1
|
Liu J, Huang X, Yi Z. Complexing agent-assisted Cr(VI) removal in a continuous fixed-bed system with nanoscale Fe 0/NaA molecular sieve membrane supported on nickel foam. CHEMOSPHERE 2024; 364:143003. [PMID: 39097113 DOI: 10.1016/j.chemosphere.2024.143003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Complexing agents (CAs) can be used for the removal of Cr(VI) via nanoscale Fe0 (nZVI) reduction in cost-effective manner. However, nZVI is prone to aggregation and passivation, and some conventional CAs are toxic and difficult to biodegrade, potentially causing secondary pollution. Therefore, selecting an environmentally friendly CA for assisting in the removal of Cr(VI) via supported nZVI is imperative. Herein, NaA molecular sieve membrane-supported nZVI (nZVI/NaA-NF) was prepared via the secondary growth and liquid-phase reduction method using nickel foam (NF) as the carrier. The physicochemical characteristics of nZVI/NaA-NF before and after reaction were analysed via SEM, EDS, and XPS. A CA-improved nZVI/NaA-NF was used for the effective removal of Cr(VI) in a continuous fixed-bed system. Furthermore, the influences of various experimental factors including the CA type, CA concentration, solution pH, space velocity, and inlet Cr(VI) concentration on Cr(VI) removal were systematically investigated. The results demonstrated that nZVI particles were homogeneously immobilized on the NaA molecular sieve membrane/NF for fresh nZVI/NaA-NF, and tetrasodium iminidisuccinate (IDS-4Na) inhibited the aggregation of Cr(III)/Fe(III) (hydr)oxide precipitates during the reaction. IDS-4Na demonstrated excellent promotive effect on Cr(VI) removal via nZVI/NaA-NF. The breakthrough time for Cr(VI) in the addition of IDS-4Na was considerably longer than that of nZVI/NaA-NF alone. The breakthrough concentration of Cr(VI) only reached 1.1% and 9.9% of the inlet concentration at 220 and 240 min, with an IDS-4Na concentration of 4 mM, a pH of 2.5, and a space velocity of 0.265 min-1. The Bohart-Adams model was appropriate to predict the initial part of Cr(VI) breakthrough curves in the nZVI/NaA-NF fixed bed. The saturated concentration (N0) increased with an increase in inlet Cr(VI) concentration. The Yoon-Nelson model afforded good fitting results for all breakthrough curves of Cr(VI). The k' value increased with an increase in space velocity, and the τ value decreased.
Collapse
Affiliation(s)
- Jian Liu
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang, 421008, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, 421008, China.
| | - Xueren Huang
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China
| | - Zhengji Yi
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, 421008, China; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang, 421008, China; Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, 421008, China
| |
Collapse
|
2
|
Zhang H, Xue K, Wang B, Ren W, Sun D, Shao C, Sun R. Advances in lignin-based biosorbents for sustainable wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 395:130347. [PMID: 38242243 DOI: 10.1016/j.biortech.2024.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The heavy metals, pesticides and dyes in agriculture and industry caused serious water pollution have increased the urgency for the advancement of biomass-based adsorbents due to their merits of low cost, high efficiency, and environmental sustainability. Thus, this review systematically examines the recent progress of lignin-based adsorbents dedicated to wastewater purification. Commencing with a succinct exposition on the intricate structure and prevalent forms of lignin, the review proceeds to expound rational design strategies tailored for lignin-based adsorbents coupled with adsorption mechanisms and regeneration methods. Emphasis is placed on the potential industrial applications of lignin-based adsorbents, accentuating their capacity for recovery and direct utilization post-use. The future challenges and outlooks associated with lignin-based adsorbents are discussed to provide novel perspectives for the development of high-performance and sustainable biosorbents, facilitating the effective removal of pollutants and the value-added utilization of resources in a sustainable manner.
