1
|
Ozturk OK, Oyardi O, Dundar Y. Quinazoline derivatives as novel bacterial sphingomyelinase enzyme inhibitors. Bioorg Chem 2025; 154:108079. [PMID: 39729766 DOI: 10.1016/j.bioorg.2024.108079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Bacillus cereus sphingomyelinase C (B. cereus SMase), which plays a crucial role in bacterial virulence, has emerged as a new therapeutic target for treating opportunistic infections caused by this pathogen. It also shares catalytic domain similarity with human neutral sphingomyelinase 2 (nSMase2), which is implicated in Alzheimer's disease. In this study, a series of quinazoline derivatives were synthesized and evaluated for their inhibition of B. cereus SMase, electric eel acetylcholinesterase (EeAChE), and equine butyrylcholinesterase (eqBuChE). Moreover, the antibacterial, anti-hemolytic and metal chelation properties of the selected compounds were determined. Among the synthesized compounds, 6-chloro-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (compound 4) and 6-fluoro-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (compound 5) exhibited promising inhibition of B. cereus SMase, with IC50 values of 6.43 and 6.50 µM, respectively. The mode of inhibition of compound 4 was determined as mixed-type inhibition by enzyme kinetic study. In addition, compounds 4 and 5 showed 59.50% and 51.66% eqBuChE inhibition at 50 µM concentration, respectively. Furthermore, compound 4 reduced B. cereus-induced hemolysis on sheep erythrocytes and able to form a complex with Cu2+ in ligand:metal ratio of 2:1. Additionally, cambinol, an inhibitor of both nSMase2 and B. cereus SMase, was found to exhibit inhibitory activity against eqBuChE, with IC50 value of 7.40 µM. The biological data were also supported by the results of molecular docking studies and in-silico physicochemical properties/ADME predictions of the selected compounds were determined.
Collapse
Affiliation(s)
- Ozge Kuyrukcu Ozturk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Yasemin Dundar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
2
|
Han S, Ye X, Yang J, Peng X, Jiang X, Li J, Zheng X, Zhang X, Zhang Y, Zhang L, Wang W, Li J, Xin W, Zhang X, Xiao G, Peng K, Zhang L, Du X, Zhou L, Liu W, Li H. Host specific sphingomyelin is critical for replication of diverse RNA viruses. Cell Chem Biol 2024; 31:2052-2068.e11. [PMID: 39566509 DOI: 10.1016/j.chembiol.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication. A helix-turn-helix motif in SFTSV RNA-dependent RNA polymerase (RdRp) directly binds to SM(d18:1/16:1) in Golgi apparatus, which was also observed in SARS-CoV-2 and lymphocytic choriomeningitis virus (LCMV), both showing inhibited replication in SGMS1-KO cells. SM metabolic disturbance is associated with disease severity of viral infections. We designed a novel SMS1 inhibitor that protects mice against lethal SFTSV infection and reduce SARS-CoV-2 replication and pathogenesis. These findings highlight the critical role of SMS1 and SM(d18:1/16:1) in RNA virus replication, suggesting a broad-spectrum antiviral strategy.
Collapse
Affiliation(s)
- Shuo Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaolei Ye
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jintong Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuefang Peng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaming Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xinchen Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Lingyu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
3
|
Zhao Y, Wu R, Wu X, Zhou N, Ren J, Liu W, Yu R, Zhang S, Yang J, Li H, Liu H. Modulation of physiological functions and metabolome of Vibrio alginolyticus by quorum-regulatory sRNA, Qrr1. Lett Appl Microbiol 2024; 77:ovae126. [PMID: 39657312 DOI: 10.1093/lambio/ovae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Vibrio alginolyticus, the causative agent of aquatic vertebrates and invertebrates, can cause severe infections (e.g. septicemia, gill necrosis, and surface ulcers) and high mortality in aquatic organisms, leading to serious economic losses in global aquaculture. Small non-coding RNAs (sRNAs), emerging modulators of gene expression, played vital regulatory roles in virulence, pathogenicity, and physiological metabolism of bacteria. In this work, the modulation of physiological functions and metabolome of V. alginolyticus by the quorum-regulatory sRNA, Qrr1, was figured out. We found that the deletion of qrr1 induced significant cell shape elongation. Meanwhile, Qrr1 could inhibit the production of alkaline serine protease by weakening the expression of main regulator LuxR in the quorum sensing (QS) system. Moreover, the untargeted metabolomics and lipidomics approaches showed that most of nucleotides, organic acids, carbohydrates, and lipidome (both lipid content and category) were significantly altered in response to the qrr1 deletion. Spearman correlation analysis demonstrated that most of the intermediates involved in glutamate metabolism, sphingolipid metabolism, and glycerolipid metabolism displayed high correlations with cell virulence factors. These findings illuminate the mechanism of bacterial virulence regulation and further exploit potential therapeutic targets for virulence prevention in V. alginolyticus.
Collapse
Affiliation(s)
- Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Ruobing Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuan Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ningning Zhou
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiamin Ren
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wang Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rui Yu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Senhu Zhang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinfang Yang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Zemski Berry KA, Garfield A, Jambal P, Zarini S, Perreault L, Bergman BC. Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle. Diabetologia 2024; 67:2819-2832. [PMID: 39347985 DOI: 10.1007/s00125-024-06280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
AIMS/HYPOTHESIS Intracellular ceramide accumulation in specific cellular compartments is a potential mechanism explaining muscle insulin resistance in the pathogenesis of type 2 diabetes. Muscle sarcolemmal ceramide accumulation negatively impacts insulin sensitivity in humans, but the mechanism explaining this localised accumulation is unknown. Previous reports revealed that circulating oxidised LDL is elevated in serum of individuals with obesity and type 2 diabetes. Oxidised phosphatidylcholine, which is present in oxidised LDL, has previously been linked to ceramide pathway activation, and could contribute to localised ceramide accumulation in skeletal muscle. We hypothesised that oxidised phosphatidylcholine inversely correlates with insulin sensitivity in serum, and induces sarcolemmal ceramide accumulation and decreases insulin sensitivity in muscle. METHODS We used LC-MS/MS to quantify specific oxidised phosphatidylcholine species in serum from a cross-sectional study of 58 well-characterised individuals spanning the physiological range of insulin sensitivity. We also performed in vitro experiments in rat L6 myotubes interrogating the role of specific oxidised phosphatidylcholine species in promoting sarcolemmal ceramide accumulation, inflammation and insulin resistance in skeletal muscle cells. RESULTS Human serum oxidised phosphatidylcholine levels are elevated in individuals with obesity and type 2 diabetes, inversely correlated with insulin sensitivity, and positively correlated with sarcolemmal C18:0 ceramide levels in skeletal muscle. Specific oxidised phosphatidylcholine species, particularly 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), increase total ceramide and dihydroceramide and decrease total sphingomyelin in the sarcolemma of L6 myotubes by de novo ceramide synthesis and sphingomyelinase activation. POVPC also increases inflammatory signalling and causes insulin resistance in L6 myotubes. CONCLUSIONS/INTERPRETATION These data suggest that circulating oxidised phosphatidylcholine species promote ceramide accumulation and decrease insulin sensitivity in muscle, help explain localised sphingolipid accumulation and muscle inflammatory response, and highlight oxidised phosphatidylcholine species as potential targets to combat insulin resistance.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Purevsuren Jambal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Li X, Yao X, Wen J, Chen Q, Zhu Z, Zhang X, Wang S, Lan W, Huang Y, Tang S, Zhou X, Han X, Zhang T. The application of sphingomyelin in mediating the causal role of the T-cell surface glycoprotein CD5 in Crohn's disease: A two-step Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40513. [PMID: 39560554 PMCID: PMC11576039 DOI: 10.1097/md.0000000000040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
To examine the possible causative association between Crohn disease (CD) and the T-cell surface glycoprotein CD5 and to ascertain whether sphingomyelin (SM) functions as a mediator. We conducted a two-step Mendelian randomization (MR) study to further explore the pathogenesis of Crohn and its related targets. MR study was performed on CD5 and CD using summary-level data from a genome-wide association study. Additionally, by employing a two-step MR study method, we determined that SM might mediate the causal effect of CD5 on CD. There was a favorable correlation between the surface glycoprotein CD5 on T cells and vulnerability to CD, and SM mediated the causal effect of CD5 on CD (the mediating effect accounts for 9.2%). Our study revealed that CD5 and CD are causally related, with SM mediating a small fraction of the impact (approximately 9.2%). The mediating function of SM in the link between CD5 and CD is anticipated to be realized through the regulation of immune cell transportation, apoptosis of intestinal barrier cells, and maintenance of the intestinal microenvironment.
