1
|
Wang Y, Ding Q, Ma G, Zhang Z, Wang J, Lu C, Xiang C, Qian K, Zheng J, Shan Y, Zhang P, Cheng Z, Gong P, Zhao Q. Mucus-Penetrable Biomimetic Nanoantibiotics for Pathogen-Induced Pneumonia Treatment. ACS NANO 2024. [PMID: 39485232 DOI: 10.1021/acsnano.4c10837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacterial pneumonia has garnered significant attention in the realm of infectious diseases owing to a surge in the incidence of severe infections coupled with the growing scarcity of efficacious therapeutic modalities. Antibiotic treatment is still an irreplaceable method for bacterial pneumonia because of its strong bactericidal activity and good clinical efficacy. However, the mucus layer forming after a bacterial infection in the lungs has been considered as the "Achilles' heels" facing the clinical application of such treatment. Herein, traceable biomimetic nanoantibiotics (BioNanoCFPs) were developed by loading indacenodithieno[3,2-b]thiophene (ITIC) and cefoperazone (CFP) in nanoplatforms coated with natural killer (NK) cell membranes. The BioNanoCFP exhibited excellent demonstrated mucus-penetrating abilities, facilitating their arrival at the infection site. The presence of Toll-like receptors in the NK cell membrane rendered the BioNanoCFP with the capability to recognize pathogen-associated molecular patterns within bacteria, allowing precise targeting of bacterial colonization sites and achieving substantial therapeutic efficacy. Overall, our findings demonstrate the viability and desirability of using NK cell membrane-mediated drug delivery as a promising strategy for precision treatment.
Collapse
Affiliation(s)
- Yue Wang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiwei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaqi Wang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chang Lu
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun Zheng
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen 518024, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen 518024, China
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
2
|
Strobl S, Zucchetta D, Vašíček T, Monti A, Ruda A, Widmalm G, Heine H, Zamyatina A. Nonreducing Sugar Scaffold Enables the Development of Immunomodulatory TLR4-specific LPS Mimetics with Picomolar Potency. Angew Chem Int Ed Engl 2024; 63:e202408421. [PMID: 38870340 DOI: 10.1002/anie.202408421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Innate immune defense mechanisms against infection and cancer encompass the modulation of pattern recognition receptor (PRR)-mediated inflammation, including upregulation of various transcription factors and the activation of pro-inflammatory pathways important for immune surveillance. Dysfunction of PRRs-mediated signaling has been implicated in cancer and autoimmune diseases, while the overactivation of PRRs-driven responses during infection can lead to devastating consequences such as acute lung injury or sepsis. We used crystal structure-based design to develop immunomodulatory lipopolysaccharide (LPS) mimetics targeting one of the ubiquitous PRRs, Toll-like Receptor 4 (TLR4). Taking advantage of an exo-anomeric conformation and specific molecular shape of synthetic nonreducing β,β-diglucosamine, which was investigated by NMR, we developed two sets of lipid A mimicking glycolipids capable of either potently activating innate immune responses or inhibiting pro-inflammatory signaling. Stereoselective 1,1'-glycosylation towards fully orthogonally protected nonreducing GlcNβ(1↔1')βGlcN followed by stepwise assembly of differently functionalised phosphorylated glycolipids provided biologically active molecules that were evaluated for their ability to trigger or to inhibit cellular innate immune responses. Two LPS mimetics, identified as potent TLR4-specific inducers of the intracellular signaling pathways, serve as vaccine adjuvant- and immunotherapy candidates, while anionic glycolipids with TLR4-inhibitory potential hold therapeutic promise for the management of acute or chronic inflammation.
Collapse
Affiliation(s)
- Sebastian Strobl
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Daniele Zucchetta
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Tomáš Vašíček
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Monti
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| | - Alessandro Ruda
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, Borstel, 23845, Germany
| | - Alla Zamyatina
- Department of Chemistry, BOKU University, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
3
|
Wang X, Zhao G, Shao S, Yao Y. Helicobacter pylori triggers inflammation and oncogenic transformation by perturbing the immune microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189139. [PMID: 38897421 DOI: 10.1016/j.bbcan.2024.189139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The immune microenvironment plays a critical regulatory role in the pathogenesis of Helicobacter pylori (H. pylori). Understanding the mechanisms that drive the transition from chronic inflammation to cancer may provide new insights for early detection of gastric cancer. Although chronic inflammation is frequent in precancerous gastric conditions, the monitoring function of the inflammatory microenvironment in the progression from H. pylori-induced chronic inflammation to gastric cancer remains unclear. This literature review summarizes significant findings on how H. pylori triggers inflammatory responses and facilitates cancer development through the immune microenvironment. Furthermore, the implications for future research and clinical applications are also addressed. The review is divided into four main sections: inflammatory response and immune evasion mechanisms induced by H. pylori, immune dysregulation associated with gastric cancer, therapeutic implications, and future perspectives on H. pylori-induced gastric carcinogenesis with a focus on the immune microenvironment.
Collapse
Affiliation(s)
- Xiuping Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Guang Zhao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China; Department of Emergency Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
4
|
Alshaweesh J, Dash R, Lee MSJ, Kahyaoglu P, Erci E, Xu M, Matsuo-Dapaah J, Del Rosario Zorrilla C, Aykac K, Ekemen S, Kobiyama K, Ishii KJ, Coban C. MyD88 in osteoclast and osteoblast lineages differentially controls bone remodeling in homeostasis and malaria. Int Immunol 2024; 36:451-464. [PMID: 38642134 PMCID: PMC11319481 DOI: 10.1093/intimm/dxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography to that of controls after Plasmodium yoelii non-lethal infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC, precursors resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, insulin-like growth factor-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.