Collapse
Affiliation(s)
- Hongmei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kai Xue
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfeng Ren
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dan Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Sadeghifar H, Ragauskas A. Lignin as a bioactive polymer and heavy metal absorber- an overview. CHEMOSPHERE 2022; 309:136564. [PMID: 36155017 DOI: 10.1016/j.chemosphere.2022.136564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
As a pulping and bio-refinery by-product with phenolic chemical structure, lignin indicated high potential as natural antioxidant activity, UV blocker, antibacterial and toxic material absorbent properties. Presence of phenolic hydroxyl groups in lignin structure plays the main role of its antioxidant activity. However, lignin antioxidant power can change depending on its other structural features and functional groups like ortho-methoxy groups, -OCH3 groups, the α-CH2 groups, the aliphatic carbonyl groups, and the size of π-conjugated systems. Lignin in mixture with synthetic polymers, improved their thermal stability. Lignin has high UV light absorbing potential in broad-spectrum (UVA, UVB). Adding 1-5% of lignin into hand cream indicated excellent range of sun protection factor (SPF) with more than 95% UV light absorption. Lignin also indicated strong UV light protection when applied in different transparent film and protect paint, oil, and varnish from UV degradation. Lignosulfonate and other modified lignin including chemically modification, nano-particles and lignin hydrogel indicated high potential as heavy metal absorber.
Collapse
Affiliation(s)
- Hasan Sadeghifar
- Hollingsworth & Vose, R&D Center, 219 Townsend Road, Groton, MA, 01450, USA.
| | - Arthur Ragauskas
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee (UT), Knoxville, TN, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
4
|
Hao D, Liang Y. Adsorption of Cu 2+, Cd 2+ and Pb 2+ in wastewater by modified chitosan hydrogel. ENVIRONMENTAL TECHNOLOGY 2022; 43:876-884. [PMID: 32772649 DOI: 10.1080/09593330.2020.1807612] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution is extraordinary critical, so it is urgent to develop an effective adsorbent to dispose of such pollution. Modified chitosan was combined with polyacrylic acid to form N-carboxymethyl chitosan hydrogel (NCS-hydrogel) adsorbent. The morphology and structure of NCS-hydrogel were analyzed and identified by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and other characterization methods. NCS-hydrogel adsorption was used to treat water pollution of Cu, Cd and Pb ions, and the influencing factors of adsorption performance were studied. The intrinsic mechanism of adsorption process was discussed by thermodynamic, kinetic and isotherm models. The results show that the adsorption process of metal ions by NCS-hydrogel meets the spontaneous monolayer chemisorption, and the adsorption process is accompanied by heat release.
Collapse
Affiliation(s)
- Dongliang Hao
- Hebei University of Environmental Engineering, Qinhuangdao, People's Republic of China
| | - Yali Liang
- Biology Institute of Shanxi, Taiyuan, People's Republic of China
| |
Collapse
|
5
|
Luo T, Hao Y, Wang C, Jiang W, Ji X, Yang G, Chen J, Janaswamy S, Lyu G. Lignin Nanoparticles and Alginate Gel Beads: Preparation, Characterization and Removal of Methylene Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:176. [PMID: 35010125 PMCID: PMC8746983 DOI: 10.3390/nano12010176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
A novel and effective green system consisting of deep eutectic solvent (DES) was proposed to prepare lignin nanoparticles (LNPs) without any lignin modification. The LNPs are obtained through the dialysis of the kraft lignin-DES solution. The particle size distribution, Zeta potential and morphology of the LNPs are characterized by using dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average diameter of LNPs is in the range 123.6 to 140.7 nm, and the LNPs show good stability and dispersibility in water. The composite beads composed of LNPs and sodium alginate (SA) are highly efficient (97.1%) at removing methylene blue (MB) from the aqueous solution compared to 82.9% and 77.4% by the SA/bulk kraft lignin composite and pure SA, respectively. Overall, the LNPs-SA bio-nanocomposite with high adsorption capacity (258.5 mg/g) could be useful in improving water quality and other related applications.
