Sci Rep 2024; 14:11608. [PMID: 38773163 PMCID: PMC11109138 DOI: 10.1038/s41598-024-61566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.
Collapse
Affiliation(s)
- Kinga K Nagy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., 1117, Budapest, Hungary
| | - Kristóf Takács
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Imre Németh
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
- Uratim Ltd., 1118, Budapest, Hungary
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary.
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., 1117, Budapest, Hungary.
| |
Collapse
|
7
|
Kłosowska-Chomiczewska IE, Macierzanka A, Parchem K, Miłosz P, Bladowska S, Płaczkowska I, Hewelt-Belka W, Jungnickel C. Microbe cultivation guidelines to optimize rhamnolipid applications. Sci Rep 2024; 14:8362. [PMID: 38600115 PMCID: PMC11006924 DOI: 10.1038/s41598-024-59021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the growing landscape of interest in natural surfactants, selecting the appropriate one for specific applications remains challenging. The extensive, yet often unsystematized, knowledge of microbial surfactants, predominantly represented by rhamnolipids (RLs), typically does not translate beyond the conditions presented in scientific publications. This limitation stems from the numerous variables and their interdependencies that characterize microbial surfactant production. We hypothesized that a computational recipe for biosynthesizing RLs with targeted applicational properties could be developed from existing literature and experimental data. We amassed literature data on RL biosynthesis and micellar solubilization and augmented it with our experimental results on the solubilization of triglycerides (TGs), a topic underrepresented in current literature. Utilizing this data, we constructed mathematical models that can predict RL characteristics and solubilization efficiency, represented as logPRL = f(carbon and nitrogen source, parameters of biosynthesis) and logMSR = f(solubilizate, rhamnolipid (e.g. logPRL), parameters of solubilization), respectively. The models, characterized by robust R2 values of respectively 0.581-0.997 and 0.804, enabled the ranking of descriptors based on their significance and impact-positive or negative-on the predicted values. These models have been translated into ready-to-use calculators, tools designed to streamline the selection process for identifying a biosurfactant optimally suited for intended applications.
Collapse
Affiliation(s)
- Ilona E Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Karol Parchem
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Pamela Miłosz
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Sonia Bladowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Iga Płaczkowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Christian Jungnickel
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Zhu M, Zhang H, Cui W, Su Y, Sun S, Zhao C, Liu Q. Performance evaluation of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa and its effect on marine oil-spill remediation. Arch Microbiol 2024; 206:183. [PMID: 38502272 DOI: 10.1007/s00203-024-03903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
This study aimed to reveal that the effect of biosurfactant on the dispersion and degradation of crude oil. Whole genome analysis showed that Pseudomonas aeruginosa GB-3 contained abundant genes involved in biosurfactant synthesis and metabolic processes and had the potential to degrade oil. The biosurfactant produced by strain GB-3 was screened by various methods. The results showed that the surface tension reduction activity was 28.6 mN·m-1 and emulsification stability was exhibited at different pH, salinity and temperature. The biosurfactant was identified as rhamnolipid by LC-MS and FTIR. The fermentation conditions of strain GB-3 were optimized by response surface methodology, finally the optimal system (carbon source: glucose, nitrogen source: ammonium sulfate, C/N ratio:16:1, pH: 7, temperature: 30-35 °C) was determined. Compared with the initial fermentation, the yield of biosurfactant increased by 4.4 times after optimization. In addition, rhamnolipid biosurfactant as a dispersant could make the dispersion of crude oil reach 38% within seven days, which enhanced the bioavailability of crude oil. As a biostimulant, it could also improve the activity of indigenous microorganism and increase the degradation rate of crude oil by 10-15%. This study suggested that rhamnolipid biosurfactant had application prospect in bioremediation of marine oil-spill.
Collapse
Affiliation(s)
- Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Wu Cui
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, People's Republic of China.
