1
|
Zeitvogel J, Döhner K, Klug I, Rademacher F, Gläser R, Sodeik B, Harder J, Werfel T. The antimicrobial protein RNase 7 directly restricts herpes simplex virus infection of human keratinocytes. J Med Virol 2024; 96:e29942. [PMID: 39360648 DOI: 10.1002/jmv.29942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Approximately 22% of moderately to severely affected atopic dermatitis (AD) patients have a history of eczema herpeticum, a disseminated rash primarily caused by herpes simplex virus type 1 (HSV-1). Reduced activity of antimicrobial peptides may contribute to the increased susceptibility of AD patients to HSV-1. We previously demonstrated that the antimicrobial protein RNase 7 limits HSV-1 infection of human keratinocytes by promoting self-DNA sensing. Here, we addressed whether RNase 7 has any effect on HSV-1 infection when infecting keratinocytes without exogenously added costimulatory DNA, and which step(s) of the infection cycle RNase 7 interferes with. We quantified viral gene expression by RT-qPCR and flow cytometry, viral genome replication by qPCR, virucidal effects by plaque titration, and plaque formation and the subcellular localization of incoming HSV-1 particles by microscopy. Recombinant RNase 7 restricted HSV-1 gene expression, genome replication, and plaque formation in human keratinocytes. It decreased HSV-1 immediate-early transcripts independently of the induction of interferon-stimulated genes. Its main effect was on intracellular infection processes and not on extracellular virions or virus binding to cells. RNase 7 reduced the amount of cell-associated capsids and the HSV-1 envelope glycoprotein D at 3 but not at 0.5 h postinfection. Our data show that RNase 7 directly restricts HSV-1 infection of human keratinocytes, possibly by promoting the degradation of incoming HSV-1 particles. This suggests that RNase 7 may limit HSV-1 spread in the skin and that mechanisms that reduce its activity in the lesional skin of AD patients may increase their susceptibility to eczema herpeticum.
Collapse
Affiliation(s)
- Jana Zeitvogel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ilona Klug
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Regine Gläser
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Beate Sodeik
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
3
|
Morales-Molina A, Rodriguez-Milla MA, Garcia-Rodriguez P, Hidalgo L, Alemany R, Garcia-Castro J. Deletion of the RGD motif from the penton base in oncolytic adenoviruses enhances antitumor efficacy of combined CAR T cell therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200863. [PMID: 39290319 PMCID: PMC11406095 DOI: 10.1016/j.omton.2024.200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Oncolytic viruses often face challenges in achieving optimal antitumor immunity as standalone therapies. The penton base RGD-integrin interactions play a significant role in wild-type adenovirus-induced innate immune responses. To modify these responses, we present ISC301, a novel oncolytic adenovirus engineered by deleting the natural RGD motifs in the penton base while incorporating artificial RGD motifs in the fiber knobs. ISC301 demonstrated comparable in vitro infectivity, cytotoxic effects, and signaling profiles across various cell types to its parental ICOVIR-5, which retains the penton base RGD motif. In immunodeficient and immunocompetent mouse models, ISC301 exhibited similar in vivo antitumor efficacy to ICOVIR-5. However, ISC301 induced higher intratumoral inflammation through NF-κB activation, leading to increased levels of tumor-infiltrating leukocytes and higher proportion of cytotoxic CD8+ T cells. In addition, ISC301 elicits a heightened pro-inflammatory response in peripheral blood. Importantly, when combined with CAR T cell therapy, ISC301 exhibited superior antitumor efficacy, surpassing monotherapy outcomes. These findings emphasize the impact of adenoviral modifications on antitumor immune responses. The deletion of penton base RGD motifs enhances ISC301's pro-inflammatory profile and boosts CAR T cell therapy efficacy. This study enhances understanding of oncolytic virus engineering strategies, positioning ISC301 as a promising candidate for combined immunotherapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
| | | | - Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Universidad Nacional de Educación a Distancia, UNED, 28015 Madrid, Spain
| | - Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ramon Alemany
- Oncobell and ProCure Programs, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Instituto de Investigación de Enfermedades Raras (IIER) & Departamento de Desarrollo de Medicamentos de Terapias Avanzadas (DDMTA), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
4
|
Gerber-Tichet E, Blanchet FP, Majzoub K, Kremer EJ. Toll-like receptor 4 - a multifunctional virus recognition receptor. Trends Microbiol 2024:S0966-842X(24)00171-9. [PMID: 39179422 DOI: 10.1016/j.tim.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Since the initial description of Toll receptors in Drosophila and their mammalian counterparts Toll-like receptors (TLRs), numerous fundamental and applied studies have explored their crucial role as sensors of pathogen-associated molecular patterns (PAMPs). Among the ten human TLRs, TLR4 is particularly well known for its ability to detect lipopolysaccharides (LPS), a component of the Gram-negative bacterial cell wall. In addition to its archetypal functions, TLR4 is also a versatile virus sensor. This review provides a background on the discovery of TLR4 and how this knowledge laid a foundation for characterization of its diverse roles in antiviral responses, examined through genetic, biochemical, structural, and immunological approaches. These advances have led to a deeper understanding of the molecular functions that enable TLR4 to orchestrate multi-nodal control by professional antigen-presenting cells (APCs) to initiate appropriate and regulated antiviral immune responses.
Collapse
Affiliation(s)
- Elina Gerber-Tichet
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS UMR 9004, 34090 Montpellier, France
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR 5535, 34090 Montpellier, France.
| |
Collapse
|
5
|
Zhao C, Porter JM, Burke PC, Arnberg N, Smith JG. Alpha-defensin binding expands human adenovirus tropism. PLoS Pathog 2024; 20:e1012317. [PMID: 38900833 PMCID: PMC11230588 DOI: 10.1371/journal.ppat.1012317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/08/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo. We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo. In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Phillip C. Burke
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Niklas Arnberg
- Department of Clinical Microbiology, Division of Virology and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Zhao C, Porter JM, Burke PC, Arnberg N, Smith JG. Alpha-defensin binding expands human adenovirus tropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596681. [PMID: 38854108 PMCID: PMC11160700 DOI: 10.1101/2024.05.30.596681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mammalian α-defensins are a family of abundant effector peptides of the mucosal innate immune system. Although primarily considered to be antimicrobial, α-defensins can increase rather than block infection by certain prominent bacterial and viral pathogens in cell culture and in vivo . We have shown previously that exposure of mouse and human adenoviruses (HAdVs) to α-defensins is able to overcome competitive inhibitors that block cell binding, leading us to hypothesize a defensin-mediated binding mechanism that is independent of known viral receptors. To test this hypothesis, we used genetic approaches to demonstrate that none of several primary receptors nor integrin co-receptors are needed for human α-defensin-mediated binding of HAdV to cells; however, infection remains integrin dependent. Thus, our studies have revealed a novel pathway for HAdV binding to cells that bypasses viral primary receptors. We speculate that this pathway functions in parallel with receptor-mediated entry and contributes to α-defensin-enhanced infection of susceptible cells. Remarkably, we also found that in the presence of α-defensins, HAdV tropism is expanded to non-susceptible cells, even when viruses are exposed to a mixture of both susceptible and non-susceptible cells. Therefore, we propose that in the presence of sufficient concentrations of α-defensins, such as in the lung or gut, integrin expression rather than primary receptor expression will dictate HAdV tropism in vivo . In summary, α-defensins may contribute to tissue tropism not only through the neutralization of susceptible viruses but also by allowing certain defensin-resistant viruses to bind to cells independently of previously described mechanisms. Author Summary In this study, we demonstrate a novel mechanism for binding of human adenoviruses (HAdVs) to cells that is dependent upon interactions with α-defensin host defense peptides but is independent of known viral receptors and co-receptors. To block normal receptor-mediated HAdV infection, we made genetic changes to both host cells and HAdVs. Under these conditions, α-defensins restored cell binding; however, infection still required the function of HAdV integrin co-receptors. This was true for multiple types of HAdVs that use different primary receptors and for cells that are either naturally devoid of HAdV receptors or were engineered to be receptor deficient. These observations suggest that in the presence of concentrations of α-defensins that would be found naturally in the lung or intestine, there are two parallel pathways for HAdV binding to cells that converge on integrins for productive infection. Moreover, these binding pathways function independently, and both operate in mixed culture. Thus, we have found that viruses can co-opt host defense molecules to expand their tropism.