Collapse
Affiliation(s)
- Xiao Li
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xin Yao
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieying Wen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiaoling Chen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ziming Zhu
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinyue Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Song Wang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weixuan Lan
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunsi Huang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shanneng Tang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Zhou
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuedong Han
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Zhao HY, Tan J, Li LX, Wang Y, Liu M, Jiang LS, Zhao YC. Longitudinal characterization of serum metabolome and lipidome reveals that the ceramide profile is associated with metabolic health in early postpartum cows experiencing different lipolysis. J Dairy Sci 2024; 107:7446-7468. [PMID: 38788838 DOI: 10.3168/jds.2023-24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Reduced feed intake in early lactation prompts increased fat mobilization to meet dairy cow energy needs for milk production. The increased lipolysis in cows presents significant health risks with unclear mechanisms. The objectives of our study were to compare the longitudinal profiles of metabolites and lipids of serum from high- and low-lipolysis cows. Forty multiparous Holstein dairy cows were enrolled in the retrospective study. Serum samples were collected on d 7 before expected calving, as well as on d 5, 7, 14, and 21 postpartum. Dairy cows were grouped according to mean serum nonesterified fatty acids on d 5 and 7 after parturition as low (<0.600 mmol/L; n = 8; LFM) and high (>0.750 mmol/L; n = 8; HFM), indicating fat mobilization during early lactation. Lactational performance and serum metabolic parameters related to glucose and lipid metabolism, liver functions, oxidative status, and inflammatory responses were determined. Serum samples were subjected to liquid chromatography-MS-based metabolomics and lipidomics. Despite differences in postpartum BW change, there were no observed variations in milk yield and composition between the 2 groups. Serum β-hydroxybutyric acid, glucose, leptin, aspartate aminotransferase, IL-6, and tumor necrosis factor alpha were greater in cows with HFM than in cows with LFM. Serum adiponectin, revised quantitative insulin sensitivity check index, and albumin were lower in cows with HFM than in cows with LFM. Intensified fat mobilization in the HFM cows came along with reduced estimated insulin sensitivity, impaired liver functions, and increased oxidative stress and inflammatory responses. Differences in metabolic patterns were observed across the transition period when comparing serum blood matrixes (e.g., in different amino acids, acylcarnitines, and sphingolipids). The serum metabolome of the HFM cows was characterized by higher concentrations of glycine, acylcarnitines, carnosine, Cer(d20:0/18:0), Cer(d18:1/16:0), and Cer(t18:0/24:0) compared with LFM cows. The differential serum metabolites and lipids at different sampling times during the peripartum period were enriched in the sphingolipid metabolism. Differences in serum metabolic status parameters suggest that cows adopt varied metabolic adaptation strategies to cope with energy deficits postpartum. Our investigation found a comprehensive remodeling of the serum metabolic profiles in transition dairy cattle, highlighting the significance of alterations in sphingolipid species, as they play a crucial role in insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
- H Y Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - J Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L X Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Y Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - M Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - L S Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| | - Y C Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206 China.
| |
Collapse
|
7
|
Delcheva G, Stefanova K, Stankova T. Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases 2024; 12:195. [PMID: 39329864 PMCID: PMC11443555 DOI: 10.3390/diseases12090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Abnormalities in lipid homeostasis have been associated with many human diseases, and the interrelation between lipotoxicity and cellular dysfunction has received significant attention in the past two decades. Ceramides (Cers) are bioactive lipid molecules that serve as precursors of all complex sphingolipids. Besides their function as structural components in cell and mitochondrial membranes, Cers play a significant role as key mediators in cell metabolism and are involved in numerous cellular processes, such as proliferation, differentiation, inflammation, and induction of apoptosis. The accumulation of various ceramides in tissues causes metabolic and cellular disturbances. Recent studies suggest that Cer lipotoxicity has an important role in obesity, metabolic syndrome, type 2 diabetes, atherosclerosis, and cardiovascular diseases (CVDs). In humans, elevated plasma ceramide levels are associated with insulin resistance and impaired cardiovascular and metabolic health. In this review, we summarize the role of ceramides as key mediators of lipotoxicity in obesity, diabetes, cardiovascular diseases, and inflammation and their potential as a promising diagnostic tool.
Collapse
Affiliation(s)
- Ginka Delcheva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Katya Stefanova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Bonab MKF, Guo Z, Li Q. Glycosphingolipids: from metabolism to chemoenzymatic total synthesis. Org Biomol Chem 2024; 22:6665-6683. [PMID: 39120686 PMCID: PMC11341264 DOI: 10.1039/d4ob00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Collapse
Affiliation(s)
- Mitra K F Bonab
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
9
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
10
|
Zhao R, Tang Y, Cao W, Zhao L, Wu Z, Chen X, Li Y, Jia X, Bai H. Identification of multiple plasma lipids as diagnostic biomarkers of hypercholesterolemia and the underlying mechanisms based on pseudo-targeted lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9723. [PMID: 38504484 DOI: 10.1002/rcm.9723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024]
Abstract
RATIONALE Hypercholesterolemia is an important risk factor for cardiovascular diseases and death. This study performed pseudo-targeted lipidomics to identify differentially expressed plasma lipids in hypercholesterolemia, to provide a scientific basis for the diagnosis and pathogenesis of hypercholesterolemia. METHODS Pseudo-targeted lipidomic analyses of plasma lipids from 20 patients with hypercholesterolemia and 20 normal control subjects were performed using liquid chromatography-mass spectrometry. Differentially expressed lipids were identified by principal component analysis and orthogonal partial least squares discriminant analysis. Receiver operating characteristic curves were used to identify differentially expressed lipids with high diagnostic value. The Kyoto Encyclopedia of Genes and Genomes pathway database was used to identify enriched metabolic pathways. RESULTS We identified 13 differentially expressed lipids in hypercholesterolemia using variable importance of projection > 1 and p < 0.05 as threshold parameters. The levels of eight sphingomyelins and cholesterol sulfate were higher and those of three triacylglycerols and lysophosphatidylcholine were reduced in hypercholesterolemia. Seven differentially expressed plasma lipids showed high diagnostic value for hypercholesterolemia. Functional enrichment analyses showed that pathways related to necroptosis, sphingolipid signaling, sphingolipid metabolism, and steroid hormone biosynthesis were enriched. CONCLUSIONS This pseudo-targeted lipidomics study demonstrated that multiple sphingomyelins and cholesterol sulfate were differentially expressed in the plasma of patients with hypercholesterolemia. We also identified seven plasma lipids, including six sphingomyelins and cholesterol sulfate, with high diagnostic value.