Collapse
Affiliation(s)
- Tong Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Yanping Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Gaojin Lyu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.L.); (Y.H.); (W.J.); (X.J.); (G.Y.); (J.C.)
| |
Collapse
|
6
|
Stanisz M, Klapiszewski Ł, Kołodyńska D, Jesionowski T. Development of functional lignin-based spherical particles for the removal of vanadium(V) from an aqueous system. Int J Biol Macromol 2021; 186:181-193. [PMID: 34246669 DOI: 10.1016/j.ijbiomac.2021.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
A new type of functional lignin-based spherical particles (L-CTAB) prepared with the use of hexadecyltrimethylammonium bromide (CTAB) was applied as an effective biosorbent for removing vanadium(V) ions. The porous structure, characteristic functional groups, electrokinetic stability, morphology and size of the L-CTAB particles were examined. The conditions of removal were also investigated, including pH (2-12), sorbent mass (0.1-0.5 g), concentration (10-100 mg/dm3), phase contact time (1-240 min) and temperature (293-333 K). At pH 5.0 the maximum sorption percentage (%S) of V(V) was 45%, while at pH 2.0 it was 32%. The maximum sorption capacity of V(V) for L-CTAB was found to be 10.79 mg/g. The kinetic data indicate that the sorption followed the pseudo-second-order and film diffusion models. Sorption equilibrium for V(V) ions removal by L-CTAB was reached after 60 min at the initial concentrations 10 and 50 mg/dm3. It has been shown that the adsorption of V(V) ions on the surface of L-CTAB is a heterogeneous, endothermic and spontaneous reaction, as evidenced by the calculated values of thermodynamic parameters - free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) - for the tested systems at different temperatures. HCl solutions, used as an L-CTAB regeneration agent, quantitatively eluted V(V) ions.
Collapse
Affiliation(s)
- Małgorzata Stanisz
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Dorota Kołodyńska
- Maria Curie Skłodowska University, Institute of Chemical Sciences, Faculty of Chemistry, Department of Inorganic Chemistry, Maria Curie Skłodowska Sq. 2, PL-20031 Lublin, Poland.
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
7
|
Sharma S, Jaiswal A, Uttam KN. Synthesis of Sensitive and Robust Lignin Capped Silver Nanoparticles for the Determination of Cobalt(II), Chromium(III), and Manganese(II) Ions by Colorimetry and Manganese(II) Ions by Surface-Enhanced Raman Scattering (SERS) in Aqueous Media. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1837855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sweta Sharma
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Aarti Jaiswal
- Centre for Material Science, IIDS, University of Allahabad, Allahabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
8
|
Nasimi S, Baghdadi M, Dorosti M. Surface functionalization of recycled polyacrylonitrile fibers with ethylenediamine for highly effective adsorption of Hg(II) from contaminated waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110883. [PMID: 32721322 DOI: 10.1016/j.jenvman.2020.110883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
In this research, recycled polyacrylonitrile fibers (PANFs) acquired from the textile recycling process were amino-functionalized in one simple step by means of ethylenediamine (EDA). The amino-functionalized polyacrylonitrile fibers (AF-PANFs) were utilized for adsorption of Hg(II) ions from aquatic media. Temperature and contact time during the synthesis were optimized by the Central Composite Design (CCD) method. FE-SEM, EDS, BET, and FT-IR analysis, and pHZPC measurement were conducted to characterize the features of the AF-PANFs. The average diameter of raw fiber was 20 μm, which increased 20 percent after functionalizing. The impact of independent parameters on the adsorption process was investigated using the Box-Behnken Design (BBD) method during the batch experiments. The column tests were conducted in a semi-continuous system with the removal efficiency of over 99% for various initial concentrations after specific cycles. Freundlich, Langmuir, UT, Redlich-Peterson, and Temkin isotherm models were employed to analyze the relation between the final concentration of Hg(II) (Co) and the equilibrium adsorption capacity (qe) of the AF-PANFs. According to the isotherm models and experimental results, the maximum qe of the AF-PANFs was 1116 mg g-1 at initial Hg(II) concentration of 850 mg L-1, contact time of 120 min, solution pH of 6, and at 40 °C. Kinetic and thermodynamic studies illustrated the approximate equilibrium time and endothermicity or exothermicity of the process. Regeneration of the AF-PANFs was accomplished for seven times without efficiency drop. The superb performance of the AF-PANFs in the presence of co-existing ions did not decline.