Collapse
|
8
|
Balsera-Manzanero M, Ghirga F, Ruiz-Molina A, Mori M, Pachón J, Botta B, Cordero E, Quaglio D, Sánchez-Céspedes J. Inhibition of adenovirus transport from the endosome to the cell nucleus by rotenone. Front Pharmacol 2024; 14:1293296. [PMID: 38273842 PMCID: PMC10808720 DOI: 10.3389/fphar.2023.1293296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Regardless of the clinical impact of human adenovirus (HAdV) infections in the healthy population and its high morbidity in immunosuppressed patients, a specific treatment is still not yet available. In this study, we screened the CM1407 COST Action's chemical library, comprising 1,233 natural products to identify compounds that restrict HAdV infection. Among them, we identified rotenolone, a compound that significantly inhibited HAdV infection. Next, we selected four isoflavonoid-type compounds (e.g., rotenone, deguelin, millettone, and tephrosin), namely rotenoids, structurally related to rotenolone in order to evaluate and characterized in vitro their antiviral activities against HAdV and human cytomegalovirus (HCMV). Their IC50 values for HAdV ranged from 0.0039 µM for rotenone to 0.07 µM for tephrosin, with selective indices ranging from 164.1 for rotenone to 2,429.3 for deguelin. In addition, the inhibition of HCMV replication ranged from 50% to 92.1% at twice the IC50 concentrations obtained in the plaque assay for each compound against HAdV. Our results indicated that the mechanisms of action of rotenolone, deguelin, and tephrosin involve the late stages of the HAdV replication cycle. However, the antiviral mechanism of action of rotenone appears to involve the alteration of the microtubular polymerization, which prevents HAdV particles from reaching the nuclear membrane of the cell. These isoflavonoid-type compounds exert high antiviral activity against HAdV at nanomolar concentrations, and can be considered strong hit candidates for the development of a new class of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- María Balsera-Manzanero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Ana Ruiz-Molina
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisa Cordero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Javier Sánchez-Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Anderson CA, Barrera MD, Boghdeh NA, Smith M, Alem F, Narayanan A. Brilacidin as a Broad-Spectrum Inhibitor of Enveloped, Acutely Infectious Viruses. Microorganisms 2023; 12:54. [PMID: 38257881 PMCID: PMC10819233 DOI: 10.3390/microorganisms12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Alphaviruses, belonging to the Togaviridae family, and bunyaviruses, belonging to the Paramyxoviridae family, are globally distributed and lack FDA-approved vaccines and therapeutics. The alphaviruses Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV) are known to cause severe encephalitis, whereas Sindbis virus (SINV) causes arthralgia potentially persisting for years after initial infection. The bunyavirus Rift Valley Fever virus (RVFV) can lead to blindness, liver failure, and hemorrhagic fever. Brilacidin, a small molecule that was designed de novo based on naturally occurring host defensins, was investigated for its antiviral activity against these viruses in human small airway epithelial cells (HSAECs) and African green monkey kidney cells (Veros). This testing was further expanded into a non-enveloped Echovirus, a Picornavirus, to further demonstrate brilacidin's effect on early steps of the viral infectious cycle that leads to inhibition of viral load. Brilacidin demonstrated antiviral activity against alphaviruses VEEV TC-83, VEEV TrD, SINV, EEEV, and bunyavirus RVFV. The inhibitory potential of brilacidin against the viruses tested in this study was dependent on the dosing strategy which necessitated compound addition pre- and post-infection, with addition only at the post-infection stage not eliciting a robust inhibitory response. The inhibitory activity of brilacidin was only modest in the context of the non-enveloped Picornavirus Echovirus, suggesting brilacidin may be less potent against non-enveloped viruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Aarthi Narayanan
- Center for Infectious Disease Research, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (C.A.A.); (M.D.B.); (N.A.B.); (M.S.); (F.A.)
| |
Collapse
|
10
|
Grand RJ. Pathogenicity and virulence of human adenovirus F41: Possible links to severe hepatitis in children. Virulence 2023; 14:2242544. [PMID: 37543996 PMCID: PMC10405776 DOI: 10.1080/21505594.2023.2242544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Over 100 human adenoviruses (HAdVs) have been isolated and allocated to seven species, A-G. Species F comprises two members-HAdV-F40 and HAdV-F41. As their primary site of infection is the gastrointestinal tract they have been termed, with species A, enteric adenoviruses. HAdV-F40 and HAdV-F41 are a common cause of gastroenteritis and diarrhoea in children. Partly because of difficulties in propagating the viruses in the laboratory, due to their restrictions on growth in many cell lines, our knowledge of the properties of individual viral proteins is limited. However, the structure of HAdV-F41 has recently been determined by cryo-electron microscopy. The overall structure is similar to those of HAdV-C5 and HAdV-D26 although with some differences. The sequence and arrangement of the hexon hypervariable region 1 (HVR1) and the arrangement of the C-terminal region of protein IX differ. Variations in the penton base and hexon HVR1 may play a role in facilitating infection of intestinal cells by HAdV-F41. A unique feature of HAdV-F40 and F41, among human adenoviruses, is the presence and expression of two fibre genes, giving long and short fibre proteins. This may also contribute to the tropism of these viruses. HAdV-F41 has been linked to a recent outbreak of severe acute hepatitis "of unknown origin" in young children. Further investigation has shown a very high prevalence of adeno-associated virus-2 in the liver and/or plasma of some cohorts of patients. These observations have proved controversial as HAdV-F41 had not been reported to infect the liver and AAV-2 has generally been considered harmless.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, the Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Hu CT, Diaz K, Yang LC, Sharma A, Greenberg HB, Smith JG. Corrected and republished from: "VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection". J Virol 2023; 97:e0096223. [PMID: 37787534 PMCID: PMC10617384 DOI: 10.1128/jvi.00962-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.