Collapse
Affiliation(s)
- Rui Zhao
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yuqing Tang
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Wenhui Cao
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Lijuan Zhao
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Zhifeng Wu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Xianghui Chen
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yimin Li
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Xiaoe Jia
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China
| | - Haihua Bai
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
11
|
Suresh P, London E. MαCD-based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity. Methods Enzymol 2024; 700:485-507. [PMID: 38971611 PMCID: PMC11748235 DOI: 10.1016/bs.mie.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.
Collapse
Affiliation(s)
- Pavana Suresh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
12
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
13
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
14
|
Liu Y, Sun Z, Sun Q, Wang L, Wang C, Li Y, Ma C, Shi W, Zhang G, Dong Y, Zhang X, Cong B. The effects of restraint stress on ceramide metabolism disorders in the rat liver: the role of CerS6 in hepatocyte injury. Lipids Health Dis 2024; 23:68. [PMID: 38431645 PMCID: PMC10908211 DOI: 10.1186/s12944-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong, 226000, China
| | - Zhaoling Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Qiuli Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Li Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chuan Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Weibo Shi
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang, 050017, China
| | - Yiming Dong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, 571199, China.
| |
Collapse
|
15
|
Ghaffari MH, Daniel JB, Sadri H, Schuchardt S, Martín-Tereso J, Sauerwein H. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in blood serum. J Dairy Sci 2024; 107:1263-1285. [PMID: 37777004 DOI: 10.3168/jds.2023-23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - J B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
16
|
Meade R, Chao Y, Harroun N, Li C, Hafezi S, Hsu FF, Semenkovich CF, Zayed MA. Ceramides in peripheral arterial plaque lead to endothelial cell dysfunction. JVS Vasc Sci 2023; 4:100181. [PMID: 38077163 PMCID: PMC10704331 DOI: 10.1016/j.jvssci.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
Background Peripheral arterial atheroprogression is increasingly prevalent, and is a risk factor for major limb amputations in individuals with risk factors such as diabetes. We previously demonstrated that bioactive lipids are significantly altered in arterial tissue of individuals with diabetes and advanced peripheral arterial disease. Methods Here we evaluated whether sphingolipid ceramide 18:1/16:0 (C16) is a cellular regulator in endothelial cells and peripheral tibial arterial tissue in individuals with diabetes. Results We observed that C16 is the single most elevated ceramide in peripheral arterial tissue from below the knee in individuals with diabetes (11% increase, P < .05). C16 content in tibial arterial tissue positively correlates with sphingomyelin (SPM) content in patients with and without diabetes (r2 = 0.5, P < .005; r2 = 0.17, P < .05; respectively). Tibial arteries of individuals with diabetes demonstrated no difference in CERS6 expression (encoding ceramide synthase 6; the predominate ceramide synthesis enzyme), but higher SMPD expression (encoding sphingomyelin phosphodiesterase that catalyzes ceramide synthesis from sphingomyelins; P < .05). SMPD4, but not SMPD2, was particularly elevated in maximally diseased (Max) tibial arterial segments (P < .05). In vitro, exogenous C16 caused endothelial cells (HUVECs) to have decreased proliferation (P < .03), increased apoptosis (P < .003), and decreased autophagy (P < .008). Selective knockdown of SMPD2 and SMPD4 decreased native production of C16 (P < .01 and P < .001, respectively), but only knockdown of SMPD4 rescued cellular proliferation (P < .005) following exogenous supplementation with C16. Conclusions Our findings suggest that C16 is a tissue biomarker for peripheral arterial disease severity in the setting of diabetes, and can impact endothelial cell viability and function. Clinical relevance Peripheral arterial disease and its end-stage manifestation known as chronic limb-threatening ischemia (CLTI) represent ongoing prevalent and intricate medical challenges. Individuals with diabetes have a heightened risk of developing CLTI and experiencing its complications, including wounds, ulcers, and major amputations. In the present study, we conducted a comprehensive examination of the molecular lipid composition within arterial segments from individuals with CLTI, and with and without diabetes. Our investigations unveiled a striking revelation: the sphingolipid ceramide 18:1/16:0 emerged as the predominant ceramide species that was significantly elevated in the peripheral arterial intima below the knee in patients with diabetes. Moreover, this heightened ceramide presence is associated with a marked impairment of endothelial cell function and viability. Additionally, our study revealed a concurrent elevation in the expression of sphingomyelin phosphodiesterases, enzymes responsible for catalyzing ceramide synthesis from sphingomyelins, within maximally diseased arterial segments. These findings underscore the pivotal role of ceramides and their biosynthesis enzymes in the context of CLTI, offering new insights into potential therapeutic avenues for managing this challenging disease process.
Collapse
Affiliation(s)
- Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Yang Chao
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Nikolai Harroun
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Chenglong Li
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Shahab Hafezi
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Fong-Fu Hsu
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Clay F. Semenkovich
- Division of Endocrinology, Lipid, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University, McKelvey School of Engineering, St. Louis, MO
| |
Collapse
|
17
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
18
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
20
|
Ruisanchez É, Janovicz A, Panta RC, Kiss L, Párkányi A, Straky Z, Korda D, Liliom K, Tigyi G, Benyó Z. Enhancement of Sphingomyelinase-Induced Endothelial Nitric Oxide Synthase-Mediated Vasorelaxation in a Murine Model of Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24098375. [PMID: 37176081 PMCID: PMC10179569 DOI: 10.3390/ijms24098375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sphingolipids are important biological mediators both in health and disease. We investigated the vascular effects of enhanced sphingomyelinase (SMase) activity in a mouse model of type 2 diabetes mellitus (T2DM) to gain an understanding of the signaling pathways involved. Myography was used to measure changes in the tone of the thoracic aorta after administration of 0.2 U/mL neutral SMase in the presence or absence of the thromboxane prostanoid (TP) receptor antagonist SQ 29,548 and the nitric oxide synthase (NOS) inhibitor L-NAME. In precontracted aortic segments of non-diabetic mice, SMase induced transient contraction and subsequent weak relaxation, whereas vessels of diabetic (Leprdb/Leprdb, referred to as db/db) mice showed marked relaxation. In the presence of the TP receptor antagonist, SMase induced enhanced relaxation in both groups, which was 3-fold stronger in the vessels of db/db mice as compared to controls and could not be abolished by ceramidase or sphingosine-kinase inhibitors. Co-administration of the NOS inhibitor L-NAME abolished vasorelaxation in both groups. Our results indicate dual vasoactive effects of SMase: TP-mediated vasoconstriction and NO-mediated vasorelaxation. Surprisingly, in spite of the general endothelial dysfunction in T2DM, the endothelial NOS-mediated vasorelaxant effect of SMase was markedly enhanced.
Collapse
Affiliation(s)
- Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Rita Cecília Panta
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Levente Kiss
- Department of Physiology, Semmelweis University, H-1094 Budapest, Hungary
| | - Adrienn Párkányi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Zsuzsa Straky
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Dávid Korda
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Károly Liliom
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Gábor Tigyi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| |
Collapse
|
21
|
A Perspective on the Link between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases. BIOLOGY 2023; 12:biology12030414. [PMID: 36979106 PMCID: PMC10045954 DOI: 10.3390/biology12030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.