Collapse
Affiliation(s)
- Sorour Nasimi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mostafa Dorosti
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Gómez-Ceballos V, García-Córdoba A, Zapata-Benabithe Z, Velásquez J, Quintana G. Preparation of hyperbranched polymers from oxidized lignin modified with triazine for removal of heavy metals. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Joshiba GJ, Kumar PS, Christopher FC, Pooja G, Kumar VV. Fabrication of novel amine-functionalized magnetic silica nanoparticles for toxic metals: kinetic and isotherm modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27202-27210. [PMID: 31041712 DOI: 10.1007/s11356-019-05186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
In this research, an amine-functionalized magnetic silica nanosorbent was prepared using the co-precipitation technique, and this nanosorbent can be effortlessly detached using an external magnetic field. FTIR and SEM analyses identified that the nanosorbent holds extraordinary adsorption characteristics for toxic metals' (copper, cadmium, zinc, and nickel) removal. The adsorption-affecting parameters were optimized, and the thermodynamic studies assessed that the adsorption process seemed to be spontaneous, feasible, and exothermic. The pseudo-first-order and Freundlich models perfectly fit the kinetic and equilibrium data, respectively. Langmuir monolayer capacity of the nanosorbent was analyzed using nonlinear evaluation methods such as 419.9 mg/g for copper, 321.9 mg/g for nickel, 217.3 mg/g for cadmium, and 137.6 mg/g for zinc. The used adsorbent was simply rejuvenated using the 0.2 N HCl solution subsequently with intense agitation. The result of the present research confirms that the produced nanosorbent can be effectively utilized for industrial wastewater management.
Collapse
Affiliation(s)
- Ganesan Janet Joshiba
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India.
| | | | - Gowri Pooja
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India
| | | |
Collapse
|
11
|
Liu J, Yi Z, Ou Z, Yang T. Removal of Cr(VI) and methyl orange by activated carbon fiber supported nanoscale zero-valent iron in a continuous fixed bed column. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:732-746. [PMID: 32970625 DOI: 10.2166/wst.2020.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The application of activated carbon fiber supported nanoscale zero-valent iron (ACF-nZVI) in the continuous removal of Cr(VI) and methyl orange (MO) from aqueous solution was studied in depth. The breakthrough curves of Cr(VI) in a fixed bed with ACF-nZVI were measured, and compared with those in the fixed bed with ACF. The catalytic wet peroxide oxidation (CWPO) process for MO was also carried out using ACF-nZVI after reacting with Cr(VI) in the same fixed bed. The results showed that the breakthrough time of ACF-nZVI was significantly longer than that of ACF. Higher pH values were unfavorable for the Cr(VI) removal. The breakthrough time increased with decreasing inlet Cr(VI) concentration or increasing bed height. The Yoon-Nelson and bed depth service time (BDST) models were found to show good agreement with the experimental data. The Cr(VI) removal capacity when using ACF-nZVI was two times higher than that when using ACF. Under the optimal empty bed contact time of 1.256 min, the fixed bed displayed high MO conversion (99.2%) and chemical oxygen demand removal ratio (55.7%) with low Fe leaching concentration (<5 mg/L) after continuous running for 240 min. After three cycles, the conversion of MO remained largely unchanged.