| |
Collapse
|
9
|
Muthukumar B, Satheeshkumar A, Parthipan P, Laishram B, Duraimurugan R, Devanesan S, AlSalhi MS, Rajamohan R, Rajasekar A. Integrated approach of nano assisted biodegradation of anthracene by Pseudomonas aeruginosa and iron oxide nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117911. [PMID: 38104919 DOI: 10.1016/j.envres.2023.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Azhagarsamy Satheeshkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India
| | - Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Ramanathan Duraimurugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India; Adjunct Faculty, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
10
|
Chen X, Zheng X, Fu W, Liu A, Wang W, Wang G, Ji J, Guan C. Microplastics reduced bioavailability and altered toxicity of phenanthrene to maize (Zea mays L.) through modulating rhizosphere microbial community and maize growth. CHEMOSPHERE 2023; 345:140444. [PMID: 37839745 DOI: 10.1016/j.chemosphere.2023.140444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Due to its large specific surface area and great hydrophobicity, microplastics can adsorb polycyclic aromatic hydrocarbons (PAHs), affecting the bioavailability and the toxicity of PAHs to plants. This study aimed to evaluate the effects of D550 and D250 (with diameters of 550 μm and 250 μm) microplastics on phenanthrene (PHE) removal from soil and PHE accumulation in maize (Zea mays L.). Moreover, the effects of microplastics on rhizosphere microbial community of maize grown in PHE-contaminated soil would also be determined. The results showed that D550 and D250 microplastics decreased the removal of PHE from soil by 6.5% and 2.7% and significantly reduced the accumulation of PHE in maize leaves by 64.9% and 88.5%. Interestingly, D550 microplastics promoted the growth of maize and enhanced the activities of soil protease and alkaline phosphatase, while D250 microplastics significantly inhibited the growth of maize and decreased the activities of soil invertase, alkaline phosphatase and catalase, in comparison with PHE treatment. In addition, microplastics changed the rhizosphere soil microbial community and reduced the relative abundance of PAHs degrading bacteria (Pseudomonas, Massilia, Proteobacteria), which might further inhibit the removal of PHE from soil. This study provided a new perspective for evaluating the role of microplastics on the bioavailability of PHE to plants and revealing the combined toxicity of microplastics and PHE to soil microcosm and plant growth.
Collapse
Affiliation(s)
- Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
11
|
Zhang J, Bing W, Hu T, Zhou X, Zhang J, Liang J, Li Y. Enhanced biodegradation of phenol by microbial collaboration: Resistance, metabolite utilization, and pH stabilization. ENVIRONMENTAL RESEARCH 2023; 238:117269. [PMID: 37776942 DOI: 10.1016/j.envres.2023.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Mixed culture of microorganisms is an effective method to remove high concentration of phenol from wastewater. Currently, the mechanism of how microorganisms collaborate to enhance the biodegradation of phenol is still a challenge. In this study, the isolated Bacillus subtilis ZWB1 and Bacillus velezensis ZWB2 were co-cultured to enhance phenol biodegradation, and the mechanism of microbial collaboration was further explored. The co-culture of strains could significantly increase the rate (16.7 mg/L·h, 1000 mg/L) and concentration of phenol degradation (1500 mg/L), comparing with mono-culture of ZWB1 (4.2 mg/L·h, 150 mg/L) and ZWB2 (6.9 mg/L·h, 1000 mg/L), among which the highest degraded concentration of phenol for ZWB1 and ZWB2 was 150 and 1000 mg/L. Further, the mechanism of microbial collaboration to enhance phenol biodegradation was raised: the decrease of antioxidant enzymes, and increase of degrading enzymes and surfactants on content after co-culture, assisted the microorganisms in withstanding phenol; Bacillus subtilis ZWB1 used the metabolites of Bacillus velezensis ZWB2 to promote its growth, and further to degrade phenol rapidly; Bacillus subtilis ZWB1 alleviated the damage, which resulted from the pH drop (5.8) of the fermentation broth during phenol degradation that inhibited the growth and degraded ability of Bacillus velezensis ZWB2, making the pH of fermentation broth stable at 7. Metabolic analysis showed that co-culture of strains could produce more alkaline and buffering compounds and pairs, to stabilize pH and reduce the toxicity of acidity on ZWB2, thus increasing the degradation rate. This study explains the mechanism of microbial collaboration on phenol biodegradation from multiple perspectives, especially pH stabilization, which provides a theoretical basis for the degradation of pollutants by co-culture microorganisms.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenrong Bing
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tiancheng Hu
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xu Zhou
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
12
|
Xia M, Wang S, Chen B, Qiu R, Fan G. Enhanced Solubilization and Biodegradation of HMW-PAHs in Water with a Pseudomonas mosselii-Released Biosurfactant. Polymers (Basel) 2023; 15:4571. [PMID: 38232027 PMCID: PMC10708242 DOI: 10.3390/polym15234571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The treatment and reuse of wastewater are crucial for the effective utilization and protection of global water resources. Polycyclic aromatic hydrocarbons (PAHs), as one of the most common organic pollutants in industrial wastewater, are difficult to remove due to their relatively low solubility and bioavailability in the water environment. However, biosurfactants with both hydrophilic and hydrophobic groups are effective in overcoming these difficulties. Therefore, a biosurfactant-producing strain Pseudomonas mosselii MP-6 was isolated in this study to enhance the bioavailability and biodegradation of PAHs, especially high-molecular-weight PAHs (HMW-PAHs). FTIR and LC-MS analysis showed that the MP-6 surfactant belongs to rhamnolipids, a type of biopolymer, which can reduce the water surface tension from 73.20 mN/m to 30.61 mN/m at a critical micelle concentration (CMC = 93.17 mg/L). The enhanced solubilization and biodegradation of PAHs, particularly HMW-PAHs (when MP-6 was introduced), were also demonstrated in experiments. Furthermore, comprehensive environmental stress tolerance tests were conducted to confirm the robustness of the MP-6 biosurfactant, which signifies the potential adaptability and applicability of this biosurfactant in diverse environmental remediation scenarios. The results of this study, therefore, have significant implications for future applications in the treatment of wastewater containing HMW-PAHs, such as coking wastewater.