Collapse
|
22
|
Using an integrated feature-based molecular network and lipidomics approach to reveal the differential lipids in yak shanks and flanks. Food Chem 2023; 403:134352. [DOI: 10.1016/j.foodchem.2022.134352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022]
|
23
|
Costa RM, Matos E Chaib VR, Domingues AG, Rubio KTS, Martucci MEP. Untargeted Metabolomics Reveals Lipid Impairment in the Liver of Adult Zebrafish (Danio rerio) Exposed to Carbendazim. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:437-448. [PMID: 36484755 DOI: 10.1002/etc.5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Carbendazim is a systemic fungicide used in several countries, particularly in Brazil. However, studies suggest that it is related to the promotion of tumors, endocrine disruption, and toxicity to organisms, among other effects. As a result, carbendazim is not allowed in the United States, Australia, and some European Union countries. Therefore, further studies are necessary to evaluate its effects, and zebrafish is a model routinely used to provide relevant information regarding the acute and long-term effects of xenobiotics. In this way, zebrafish water tank samples (water samples from aquari containing zebrafish) and liver samples from animals exposed to carbendazim at a concentration of 120 μg/L were analyzed by liquid chromatography coupled to high-resolution mass spectrometry, followed by multivariate and univariate statistical analyses, using the metabolomics approach. Our results suggest impairment of lipid metabolism with a consequent increase in intrahepatic lipids and endocrine disruption. Furthermore, the results suggest two endogenous metabolites as potential biomarkers to determine carbendazim exposure. Finally, the present study showed that it is possible to use zebrafish water tank samples to assess the dysregulation of endogenous metabolites to understand biological effects. Environ Toxicol Chem 2023;42:437-448. © 2022 SETAC.
Collapse
Affiliation(s)
- Raíssa M Costa
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Victória R Matos E Chaib
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anderson G Domingues
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Karina T S Rubio
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria Elvira Poleti Martucci
- Postgraduate Program in Environmental Engineering-ProAmb, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
24
|
Long X, Liu X, Deng T, Chen J, Lan J, Zhang S, Zhou M, Guo D, Zhou J. LARP6 suppresses colorectal cancer progression through ZNF267/SGMS2-mediated imbalance of sphingomyelin synthesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:33. [PMID: 36691044 PMCID: PMC9872320 DOI: 10.1186/s13046-023-02605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND With increasing incidence and mortality, colorectal cancer (CRC) seriously endangers human health. LARP6, a member of La-related protein (LARP) family, is a RNA binding protein and probably associates with CRC progression, but its specific roles and mechanisms in CRC still remain unknown. METHOD Quantitative real-time PCR (qPCR), western blot, and immunohistochemistry were employed to examine LARP6 expression in CRC tissues. Using the stable LARP6 overexpression or interference CRC cell lines, the effect of LARP6 on CRC progression were evaluated. High-throughput RNA immunoprecipitation sequencing (RIP-seq) and a series of relevant experiments were conducted to explain how LARP6 functions. SPSS software was used for statistical analysis. RESULT In this study, we found that LARP6 expression is downregulated in CRC and correlates with patients' overall survival and relapse-free survival. Furthermore, altered LARP6 expression influences CRC cells invasion and metastasis. Mechanically, we discovered that LARP6 bind ZNF267 mRNA and regulated its stability and translation. LARP6 inhibited expression of SGMS2, a downstream target of ZNF267, resulting in ceramide and sphingomyelin imbalance in CRC cells. Interestingly, LARP6 also enhances autophagy activity of CRC cells, and the effect was at least partially determined by the inhibition of SGMS2-mediated sphingomyelin synthesis. CONCLUSION Our study showed how LARP6/ZNF267/SGMS2 axis influence CRC progression, which contributes to further understanding of the molecular mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Xiaoli Long
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Xunhua Liu
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Ting Deng
- Department of Pathology, YunFu People’s Hospital, Yunfu, 527300 China
| | - Jianxiong Chen
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Jiawen Lan
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Sijing Zhang
- grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Miao Zhou
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Dan Guo
- grid.284723.80000 0000 8877 7471Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jun Zhou
- grid.284723.80000 0000 8877 7471Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,Department of Pathology, YunFu People’s Hospital, Yunfu, 527300 China
| |
Collapse
|
25
|
Corsetto PA, Zava S, Rizzo AM, Colombo I. The Critical Impact of Sphingolipid Metabolism in Breast Cancer Progression and Drug Response. Int J Mol Sci 2023; 24:ijms24032107. [PMID: 36768427 PMCID: PMC9916652 DOI: 10.3390/ijms24032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.
Collapse
|
26
|
Alyamani M, Kadivar M, Erjefält J, Johansson-Lindbom B, Duan RD, Nilsson Å, Marsal J. Alkaline sphingomyelinase (NPP7) impacts the homeostasis of intestinal T lymphocyte populations. Front Immunol 2023; 13:1050625. [PMID: 36741374 PMCID: PMC9894718 DOI: 10.3389/fimmu.2022.1050625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
Background and aim Alkaline sphingomyelinase (NPP7) is expressed by intestinal epithelial cells and is crucial for the digestion of dietary sphingomyelin. NPP7 also inactivates proinflammatory mediators including platelet-activating factor and lysophosphatidylcholine. The aim of this study was to examine a potential role for NPP7 in the homeostasis of the intestinal immune system. Methods We quantified the numbers of B-lymphocytes, plasma cells, T-lymphocytes including regulatory T-lymphocytes (Tregs), natural killer cells, dendritic cells, macrophages, and neutrophils, in the small and large intestines, the mesenteric lymph nodes and the spleens of heterozygous and homozygous NPP7 knockout (KO) and wildtype (WT) mice. Tissues were examined by immunohistochemistry and stainings quantified using computerized image analysis. Results The numbers of both small and large intestinal CD3ε+, CD4+, and CD8α+ T-lymphocytes were significantly higher in NPP7 KO compared to WT mice (with a dose-response relationship in the large intestine), whereas Treg numbers were unchanged, and dendritic cell numbers reduced. In contrast, the numbers of CD3ε+ and CD4+ T-lymphocytes in mesenteric lymph nodes were significantly reduced in NPP7 KO mice, while no differences were observed in spleens. The numbers of B-lymphocytes, plasma cells, natural killer cells, macrophages, and neutrophils were similar between genotypes. Conclusion NPP7 contributes to the regulation of dendritic cell and T-lymphocyte numbers in mesenteric lymph nodes and both the small and large intestines, thus playing a role in the homeostasis of gut immunity. Although it is likely that the downstream effects of NPP7 activity involve the sphingomyelin metabolites ceramide and spingosine-1-phosphate, the exact mechanisms behind this regulatory function of NPP7 need to be addressed in future studies.