Collapse
Affiliation(s)
- Jalal Alshaweesh
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Rashmi Dash
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Pinar Kahyaoglu
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Ece Erci
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Mengling Xu
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Camila Del Rosario Zorrilla
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kubra Aykac
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
- Ministry of Health University, Ankara Education and Research Hospital, Paediatric Infectious Diseases Unit, Ankara 06230, Turkey
| | - Suheyla Ekemen
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
| | - Kouji Kobiyama
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ken J Ishii
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Zhang J, Li Y, Zeng F, Mu C, Liu C, Wang L, Peng X, He L, Su Y, Li H, Wang A, Feng L, Gao D, Zhang Z, Xu G, Wang Y, Yue R, Si J, Zheng L, Zhang X, He F, Yi H, Tang Z, Li G, Ma K, Li Q. Virus-like structures for combination antigen protein mRNA vaccination. NATURE NANOTECHNOLOGY 2024; 19:1224-1233. [PMID: 38802667 PMCID: PMC11329372 DOI: 10.1038/s41565-024-01679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
Improved vaccination requires better delivery of antigens and activation of the natural immune response. Here we report a lipid nanoparticle system with the capacity to carry antigens, including mRNA and proteins, which is formed into a virus-like structure by surface decoration with spike proteins, demonstrating application against SARS-CoV-2 variants. The strategy uses S1 protein from Omicron BA.1 on the surface to deliver mRNA of S1 protein from XBB.1. The virus-like particle enables specific augmentation of mRNAs expressed in human respiratory epithelial cells and macrophages via the interaction the surface S1 protein with ACE2 or DC-SIGN receptors. Activation of macrophages and dendritic cells is demonstrated by the same receptor binding. The combination of protein and mRNA increases the antibody response in BALB/c mice compared with mRNA and protein vaccines alone. Our exploration of the mechanism of this robust immunity suggests it might involve cross-presentation to diverse subsets of dendritic cells ranging from activated innate immune signals to adaptive immune signals.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Mice, Inbred BALB C
- Humans
- Mice
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Dendritic Cells/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Nanoparticles/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccination/methods
- mRNA Vaccines/administration & dosage
- Angiotensin-Converting Enzyme 2/metabolism
- Lectins, C-Type/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Cell Adhesion Molecules/immunology
- Female
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Liposomes
Collapse
Affiliation(s)
- Jingjing Zhang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
- Shandong WeigaoLitong Biological Products Co., Ltd, Weihai, China
| | - Yanmei Li
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Fengyuan Zeng
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Changyong Mu
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Change Liu
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Lichun Wang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Xiaowu Peng
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Liping He
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Yanrui Su
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Hongbing Li
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - An Wang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Lin Feng
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Dongxiu Gao
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Zhixiao Zhang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Gang Xu
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Yixuan Wang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Rong Yue
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Junbo Si
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Xiong Zhang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Fuyun He
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Hongkun Yi
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Zhongshu Tang
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Gaocan Li
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China
| | - Kaili Ma
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China.
- Shandong WeigaoLitong Biological Products Co., Ltd, Weihai, China.
| | - Qihan Li
- Weirui Biotechnology (Kunming) Co., Ltd, Ciba Biotechnology Innovation Center, Kunming, China.
| |
Collapse
|
6
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
7
|
Roman F, Burny W, Ceregido MA, Laupèze B, Temmerman ST, Warter L, Coccia M. Adjuvant system AS01: from mode of action to effective vaccines. Expert Rev Vaccines 2024; 23:715-729. [PMID: 39042099 DOI: 10.1080/14760584.2024.2382725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION The use of novel adjuvants in human vaccines continues to expand as their contribution to preventing disease in challenging populations and caused by complex pathogens is increasingly understood. AS01 is a family of liposome-based vaccine Adjuvant Systems containing two immunostimulants: 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01-containing vaccines have been approved and administered to millions of individuals worldwide. AREAS COVERED Here, we report advances in our understanding of the mode of action of AS01 that contributed to the development of efficacious vaccines preventing disease due to malaria, herpes zoster, and respiratory syncytial virus. AS01 induces early innate immune activation that induces T cell-mediated and antibody-mediated responses with optimized functional characteristics and induction of immune memory. AS01-containing vaccines appear relatively impervious to baseline immune status translating into high efficacy across populations. Currently licensed AS01-containing vaccines have shown acceptable safety profiles in clinical trials and post-marketing settings. EXPERT OPINION Initial expectations that adjuvantation with AS01 could support effective vaccine responses and contribute to disease control have been realized. Investigation of the utility of AS01 in vaccines to prevent other challenging diseases, such as tuberculosis, is ongoing, together with efforts to fully define its mechanisms of action in different vaccine settings.
Collapse
|
8
|
Song Y, Zhang S, Zhao N, Nong C, He Y, Bao R. Pseudomonas aeruginosa two-component system CprRS regulates HigBA expression and bacterial cytotoxicity in response to LL-37 stress. PLoS Pathog 2024; 20:e1011946. [PMID: 38198506 PMCID: PMC10805311 DOI: 10.1371/journal.ppat.1011946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/23/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Pseudomonas aeruginosa is a highly pathogenic bacterium known for its ability to sense and coordinate the production of virulence factors in response to host immune responses. However, the regulatory mechanisms underlying this process have remained largely elusive. In this study, we investigate the two-component system CprRS in P. aeruginosa and unveil the crucial role of the sensor protein CprS in sensing the human host defense peptide LL-37, thereby modulating bacterial virulence. We demonstrate that CprS acts as a phosphatase in the presence of LL-37, leading to the phosphorylation and activation of the response regulator CprR. The results prove that CprR directly recognizes a specific sequence within the promoter region of the HigBA toxin-antitoxin system, resulting in enhanced expression of the toxin HigB. Importantly, LL-37-induced HigB expression promotes the production of type III secretion system effectors, leading to reduced expression of proinflammatory cytokines and increased cytotoxicity towards macrophages. Moreover, mutations in cprS or cprR significantly impair bacterial survival in both macrophage and insect infection models. This study uncovers the regulatory mechanism of the CprRS system, enabling P. aeruginosa to detect and respond to human innate immune responses while maintaining a balanced virulence gene expression profile. Additionally, this study provides new evidence and insights into the complex regulatory system of T3SS in P. aeruginosa within the host environment, contributing to a better understanding of host-microbe communication and the development of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ninglin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
La Paglia L, Vazzana M, Mauro M, Urso A, Arizza V, Vizzini A. Bioactive Molecules from the Innate Immunity of Ascidians and Innovative Methods of Drug Discovery: A Computational Approach Based on Artificial Intelligence. Mar Drugs 2023; 22:6. [PMID: 38276644 PMCID: PMC10817596 DOI: 10.3390/md22010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The study of bioactive molecules of marine origin has created an important bridge between biological knowledge and its applications in biotechnology and biomedicine. Current studies in different research fields, such as biomedicine, aim to discover marine molecules characterized by biological activities that can be used to produce potential drugs for human use. In recent decades, increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as they are a source of bioactive products. We describe omics data and computational methods relevant to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence. Since there is increasing attention on finding new solutions for a sustainable supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of marine invertebrates' innate immunity.