Collapse
Affiliation(s)
- Jian Liu
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China E-mail: ; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang 421008, China and Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, China
| | - Zhengji Yi
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China E-mail: ; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hengyang Normal University, Hengyang 421008, China and Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, China
| | - Ziling Ou
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China E-mail:
| | - Tianhui Yang
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China E-mail:
| |
Collapse
|
12
|
Budnyak TM, Piątek J, Pylypchuk IV, Klimpel M, Sevastyanova O, Lindström ME, Gun’ko VM, Slabon A. Membrane-Filtered Kraft Lignin-Silica Hybrids as Bio-Based Sorbents for Cobalt(II) Ion Recycling. ACS OMEGA 2020; 5:10847-10856. [PMID: 32455205 PMCID: PMC7240831 DOI: 10.1021/acsomega.0c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
Efficient and sustainable recycling of cobalt(II) is of increasing importance to support technological development in energy storage and electric vehicle industries. A composite material based on membrane-filtered lignin deposited on nanoporous silica microparticles was found to be an effective and sustainable sorbent for cobalt(II) removal. This bio-based sorbent exhibited a high sorption capacity, fast kinetics toward cobalt(II) adsorption, and good reusability. The adsorption capacity was 18 mg Co(II) per gram of dry adsorbent at room temperature (22 °C) at near-neutral pH, three times higher than that of the summarized capacity of lignin or silica starting materials. The kinetics study showed that 90 min is sufficient for effective cobalt(II) extraction by the composite sorbent. The pseudo-second-order kinetics and Freundlich isotherm models fitted well with experimentally obtained data and confirmed heterogeneity of adsorption sites. The promising potential of the lignin-silica composites for industrial applications in the cobalt recovering process was confirmed by high values of desorption in mildly acidic solutions.
Collapse
Affiliation(s)
- Tetyana M. Budnyak
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Jędrzej Piątek
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Ievgen V. Pylypchuk
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Matthias Klimpel
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Olena Sevastyanova
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center (WWSC), Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Mikael E. Lindström
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Volodymyr M. Gun’ko
- Chuiko
Institute of Surface Chemistry of National Academy of Sciences of
Ukraine, 17 General Naumov
Str., 03164 Kyiv, Ukraine
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| |
Collapse
|
13
|
Costa WD, da Silva Bento AM, de Araújo JAS, Menezes JMC, da Costa JGM, da Cunha FAB, Coutinho HDM, de Paula Filho FJ, Pereira Teixeira RN. Removal of copper(II) ions and lead(II) from aqueous solutions using seeds of Azadirachta indica A. Juss as bioadsorvent. ENVIRONMENTAL RESEARCH 2020; 183:109213. [PMID: 32062481 DOI: 10.1016/j.envres.2020.109213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 05/12/2023]
Abstract
In recent decades, aquatic environment pollution has become a global challenge due to a rapid industrial growth. In this context, adsorption has become one of the most used methods, gaining importance especially in the last decades, given the growing concern over environmental damages caused by these pollutants. Additionally, its low cost and bioavailability are attractive. Therefore, the present study proposed to investigate the adsorption potential of A. indica seeds for Cu(II) and Pb(II) removal in synthetic solutions. Equilibrium studies were carried out via isothermal adsorption in batch systems. Kinetic studies were used to evaluate the lowest equilibrium time. The two evaluated ions were better suited to the Langmuir model and Freundlich model. When applying Langmuir's model on Neem seed powder adsorption, maximum adsorption capacities of 11.54 mg g-1 and 17.96 mg g-1, in the crude form and 11.41 mg g-1 and 19.80 mg g-1 in the alkaline form were obtained for Cu(II) and Pb(II) ions, respectively. The equilibrium time was approximately 80 and 100 min for both ions. The kinetic model best adjusted to the phenomena was the pseudo-second order (Ho Model), suggesting adsorption mainly has a chemical nature for both the studied metals. The results showed Neem seed powder may be a sustainable, efficient and low cost alternative for the removal of Cu(II) and Pb(II) metal cations present in effluents.