Collapse
Affiliation(s)
- Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Linda C. Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Harry B. Greenberg
- Department of Medicine, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
12
|
Bernard-Raichon L, Cadwell K. Immunomodulation by Enteric Viruses. Annu Rev Virol 2023; 10:477-502. [PMID: 37380186 DOI: 10.1146/annurev-virology-111821-112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Enteric viruses display intricate adaptations to the host mucosal immune system to successfully reproduce in the gastrointestinal tract and cause maladies ranging from gastroenteritis to life-threatening disease upon extraintestinal dissemination. However, many viral infections are asymptomatic, and their presence in the gut is associated with an altered immune landscape that can be beneficial or adverse in certain contexts. Genetic variation in the host and environmental factors including the bacterial microbiota influence how the immune system responds to infections in a remarkably viral strain-specific manner. This immune response, in turn, determines whether a given virus establishes acute versus chronic infection, which may have long-lasting consequences such as susceptibility to inflammatory disease. In this review, we summarize our current understanding of the mechanisms involved in the interaction between enteric viruses and the immune system that underlie the impact of these ubiquitous infectious agents on our health.
Collapse
Affiliation(s)
- Lucie Bernard-Raichon
- Cell Biology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine; Department of Systems Pharmacology and Translational Therapeutics; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
13
|
Porter JM, Oswald MS, Sharma A, Emmanuel S, Kansol A, Bennett A, McKenna R, Smith JG. A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. J Virol 2023; 97:e0006023. [PMID: 36916912 PMCID: PMC10062168 DOI: 10.1128/jvi.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors due to their low pathogenicity and tissue tropism properties. However, the efficacy of these vectors is impeded by interactions with the host immune system. One potential immune barrier to vector transduction is innate immune host defense peptides, such as alpha-defensins, which are potent antiviral agents against other nonenveloped viruses. To investigate the interaction between AAVs and alpha-defensins, we utilized two closely related AAV serotypes, AAV1 and AAV6. Although their capsids differ by only six residues, these two serotypes exhibit markedly different tissue tropisms and transduction efficiencies. Using two abundant human alpha-defensins, enteric human defensin 5 (HD5) and myeloid human neutrophil peptide 1 (HNP1), we found both serotype-specific and defensin-specific effects on AAV infection. AAV6 infection was uniformly neutralized by both defensins at low micromolar concentrations; however, inhibition of AAV1 infection was profoundly influenced by the timing of defensin exposure to the virus relative to viral attachment to the cell. Remarkably, these differences in the defensin-dependent infection phenotype between the viruses are completely dictated by the identity of a single, surface-exposed amino acid (position 531) that varies between the two serotypes. These findings reveal a determinant for defensin activity against a virus with unprecedented precision. Furthermore, they provide a rationale for the investigation of other AAV serotypes not only to understand the mechanism of neutralization of defensins against AAVs but also to design more efficient vectors. IMPORTANCE The ability of adeno-associated viruses (AAVs) to infect and deliver genetic material to a range of cell types makes them favorable gene therapy vectors. However, AAV vectors encounter a wide variety of host immune factors throughout the body, which can impede efficient gene delivery. One such group of factors is the alpha-defensins, which are a key component of the innate immune system that can directly block viral infection. By studying the impact that alpha-defensins have on AAV infection, we found that two similar AAV serotypes (AAV1 and AAV6) have different sensitivities to inhibition. We also identified a single amino acid (position 531) that differs between the two AAV serotypes and is responsible for mediating their defensin sensitivity. By investigating the effects that host immune factors have on AAV infection, more efficient vectors may be developed to evade intervention by the immune system prior to gene delivery.
Collapse
Affiliation(s)
- Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mackenzi S. Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shanan Emmanuel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
15
|
Keikha M, Kamali H, Ghazvini K, Karbalaei M. Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections. Virusdisease 2022; 33:445-455. [PMID: 36447811 PMCID: PMC9701303 DOI: 10.1007/s13337-022-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
According to the literature, treatment of HCV and HBV infections faces challenges due to problems such as the emergence of drug-resistant mutants, the high cost of treatment, and the side effects of current antiviral therapy. Antimicrobial peptides (AMPs), a group of small peptides, are a part of the immune system and are considered as an alternative treatment for microbial infections. These peptides are water-soluble with amphiphilic (hydrophilic and hydrophobic surfaces) characteristics. AMPs are produced by a wide range of organisms including both prokaryotic and eukaryotic cells. The antiviral mechanisms of AMPs include inhibiting virus entry, inhibiting intracellular virus replication, inhibiting intracellular viral packaging, and inducing immune responses. In addition, AMPs are a new generation of antiviral biomolecules that have very low toxicity for human host cells, particularly liver cell lines. AMPs can be considered as one of the most important strategies for developing new adjuvant drugs in the treatment of HBV and HCV infections. In the present study, several groups of AMPs (with a net positive charge) such as Human cathelicidin, Claudin-1, Defensins, Hepcidin, Lactoferrin, Casein, Plectasin, Micrococcin P1, Scorpion venom, and Synthetic peptides were reviewed with antiviral properties against HBV and HCV.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
16
|
Paris O, Mennechet FJD, Kremer EJ. Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies. Front Immunol 2022; 13:975910. [PMID: 36275713 PMCID: PMC9579290 DOI: 10.3389/fimmu.2022.975910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Collapse
|
17
|
Dienst EGT, Kremer EJ. Adenovirus receptors on antigen-presenting cells of the skin. Biol Cell 2022; 114:297-308. [PMID: 35906865 DOI: 10.1111/boc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Skin, the largest human organ, is part of the first line of physical and immunological defense against many pathogens. Understanding how skin antigen-presenting cells (APCs) respond to viruses or virus-based vaccines is crucial to develop antiviral pharmaceutics, and efficient and safe vaccines. Here, we discuss the way resident and recruited skin APCs engage adenoviruses and the impact on innate immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
18
|
Hu CT, Diaz K, Yang LC, Sharma A, Greenberg HB, Smith JG. VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection. J Virol 2022; 96:e0205321. [PMID: 35285683 PMCID: PMC9006894 DOI: 10.1128/jvi.02053-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Fecal-oral pathogens encounter constitutively expressed enteric alpha-defensins in the intestine during replication and transmission. Alpha-defensins can be potently antiviral and antibacterial; however, their primary sequences, the number of isoforms, and their activity against specific microorganisms often vary greatly between species, reflecting adaptation to species-specific pathogens. Therefore, alpha-defensins might influence not only microbial evolution and tissue tropism within a host but also species tropism and zoonotic potential. To investigate these concepts, we generated a panel of enteric and myeloid alpha-defensins from humans, rhesus macaques, and mice and tested their activity against group A rotaviruses, an important enteric viral pathogen of humans and animals. Rotaviral adaptation to the rhesus macaque correlated with resistance to rhesus enteric, but not myeloid, alpha-defensins and sensitivity to human alpha-defensins. While mouse rotaviral infection was increased in the presence of mouse enteric alpha-defensins, two prominent genotypes of human rotaviruses were differentially sensitive to human enteric alpha-defensins. Furthermore, the effects of cross-species alpha-defensins on human and mouse rotaviruses did not follow an obvious pattern. Thus, exposure to alpha-defensins may have shaped the evolution of some, but not all, rotaviruses. We then used a genetic approach to identify the viral attachment and penetration protein, VP4, as a determinant of alpha-defensin sensitivity. Our results provide a foundation for future studies of the VP4-dependent mechanism of defensin neutralization, highlight the species-specific activities of alpha-defensins, and focus future efforts on a broader range of rotaviruses that differ in VP4 to uncover the potential for enteric alpha-defensins to influence species tropism. IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that some, but not all, rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.