Collapse
Affiliation(s)
- Laura La Paglia
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Alfonso Urso
- Istituto di Calcolo e Reti ad Alte Prestazioni–Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (L.L.P.); (A.U.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche–Università di Palermo, Via Archirafi 18, 90100 Palermo, Italy; (M.V.); (M.M.); (V.A.)
| |
Collapse
|
10
|
Sun B, Lin S, Zheng M, Zheng B, Mao L, Gu Y, Cai J, Dai Y, Zheng M, Lou Y. Phosphatidylinositol-specific phospholipase C can decrease Müller cell viability and suppress its phagocytic activity by modulating PI3K/AKT signaling pathway. Can J Microbiol 2023; 69:501-511. [PMID: 37672795 DOI: 10.1139/cjm-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.
Collapse
Affiliation(s)
- Bianjin Sun
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shudan Lin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Mengmeng Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beijia Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Liping Mao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yunfeng Gu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiabei Cai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yiran Dai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yongliang Lou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Song J, Guo Y, Wang D, Quan R, Wang J, Liu J. Seneca Valley virus 3C pro antagonizes type I interferon response by targeting STAT1-STAT2-IRF9 and KPNA1 signals. J Virol 2023; 97:e0072723. [PMID: 37819133 PMCID: PMC10617416 DOI: 10.1128/jvi.00727-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yitong Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front Vet Sci 2023; 10:1289570. [PMID: 37929286 PMCID: PMC10623566 DOI: 10.3389/fvets.2023.1289570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and economically significant virus that causes respiratory and reproductive diseases in pigs. It results in reduced productivity and increased mortality in pigs, causing substantial economic losses in the industry. Understanding the factors affecting pig responses to PRRSV is crucial to develop effective control strategies. Genetic background has emerged as a significant determinant of susceptibility and resistance to PRRSV in pigs. This review provides an overview of the basic infection process of PRRSV in pigs, associated symptoms, underlying immune mechanisms, and roles of noncoding RNA and alternative splicing in PRRSV infection. Moreover, it emphasized breed-specific variations in these aspects that may have implications for individual treatment options.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
13
|
Yang L, Zhuang L, Ye Z, Li L, Guan J, Gong W. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions. iScience 2023; 26:107881. [PMID: 37841590 PMCID: PMC10570004 DOI: 10.1016/j.isci.2023.107881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) are two major global public health problems, and the incidence of LC-TB is currently on the rise. Therefore effective clinical interventions are crucial for LC-TB. The aim of this review is to provide up-to-date information on the immunological profile and therapeutic biomarkers in patients with LC-TB. We discuss the immune mechanisms involved, including the immune checkpoints that play an important role in the treatment of patients with LC-TB. In addition, we explore the susceptibility of patients with LC to TB and summarise the latest research on LC-TB. Finally, we discuss future prospects in this field, including the identification of potential targets for immune intervention. In conclusion, this review provides important insights into the complex relationship between LC and TB and highlights new advances in the detection and treatment of both diseases.
Collapse
Affiliation(s)
- Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou, Hebei 075000, China
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jingzhi Guan
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
14
|
Nivetha R, Marieshwari BN, Dev APM, Meenakumari M, Muralisankar T, Janarthanan S. Evaluation of haemolymph phenoloxidase activity from the grub of Zophobas morio as a predictor of immune response. J Comp Physiol B 2023; 193:495-507. [PMID: 37460758 DOI: 10.1007/s00360-023-01503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 09/29/2023]
Abstract
In insects, enzyme phenoloxidase plays a critical role in cuticular sclerotisation and defensive functions. In the present investigation, haemolymph phenoloxidase activity from the grub of Zophobas morio was attempted to evaluate as a reliable predictor of insect's immunological response. Among the various substrates tested, L-DOPA was chosen as an appropriate substrate due to its high oxidation. The optimum pH and temperature for haemolymph PO activity was found to be 8 and 30 °C, respectively. The optimum substrate concentration of L-DOPA was found to be 7.5 mM for subsequent PO enzymatic characterisation. Among the various chemical inhibitors and copper chelators, PO activity was significantly reduced in the case of PMSF and thiourea. Preincubation of haemolymph with non-self-molecules showed enhancement of PO activity in the case of LPS from Serratia marcescens. In addition, exogenous proteases like α-chymotrypsin enhanced the PO activity of haemolymph and an increase in PO activity was demonstrated when haemolymph was preincubated with the anionic detergent, SDS and cationic detergent, cetyl pyridium chloride. Alteration of PO activity was observed under agonising conditions of starvation, ligation and microplastics injection at different time intervals. Interestingly, there were no correlation between PO and insect defence under live challenge of microbes. SDS protein profile revealed a significant increase in the 85 kDa and 55 kDa polypeptides in all the experiments over control after 24 h, 48 h and 96 h. Mass spectrophotometric analysis of the polypeptides revealed their homology to antimicrobial peptides for 55 kDa protein and 85 kDa protein. A significant increase in 85 kDa polypeptide was observed in the haemolymph of the grubs after 72 h in the case of starved and microplastics injected groups only. These results demonstrated that PO may not be a reliable benchmark of immunological response in this insect.