Collapse
Affiliation(s)
- Mingqian Xia
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | | | | | | | | |
Collapse
|
13
|
Zhang N, Yang Y, Wu J, Xu C, Ma Y, Zhang Y, Zhu L. Efficient remediation of soils contaminated with petroleum hydrocarbons using sustainable plant-derived surfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122566. [PMID: 37717897 DOI: 10.1016/j.envpol.2023.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Surfactant-enhanced multiphase extraction is recognized as an effective method to remove petroleum related contaminants from soil. Owing to the high biodegradability and low biotoxicity, plant-derived surfactants are considered as promising alternatives to synthetic surfactants. In this study, two plant surfactants were respectively extracted from Sapindus mukorossi (PS-1) and Fructus Gleditsiae sinensis (PS-2). Component analysis and chemical structure characterization indicated that triterpenoid saponins were the main components of both plant surfactants. The removal efficiency of tetradecane by PS-1 and PS-2 was 75.6% and 62.2%, respectively, which was comparable with that by Tween-80. The results were validated by column leaching experiments. The abundant hydroxyl, aldehyde and epoxy groups in the plant surfactants made them readily self-assemble to form micelles via hydrogen bonding and van der Waals interactions, which promoted the solubilization of tetradecane in the liquid phase, particularly at appropriate ionic strength and temperature. Due to the reduced electrostatic attraction by the acidic and ionizable functional groups in the plant surfactants, their sorption capacities (0.15 and 0.24 g1-n Ln·kg-1 for PS-1 and PS-2, respectively) onto the soil were much lower than that of Tween-80, making them much easier to be extracted from contaminated soil. This study would deepen our understanding to improve the performances of plant surfactants in petroleum hydrocarbons-contaminated soil remediation.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jiacheng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yi Ma
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
14
|
Liu Z, Zhang Y, Yang S, Yang J, Zhang T, Sun Z, Wang L. Surfactant-enhanced anoxic degradation of polycyclic aromatic hydrocarbons (PAHs) in aged subsurface soil at high temperature (60 °C). ENVIRONMENTAL RESEARCH 2023; 237:116884. [PMID: 37574098 DOI: 10.1016/j.envres.2023.116884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Thermally enhanced anoxic biodegradation is emerging as a promising method for removing PAHs from subsurface soil. However, some PAHs still remain in soil following remediation with thermally enhanced anoxic degradation due to low bioavailability of these residual PAHs. The effects of five surfactants (Tween 80, TX 100, Brij 30, SDS, and SDBS) on the desorption of PAHs, anoxic degradation of PAHs, and native bacteria in soil at high temperature (60 °C) were evaluated in this study. The desorption of PAHs in soil increased as surfactant concentration increased. Low doses of surfactants (0.08%, w/w) enhanced the growth of potential PAHs degrading bacteria and promoted the anoxic degradation of PAHs, whereas high doses of surfactants (0.3%-0.8%, w/w) displayed the opposite effect, and the degree of inhibition increased with increasing surfactant concentration. The results also indicated that the inhibitory effect of anionic surfactants (SDS and SDBS) on microbial growth and PAHs degradation is stronger than that of nonionic surfactants (Tween 80, TX 100 and Brij 30) at the same concentration. These results suggest a feasible way of enhancing the anoxic degradation of PAHs in soil where heat cannot be effectively utilized when in situ thermal desorption (ISTD) technology is used.