Collapse
Affiliation(s)
- Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Linda C. Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Harry B. Greenberg
- Department of Medicine and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
19
|
Prevalence of adenoviruses as ocular disease causatives in Saudi Arabia. Saudi J Biol Sci 2022; 29:2026-2032. [PMID: 35531233 PMCID: PMC9072915 DOI: 10.1016/j.sjbs.2021.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Although Human Adenoviruses outbreaks are rare, there still could be a potential chance for those viruses to mutate and spread quickly in human populations with severe public health and socioeconomic consequences. Outbreaks often spread fairly quickly with considerable morbidity/mortality. Saudi Arabia's geopolitical and religious significance bring with it, millions of pilgrims, and tourists yearly. This presents a significant potential for HAdVs epidemics. This review shows that even with the mushrooming serotypes and genotypes, the scholarly knowledge on the nature, structure, transmission, and management of HAdVs is already well-established. Significant research is ongoing on pharmacological interventions, which, presently remain speculative and lacking in effectiveness. This review similarly uncovers a shortage of literature, both recent and dated, on epidemic keratoconjunctivitis in either Saudi Arabia or the Middle East.
Collapse
|
20
|
Adenovirus-α-defensin complexes induce NLRP3-associated maturation of human phagocytes via TLR4 engagement. J Virol 2022; 96:e0185021. [PMID: 35080426 DOI: 10.1128/jvi.01850-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intramuscular delivery of human adenovirus (HAdV)-based vaccines leads to rapid recruitment of neutrophils, which then release antimicrobial peptides/proteins (AMPs). How these AMPs influence vaccine efficacy over the subsequent 24 h is poorly understood. In this study, we asked if human neutrophil protein 1 (HNP-1), an α-defensin that influences the direct and indirect innate immune responses to a range of pathogens, impacts the response of human phagocytes to three HAdV species/types (HAdV-C5, -D26, -B35). We show that HNP-1 binds to the capsids, redirects HAdV-C5, -D26, -B35 to Toll-like receptor 4 (TLR4), which leads to internalization, an NLRP3-mediated inflammasome response, and IL-1β release. Surprisingly, IL-1β release was not associated with notable disruption of plasma membrane integrity. These data further our understanding of HAdV vaccine immunogenicity and may provide pathways to extend the efficacy. Importance This study examines the interactions between danger-associated molecular patterns and human adenoviruses and its impact on vaccines. HAdVs and HNP-1 can interact, these interactions will modify the response of antigen-presenting cells., which will influence vaccine efficacy.
Collapse
|
21
|
Zhao H, Yuen KY. Broad-spectrum Respiratory Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:137-153. [DOI: 10.1007/978-981-16-8702-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
23
|
Biserni GB, Scarpini S, Dondi A, Biagi C, Pierantoni L, Masetti R, Sureshkumar S, Rocca A, Lanari M. Potential Diagnostic and Prognostic Biomarkers for Adenovirus Respiratory Infection in Children and Young Adults. Viruses 2021; 13:1885. [PMID: 34578465 PMCID: PMC8472906 DOI: 10.3390/v13091885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Human Adenoviruses (HAdV) are known to be potentially associated with strong inflammatory responses and morbidity in pediatric patients. Although most of the primary infections are self-limiting, the severity of clinical presentation, the elevation of the white blood cell count and inflammatory markers often mimic a bacterial infection and lead to an inappropriate use of antibiotics. In infections caused by HAdV, rapid antigen detection kits are advisable but not employed routinely; costs and feasibility of rapid syndromic molecular diagnosis may limit its use in the in-hospital setting; lymphocyte cultures and two-sampled serology are time consuming and impractical when considering the use of antibiotics. In this review, we aim to describe the principal diagnostic tools and the immune response in HAdV infections and evaluate whether markers based on the response of the host may help early recognition of HAdV and avoid inappropriate antimicrobial prescriptions in acute airway infections.
Collapse
Affiliation(s)
- Giovanni Battista Biserni
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.B.B.); (S.S.)
| | - Sara Scarpini
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (G.B.B.); (S.S.)
| | - Arianna Dondi
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Carlotta Biagi
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Luca Pierantoni
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Riccardo Masetti
- Pediatric Unit, Scientific Institute for Research and Healthcare (IRCCS), Sant Orsola Hospital, 40138 Bologna, Italy;
| | | | - Alessandro Rocca
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| | - Marcello Lanari
- Pediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS), Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy; (C.B.); (L.P.); (A.R.); (M.L.)
| |
Collapse
|
24
|
Rivas-Santiago B, Jacobo-Delgado Y, Rodriguez-Carlos A. Are Host Defense Peptides and Their Derivatives Ready to be Part of the Treatment of the Next Coronavirus Pandemic? Arch Immunol Ther Exp (Warsz) 2021; 69:25. [PMID: 34529143 PMCID: PMC8444179 DOI: 10.1007/s00005-021-00630-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.
Collapse
Affiliation(s)
- Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico.
| | - Yolanda Jacobo-Delgado
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| | - Adrian Rodriguez-Carlos
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| |
Collapse
|
25
|
Zakaryan H, Chilingaryan G, Arabyan E, Serobian A, Wang G. Natural antimicrobial peptides as a source of new antiviral agents. J Gen Virol 2021; 102. [PMID: 34554085 PMCID: PMC10026734 DOI: 10.1099/jgv.0.001661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.