Collapse
Affiliation(s)
- Manar Alyamani
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mohammad Kadivar
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jonas Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Johansson-Lindbom
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Åke Nilsson
- Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden
| | - Jan Marsal
- Immunology Section, Department of Experimental Medical Science, Lund University, Lund, Sweden,Section of Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden,Department of Gastroenterology, Skane University Hospital, Lund/Malmö, Sweden,*Correspondence: Jan Marsal,
| |
Collapse
|
27
|
Lasorsa F, di Meo NA, Rutigliano M, Ferro M, Terracciano D, Tataru OS, Battaglia M, Ditonno P, Lucarelli G. Emerging Hallmarks of Metabolic Reprogramming in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24020910. [PMID: 36674430 PMCID: PMC9863674 DOI: 10.3390/ijms24020910] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is the most common male malignancy and the fifth leading cause of cancer death in men worldwide. Prostate cancer cells are characterized by a hybrid glycolytic/oxidative phosphorylation phenotype determined by androgen receptor signaling. An increased lipogenesis and cholesterogenesis have been described in PCa cells. Many studies have shown that enzymes involved in these pathways are overexpressed in PCa. Glutamine becomes an essential amino acid for PCa cells, and its metabolism is thought to become an attractive therapeutic target. A crosstalk between cancer and stromal cells occurs in the tumor microenvironment because of the release of different cytokines and growth factors and due to changes in the extracellular matrix. A deeper insight into the metabolic changes may be obtained by a multi-omic approach integrating genomics, transcriptomics, metabolomics, lipidomics, and radiomics data.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Târgu Mureș, Romania
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: or
| |
Collapse
|
28
|
Chen L, Liu Y, Mu H, Li H, Liu S, Zhu M, Bu Y, Wu B. Effects of perfluorobutane sulfonate and perfluorooctane sulfonate on lipid homeostasis in mouse liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120403. [PMID: 36228861 DOI: 10.1016/j.envpol.2022.120403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluorobutane sulfonate (PFBS), an alternative to perfluorooctane sulfonate (PFOS), has been increasingly used in recent years. However, emerging evidence has raised concerns about the potential health risks of PFBS. Here, the toxicityof low-dose PFBS on livers was explored and compared with that of PFOS. Adult C57BL/6 mice were exposed to 10 μg/L, 500 μg/L PFBS, or 500 μg/L PFOS for 28 days through drinking water. At the phenotypic level, no liver damage was observed in the 10 μg/L PFBS group. The cell apoptosis and decrease of CAT activities were observed in the 500 μg/L PFBS group, while accumulation of lipid droplets, increase of CAT activities and TAG levels were found in the 500 μg/L PFOS group. Lipidomics analysis revealed that 138, 238, and 310 lipids were significantly changed in the 10 μg/L, 500 μg/L PFBS and 500 μg/L PFOS groups, respectively. The two PFBS-treated groups induced similar global lipid changes in a dose-dependent manner, which were distinct from PFOS. Overall, PFBS exposure induced an increase in phosphatidylcholines and sphingomyelins, but a decrease in phosphatidylinositol. PFOS exposure caused an increase in triacylglycerols. This study provides more evidence on the health hazards caused by exposure to low-dose PFBS.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yafeng Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huan Li
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Su Liu
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yuanqing Bu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
29
|
Mechanistic target of rapamycin complex 1 orchestrates the interplay between hepatocytes and Kupffer cells to determine the outcome of immune-mediated hepatitis. Cell Death Dis 2022; 13:1031. [PMID: 36494334 PMCID: PMC9734196 DOI: 10.1038/s41419-022-05487-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
The cell-cell interaction between hepatocytes and Kupffer cells (KCs) is crucial for maintaining liver homeostasis, and the loss of KCs and hepatocytes is known to represent a common pathogenic phenomenon in autoimmune hepatitis. Until now, the mechanisms of cell-cell interaction between hepatocytes and KCs involved in immune-mediated hepatitis remains unclear. Here we dissected the impact of activated mTORC1 on the cell-cell interaction of KCs and hepatocyte in immune-mediated hepatitis. In the liver from patients with AIH and mice administrated with Con-A, mTORC1 was activated in both KCs and hepatocytes. The activated mTORC1 signal in hepatocytes with Con-A challenge caused a markedly production of miR-329-3p. Upregulated miR-329-3p inhibited SGMS1 expression in KCs through paracrine, resulting in the death of KCs. Most of maintained KCs were p-S6 positive and distributed in hepatocyte mTORC1 negative area. The activation of mTORC1 enabled KCs expressed complement factor B (CFB) to enhance the complement alternative system, which produced more complement factors to aggravate liver injury. Our findings remonstrate a heterogeneous role of mTORC1 in specific cell type for maintaining tolerogenic liver environment, and will form the basis for the development of new interventions against immune-mediated hepatitis.
Collapse
|
30
|
Zhang J, Lu Q, Xin L, Lou Y, Xiao W, Wang Z, Zhao L, Xiong Z. A liquid chromatography-mass spectrometry untargeted urinary metabonomics combined with quantitative analysis of seven amino acids biomarkers on yaobitong capsule in the intervention of rheumatoid arthritis rats. J Sep Sci 2022; 45:4209-4223. [PMID: 36200630 DOI: 10.1002/jssc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Yaobitong capsule is a compound preparation of traditional Chinese medicine that has been widely applied in disease treatment. To insight into the therapeutic effects of the yaobitong capsule on rheumatoid arthritis and its mechanisms, a liquid chromatography-mass spectrometry untargeted urine metabolomics method was established and validated, combined with the quantitative analysis of seven potential amino acid biomarkers in rat urine. The results showed that 35 potential biomarkers were found in untargeted metabonomics, which was related to amino acid metabolism, lipid metabolism, energy metabolism, and purine metabolism. Moreover, seven amino acid biomarkers, including proline, methionine, glutamic acid, histidine, lysine, cysteine, and glutamine, were further separated and quantified in multiple-reaction monitoring with a positive ionization mode. Then the linearity, standard curves, accuracy, precision, limit of quantitation, recovery, stability, carryover, and matrix effect of the quantitative method were examined. Finally, the validated method was successfully applied to investigate the urine samples of the control group, adjuvant-induced rheumatoid arthritis model group, yaobitong capsule-treatment group, and positive control group in rats. The contents of seven amino acids in different groups showed significant differences. Consequently, our findings revealed that the yaobitong capsule exerted therapeutic effects on rheumatoid arthritis rats by maintaining amino acid homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Qing Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Ling Xin
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, P. R. China
| |
Collapse
|
31
|
Wang H, Luo Y, Chen H, Hou H, Hu Q, Ji M. Non-Targeted Serum Lipidomics Analysis and Potential Biomarkers of Laryngeal Cancer Based on UHPLC-QTOF-MS. Metabolites 2022; 12:1087. [PMID: 36355170 PMCID: PMC9695307 DOI: 10.3390/metabo12111087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/31/2023] Open
Abstract
Laryngeal cancer is a common head and neck malignant cancer type. However, effective biomarkers for diagnosis are lacking and pathogenesis is unclear. Lipidomics is a powerful tool for identifying biomarkers and explaining disease mechanisms. Hence, in this study, non-targeted lipidomics based on ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS) were applied to screen the differential lipid metabolites in serum and allowed for exploration of the remodeled lipid metabolism of laryngeal cancer, laryngeal benign tumor patients, and healthy crowds. Multivariate analysis and univariate analysis were combined to screen for differential lipid metabolites among the three groups. The results showed that, across a total of 57 lipid metabolic markers that were screened, the regulation of the lipid metabolism network occurred mainly in phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and sphingomyelin (SM) metabolism. Of note, the concentration levels of sphingolipids 42:2 (SM 42:2) and sphingolipids 42:3 (SM 42:3) correlated with laryngeal cancer progression and were both significantly different among the three groups. Both of them could be considered as potential biomarkers for diagnosis and indicators for monitoring the progression of laryngeal cancer. From the perspective of lipidomics, this study not only revealed the regulatory changes in the lipid metabolism network, but also provided a new possibility for screening biomarkers in laryngeal cancer.