Collapse
Affiliation(s)
- Zhihao Liu
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, PR China
| | - Yewen Zhang
- College of Agriculture, Guangxi University, Guangxi, 530004, PR China
| | - Sucai Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, PR China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tengfei Zhang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, PR China
| | - Zhongping Sun
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, PR China
| | - Li Wang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, PR China
| |
Collapse
|
15
|
Wang X, Wang X, Wu F, Zhang J, Ai S, Liu Z. Microbial community composition and degradation potential of petroleum-contaminated sites under heavy metal stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131814. [PMID: 37307728 DOI: 10.1016/j.jhazmat.2023.131814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Total petroleum hydrocarbons (n-alkanes), semi-volatile organic compounds, and heavy metals pose major ecological risks at petrochemical-contaminated sites. The efficiency of natural remediation in situ is often unsatisfactory, particularly under heavy metal pollution stress. This study aimed to verify the hypothesis that after long-term contamination and restoration, microbial communities in situ exhibit significantly different biodegradation efficiencies under different concentrations of heavy metals. Moreover, they determine the appropriate microbial community to restore the contaminated soil. Therefore, we investigated the heavy metals in petroleum-contaminated soils and observed that heavy metals effects on distinct ecological clusters varied significantly. Finally, alterations in the native microbial community degradation ability were demonstrated through the occurrence of petroleum pollutant degradation function genes in different communities at the tested sites. Furthermore, structural equation modeling (SEM) was used to explain the influence of all factors on the degradation function of petroleum pollution. These results suggest that heavy metal contamination from petroleum-contaminated sites reduces the efficiency of natural remediation. In addition, it infers that MOD1 microorganisms have greater degradation potential under heavy metal stress. Utilizing appropriate microorganisms in situ may effectively help resist the stress of heavy metals and continuously degrade petroleum pollutants.
Collapse
Affiliation(s)
- Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shunhao Ai
- The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
16
|
Xia M, Chen B, Fan G, Weng S, Qiu R, Hong Z, Yan Z. The shifting research landscape for PAH bioremediation in water environment: a bibliometric analysis on three decades of development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27404-4. [PMID: 37150789 DOI: 10.1007/s11356-023-27404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with their carcinogenic, teratogenic, and mutagenic effects can cause great damage to the ecosystem and public health when present in water. With bioremediation, PAH contamination in water environment can be greatly reduced in an eco-friendly manner. It has thus become the research focus for many environmental scientists. In this study, a bibliometric analysis on three-decade (1990-2022) development of PAH bioremediation in water environment was conducted from temporal and spatial dimensions using CiteSpace. A total of 2480 publications, obtained from Web of Science core collection database, were used to explore the basic characteristics, hotspots, and prospects of the research area. The results showed that (1) bioremediation/biodegradation of PAHs in water environment has been getting researchers' attention since 1990, and is gaining even more traction as time goes on. (2) In terms of countries, China and the USA were the major contributors in this research area, while at the institutional level, the Chinese Academy of Sciences has produced the most research results. However, international cooperation across regions was lacking in the field. (3) Environment Science and Technology, Chemosphere, Applied and Environment Microbiology, Journal of Hazardous Materials, and Environment Pollution were the 5 most cited journals in this field. (4) There were three major stages the field has gone through, each with distinct research hotspots, including initial stage (1990-1994), mechanism investigation (1995-2000), and application exploration (2001-2010; 2011-2022). Finally, research perspectives were proposed, covering three directions, namely, bioavailability, immobilization, and viable but nonculturable (VBNC) bacteria.
Collapse
Affiliation(s)
- Mingqian Xia
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Bo Chen
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Sunxian Weng
- Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou, 350007, China
| | - Rongpeng Qiu
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Zhanglin Hong
- China Construction Third Bureau First Engineering Co., Ltd., Hubei, 430040, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
17
|
Nor FHM, Abdullah S, Ibrahim Z, Nor MHM, Osman MI, Al Farraj DA, AbdelGawwad MR, Kamyab H. Role of extremophilic Bacillus cereus KH1 and its lipopeptide in treatment of organic pollutant in wastewater. Bioprocess Biosyst Eng 2023; 46:381-391. [PMID: 35779113 DOI: 10.1007/s00449-022-02749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022]
Abstract
An effective biosurfactant producer and extremophiles bacteria, Bacillus cereus KH1, was isolated from textile effluent and the biosurfactant was produced using molasses as the sole carbon source. Growth parameters such as pH, temperature, salinity and concentration of molasses were optimised for decolourising the textile effluent with 24-h incubation. The biosurfactant property of B. cereus KH1 was evaluated based on haemolytic activity, oil displacement technique, drop-collapsing test and emulsification index. The results of the produced biosurfactant showed a positive reaction in haemolytic activity, oil displacement technique, drop-collapsing test and exhibiting a 67% emulsification index. The cell-free broth was stable in 40 °C pH 7, 7% salinity and 7% molasses. Thin-Layer Chromatography and Fourier Transform Infrared Spectroscopy analysis revealed that the biosurfactant was a lipopeptide with a yield 2.98 g L-1. These findings proved the synergistic action of B. cereus KH1 with lipopeptide biosurfactant may accelerated the decolourisation efficiency to 87%.