Collapse
Affiliation(s)
- Ramanathan Nivetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | | | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
15
|
Borio A, Holgado A, Passegger C, Strobl H, Beyaert R, Heine H, Zamyatina A. Exploring Species-Specificity in TLR4/MD-2 Inhibition with Amphiphilic Lipid A Mimicking Glycolipids. Molecules 2023; 28:5948. [PMID: 37630200 PMCID: PMC10459247 DOI: 10.3390/molecules28165948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex is a key receptor of the innate immune system and a major driver of inflammation that is responsible for the multifaceted defense response to Gram-negative infections. However, dysfunction in the tightly regulated mechanisms of TLR4-mediated signaling leads to the uncontrolled upregulation of local and systemic inflammation, often resulting in acute or chronic disease. Therefore, the TLR4/MD-2 receptor complex is an attractive target for the design and development of anti-inflammatory therapies which aim to control the unrestrained activation of TLR4-mediated signaling. Complex structure-activity relationships and species-specificity behind ligand recognition by the TLR4/MD-2 complex complicate the development of MD-2-specific TLR4 antagonists. The restriction of the conformational flexibility of the disaccharide polar head group is one of the key structural features of the newly developed lipid A-mimicking glycophospholipids, which are potential inhibitors of TLR4-mediated inflammation. Since phosphorylation has a crucial influence on MD-2-ligand interaction, glycolipids with variable numbers and positioning of phosphate groups were synthesized and evaluated for their ability to inhibit TLR4-mediated pro-inflammatory signaling in human and murine immune cells. A bis-phosphorylated glycolipid was found to have nanomolar antagonist activity on human TLR4 while acting as a partial agonist on murine TLR4. The glycolipid inhibited mTLR4/MD-2-mediated cytokine release, acting as an antagonist in the presence of lipopolysaccharide (LPS), but at the same time induced low-level cytokine production.
Collapse
Affiliation(s)
- Alessio Borio
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Christina Passegger
- Division of Immunology and Pathophysiology, Medical University Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Medical University Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Holger Heine
- Research Group Innate Immunity, Priority Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Parkallee 22, 23845 Borstel, Germany
| | - Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
16
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
17
|
Zhang J, Huang J, Zhao H. Molecular Cloning of Toll-like Receptor 2 and 4 ( SpTLR2, 4) and Expression of TLR-Related Genes from Schizothorax prenanti after Poly (I:C) Stimulation. Genes (Basel) 2023; 14:1388. [PMID: 37510293 PMCID: PMC10379648 DOI: 10.3390/genes14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) signaling is conserved between fish and mammals, except for TLR4, which is absent in most fish. In the present study, we aimed to evaluate whether TLR4 is expressed in Schizothorax prenanti (SpTLR4). The SpTLR2 and SpTLR4 were cloned and identified, and their tissue distribution was examined. The cDNA encoding SpTLR4 and SpTLR2 complete coding sequences (CDS) were identified and cloned. Additionally, we examined the expression levels of seven SpTLRs (SpTLR2, 3, 4, 18, 22-1, 22-2, and 22-3), as well as SpMyD88 and SpIRF3 in the liver, head kidney, hindgut, and spleen of S. prenanti, after intraperitoneal injection of polyinosinic-polycytidylic acid (poly (I:C)). The SpTLR2 and SpTLR4 shared amino acid sequence identity of 42.15-96.21% and 36.21-93.58%, respectively, with sequences from other vertebrates. SpTLR2 and SpTLR4 were expressed in all S. prenanti tissues examined, particularly in immune-related tissues. Poly (I:C) significantly upregulated most of the genes evaluated in the four immune organs compared with the PBS-control (p < 0.05); expression of these different genes was tissue-specific. Our findings demonstrate that TLR2 and TLR4 are expressed in S. prenanti and that poly (I:C) affects the expression of nine TLR-related genes, which are potentially involved in S. prenanti antiviral immunity or mediating pathological processes with differential kinetics. This will contribute to a better understanding of the roles of these TLR-related genes in antiviral immunity.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| |
Collapse
|
18
|
Liu M, Hu Z, Wang C, Zhang Y. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med (Berl) 2023; 101:767-781. [PMID: 37195446 DOI: 10.1007/s00109-023-02332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.
Collapse
Affiliation(s)
- Meiqi Liu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Zhizhong Hu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Chengkun Wang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| | - Yang Zhang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
19
|
Li H, Kuga K, Ito K. Visual prediction and parameter optimization of viral dynamics in the mucus milieu of the upper airway based on CFPD-HCD analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 238:107622. [PMID: 37257372 DOI: 10.1016/j.cmpb.2023.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Respiratory diseases caused by viruses are a major human health problem. To better control the infection and understand the pathogenesis of these diseases, this paper studied SARS-CoV-2, a novel coronavirus outbreak, as an example. METHODS Based on coupled computational fluid and particle dynamics (CFPD) and host-cell dynamics (HCD) analyses, we studied the viral dynamics in the mucus layer of the human nasal cavity-nasopharynx. To reproduce the effect of mucociliary movement on the diffusive and convective transport of viruses in the mucus layer, a 3D-shell model was constructed using CT data of the upper respiratory tract (URT) of volunteers. Considering the mucus environment, the HCD model was established by coupling the target cell-limited model with the convection-diffusion term. Parameter optimization of the HCD model is the key problem in the simulation. Therefore, this study focused on the parameter optimization of the viral dynamics model, divided the geometric model into multiple compartments, and used Monolix to perform the nonlinear mixed effects (NLME) of pharmacometrics to discuss the influence of factors such as the number of mucus layers, number of compartments, diffusion rate, and mucus flow velocity on the prediction results. RESULTS The findings showed that sufficient experimental data can be used to estimate the corresponding parameters of the HCD model. The optimized convection-diffusion case with a two-layer multi-compartment low-velocity model could accurately predict the viral dynamics. CONCLUSIONS Its visualization process could explain the symptoms of the disease in the nose and contribute to the prevention and targeted treatment of respiratory diseases.