Collapse
|
14
|
Jiang C, Wang X, Hou B, Hao C, Li X, Wu J. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3050-3060. [PMID: 32069040 DOI: 10.1021/acs.jafc.9b07540] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Industrial wastewater has brought great disaster to water bodies and soils and seriously affected the growth of crops. It is necessary to prepare a stable, effective, and sustainable treatment agent to control water pollution to obtain clean water. The adsorption effect of a lignosulfonate-lysine hydrogel (CLS-Lys adsorbent) on heavy metal ions (Cu2+ and Co2+) in water is studied. In the synthesis experiment, a response surface method is used to optimize the content of sodium lignosulfonate, lysine, initiator, and cross-linker. The CLS-Lys adsorbent is characterized by Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, thermal analysis, and zeta potential analysis. The performance of the CLS-Lys adsorbent under different influencing factors is studied. The kinetic and isothermal models of the CLS-Lys adsorbent are established. The results show that the main adsorption model of the CLS-Lys adsorbent is chemical adsorption, accompanied by electrostatic adsorption. These two ions have a competitive adsorption relationship, and when the two ions are present at the same time, they inhibit each other. In addition, the CLS-Lys adsorbent has good adsorption and analytical regeneration performance. It is an economic and effective adsorbent and has a broad application prospect.
Collapse
Affiliation(s)
- Chenglong Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bingxia Hou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
15
|
Zhu L, Xu A, Zhang H, Lu Y, Liu S, Chen X, Chen H. Lignin Reactions and Structural Alternations under Typical Biomass Pretreatment Methods. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The utilization of biomass in the production of renewable bioenergy and biomaterials has been a popular topic since the past decades as they are rich in carbohydrates. Most biomasses, such as wood, monocotyledons, and agriculture residues, need to be pretreated before the conversion of carbohydrates in order to break down the recalcitrant cell wall structure and increase the fiber accessibility. To date, a variety of pretreatment methods have been developed that vary from physical to chemical and biological methods. Pretreatment processes affect the cell wall physical structure as well as the chemical structure of the cell wall constituents. Comparing to the studies of the cellulose and hemicelluloses structural changes during pretreatment, such studies on lignin are relatively limited. On the other hand, in order to utilize the part of lignin from biorefinery processes, the understanding of the lignin structural changes during the refining process becomes important. In this study, typical pretreatment methods such as hydrothermal pretreatment, alkaline pretreatment, biodegradation, and oxidative pretreatment are introduced and their corresponding impacts on the lignin structures are reviewed.
Collapse
Affiliation(s)
- Linjiang Zhu
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anjie Xu
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Zhang
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuele Lu
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-College of Environmental Science and Forestry, Syracuse, NY, 13210, United States
| | - Xiaolong Chen
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanchi Chen
- Fermentation Technology Institute, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
16
|
Fujisaki T, Kashima K, Hagiri M, Imai M. Isothermal Adsorption Behavior of Cesium Ions in a Novel Chitosan‐Prussian Blue‐Based Membrane. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tomoyuki Fujisaki
- National Institute of Technology, Oyama CollegeDepartment of Materials Chemistry and Bioengineering 771 Ohaza-Nakakuki 323-0806 Oyama, Tochigi Japan
| | - Keita Kashima
- National Institute of Technology, Oyama CollegeDepartment of Materials Chemistry and Bioengineering 771 Ohaza-Nakakuki 323-0806 Oyama, Tochigi Japan
| | - Masahide Hagiri
- National Institute of Technology, Fukushima CollegeDepartment of Applied Chemistry and Biochemistry 30 Nagao, Kamiarakawa, Taira, Iwaki 970-8034 Fukushima Japan
| | - Masanao Imai
- Nihon UniversityGraduate School of Bioresource Sciences 1866, Kameino, Fujisawa 252-0880 Kanagawa Japan
| |
Collapse
|