Collapse
Affiliation(s)
- Farhah Husna Mohd Nor
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Pagoh, 84600, Muar, Johor, Malaysia
| | - Shakila Abdullah
- Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Education Hub, Pagoh, 84600, Muar, Johor, Malaysia.
| | - Zaharah Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhamad Hanif Md Nor
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Isa Osman
- Setia Impian Development, Peringgit Centre, Taman Peringgit Jaya, 75400, Melaka, Malaysia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ragab AbdelGawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71210, Sarajevo, Bosnia and Herzegovina
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Li D, Li K, Liu Y, Wang L, Liu N, Huang S. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24606-24616. [PMID: 36344887 DOI: 10.1007/s11356-022-23960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in the environment involves multiple PAHs and various intermediates produced during the microbial metabolic process. A multi-substrate enrichment approach was proposed to develop a mixed bacterial community (MBC) from the activated sludge of a coking wastewater plant. The degradation performance of MBC was evaluated under different initial concentrations of PAHs (25-200 mg/L), temperature (20-35 °C), pH (5.0-9.0), salinity (0-10 g/L NaCl), and coexisting substrates (catechol, salicylic acid, and phthalic acid). The results showed that the degradation rates of phenanthrene and pyrene in all treatments were up to (99 ± 0.71)% and (99 ± 0.90)% after incubation of 5 days, respectively, indicating excellent biodegradation ability of PAHs by MBC. Furthermore, 16S rRNA gene amplicon sequencing analysis revealed that Pseudomonas was dominant, while Burkholderia had the largest proportion in acidic (pH = 5.0) and saline (10 g/L NaCl) environments. However, the proportion of dominant bacteria in MBC was markedly affected by intermediate metabolites. It was shown that MBC had a higher degradation rate of PAHs in the coexisting matrix due to the timely clearance of intermediates reducing the metabolic burden. Overall, our study provided valuable information to help design an effective strategy for the bioremediation of PAHs in complex environments.
Collapse
Affiliation(s)
- Dan Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yanzehua Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Na Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Shaomeng Huang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou, Jiangsu, 221116, People's Republic of China
| |
Collapse
|
19
|
Shang Z, Xu P, Ke Z, Yao M, Li X. Diesel removal and recovery from heavily diesel-contaminated soil based on three-liquid-phase equilibria of diesel + 2-butyloxyethanol + water. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130061. [PMID: 36182881 DOI: 10.1016/j.jhazmat.2022.130061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Diesel contamination poses a serious threat to ecosystem and human health. This study proposes a novel method for simultaneous diesel removal and recovery from heavily diesel-contaminated soil by washing based on three-liquid-phase equilibria of diesel+2-butoxyethanol+water. This work covers both theoretical-cum-experimental explorations. For this brand-new ternary three-liquid-phase system (TPS), Ternary-Gibbs and Fish-Shaped phase diagrams were constructed through the phase behavior investigation to provide theoretical support for diesel removal/recovery. As the experiment demonstrated, the removal efficiency was up to 87.5 % for the contaminated soil with diesel content of 226,723 mg/kg, and the recovery rate reached 73.8 %. In addition, the TPS could also be used continuously during the washing process while avoiding solution purification, and the detached diesel would automatically float into the top phase without complicated separation. The mechanism of diesel removal was determined as the surface "stripping" effect based on ultralow interfacial tension, and the enhanced process involved "stripping+dissolution". The treated soil contained almost negligible organic solvent residue and was therefore appropriate for plant cultivation. The recovered diesel exhibited less variation from commercial diesel in composition and properties, possessing a higher potential for reuse. Moreover, this study also provided key insights into the residual mechanisms of recalcitrant hydrocarbons in the soil.