Collapse
Affiliation(s)
- Hanyu Li
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan.
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Japan
| |
Collapse
|
20
|
Vlaming KE, van Wijnbergen K, Kaptein TM, Nijhuis M, Kootstra NJ, de Bree GJ, Geijtenbeek TB. Crosstalk between TLR8 and RIG-I-like receptors enhances antiviral immune responses. Front Med (Lausanne) 2023; 10:1146457. [PMID: 37261119 PMCID: PMC10227620 DOI: 10.3389/fmed.2023.1146457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Background Toll-like receptor (TLR) agonists have been investigated due to their potential dual effects as latency reverting agents and immune modulatory compounds in people living with HIV (PLWH). Here, we investigated whether co-stimulation of TLR7/8 agonists with RIG-I-like receptor (RLR) agonists enhances antiviral immunity. Methods Peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (DCs) were incubated with TLR and RLR-agonists for 24 h and innate and adaptive immune responses were determined (maturation markers, cytokines in supernatant, ISG expression). Results Both TLR7 and TLR8 agonists induced pro-inflammatory cytokines in DCs as well as PBMCs. TLR8 agonists were more potent in inducing cytokine responses and had a stronger effect on DC-induced immunity. Notably, while all compounds induced IL-12p70, co-stimulation with TLR8 agonists and RLR agonist polyI: C induced significantly higher levels of IL-12p70 in PBMCs. Moreover, crosstalk between TLR8 and RLR agonists induced a strong type I Interferon (IFN) response as different antiviral IFN-stimulated genes were upregulated by the combination compared to the agonists alone. Conclusion Our data strongly suggest that TLR crosstalk with RLRs leads to strong antiviral immunity as shown by induction of IL-12 and type I IFN responses in contrast to TLRs alone. Thus, co-stimulation of TLRs and RLRs might be a powerful strategy to induce reactivation of latent reservoir as well as antiviral immunity that eliminates the reactivated cells.
Collapse
Affiliation(s)
- Killian E. Vlaming
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kelly van Wijnbergen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Neeltje J. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
21
|
Li M, Huang X, Wen J, Chen S, Wu X, Ma W, Cui SW, Xie M, Nie S. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr Polym 2023; 305:120533. [PMID: 36737186 DOI: 10.1016/j.carbpol.2022.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The law and mechanism of the interaction between polysaccharides and pattern recognition receptors (PRRs) has been unclear. Herein, three glucomannans with different structures were selected to explore the universal mechanism for PRRs to recognize glucomannans. Screening results showed that the silence of TLR4 but not TLR2 severely blocked the production of inflammatory cytokines and the transduction of signal pathways. In-depth results revealed that the participation of myeloid differentiation protein 2 (MD2) and CD14 and the dimerization of the TLR4-MD2 complex were required for glucomannan-activated TLR4 signal transduction. Mannose receptor (MR) was also engaged in glucomannan-induced respiratory burst, endocytosis, and inflammatory signaling pathways in a spleen tyrosine kinase-dependent manner. The internalization of glucomannans into the cytoplasm by MR directly initiated complex intracellular signaling cascades. Finally, molecular docking characterized the binding energy and binding sites between glucomannans and multiple receptors from other perspectives. The essence of glucomannans recognized by PRRs was the non-covalent interaction of multiple receptors and the subsequent transmission of the signal cascade was triggered in a multi-channel and cooperative manner. As a result, the hypothesis that "Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response" was proposed to outline these meaningful phenomena.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shikang Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
22
|
Wang X, Guan F, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Lei J, Filatov A, Liu C. The role of dendritic cells in COVID-19 infection. Emerg Microbes Infect 2023; 12:2195019. [PMID: 36946172 PMCID: PMC10171120 DOI: 10.1080/22221751.2023.2195019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organ dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Maria G Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo - SP, Brazil
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Chen J, Gao L, Wu X, Fan Y, Liu M, Peng L, Song J, Li B, Liu A, Bao F. BCG-induced trained immunity: history, mechanisms and potential applications. J Transl Med 2023; 21:106. [PMID: 36765373 PMCID: PMC9913021 DOI: 10.1186/s12967-023-03944-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine was discovered a century ago and has since been clinically applicable. BCG can not only be used for the prevention of tuberculosis, but also has a non-specific protective effect on the human body called trained immunity that is mediated by innate immune cells such as monocytes, macrophages, and natural killer cells. Mechanisms of trained immunity include epigenetic reprogramming, metabolic reprogramming, and long-term protection mediated by hematopoietic stem cells. Trained immunity has so far shown beneficial effects on cancer, viral-infections, autoimmune diseases, and a variety of other diseases, especially bladder cancer, respiratory viruses, and type 1 diabetes. The modulation of the immune response by BCG has led to the development of a variety of recombinant vaccines. Although the specific mechanism of BCG prevention on diseases has not been fully clarified, the potential role of BCG deserves further exploration, which is of great significance for prevention and treatment of diseases.