Collapse
Affiliation(s)
- Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
- Denovo Sciences CJSC, 0033, Yerevan, Armenia
| | - Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | | | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
26
|
Li D, Guo F, Chen K, Yang X, Wang Y. Preclinical Safety Evaluation of a Recombinant Plasmid Vector Encoding Mature Human Neutrophil Peptide-1 by Repeated Local Administrations in Nonhuman Primates. Hum Gene Ther 2021; 32:1382-1389. [PMID: 33858232 DOI: 10.1089/hum.2020.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In our previous studies, a novel gene therapy approach was developed based on a plasmid vector pSecTag2B in which recombinant HNP1 gene was regulated under a cytomegalovirus promoter to encode a mature human neutrophil peptide-1 (HNP1) form. We showed for the first time in various tumor models, including human cancer xenografts, that overexpression of HNP1 in the tumor milieu by intratumoral pSecTag-HNP1 (pHNP1) administration efficiently attenuated in vivo tumor progression, mediated host immune responses to tumors, and produced a synergistic effect when combined with chemotherapeutics. In this study, a preclinical safety investigation of HNP1 gene therapy was conducted in nonhuman primates. Eleven cynomolgus monkeys were divided into three groups of three to four animals each and received either repeated s.c. injections of pHNP1/cationic liposome complexes at a low (0.625 mg/kg) or a high (2.5 mg/kg) dose or glucose as control. Significant HNP1 in vivo accumulation was detected after consecutive administrations. All primates reached the end of the study with good body conditions. Injection site inflammation was the only obvious toxic reaction during observation period. In addition, elevation of monocyte/macrophage and neutrophil as well as decline of lymphocyte were detected in the peripheral blood of pHNP1-treated primates. These alterations were partially alleviated at the end of observation period. Besides, dose-related histopathological changes of the immune organs were observed at necropsy, including a minimal thymic lymphocyte decrease and a minimal-to-mild lymph node erythrocyte increase, but which cannot be excluded from HNP1-induced immune reactions. Together, these data support future clinical studies of pHNP1-based local gene delivery in tumor patients.
Collapse
Affiliation(s)
- Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Fuchun Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Chen
- WestChina-Frontier Pharma Tech Co., Ltd. (WCFP), National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, China
| | - Xunning Yang
- WestChina-Frontier Pharma Tech Co., Ltd. (WCFP), National Chengdu Center for Safety Evaluation of Drugs (NCCSED), Chengdu, China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Drug Clinical Trial, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ghosh SK, Weinberg A. Ramping Up Antimicrobial Peptides Against Severe Acute Respiratory Syndrome Coronavirus-2. Front Mol Biosci 2021; 8:620806. [PMID: 34235176 PMCID: PMC8255374 DOI: 10.3389/fmolb.2021.620806] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Human-derived antimicrobial peptides (AMPs), such as defensins and cathelicidin LL-37, are members of the innate immune system and play a crucial role in early pulmonary defense against viruses. These AMPs achieve viral inhibition through a variety of mechanisms including, but not limited to, direct binding to virions, binding to and modulating host cell-surface receptors, blocking viral replication, and aggregation of viral particles and indirectly by functioning as chemokines to enhance or curb adaptive immune responses. Given the fact that we are in a pandemic of unprecedented severity and the urgent need for therapeutic options to combat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), naturally expressed AMPs and their derivatives have the potential to combat coronavirus disease 2019 (COVID-19) and impede viral infectivity in various ways. Provided the fact that development of effective treatments is an urgent public health priority, AMPs and their derivatives are being explored as potential prophylactic and therapeutic candidates. Additionally, cell-based platforms such as human mesenchymal stem cell (hMSC) therapy are showing success in saving the lives of severely ill patients infected with SARS-CoV-2. This could be partially due to AMPs released from hMSCs that also act as immunological rheostats to modulate the host inflammatory response. This review highlights the utilization of AMPs in strategies that could be implemented as novel therapeutics, either alone or in combination with other platforms, to treat CoV-2-infected individuals.
Collapse
Affiliation(s)
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
28
|
Chéneau C, Eichholz K, Tran TH, Tran TTP, Paris O, Henriquet C, Bajramovic JJ, Pugniere M, Kremer EJ. Lactoferrin Retargets Human Adenoviruses to TLR4 to Induce an Abortive NLRP3-Associated Pyroptotic Response in Human Phagocytes. Front Immunol 2021; 12:685218. [PMID: 34093588 PMCID: PMC8173049 DOI: 10.3389/fimmu.2021.685218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Despite decades of clinical and preclinical investigations, we still poorly grasp our innate immune response to human adenoviruses (HAdVs) and their vectors. In this study, we explored the impact of lactoferrin on three HAdV types that are being used as vectors for vaccines. Lactoferrin is a secreted globular glycoprotein that influences direct and indirect innate immune response against a range of pathogens following a breach in tissue homeostasis. The mechanism by which lactoferrin complexes increases HAdV uptake and induce maturation of human phagocytes is unknown. We show that lactoferrin redirects HAdV types from species B, C, and D to Toll-like receptor 4 (TLR4) cell surface complexes. TLR4-mediated internalization of the HAdV-lactoferrin complex induced an NLRP3-associated response that consisted of cytokine release and transient disruption of plasma membrane integrity, without causing cell death. These data impact our understanding of HAdV immunogenicity and may provide ways to increase the efficacy of HAdV-based vectors/vaccines.
Collapse
Affiliation(s)
- Coraline Chéneau
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Karsten Eichholz
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Tuan Hiep Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Thi Thu Phuong Tran
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Océane Paris
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Corinne Henriquet
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université Montpellier, Institut Régional du Cancer, Montpellier, France
| | | | - Martine Pugniere
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université Montpellier, Institut Régional du Cancer, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
29
|
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog 2021; 155:104930. [PMID: 33933603 PMCID: PMC8084285 DOI: 10.1016/j.micpath.2021.104930] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitously present small peptides, which play a critical function in the innate immune system. The defensin class of AMPs represented an evolutionarily ancient family containing cationic cysteine residue and frequently expressed in epithelial or neutrophils cells. It plays myriad functions in host innate immune responses against various infection. Defensin has a broad spectrum of antimicrobial activities, including anti-bacteria, anti-viruses (AVPs), anti-fungi, anti-cancers, and also overcoming bacterial drug resistance. In this review, we compiled the progress on defensin, particularly incorporating the mechanism of action, their application as an antiviral agent, prospects in different areas, and limitations to be solved as an antiviral peptide. Defensins were explored, in particular, their capacity to stimulate innate and adaptive immunity by trigging as anti-coronavirus (COVID-19) peptides. The present review summarised its immunomodulatory and immunoenhancing properties and predominantly focused on its promising therapeutic adjuvant choices for combat against viral infection.
Collapse
Affiliation(s)
| | - Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
30
|
Xu J, Berastegui-Cabrera J, Carretero-Ledesma M, Chen H, Xue Y, Wold EA, Pachón J, Zhou J, Sánchez-Céspedes J. Discovery of a Small Molecule Inhibitor of Human Adenovirus Capable of Preventing Escape from the Endosome. Int J Mol Sci 2021; 22:ijms22041617. [PMID: 33562748 PMCID: PMC7915867 DOI: 10.3390/ijms22041617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses (HAdVs) display a wide range of tissue tropism and can cause an array of symptoms from mild respiratory illnesses to disseminated and life-threatening infections in immunocompromised individuals. However, no antiviral drug has been approved specifically for the treatment of HAdV infections. Herein, we report our continued efforts to optimize salicylamide derivatives and discover compound 16 (JMX0493) as a potent inhibitor of HAdV infection. Compound 16 displays submicromolar IC50 values, a higher selectivity index (SI > 100) and 2.5-fold virus yield reduction compared to our hit compound niclosamide. Moreover, unlike niclosamide, our mechanistic studies suggest that the antiviral activity of compound 16 against HAdV is achieved through the inhibition of viral particle escape from the endosome, which bars subsequent uncoating and the presentation of lytic protein VI.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; (J.X.); (H.C.); (Y.X.); (E.A.W.)