Collapse
Affiliation(s)
- Haoyue Wang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Yanbo Luo
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, China
| | - Min Ji
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
32
|
Xing ZK, Du LS, Fang X, Liang H, Zhang SN, Shi L, Kuang CX, Han TX, Yang Q. The relationship among amyloid-β deposition, sphingomyelin level, and the expression and function of P-glycoprotein in Alzheimer's disease pathological process. Neural Regen Res 2022; 18:1300-1307. [PMID: 36453415 PMCID: PMC9838140 DOI: 10.4103/1673-5374.358607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In Alzheimer's disease, the transporter P-glycoprotein is responsible for the clearance of amyloid-β in the brain. Amyloid-β correlates with the sphingomyelin metabolism, and sphingomyelin participates in the regulation of P-glycoprotein. The amyloid cascade hypothesis describes amyloid-β as the central cause of Alzheimer's disease neuropathology. Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-β and their potential association in the pathological process of Alzheimer's disease is critical. Herein, we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age. The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age. Decreased sphingomyelin levels, increased ceramide levels, and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice. Similar results were observed in the Alzheimer's disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42. In human cerebral microvascular endothelial cells, neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment. Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide. Together, these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway. These studies may serve as new pursuits for the development of anti-Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Zi-Kang Xing
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Li-Sha Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Sheng-Nan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Chun-Xiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tian-Xiong Han
- Department of Traditional Chinese Medicine, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China,Correspondence to: Qing Yang, .
| |
Collapse
|
33
|
Shi XX, Zhang H, Quais MK, Chen M, Wang N, Zhang C, Mao C, Zhu ZR. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). INSECT MOLECULAR BIOLOGY 2022; 31:391-402. [PMID: 35156743 DOI: 10.1111/imb.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Sphingomyelinases (SMases) are a group of enzymes that catalyse the hydrolysis of sphingomyelins into ceramides and phosphorylcholine. They have been intensively investigated for their pathophysiological roles in mammals whereas much remains unclear about their counterparts in insects. Herein we report the cloning and functional characterization of four SMase homologue genes, designated NlSMase1-4, from brown planthopper (BPH). The phylogenetic analysis revealed that NlSMase1 and NlSMase2 were clustered into acid SMase family, and NlSMase3 and NlSMase4 with neutral SMase family. NlSMase1, NlSMase3 and NlSMase4 were highly expressed in BPH females, and NlSMaes2 in the 5th instar nymph. All four NlSMases had the lowest transcription in BPH males. NlSMase1 and NlSMase4 were highly expressed in BPH ovaries, while NlSMase2 and NlSMase3 in midgut and wings, respectively. Knocking-down of each NlSMase individual by RNA interference (RNAi) caused the ovarian malformation in BPH. The transcriptomic analysis revealed that NlSMase4 knockdown could strongly affect diacylglycerol (DAG)-related metabolisms and their downstream pathways. Further, qRT-PCR analysis of vitellogenin (Vg) genes indicates that the DAG metabolism disorder could interrupt the essential Vg accumulation for BPH oogenesis. Our study demonstrates the vital role of NlSMases in BPH reproductive development and provides new insights into the mediated mechanism of how SMases function.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejian, China
| | - He Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Md Khairul Quais
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ming Chen
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Research Institute, Zhejiang University, Sanya, Hainan, China
| |
Collapse
|
34
|
MALAT1 as a Regulator of the Androgen-Dependent Choline Kinase A Gene in the Metabolic Rewiring of Prostate Cancer. Cancers (Basel) 2022; 14:cancers14122902. [PMID: 35740569 PMCID: PMC9221206 DOI: 10.3390/cancers14122902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Despite the rapid advance in cancer therapies, treatment-resistant relapse remains a significant challenge in cancer treatment. Acquired resistance arises during or after treatment administration, and is usually the main contributor to relapse. For example, prostate cancer, the most frequent type of cancer in the elderly male population, frequently develops into aggressive forms resistant to chemical and hormonal therapies. In this condition, the so-called “cholinic phenotype” that is characterized by the overexpression of choline kinase alpha (CHKA) and increased phosphocholine levels leads to aberrant lipid metabolism. Our work demonstrates that CHKA, which is necessary for membrane phospholipid synthesis, is a target of the long non-coding RNA MALAT1. This study helps to further decipher how MALAT1 affects the regulation of crucial phospholipid/sphingolipid metabolic enzymes, as well as how the androgen receptor pathway is involved in MALAT1-dependent transcriptional regulation. Abstract Background. Choline kinase alpha (CHKA), an essential gene in phospholipid metabolism, is among the modulated MALAT1-targeted transcripts in advanced and metastatic prostate cancer (PCa). Methods. We analyzed CHKA mRNA by qPCR upon MALAT1 targeting in PCa cells, which is characterized by high dose-responsiveness to the androgen receptor (AR) and its variants. Metabolome analysis of MALAT1-depleted cells was performed by quantitative High-resolution 1 H-Nuclear Magnetic Resonance (NMR) spectroscopy. In addition, CHKA genomic regions were evaluated by chromatin immunoprecipitation (ChIP) in order to assess MALAT1-dependent histone-tail modifications and AR recruitment. Results. In MALAT1-depleted cells, the decrease of CHKA gene expression was associated with reduced total choline-containing metabolites compared to controls, particularly phosphocholine (PCho). Upon MALAT1 targeting a significant increase in repressive histone modifications was observed at the CHKA intron-2, encompassing relevant AR binding sites. Combining of MALAT1 targeting with androgen treatment prevented MALAT1-dependent CHKA silencing in androgen-responsive (LNCaP) cells, while it did not in hormone-refractory cells (22RV1 cells). Moreover, AR nuclear translocation and its activation were detected by confocal microscopy analysis and ChIP upon MALAT1 targeting or androgen treatment. Conclusions. These findings support the role of MALAT1 as a CHKA activator through putative association with the liganded or unliganded AR, unveiling its targeting as a therapeutic option from a metabolic rewiring perspective.
Collapse
|
35
|
Moll T, Marshall JNG, Soni N, Zhang S, Cooper-Knock J, Shaw PJ. Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays Biochem 2021; 65:999-1011. [PMID: 34623437 PMCID: PMC8709890 DOI: 10.1042/ebc20210026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Age-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD) are an unmet health need, with significant economic and societal implications, and an ever-increasing prevalence. Membrane lipid rafts (MLRs) are specialised plasma membrane microdomains that provide a platform for intracellular trafficking and signal transduction, particularly within neurons. Dysregulation of MLRs leads to disruption of neurotrophic signalling and excessive apoptosis which mirrors the final common pathway for neuronal death in ALS, PD and AD. Sphingomyelinase (SMase) and phospholipase (PL) enzymes process components of MLRs and therefore play central roles in MLR homeostasis and in neurotrophic signalling. We review the literature linking SMase and PL enzymes to ALS, AD and PD with particular attention to attractive therapeutic targets, where functional manipulation has been successful in preclinical studies. We propose that dysfunction of these enzymes is upstream in the pathogenesis of neurodegenerative diseases and to support this we provide new evidence that ALS risk genes are enriched with genes involved in ceramide metabolism (P=0.019, OR = 2.54, Fisher exact test). Ceramide is a product of SMase action upon sphingomyelin within MLRs, and it also has a role as a second messenger in intracellular signalling pathways important for neuronal survival. Genetic risk is necessarily upstream in a late age of onset disease such as ALS. We propose that manipulation of MLR structure and function should be a focus of future translational research seeking to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Jack N G Marshall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, U.S.A
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| |
Collapse
|
36
|
Agarwala PK, Aneja R, Kapoor S. Lipidomic landscape in cancer: Actionable insights for membrane-based therapy and diagnoses. Med Res Rev 2021; 42:983-1018. [PMID: 34719798 DOI: 10.1002/med.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/18/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
Cancer cells display altered cellular lipid metabolism, including disruption in endogenous lipid synthesis, storage, and exogenous uptake for membrane biogenesis and functions. Altered lipid metabolism and, consequently, lipid composition impacts cellular function by affecting membrane structure and properties, such as fluidity, rigidity, membrane dynamics, and lateral organization. Herein, we provide an overview of lipid membranes and how their properties affect cellular functions. We also detail how the rewiring of lipid metabolism impacts the lipidomic landscape of cancer cell membranes and influences the characteristics of cancer cells. Furthermore, we discuss how the altered cancer lipidome provides cues for developing lipid-inspired innovative therapeutic and diagnostic strategies while improving our limited understanding of the role of lipids in cancer initiation and progression. We also present the arcade of membrane characterization techniques to cement their relevance in cancer diagnosis and monitoring of treatment response.