Collapse
Affiliation(s)
- Jingjing Chen
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Li Gao
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xinya Wu
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yuxin Fan
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Meixiao Liu
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Li Peng
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Jieqin Song
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Bingxue Li
- grid.285847.40000 0000 9588 0960The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.285847.40000 0000 9588 0960Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Aihua Liu
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Yunnan Health Cell Biotechnology Company, Kunming, 650041, Yunnan, China. .,Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Fukai Bao
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China. .,Yunnan Health Cell Biotechnology Company, Kunming, 650041, Yunnan, China. .,Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
25
|
Ma X, Luo Z, Song R, Nian X, Choudhury SM, Ru Y, Yang F, Zhang Y, Zeng Z, Cao W, Pei J, Liu X, Zheng H. The Foot-and-Mouth Disease Virus Lb Protease Cleaves Intracellular Transcription Factors STAT1 and STAT2 to Antagonize IFN-β-Induced Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:283-296. [PMID: 36548461 PMCID: PMC9842942 DOI: 10.4049/jimmunol.2101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/17/2022] [Indexed: 12/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, one of the most highly infectious animal viruses throughout the world. The JAK-STAT signaling pathway is a highly conserved pathway for IFN-β-induced antiviral gene expression. Previous studies have shown that FMDV can strongly suppress the innate immune response. Moreover, although STAT1 and STAT2 (STAT1/2) have been well established in JAK-STAT signaling-induced antiviral gene expression, whether FMDV proteins inhibit IFN-β-induced JAK-STAT signaling remains poorly understood. In this study, we described the Lb leader protease (Lbpro) of FMDV as a candidate for inhibiting IFN-β-induced signaling transduction via directly interacting with STAT1/2. We further showed that Lbpro colocalized with STAT1/2 to inhibit their nuclear translocation. Importantly, Lbpro cleaved STAT1/2 to inhibit IFN-β-induced signal transduction, whereas the catalytically inactive mutant of LC51A (Lbpro with cysteine substituted with alanine at amino acid residue 51) had no effect on the stability of STAT1/2 proteins. The cleavage of the STAT1/2 proteins was also determined during FMDV infection in vitro. Lbpro could cleave the residues between 252 and 502 aa for STAT1 and the site spanning residues 140 - 150 aa (QQHEIESRIL) for STAT2. The in vivo results showed that Lbpro can cleave STAT1/2 in pigs. Overall, our findings suggest that FMDV Lbpro-mediated targeting of STAT1/2 may reveal a novel mechanism for viral immune evasion.
Collapse
Affiliation(s)
- XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - ZhiKuan Luo
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Song
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiaoFeng Nian
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - YuXia Zhang
- Comprehensive Technology Center of GanSu Entry Exit Inspection and Quarantine Bureau, Lanzhou, China
| | - ZongBo Zeng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - WeiJun Cao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - JingJing Pei
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XiangTao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China;,National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; and,Comprehensive Technology Center of GanSu Entry Exit Inspection and Quarantine Bureau, Lanzhou, China
| |
Collapse
|
26
|
Laupèze B, Doherty TM. Maintaining a 'fit' immune system: the role of vaccines. Expert Rev Vaccines 2023; 22:256-266. [PMID: 36864769 DOI: 10.1080/14760584.2023.2185223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Conventionally, vaccines are thought to induce a specific immune response directed against a target pathogen. Long recognized but poorly understood nonspecific benefits of vaccination, such as reduced susceptibility to unrelated diseases or cancer, are now being investigated and may be due in part to "trained immunity'. AREAS COVERED We discuss 'trained immunity' and whether vaccine-induced 'trained immunity' could be leveraged to prevent morbidity due to a broader range of causes. EXPERT OPINION The prevention of infection i.e. maintaining homeostasis by preventing the primary infection and resulting secondary illnesses, is the pivotal strategy used to direct vaccine design and may have long-term, positive impacts on health at all ages. In the future, we anticipate that vaccine design will change to not only prevent the target infection (or related infections) but to generate positive modifications to the immune response that could prevent a wider range of infections and potentially reduce the impact of immunological changes associated with aging. Despite changing demographics, adult vaccination has not always been prioritized. However, the SARS-CoV-2 pandemic has demonstrated that adult vaccination can flourish given the right circumstances, demonstrating that harnessing the potential benefits of life-course vaccination is achievable for all.
Collapse
|
27
|
Ye F, Zhang W, Dong J, Peng M, Fan C, Deng W, Zhang H, Yang L. A novel STAT1 loss-of-function mutation associated with Mendelian susceptibility to mycobacterial disease. Front Cell Infect Microbiol 2022; 12:1002140. [PMID: 36339330 PMCID: PMC9635896 DOI: 10.3389/fcimb.2022.1002140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital immune deficiency characterized by susceptibility to weakly virulent mycobacteria. Loss-of-function (LOF) mutation of signal transducer and activator of transcription 1 (STAT1) is one of the common genetic causes of MSMD. In this study, we identified a patient who presented with multiple lymph node enlargements and multiple osteolytic disruptions. Mycobacterium gordonae infection was confirmed by metagenomic next-generation sequencing. Whole-exome sequencing identified a novel paternal heterozygous mutation in exon 22 of STAT1 (NM_007315.4, c.1892T>C, p.Val631Ala). This variant was confirmed pathogenic by multiple software predictions. Based on functional assays, STAT1 expression in STAT1V631A cells was not different from STAT1WT cells. But STAT1V631A mutation caused much lower activation of STAT1 when stimulated by interferon-γ (IFN-γ). Fluorescence localization analysis revealed that both STAT1V631A and STAT1WT proteins were located in the cytoplasm, and only a few STAT1V631A proteins were translocated to the nucleus in response to IFN-γ. These results suggest that STAT1V631A leads to LOF in IFN-γ-mediated mycobacterial immunity, resulting in MSMD. Treatment with antibiotics has achieved ideal disease control for this patient, and no adverse events occurred during follow-up. The STAT1 LOF deficiency is a genetic cause of MSMD, which should be considered in patients with mycobacterial disease, especially those with bone involvement.