Collapse
Affiliation(s)
- Zhijie Shang
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Pan Xu
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zhenyu Ke
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Meiling Yao
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xinxue Li
- Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
20
|
Piryaei M, Amirifard H, Torabbeigi M. Modified Graphenized Pencil Lead by CoNi 2S 4 Nanostructure as a SPME Fiber for Analysis of PAHs from Water Samples. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2157451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marzieh Piryaei
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Hamid Amirifard
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Marzieh Torabbeigi
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Yuan Y, Yang K, Cheng L, Bai Y, Wang Y, Hou Y, Ding A. Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315470. [PMID: 36497545 PMCID: PMC9735471 DOI: 10.3390/ijerph192315470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 05/14/2023]
Abstract
Mapping spatial distribution of soil contaminants at contaminated sites is the basis of risk assessment. Hotspots can cause strongly skewed distribution of the raw contaminant concentrations in soil, and consequently can require suitable normalization prior to interpolation. In this study, three normalization methods including normal score, Johnson, and Box-Cox transformation were performed on the concentrations of two low-molecular weight (LMW) PAHs (i.e., acenaphthene (Ace) and naphthalene (Nap)) and two high-molecular weight (HMW) PAHs (i.e., benzo(a)pyrene (BaP) and benzo(b)fluoranthene (BbF)) in soils of a typical coking plant in North China. The estimating accuracy of soil LMW and HMW PAHs distribution using ordinary kriging with different normalization methods was compared. The results showed that all transformed data passed the Kolmogorov-Smirnov test, indicating that all three data transformation methods achieved normality of raw data. Compared to Box-Cox-ordinary kriging, normal score-, and Johnson-ordinary kriging had higher estimating accuracy of the four soil PAHs distribution. In cross-validation, smaller root-mean-square error (RMSE) and mean error (ME) values were observed for normal score-ordinary kriging for both LMW and HMW PAHs compared to Johnson- and Box-Cox-ordinary kriging. Thus, normal score transformation is suitable for alleviating the impact of hotspots on estimating accuracy of the four selected soil PAHs distribution at this coking plant. The findings can provide insights into reducing uncertainty in spatial interpolation at PAHs-contaminated sites.
Collapse
|
22
|
Shi Y, Wang S, Guo J, Xu Z, Wang S, Sang Y. Effects of arbuscular mycorrhizal inoculation on the phytoremediation of PAH-contaminated soil: A meta-analysis. CHEMOSPHERE 2022; 307:136033. [PMID: 35981621 DOI: 10.1016/j.chemosphere.2022.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Inoculation with arbuscular mycorrhizal (AM) fungi can accelerate the phytoremediation process by increasing plant biomass and improving soil physicochemical and biological characteristics. However, a quantitative, data-based conclusion is yet to be derived on the roles of AM fungi in remediating soils polluted by polycyclic aromatic hydrocarbons (PAHs), and the impact factors are unclear. To address these issues, we performed a meta-analysis of 45 articles to estimate the effects of AM inoculation on the phytoremediation of soils polluted by PAHs and to examine the influence of experimental conditions on these effects. Our results showed that AM inoculation significantly decreased the residual soil PAHs concentration at all PAHs levels, and the largest effect of AM treatment was 48.5% compared to the non-mycorrhizal treatment. This should be attributed to increased plant growth and PAHs uptake, and soil biological activity in the rhizosphere induced by AM symbionts. Compared to the non-mycorrhizal treatment, the largest AM effects on the total plant biomass, root PAHs concentration, shoot PAHs concentration, soil bacterial biomass, soil catalase activity, and soil polyphenol oxidase activity were 51.7%, 565%, 53.1%, 141%, 100% and 51.9%, respectively. Although these effects on the above mentioned parameters varied with AM fungi (genus, species, and inoculation mode), soil PAHs (source, concentration, and type), plant type (dicots and monocots), and experimental conditions (experimental duration, soil sterilization and additional factors), few negative AM effects were observed. This study confirmed the feasibility of using AM fungi to enhance the phytoremediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Yifan Shi
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Simeng Wang
- Shenyang Research Institute of Chemical Industry, Shenyang, 110021, China
| | - Jianing Guo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
23
|
Chang J, Fang W, Liang J, Zhang P, Zhang G, Zhang H, Zhang Y, Wang Q. A critical review on interaction of microplastics with organic contaminants in soil and their ecological risks on soil organisms. CHEMOSPHERE 2022; 306:135573. [PMID: 35797912 DOI: 10.1016/j.chemosphere.2022.135573] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The pollution of microplastics (MPs) in soil has become a global environmental problem. Due to high sorption capacity and persistence in environment, the MPs exhibit combined effects with organic pollutants in soil, thereby posing a potential risk to soil ecology and human health. However, limited reviews are available on this subject. Therefore, in response to this issue, this review provides an in-depth account of interaction of MPs with organic contaminants in soil and the combined risks to soil environment. The sorption of organic contaminants onto MPs is mainly through hydrophobic and π-π interactions, hydrogen bonding, pore filling and electrostatic and van der Waals forces. The intrinsic characteristics of MPs, organic contaminants and soil are the key factors influencing the sorption of organic pollutants onto MPs. Importantly, the presence of MPs changes the sorption, degradation and transport behaviors of organic contaminants in soil, and affects the toxic effects of organic contaminants on soil organisms including animals, plants and soil microorganisms through synergistic or antagonistic effects. Source control, policy implementation and plastic removal are the main preventive and control measures to reduce soil MPs pollution. Finally, priorities for future research are proposed, such as field investigations of co-pollution, contribution of plastisphere to organic contaminant degradation, and mechanisms of MPs effects on organic contaminant toxicity.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yajie Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Sánchez C. A review of the role of biosurfactants in the biodegradation of hydrophobic organopollutants: production, mode of action, biosynthesis and applications. World J Microbiol Biotechnol 2022; 38:216. [PMID: 36056983 DOI: 10.1007/s11274-022-03401-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
The increasing influence of human activity and industrialization has adversely impacted the environment via pollution with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation. Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydrophobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production, and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has the potential to overcome problems associated with contamination by hydrophobic organopollutants.This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosurfactants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts by a wide range of microorganisms.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, C.P. 90120, Ixtacuixtla, Tlaxcala, Mexico.