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, E41013 Seville, Spain; (J.B.-C.); (M.C.-L.); (J.P.)
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, E41013 Seville, Spain; (J.B.-C.); (M.C.-L.); (J.P.)
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; (J.X.); (H.C.); (Y.X.); (E.A.W.)
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; (J.X.); (H.C.); (Y.X.); (E.A.W.)
| | - Eric A. Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; (J.X.); (H.C.); (Y.X.); (E.A.W.)
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, E41013 Seville, Spain; (J.B.-C.); (M.C.-L.); (J.P.)
- Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA; (J.X.); (H.C.); (Y.X.); (E.A.W.)
- Correspondence: (J.Z.); (J.S.-C.); Tel.: +(1)-409-772-9748 (J.Z.); +(34)-955-923-100 (J.S.-C.)
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, E41013 Seville, Spain; (J.B.-C.); (M.C.-L.); (J.P.)
- Correspondence: (J.Z.); (J.S.-C.); Tel.: +(1)-409-772-9748 (J.Z.); +(34)-955-923-100 (J.S.-C.)
| |
Collapse
|
31
|
Pérez-Illana M, Martínez M, Condezo GN, Hernando-Pérez M, Mangroo C, Brown M, Marabini R, San Martín C. Cryo-EM structure of enteric adenovirus HAdV-F41 highlights structural variations among human adenoviruses. SCIENCE ADVANCES 2021; 7:eabd9421. [PMID: 33627423 PMCID: PMC11425762 DOI: 10.1126/sciadv.abd9421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 05/24/2023]
Abstract
Enteric adenoviruses, one of the main causes of viral gastroenteritis in the world, must withstand the harsh conditions found in the gut. This requirement suggests that capsid stability must be different from that of other adenoviruses. We report the 4-Å-resolution structure of a human enteric adenovirus, HAdV-F41, and compare it with that of other adenoviruses with respiratory (HAdV-C5) and ocular (HAdV-D26) tropisms. While the overall structures of hexon, penton base, and internal minor coat proteins IIIa and VIII are conserved, we observe partially ordered elements reinforcing the vertex region, which suggests their role in enhancing the physicochemical capsid stability of HAdV-F41. Unexpectedly, we find an organization of the external minor coat protein IX different from all previously characterized human and nonhuman mastadenoviruses. Knowledge of the structure of enteric adenoviruses provides a starting point for the design of vectors suitable for oral delivery or intestinal targeting.
Collapse
Affiliation(s)
- Marta Pérez-Illana
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Martínez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gabriela N Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Mercedes Hernando-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Casandra Mangroo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Martha Brown
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
32
|
Structure-Based Modeling of Complement C4 Mediated Neutralization of Adenovirus. Viruses 2021; 13:v13010111. [PMID: 33467558 PMCID: PMC7830055 DOI: 10.3390/v13010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023] Open
Abstract
Adenovirus (AdV) infection elicits a strong immune response with the production of neutralizing antibodies and opsonization by complement and coagulation factors. One anti-hexon neutralizing antibody, called 9C12, is known to activate the complement cascade, resulting in the deposition of complement component C4b on the capsid, and the neutralization of the virus. The mechanism of AdV neutralization by C4b is independent of downstream complement proteins and involves the blockage of the release of protein VI, which is required for viral escape from the endosome. To investigate the structural basis underlying how C4b blocks the uncoating of AdV, we built a model for the complex of human adenovirus type-5 (HAdV5) with 9C12, together with complement components C1 and C4b. This model positions C4b near the Arg-Gly-Asp (RGD) loops of the penton base. There are multiple amino acids in the RGD loop that might serve as covalent binding sites for the reactive thioester of C4b. Molecular dynamics simulations with a multimeric penton base and C4b indicated that stabilizing interactions may form between C4b and multiple RGD loops. We propose that C4b deposition on one RGD loop leads to the entanglement of C4b with additional RGD loops on the same penton base multimer and that this entanglement blocks AdV uncoating.
Collapse
|
33
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
34
|
Chéneau C, Kremer EJ. Adenovirus-Extracellular Protein Interactions and Their Impact on Innate Immune Responses by Human Mononuclear Phagocytes. Viruses 2020; 12:v12121351. [PMID: 33255892 PMCID: PMC7760109 DOI: 10.3390/v12121351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to highlight how, in a syngeneic system, human mononuclear phagocytes respond to environments containing human adenovirus (HAdV) and soluble extracellular proteins that influence their innate immune response. Soluble extracellular proteins, including immunoglobulins, blood clotting factors, proteins of the complement system, and/or antimicrobial peptides (AMPs) can exert direct effects by binding to a virus capsid that modifies interactions with pattern recognition receptors and downstream signaling. In addition, the presence, generation, or secretion of extracellular proteins can indirectly influence the response to HAdVs via the activation and recruitment of cells at the site of infection.
Collapse
|
35
|
Diaz K, Hu CT, Sul Y, Bromme BA, Myers ND, Skorohodova KV, Gounder AP, Smith JG. Defensin-driven viral evolution. PLoS Pathog 2020; 16:e1009018. [PMID: 33232373 PMCID: PMC7723274 DOI: 10.1371/journal.ppat.1009018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023] Open
Abstract
Enteric alpha-defensins are potent effectors of innate immunity that are abundantly expressed in the small intestine. Certain enteric bacteria and viruses are resistant to defensins and even appropriate them to enhance infection despite neutralization of closely related microbes. We therefore hypothesized that defensins impose selective pressure during fecal-oral transmission. Upon passaging a defensin-sensitive serotype of adenovirus in the presence of a human defensin, mutations in the major capsid protein hexon accumulated. In contrast, prior studies identified the vertex proteins as important determinants of defensin antiviral activity. Infection and biochemical assays suggest that a balance between increased cell binding and a downstream block in intracellular trafficking mediated by defensin interactions with all of the major capsid proteins dictates the outcome of infection. These results extensively revise our understanding of the interplay between defensins and non-enveloped viruses. Furthermore, they provide a feasible rationale for defensins shaping viral evolution, resulting in differences in infection phenotypes of closely related viruses. Defensins are potent antimicrobial peptides that are found on human mucosal surfaces and can directly neutralize viruses. They are abundant in the small intestine, which is constantly challenged by ingested viral pathogens. Interestingly, non-enveloped viruses, such as adenovirus, that infect the gastrointestinal system are unaffected by defensins or can even appropriate defensins to enhance their infection. In contrast, respiratory adenoviruses are neutralized by the same defensins. How enteric viruses overcome defensin neutralization is not well understood. Our studies are the first to show that defensins can drive the evolution of non-enveloped viruses. Furthermore, we identify important components within human adenovirus that dictate sensitivity to defensins. This new insight into defensin-virus interactions informs our understanding of mucosal immunity to viral infections.