Collapse
|
28
|
Zhang C, Wang D, Li W, Zhang B, Abdel-Fattah Ouf GM, Su X, Li J. The coat protein p25 from maize chlorotic mottle virus involved in symptom development and systemic movement of tobacco mosaic virus hybrids. Front Microbiol 2022; 13:951479. [PMID: 35992724 PMCID: PMC9389212 DOI: 10.3389/fmicb.2022.951479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral coat protein (CP) has numerous critical functions in plant infection, but little is known about p25, the CP of maize chlorotic mottle virus (MCMV; Machlomovirus), which causes severe yield losses in maize worldwide. Here, we investigated the roles of p25 in pathogenicity and systemic movement, as well as potential interactions with host plants, using a hybrid tobacco mosaic virus (TMV)-based expression system. Highly conserved protein p25 is predicted to contain a membrane-anchored nuclear localization signal (NLS) sequence and an extracellular sequence. In transgenic Nicotiana benthamiana plants containing the movement protein (MP) of TMV (TMV-MP), p25 induced severe symptoms, including dwarf and foliar necrosis, and was detected in inoculated and non-inoculated leaves. After the deletion of NLS from nuclear-located p25, the protein was found throughout the host cell, and plant stunting and starch granule deformity were reduced. Systemic movement and pathogenicity were significantly impaired when the C-terminal regions of p25 were absent. Using virus-induced gene silencing (VIGS), the transcript level of heat shock protein HSP90 was distinctly lower in host plants in association with the absence of leaf necrosis induced by TMV-p25. Our results revealed crucial roles for MCMV p25 in viral pathogenicity, long-distance movement, and interactions with N. benthamiana.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baolong Zhang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gamal M. Abdel-Fattah Ouf
- Department of Botany and Applied Microbiology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
29
|
Zhou H, Lu X, Huang J, Jordan P, Ma S, Xu L, Hu F, Gui H, Zhao H, Bai Z, Redmond HP, Wang JH, Wang J. Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity. J Inflamm Res 2022; 15:3829-3845. [PMID: 35836719 PMCID: PMC9273902 DOI: 10.2147/jir.s363995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection. Methods This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates. Results Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity. Conclusion These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaying Lu
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland.,Department of Physiology, Gannan Medical University, Ganzhou, People's Republic of China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Patrick Jordan
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Shurong Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lingqi Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangjie Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
30
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
31
|
He X, Zhou T, Cai Y, Liu Y, Zhao S, Zhang J, Wang X, Zhang R. A Versatile Hemolin With Pattern Recognitional Contributions to the Humoral Immune Responses of the Chinese Oak Silkworm Antheraea pernyi. Front Immunol 2022; 13:904862. [PMID: 35669768 PMCID: PMC9163686 DOI: 10.3389/fimmu.2022.904862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Hemolin is a distinctive immunoglobulin superfamily member involved in invertebrate immune events. Although it is believed that hemolin regulates hemocyte phagocytosis and microbial agglutination in insects, little is known about its contribution to the humoral immune system. In the present study, we focused on hemolin in Antheraea pernyi (Ap-hemolin) by studying its pattern recognition property and humoral immune functions. Tissue distribution analysis demonstrated the mRNA level of Ap-hemolin was extremely immune-inducible in different tissues. The results of western blotting and biolayer interferometry showed recombinant Ap-hemolin bound to various microbes and pathogen-associated molecular patterns. In further immune functional studies, it was detected that knockdown of hemolin regulated the expression level of antimicrobial peptide genes and decreased prophenoloxidase activation in the A. pernyi hemolymph stimulated by microbial invaders. Together, these data suggest that hemolin is a multifunctional pattern recognition receptor that plays critical roles in the humoral immune responses of A. pernyi.
Collapse
Affiliation(s)
- Xueshan He
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyang Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuchen Cai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- Research and Development Department, Liaoning Applos Biotechnology Co., Ltd, Shenyang, China
| | - Siqi Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Rong Zhang, ; Xialu Wang,
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Rong Zhang, ; Xialu Wang,
| |
Collapse
|
32
|
Luo D, Wang H, Wang Q, Liang W, Liu B, Xue D, Yang Y, Ma B. Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Front Oncol 2022; 12:839536. [PMID: 35371972 PMCID: PMC8968071 DOI: 10.3389/fonc.2022.839536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have the capacity to selectively kill infected tumor cells and trigger protective immunity. As such, oncolytic virotherapy has become a promising immunotherapy strategy against cancer. A variety of viruses from different families have been proven to have oncolytic potential. Senecavirus A (SVA) was the first picornavirus to be tested in humans for its oncolytic potential and was shown to penetrate solid tumors through the vascular system. SVA displays several properties that make it a suitable model, such as its inability to integrate into human genome DNA and the absence of any viral-encoded oncogenes. In addition, genetic engineering of SVA based on the manipulation of infectious clones facilitates the development of recombinant viruses with improved therapeutic indexes to satisfy the criteria of safety and efficacy regulations. This review summarizes the current knowledge and strategies of genetic engineering for SVA, and addresses the current challenges and future directions of SVA as an oncolytic agent.
Collapse
Affiliation(s)
- Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenping Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yang
- Departments of Biochemistry and Molecular Biology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:87-109. [PMID: 35132596 DOI: 10.1007/978-3-030-85109-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronavirus disease-19 (COVID-19) caused by SARS-CoV-2 is presently the biggest threat to mankind throughout the globe. Increasing reports on deaths, cases of new infection, and socioeconomic losses are continuously coming from all parts of the world. Developing an efficacious drug and/or vaccine is currently the major goal to the scientific communities. In this context, toll-like receptors (TLRs) could be the useful targets in adopting effective therapeutic approaches. METHODS This chapter has been written by incorporating the findings on TLR-based therapies against SARS-CoV-2 demonstrated in the recently published research papers/reviews. RESULTS TLRs are the essential components of host immunity and play critical roles in deciding the fate of SARS-CoV-2 by influencing the immunoregulatory circuits governing human immune response to this pathogen. Hitherto, a number of multi-subunit peptide-based vaccines and pharmacological agents developed against SARS-CoV-2 have been found to manipulate TLR function. Therefore, circumventing overt immunopathology of COVID-19 applying TLR-antagonists can effectively reduce the morality caused from "cytokine storm"-induced multiorgan failure. Similarly, pre-administration of TLR- agonists may be used as a prophylaxis to sensitize the immune system of the individuals having risk of infection. A lot of collaborative efforts are required for bench-to-bench transformation of these knowledges. CONCLUSION This chapter enlightens the potentials and promises of TLR-guided therapeutic strategies against COVID-19 by reviewing the major findings and achievements depicted in the literatures published till date.