| |
Collapse
|
25
|
Huang J, Zhou T, Zhao W, Cui S, Guo R, Li D, Reddy Kadasala N, Han D, Jiang Y, Liu Y, Liu H. Multifunctional magnetic Fe 3O 4/Cu 2O-Ag nanocomposites with high sensitivity for SERS detection and efficient visible light-driven photocatalytic degradation of polycyclic aromatic hydrocarbons (PAHs). J Colloid Interface Sci 2022; 628:315-326. [PMID: 35998457 DOI: 10.1016/j.jcis.2022.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Dan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | | | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China.
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
26
|
Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A. Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119384. [PMID: 35504349 DOI: 10.1016/j.envpol.2022.119384] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous toxic contaminants and considered as primary pollutants due to their persistent nature and most of them are carcinogenic and mutagenic. The key challenge in PAHs degradation is their hydrophobic nature, which makes them one of the most complex materials and inaccessible by a broad range of microorganisms. This bioavailability can be increased by using a biosurfactant. In the present study mixed PAHs were degraded using the biosurfactant producing bacterial strains. In addition, iron nanoparticles were synthesized and the impact of iron nanoparticles on the growth of the mixed bacterial strains (Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3) was optimized. The mixed PAHs (anthracene, pyrene, and benzo(a)pyrene) degradation was enhanced by addition of biosurfactant (produced by Bacillus subtilis A1) and iron nanoparticles, resulting in 85% of degradation efficiency. The addition of the biosurfactant increased the bioavailability of the PAHs in the aqueous environment, which might help bacterial cells for the initial settlement and development. The addition of iron nanoparticles increased both bacterial biomass and PAHs adsorption over their surface. These overall interactions assisted in the utilization of PAHs by the mixed bacterial consortia. This study illustrates that this integrated approach can be elaborated for the removal of the complex PAHs pollutants from soil and aqueous environments.
Collapse
Affiliation(s)
- Punniyakotti Parthipan
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute of Materials Engineering Nanjing University, Nantong, 226000, China.
| | - Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Punniyakotti Elumalai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| |
Collapse
|
27
|
Deng J, Wang H, Zhan H, Wu C, Huang Y, Yang B, Mosa A, Ling W. Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. CHEMOSPHERE 2022; 301:134753. [PMID: 35490752 DOI: 10.1016/j.chemosphere.2022.134753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The capability of laccase to oxidate a broad range of polyphenols and aromatic substrates in vitro offers a new technological option for the remediation of polycyclic aromatic hydrocarbon (PAH) pollution with high cytotoxicity. However, laccase application in the remediation of PAH-contaminated sites mainly suffers from a low oxidation rate and high cost because of the difficulty in its recovery. In this study, laccases were immobilized on magnetic Fe3O4 particles coated with chitosan (Fe3O4@SiO2-chitosan) to improve the operational stability and reusability in the treatment of PAH pollution. The enzyme fixation capacity reached 158 mg g-1, and 79.1% of free laccase activities were reserved under the optimum immobilized condition of 4% glutaraldehyde, 1.0 mg mL-1 laccase, 2 h covalent bonding time, and 6 h fixation time. The degradation efficiencies of anthracene (ANT) and benzo[a]pyrene (B(a)P) by Fe3O4@SiO2-chitosan immobilized laccase in 48 h were 81.9% and 69.2%, respectively. Furthermore, it is very easy to magnetically recover the immobilized laccase from reaction systems and reuse it in a new batch. The relative activities of immobilized laccase were over 50% for the degradation of ANT and B(a)P in three catalytic runs, reaching the goal of substantially reducing cost in practice. According to the results from quantum calculations and mass spectrum analyses, the degradation products of ANT and B(a)P by laccase were anthraquinone and B(a)P-dione, respectively. The findings from this study provide valuable insight in promoting the application of immobilized laccase technology in the remediation of PAH contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Haisheng Zhan
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenxi Wu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Huang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
28
|
Dai C, Tong WK, Zou JJ, Gao MT, Zhang Y, Liu S, Li T, Li J, Hu J. Synergistic solubilization of phenanthrene using micro-nanobubbles and cationic surfactants: Universal verifying, amplifying, and strengthening the synergy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Daâssi D, Qabil Almaghribi F. Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech 2022; 12:139. [PMID: 35646506 DOI: 10.1007/s13205-022-03198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah Qabil Almaghribi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