Collapse
Affiliation(s)
- Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youngmee Sul
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Beth A. Bromme
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicolle D. Myers
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ksenia V. Skorohodova
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anshu P. Gounder
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhao H, To KKW, Sze KH, Yung TTM, Bian M, Lam H, Yeung ML, Li C, Chu H, Yuen KY. A broad-spectrum virus- and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat Commun 2020; 11:4252. [PMID: 32843628 PMCID: PMC7447754 DOI: 10.1038/s41467-020-17986-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023] Open
Abstract
The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.
Collapse
Affiliation(s)
- Hanjun Zhao
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kong-Hung Sze
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Timothy Tin-Mong Yung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Mingjie Bian
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Hoiyan Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Man Lung Yeung
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Li Ka Shing Faculty of Medicine, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong, China.
- Li Ka Shing Faculty of Medicine, Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
37
|
Bhopatkar AA, Uversky VN, Rangachari V. Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:331-373. [PMID: 32828470 DOI: 10.1016/bs.pmbts.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being responsible for more than 90% of cellular functions, protein molecules are workhorses in all the life forms. In order to cater for such a high demand, proteins have evolved to adopt diverse structures that allow them to perform myriad of functions. Beginning with the genetically directed amino acid sequence, the classical understanding of protein function involves adoption of hierarchically complex yet ordered structures. However, advances made over the last two decades have revealed that inasmuch as 50% of eukaryotic proteome exists as partially or fully disordered structures. Significance of such intrinsically disordered proteins (IDPs) is further realized from their ability to exhibit multifunctionality, a feature attributable to their conformational plasticity. Among the coded amino acids, cysteines are considered to be "order-promoting" due to their ability to form inter- or intramolecular disulfide bonds, which confer robust thermal stability to the protein structure in oxidizing conditions. The co-existence of order-promoting cysteines with disorder-promoting sequences seems counter-intuitive yet many proteins have evolved to contain such sequences. In this chapter, we review some of the known cysteine-containing protein domains categorized based on the number of cysteines they possess. We show that many protein domains contain disordered sequences interspersed with cysteines. We show that a positive correlation exists between the degree of cysteines and disorder within the sequences that flank them. Furthermore, based on the computational platform, IUPred2A, we show that cysteine-rich sequences display significant disorder in the reduced but not the oxidized form, increasing the potential for such sequences to function in a redox-sensitive manner. Overall, this chapter provides insights into an exquisite evolutionary design wherein disordered sequences with interspersed cysteines enable potential modulatory protein functions under stress and environmental conditions, which thus far remained largely inconspicuous.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States; Center of Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
38
|
Abstract
Defensins are a major family of host defense peptides expressed predominantly in neutrophils and epithelial cells. Their broad antimicrobial activities and multifaceted immunomodulatory functions have been extensively studied, cementing their role in innate immunity as a core host-protective component against bacterial, viral and fungal infections. More recent studies, however, paint defensins in a bad light such that they are "alleged" to promote viral and bacterial infections in certain biological settings. This mini review summarizes the latest findings on the potential pathogenic properties of defensins against the backdrop of their protective roles in antiviral and antibacterial immunity. Further, a succinct description of both tumor-proliferative and -suppressive activities of defensins is also given to highlight their functional and mechanistic complexity in antitumor immunity. We posit that given an enabling environment defensins, widely heralded as the "Swiss army knife," can function as a "double-edged sword" in host immunity.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Abstract
Viruses are obligatory parasites that take advantage of intracellular niches to replicate. During infection, their genomes are carried in capsids across the membranes of host cells to sites of virion production by exploiting cellular behaviour and resources to guide and achieve all aspects of delivery and the downstream virus manufacturing process. Successful entry hinges on execution of a precisely tuned viral uncoating program where incoming capsids disassemble in consecutive steps to ensure that genomes are released at the right time, and in the right place for replication to occur. Each step of disassembly is cell-assisted, involving individual pathways that transmit signals to regulate discrete functions, but at the same time, these signalling pathways are organized into larger networks, which communicate back and forth in complex ways in response to the presence of virus. In this review, we consider the elegant strategy by which adenoviruses (AdVs) target and navigate cellular networks to initiate the production of progeny virions. There are many remarkable aspects about the AdV entry program; for example, the virus gains targeted control of a large well-defined local network neighbourhood by coupling several interacting processes (including endocytosis, autophagy and microtubule trafficking) around a collective reference state centred on the interactional topology and multifunctional nature of protein VI. Understanding the network targeting activity of protein VI, as well as other built-in mechanisms that allow AdV particles to be efficient at navigating the subsystems of the cell, can be used to improve viral vectors, but also has potential to be incorporated for use in entirely novel delivery systems.
Collapse
Affiliation(s)
- Justin W Flatt
- Faculty of Biological and Environmental Sciences and HiLIFE-Institute of Biotechnology, University of Helsinki , 00790 Helsinki , Finland
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences and HiLIFE-Institute of Biotechnology, University of Helsinki , 00790 Helsinki , Finland
| |
Collapse
|
40
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
41
|
Inhibitory Activity of a Scorpion Defensin BmKDfsin3 against Hepatitis C Virus. Antibiotics (Basel) 2020; 9:antibiotics9010033. [PMID: 31963532 PMCID: PMC7168052 DOI: 10.3390/antibiotics9010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide health problem which can cause chronic hepatitis, liver fibrosis and hepatocellular carcinoma (HCC). There is still no vaccine to prevent HCV infection. Currently, the clinical treatment of HCV infection mainly relies on the use of direct-acting antivirals (DAAs) which are expensive and have side effects. Here, BmKDfsin3, a scorpion defensin from the venom of Mesobuthus martensii Karsch, is found to dose-dependently inhibit HCV infection at noncytotoxic concentrations and affect viral attachment and post-entry in HCV life cycle. Further experimental results show that BmKDfsin3 not only suppresses p38 mitogen-activated protein kinase (MAPK) activation of HCV-infected Huh7.5.1 cells, but also inhibits p38 activation of Huh7.5.1 cells stimulated by tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) or lipopolysaccharide (LPS). BmKDfsin3 is also revealed to enter into cells. Using an upstream MyD88 dimerization inhibitor ST2345 or kinase IRAK-1/4 inhibitor I, the inhibition of p38 activation represses HCV replication in vitro. Taken together, a scorpion defensin BmKDfsin3 inhibits HCV replication, related to regulated p38 MAPK activation.