Collapse
Affiliation(s)
- Prema K Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.,Depertment of Biofunctional Science and Technology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
37
|
Sessa L, Nardiello AM, Santoro J, Concilio S, Piotto S. Hydroxylated Fatty Acids: The Role of the Sphingomyelin Synthase and the Origin of Selectivity. MEMBRANES 2021; 11:membranes11100787. [PMID: 34677553 PMCID: PMC8539438 DOI: 10.3390/membranes11100787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a class of lipids acting as key modulators of many physiological and pathophysiological processes. Hydroxylation patterns have a major influence on the biophysical properties of sphingolipids. In this work, we have studied the mechanism of action of hydroxylated lipids in sphingomyelin synthase (SMS). The structures of the two human isoforms, SMS1 and SMS2, have been generated through neural network supported homology. Furthermore, we have elucidated the reaction mechanism that allows SMS to recover the choline head from a phosphocholine (PC) and transfer it to ceramide, and we have clarified the role of the hydroxyl group in the interaction with the enzyme. Finally, the effect of partial inhibition of SMS on the levels of PC and sphingomyelin was calculated for different rate constants solving ordinary differential equation systems.
Collapse
|
38
|
Lin CY, Chen WL, Chen TZ, Lee SH, Liang HJ, Chou CCK, Tang CH, Cheng TJ. Lipid changes in extrapulmonary organs and serum of rats after chronic exposure to ambient fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147018. [PMID: 34088028 DOI: 10.1016/j.scitotenv.2021.147018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lungs of rats after chronic inhalation exposure to PM2.5, the effects of PM2.5 on phosphorylcholine-containing lipids in the extrapulmonary organs have not yet been elucidated. In this study, we examined the lipid effects of chronic PM2.5 exposure on various organs and serum by using a rat inhalation model followed by a mass spectrometry-based lipidomic approach. Male Sprague-Dawley rats were continuously exposed at the whole body level to nonfiltered and nonconcentrated ambient air from the outside environment of Taipei city for 8 months, while the control rats inhaled filtered air simultaneously. After exposure, serum samples and various organs, including the testis, pancreas, heart, liver, kidney, spleen, and epididymis, were collected for lipid extraction and analysis to examine the changes in phosphorylcholine-containing lipids after exposure. The results from the partial least squares discriminant analysis models demonstrated that the lipid profiles in the PM2.5 exposure group were different from those in the control group in the rat testis, pancreas, heart, liver, kidney and serum. The greatest PM2.5-induced lipid effects were observed in the testes. Decreased lyso-phosphatidylcholines (PCs) as well as increased unsaturated diacyl-PCs and sphingomyelins in the testes may be related to maintaining the membrane integrity of spermatozoa, antioxidation, and cell signaling. Additionally, our results showed that decreased PC(16:0/18:1) was observed in both the serum and testes. In conclusion, exposure to chronic environmental concentrations of PM2.5 caused lipid perturbation, especially in the testes of rats. This study highlighted the susceptibility of the testes and suggested possible molecular events for future study.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Wen-Ling Chen
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ting-Zhen Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
40
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
41
|
Pakiet A, Sikora K, Kobiela J, Rostkowska O, Mika A, Sledzinski T. Alterations in complex lipids in tumor tissue of patients with colorectal cancer. Lipids Health Dis 2021; 20:85. [PMID: 34348720 PMCID: PMC8340484 DOI: 10.1186/s12944-021-01512-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Accumulating evidence indicates alterations in lipid metabolism and lipid composition in neoplastic tissue. Earlier nuclear magnetic resonance studies showed that the contents of major lipid groups, such as triacylglycerols, phospholipids and cholesterol, are changed in colon cancer tissue. Methods In this study, a more detailed analysis of lipids in cancer and tumor adjacent tissues from colorectal cancer patients, using liquid chromatography–mass spectrometry, allowed for comparison of 199 different lipids between cancer tissue and tumor adjacent tissue using principal component analysis. Results Significant differences were found in 67 lipid compounds between the two types of tissue; many of these lipid compounds are bioactive lipids such as ceramides, lysophospholipids or sterols and can influence the development of cancer. Additionally, increased levels of phospholipids and sphingolipids were present, which are major components of the cell membrane, and increases in these lipids can lead to changes in cell membrane properties. Conclusions This study showed that many complex lipids are significantly increased or decreased in colon cancer tissue, reflecting significant alterations in lipid metabolism. This knowledge can be used for the selection of potential molecular targets of novel anticancer strategies based on the modulation of lipid metabolism and the composition of the cell membrane in colorectal cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01512-x.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Kinga Sikora
- Physics-Chemistry Workshops, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Jarek Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Olga Rostkowska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
42
|
Effect of nisin and potassium sorbate additions on lipids and nutritional quality of Tan sheep meat. Food Chem 2021; 365:130535. [PMID: 34256226 DOI: 10.1016/j.foodchem.2021.130535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022]
Abstract
Nisin and potassium sorbate as preservatives are used in a broad range of meat. A lipidomic evaluation was performed on Tan sheep meat treated by two types of preservatives. The addition of potassium sorbate resulted in higher lipid losses compared with nisin treatment. Furthermore, 106 significant lipids of 12 lipid classes (PC, PS, LPS, LPC, PE, PI, LPE, TG, Cer, DG, SM, Sph) with variable importance in projection scores greater than 1.0 were detected and qualified to distinguish different preservatives added meat using UHPLC-Q-Orbitrap MS/MS. LOD and LOQ were 0.12-0.32 μg kg-1 and 0.35-0.89 μg kg-1, indicating high sensitivity and excellent analytical characteristics in the study. Nisin was confirmed to be the better preservative for prolonging the shelf life of Tan sheep meat while reducing the loss of nutrients. These results could provide a strong cornerstone for future research on preservatives in meat products.
Collapse
|
43
|
Quiroz-Acosta T, Flores-Martinez YM, Becerra-Martínez E, Pérez-Hernández E, Pérez-Hernández N, Bañuelos-Hernández AE. Aberrant sphingomyelin 31P-NMR signatures in giant cell tumour of bone. Biochem Cell Biol 2021; 99:717-724. [PMID: 34096319 DOI: 10.1139/bcb-2020-0599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An understanding of the biochemistry of the giant cell tumour of bone (GCTB) provides an opportunity for the development of prognostic markers and identification of therapeutic targets. Based on metabolomic analysis, we proposed glycerophospholipid metabolism as the altered pathway in GCTB and the objective of this study was to identify these altered metabolites. Using phosphorus-31 nuclear magnetic resonance spectroscopy (31P-NMR), sphingomyelin was determined as the most dysregulated phospholipid in tissue samples from six patients with GCTB; subsequently, enzymes related to its biosynthesis and hydrolysis were examined using immunodetection techniques. High expression of sphingomyelin synthases 1 and 2, but low expression of neutral sphingomyelinase 2 (nSMase2), was found in GCTB tissues compared to non-neoplastic bone tissues. Sphingomyelin/ ceramide biosynthesis is dysregulated in GCTB due to alterations in the expression of SMS1, SMS2, and nSMase2.