31
|
Teng T, Liang J, Wu Z. Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149485. [PMID: 34392205 DOI: 10.1016/j.scitotenv.2021.149485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene is a model contaminant of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), which are compounds that have potential carcinogenic effects and pose a serious threat to human health. Finding effective pyrene-degrading bacteria is crucial for removing PAHs from soil. In this study, DNA-based stable isotope probing (DNA-SIP) technology was used to investigate pyrene degraders in PAH-contaminated oilfield soil during natural attenuation (NA), bioaugmentation (BA) and biostimulation (BS). The results show that BA played an important role in pyrene degradation with the highest pyrene removal rate (~95%) after 12 days incubation, followed by removal rates of ~90% for NA and ~30% for BS. In addition, 6 novel pyrene degraders were identified, while 12 well-known PAH degraders were demonstrated to participate in the biodegradation of pyrene. Additionally, the external homologous strains introduced during BA promoted the degradation of pyrene, but not by directly participating in the metabolism of the target compound. Rhamnolipid supplementation during BS promoted the involvement of more microorganisms in the degradation of pyrene, which was beneficial to identifying more pyrene degraders via DNA-SIP. These findings provide new insight into the effects of external homologous strains and supplementary rhamnolipids on pyrene degradation.
Collapse
Affiliation(s)
- Tingting Teng
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
32
|
Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Son A Hoang
- College of Engineering, Science and Environment, University of Newcastle, Callaghan NSW, 2308, Australia
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440 010, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - S Keerthanan
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Yang Li
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States of America
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
33
|
Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, Ponnuchamy K, Muthusamy G, Arun A. A crucial review on polycyclic aromatic Hydrocarbons - Environmental occurrence and strategies for microbial degradation. CHEMOSPHERE 2021; 280:130608. [PMID: 33962296 DOI: 10.1016/j.chemosphere.2021.130608] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/15/2023]
Abstract
Over the last century, contamination of polycyclic aromatic hydrocarbons (PAHs) has risen tremendously due to the intensified industrial activities like petrochemical, pharmaceutical, insecticides and fertilizers applications. PAHs are a group of organic pollutants with adverse effects on both humans and the environment. These PAHs are widely distributed in various ecosystems including air, soil, marine water and sediments. Degradation of PAHs generally occurs through processes like photolysis, adsorption, volatilization, chemical degradation and microbial degradation. Microbial degradation of PAHs is done by the utilization of diverse microorganisms like algae, bacteria, fungi which are readily compatible with biodegrading/bio transforming PAHs into H2O, CO2 under aerobic, or CH4 under anaerobic environment. The rate of PAHs degradation using microbes is mainly governed by various cultivation conditions like temperature, pH, nutrients availability, microbial population, chemical nature of PAHs, oxygen and degree of acclimation. Several microbial species including Selenastrum capricornutum, Ralstonia basilensis, Acinetobacter haemolyticus, Pseudomonas migulae, Sphingomonas yanoikuyae and Chlorella sorokiniana are known to degrade PAHs via biosorption and enzyme-mediated degradation. Numerous bacterial mediated PAHs degradation methods are studied globally. Among them, PAHs degradation by bacterial species like Pseudomonas fluorescence, Pseudomonas aeruginosa, Rhodococcus spp., Paenibacillus spp., Mycobacterium spp., and Haemophilus spp., by various degradation modes like biosurfactant, bioaugmentation, biostimulation and biofilms mediated are also investigated. In contrarily, PAHs degradation by fungal species such as Pleurotus ostreatus, Polyporus sulphureus, Fusarium oxysporum occurs using the activity of its ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase. The present review highlighted on the PAHs degradation activity by the algal, fungal, bacterial species and also focused on their mode of degradation.
Collapse
Affiliation(s)
- N Premnath
- Department of Energy Science, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - R Guru Raj Rao
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - G Siva Prakash
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - V Ananthi
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Microbiology, PRIST University, Madurai, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|