Collapse
|
42
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
43
|
Nemerow G, Flint J. Lessons learned from adenovirus (1970-2019). FEBS Lett 2019; 593:3395-3418. [PMID: 31777951 DOI: 10.1002/1873-3468.13700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
Collapse
Affiliation(s)
- Glen Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Jane Flint
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
44
|
Tartaglia LJ, Badamchi-Zadeh A, Abbink P, Blass E, Aid M, Gebre MS, Li Z, Pastores KC, Trott S, Gupte S, Larocca RA, Barouch DH. Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathog 2019; 15:e1008180. [PMID: 31841560 PMCID: PMC6936886 DOI: 10.1371/journal.ppat.1008180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.
Collapse
Affiliation(s)
- Lawrence J. Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Makda S. Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Zhenfeng Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Kevin Clyde Pastores
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sebastien Trott
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Siddhant Gupte
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Rafael A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Pied N, Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett 2019; 593:3419-3448. [PMID: 31758703 DOI: 10.1002/1873-3468.13690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Incoming adenoviruses seize control of cytosolic transport mechanisms to relocate their genome from the cell periphery to specialized sites in the nucleoplasm. The nucleus is the site for viral gene expression, genome replication, and the production of progeny for the next round of infection. By taking control of the cell, adenoviruses also suppress cell-autonomous immunity responses. To succeed in their production cycle, adenoviruses rely on well-coordinated steps, facilitated by interactions between viral proteins and cellular factors. Interactions between virus and host can impose remarkable morphological changes in the infected cell. Imaging adenoviruses has tremendously influenced how we delineate individual steps in the viral life cycle, because it allowed the development of specific optical markers to label these morphological changes in space and time. As technology advances, innovative imaging techniques and novel tools for specimen labeling keep uncovering previously unseen facets of adenovirus biology emphasizing why imaging adenoviruses is as attractive today as it was in the past. This review will summarize past achievements and present developments in adenovirus imaging centered on fluorescence microscopy approaches.
Collapse
Affiliation(s)
- Noémie Pied
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| |
Collapse
|
46
|
Hemmi S, Spindler KR. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett 2019; 593:3649-3659. [PMID: 31777948 DOI: 10.1002/1873-3468.13699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Small laboratory animals are powerful models for investigating in vivo viral pathogenesis of a number of viruses. For adenoviruses (AdVs), however, species-specificity poses limitations to studying human adenoviruses (HAdVs) in mice and other small laboratory animals. Thus, this review covers work on naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-1), a member of the species Murine mastadenovirus A. Molecular genetics, virus life cycle, cell and tissue tropism, interactions with the host immune response, persistence, and host genetics of susceptibility are described. A brief discussion of MAdV-2 (member of species Murine mastadenovirus B) and MAdV-3 (member of species Murine mastadenovirus C) is included. We report the use of MAdVs in the development of vectors and vaccines.
Collapse
Affiliation(s)
- Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Abstract
In this issue of Cell Host & Microbe, Bottermann et al. (2019) reveal that complement component C4 inhibits adenovirus by inactivating the virus capsid through mechanisms requiring antibody engagement, but not late-acting complement pathways. This antiviral function likely broadly impacts non-enveloped viruses and may help illuminate the process of virus disassembly.
Collapse
|
48
|
Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun 2019; 4:196-234. [PMID: 31583330 PMCID: PMC6755940 DOI: 10.20411/pai.v4i2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Human papillomavirus (HPV) is linked to nearly all cases of cervical cancer. Despite available vaccines, a deeper understanding of the immune response to HPV is needed. Human α-defensin 5 (HD5), an innate immune effector peptide, blocks infection of multiple sero-types of HPV, including high-risk HPV16. While a common mechanism of α-defensin anti-viral activity against nonenveloped viruses such as HPV has emerged, there is limited understanding of how α-defensins bind to viral capsids to block infection. Methods: We have used cryo-electron microscopy (cryoEM), mass spectrometry (MS) crosslinking and differential lysine modification studies, and molecular dynamics (MD) simulations to probe the interaction of HPV16 pseudovirions (PsVs) with HD5. Results: CryoEM single particle reconstruction did not reveal HD5 density on the capsid surface. Rather, increased density was observed under the capsid shell in the presence of HD5. MS studies indicate that HD5 binds near the L1 and L2 capsid proteins and specifically near the C-terminal region of L1. MD simulations indicate that favorable electrostatic interactions can be formed between HD5 and the L1 C-terminal tail. Conclusions: A model is presented for how HD5 affects HPV16 structure and cell entry. In this model, HD5 binds to disordered regions of L1 and L2 protruding from the icosahedrally ordered capsid. HD5 acts to cement interactions between L1 and L2 and leads to a closer association of the L2/genome core with the L1 capsid. This model provides a structural rationale for our prior observation that HD5 interferes with the separation of L1 from the L2/genome complex during cell entry. Graphical Abstract
Collapse
Affiliation(s)
- Neetu M Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Mayim E Wiens
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
49
|
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as Therapeutics for Viral Infections. Viruses 2019; 11:v11080704. [PMID: 31374901 PMCID: PMC6722670 DOI: 10.3390/v11080704] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Successful in vivo infection following pathogen entry requires the evasion and subversion of multiple immunological barriers. Antimicrobial peptides (AMPs) are one of the first immune pathways upregulated during infection by multiple pathogens, in multiple organs in vivo. In humans, there are many classes of AMPs exhibiting broad antimicrobial activities, with defensins and the human cathelicidin LL-37 being the best studied examples. Whereas historically the efficacy and therapeutic potential of AMPs against bacterial infection has been the primary focus of research, recent studies have begun to elucidate the antiviral properties of AMPs as well as their role in regulation of inflammation and chemoattraction. AMPs as therapeutic tools seem especially promising against emerging infectious viral pathogens for which no approved vaccines or treatments are currently available, such as dengue virus (DENV) and Zika virus (ZIKV). In this review, we summarize recent studies elucidating the efficacy and diverse mechanisms of action of various classes of AMPs against multiple viral pathogens, as well as the potential use of human AMPs in novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Aslaa Ahmed
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Gavriella Siman-Tov
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Grant Hall
- United States Military Academy, West Point, NY 10996, USA
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Disease, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
50
|
Abstract
More than 80 different adenovirus (AdV) types infect humans through the respiratory, ocular, or gastrointestinal tracts. They cause acute clinical mani-festations or persist under humoral and cell-based immunity. Immuno-suppressed individuals are at risk of death from an AdV infection. Concepts about cell entry of AdV build on strong foundations from molecular and cellular biology-and increasingly physical virology. Here, we discuss how virions enter and deliver their genome into the nucleus of epithelial cells. This process breaks open the virion at distinct sites because the particle has nonisometric mechanical strength and reacts to specific host factors along the entry pathway. We further describe how macrophages and dendritic cells resist AdV infection yet enhance productive entry into polarized epithelial cells. A deep understanding of the viral mechanisms and cell biological and biophysical principles will continue to unravel how epithelial and antigen-presenting cells respond to AdVs and control inflammation and persistence in pathology and therapy.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| | - Justin W Flatt
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|