Collapse
Affiliation(s)
- Tayde Quiroz-Acosta
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Yazmin Montserrat Flores-Martinez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, México, Ciudad de México, Mexico;
| | - Elizabeth Pérez-Hernández
- UMAE de Traumatología, Ortopedia y Rehabilitación "Dr. Victorio de la Fuente Narváez", Mexico, Ciudad de México, Mexico;
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Mexico, Ciudad de México, Mexico;
| | - Angel Ernesto Bañuelos-Hernández
- Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 42576, Departamento de Farmacologia, Ciudad de Mexico, Mexico City, Mexico;
| |
Collapse
|
44
|
Canals D. Peeking inside the sphingolipid network in lung cancer. EBioMedicine 2021; 67:103340. [PMID: 33906068 PMCID: PMC8099596 DOI: 10.1016/j.ebiom.2021.103340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, US.
| |
Collapse
|
45
|
Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T, Witwer KW, Haughey NJ, Slusher BS. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discov Today 2021; 26:1656-1668. [PMID: 33798648 DOI: 10.1016/j.drudis.2021.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are indispensable mediators of intercellular communication, but they can also assume a nefarious role by ferrying pathological cargo that contributes to neurological, oncological, inflammatory, and infectious diseases. The canonical pathway for generating EVs involves the endosomal sorting complexes required for transport (ESCRT) machinery, but an alternative pathway is induced by the enrichment of lipid membrane ceramides generated by neutral sphingomyelinase 2 (nSMase2). Inhibition of nSMase2 has become an attractive therapeutic strategy for inhibiting EV biogenesis, and a growing number of small-molecule nSMase2 inhibitors have shown promising therapeutic activity in preclinical disease models. This review outlines the function of EVs, their potential role in disease, the discovery and efficacy of nSMase2 inhibitors, and the path to translate these findings into therapeutics.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Witwer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
47
|
Wang P, van der Hoeven D, Ye N, Chen H, Liu Z, Ma X, Montufar-Solis D, Rehl KM, Cho KJ, Thapa S, Chen W, van der Hoeven R, Frost JA, Hancock JF, Zhou J. Scaffold repurposing of fendiline: Identification of potent KRAS plasma membrane localization inhibitors. Eur J Med Chem 2021; 217:113381. [PMID: 33756124 DOI: 10.1016/j.ejmech.2021.113381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
KRAS plays an essential role in regulating cell proliferation, differentiation, migration and survival. Mutated KRAS is a major driver of malignant transformation in multiple human cancers. We showed previously that fendiline (6) is an effective inhibitor of KRAS plasma membrane (PM) localization and function. In this study, we designed, synthesized and evaluated a series of new fendiline analogs to optimize its drug properties. Systemic structure-activity relationship studies by scaffold repurposing led to the discovery of several more active KRAS PM localization inhibitors such as compounds 12f (NY0244), 12h (NY0331) and 22 (NY0335) which exhibit nanomolar potencies. These compounds inhibited oncogenic KRAS-driven cancer cell proliferation at single-digit micromolar concentrations in vitro. In vivo studies in a xenograft model of pancreatic cancer revealed that 12h and 22 suppressed oncogenic KRAS-expressing MiaPaCa-2 tumor growth at a low dose range of 1-5 mg/kg with no vasodilatory effects, indicating their potential as chemical probes and anticancer therapeutics.
Collapse
Affiliation(s)
- Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dina Montufar-Solis
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Sabita Thapa
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wei Chen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
48
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
49
|
Yue F, Xia K, Wei L, Xing L, Wu S, Shi Y, Lam SM, Shui G, Xiang X, Russell R, Zhang D. Effects of constant light exposure on sphingolipidomics and progression of NASH in high-fat-fed rats. J Gastroenterol Hepatol 2020; 35:1978-1989. [PMID: 32027419 DOI: 10.1111/jgh.15005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern worldwide. With the progression of urbanization, light pollution is becoming an inevitable risk factor for NAFLD. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. The present study explored effects of constant light exposure on NAFLD and elucidated its related mechanisms. METHODS Thirty-two male Sprague Dawley rats were divided into four groups (n = 8 each): (i) rats on a normal diet exposed to standard light-dark cycle (ND-LD); (ii) rats on a normal diet exposed to constant light (ND-LL); (iii) rats on a high-fat diet exposed to standard light-dark cycle (HFD-LD); and (iv) and rats on a high-fat diet exposed to constant light (HFD-LL). After 12 weeks of treatment, rats were sacrificed and pathophysiological assessments were performed. Targeted lipidomics was used to measure sphingolipids, including ceramides, glucosylceramides, and lactosylceramides, sphingomyelins, and sphingosine-1-phosphates in plasma and liver tissues. RESULTS In normal chow rats, constant light exposure led to glucose abnormalities and dyslipidemia. In high-fat-fed rats, constant light exposure exacerbated glucose abnormalities, dyslipidemia, insulin resistance, and inflammation and aggravated steatohepatitis. Compared with HFD-LD rats, HFD-LL had decreased plasma sphingosine-1-phosphate and elevated liver concentrations of total ceramide and specific ceramide species (ceramide d18:0/24:0, ceramide d18:1/22:0, ceramide d18:1/24:0, and ceramide d18:1/24:1), which were associated with increased hepatocyte apoptosis. CONCLUSIONS Constant light exposure causes dysregulation of sphingolipids and promotes steatohepatitis in high-fat-fed rats.
Collapse
Affiliation(s)
- Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Xia
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Wang J, Lu X, Zhang J, Xiao Z. Simultaneous quantification of the lipids phosphatidylcholine, 3-sn-phosphatidylethanolamine, sphingomyelin, and L-α-lysophosphatidylcholine extracted from the tissues of the invasive golden apple snail (Pomacea canaliculata) using UHPLC-ESI-MS/MS. Food Chem 2020; 343:128427. [PMID: 33131959 DOI: 10.1016/j.foodchem.2020.128427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Lipids such as phosphatidylcholine (PC), 3-sn-phosphatidylethanolamine (PE), sphingomyelin (SM) and L-α-lysophosphatidylcholine (LPC) are the major components of biological membranes and play important roles in physiological functions. Here, PC, PE, SM, and LPC were extracted from golden apple snails (GAS, Pomacea canaliculata) and GAS flesh (GASF) using an ethanol/hexane sequential scheme and quantified simultaneously using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) to evaluate whether the GAS could be the source of the four lipids. Our results suggest that ethanol extracts contained the most crude lipids, and the yield of dry (evaporated) lipids were 3.45 g per 100 g fresh GASF and 1.82 g per 100 g of fresh GAS. Quantification of the lipids using UHPLC-ESI-MS/MS suggested that GAS contained PE, PC, SM and LPC, with SM being the most abundant lipid (after purification: 1.71 and 1.42 mg g-1 dry weight from 100 g of GASF and GAS, respectively). The method we used is cost-effective, and the recovery rates of ethanol and hexane ranged from 80-91% and 87-91% respectively. Overall, GAS and GASF are potential raw materials for lipids such as SM and PC extraction using the ethanol/hexane method. Comparatively, lipids extraction from the GAS is more effective and timesaving. Our finding would provide a way to utilize GAS and potentially control its invasion.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Xuening Lu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, People's Republic of China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, People's Republic of China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China.
| | - Zeheng Xiao
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, People's Republic of China
| |
Collapse
|