Collapse
|
34
|
Vitiello A, La Porta R, Ferrara F. The Role of Vitamin C in the Treatment of Sepsis. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Beasley EA, Pessôa-Pereira D, Scorza BM, Petersen CA. Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals (Basel) 2021; 11:ani11113206. [PMID: 34827938 PMCID: PMC8614518 DOI: 10.3390/ani11113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Canine leishmaniosis (CanL), the most severe, visceralizing form of disease caused by Leishmania infantum transmitted by phlebotomine sand flies. CanL is frequently diagnosed in the Mediterranean basin and South America, although it is also found in other regions, including the United States (U.S.). Dogs in these regions are at risk for co-infections, prominently tick-borne diseases. Our review examines epidemiologic, clinical, and immunologic mechanisms found during the most common eight CanL co-infections reported in published literature. Co-infections alter immunologic processes and disease progression impacting CanL diagnosis, therapeutic responses, and prognosis. Abstract Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in the Mediterranean basin and South America but also found in Northern Africa, Asia, and the U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates that co-infections can impact immunologic responses and thus the clinical course of both CanL and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp., Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis, Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to further explore immunomodulation during CanL co-infection(s) and their clinical impact.
Collapse
Affiliation(s)
- Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
36
|
Akıncılar SC, Wu L, NG QF, Chua JYH, Unal B, Noda T, Chor WHJ, Ikawa M, Tergaonkar V. NAIL: an evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 2021; 70:1857-1871. [PMID: 33239342 PMCID: PMC8458091 DOI: 10.1136/gutjnl-2020-322980] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE NFκB is the key modulator in inflammatory disorders. However, the key regulators that activate, fine-tune or shut off NFκB activity in inflammatory conditions are poorly understood. In this study, we aim to investigate the roles that NFκB-specific long non-coding RNAs (lncRNAs) play in regulating inflammatory networks. DESIGN Using the first genetic-screen to identify NFκB-specific lncRNAs, we performed RNA-seq from the p65-/- and Ikkβ-/- mouse embryonic fibroblasts and report the identification of an evolutionary conserved lncRNA designated mNAIL (mice) or hNAIL (human). hNAIL is upregulated in human inflammatory disorders, including UC. We generated mNAILΔNFκB mice, wherein deletion of two NFκB sites in the proximal promoter of mNAIL abolishes its induction, to study its function in colitis. RESULTS NAIL regulates inflammation via sequestering and inactivating Wip1, a known negative regulator of proinflammatory p38 kinase and NFκB subunit p65. Wip1 inactivation leads to coordinated activation of p38 and covalent modifications of NFκB, essential for its genome-wide occupancy on specific targets. NAIL enables an orchestrated response for p38 and NFκB coactivation that leads to differentiation of precursor cells into immature myeloid cells in bone marrow, recruitment of macrophages to inflamed area and expression of inflammatory genes in colitis. CONCLUSION NAIL directly regulates initiation and progression of colitis and its expression is highly correlated with NFκB activity which makes it a perfect candidate to serve as a biomarker and a therapeutic target for IBD and other inflammation-associated diseases.
Collapse
Affiliation(s)
- Semih Can Akıncılar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Lele Wu
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Qin Feng NG
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Joelle Yi Heng Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Bilal Unal
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Wei Hong Jeff Chor
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology, Singapore .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
37
|
Wu J, Zhang H, Chen X, Chai J, Hu Y, Xiong W, Lu W, Tian M, Chen X, Xu X. FM-CATH, A Novel Cathelicidin From Fejervarya Multistriata, Shows Therapeutic Potential for Treatment of CLP-Induced Sepsis. Front Pharmacol 2021; 12:731056. [PMID: 34483941 PMCID: PMC8415707 DOI: 10.3389/fphar.2021.731056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis is an exacerbated inflammatory reaction induced by severe infection. As important defensive molecules in innate immunity, several AMPs are reported to prevent septic shock. In this study, we characterized a novel cathelicidin, FM-CATH, from the frog skin of F. multistriata. FM-CATH was found to adopt an amphipathic α-helix structural in membrane-mimetic environments and possess favorable antimicrobial effects against bacteria and fungus. In addition, it triggered the agglutination of bacteria. It could also strongly bind to LPS and LTA. Additionally, FM-CATH affected the enzymatic activities of thrombin, plasmin, β-tryptase, and tPA, leading to coagulation inhibition in vitro and in vivo. Finally, we observed that FM-CATH improved survival rate and inhibited pathological alteration, bacterial count, serum biochemistry, and pro-inflammatory cytokine expression in the cecal ligation and puncture-induced sepsis mice. Taken together, these findings suggest that FM-CATH might be served as a promising agent for the treatment of sepsis.
Collapse
Affiliation(s)
- Jiena Wu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yunrui Hu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Interplay between Hepatitis E Virus and Host Cell Pattern Recognition Receptors. Int J Mol Sci 2021; 22:ijms22179259. [PMID: 34502167 PMCID: PMC8431321 DOI: 10.3390/ijms22179259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Hepatitis E virus (HEV) usually causes self-limiting acute hepatitis, but the disease can become chronic in immunocompromised individuals. HEV infection in pregnant women is reported to cause up to 30% mortality, especially in the third trimester. Additionally, extrahepatic manifestations like neuronal and renal diseases and pancreatitis are also reported during the course of HEV infection. The mechanism of HEV pathogenesis remains poorly understood. Innate immunity is the first line of defense triggered within minutes to hours after the first pathogenic insult. Growing evidence based on reverse genetics systems, in vitro cell culture models, and representative studies in animal models including non-human primates, has implicated the role of the host’s innate immune response during HEV infection. HEV persists in presence of interferons (IFNs) plausibly by evading cellular antiviral defense. This review summarizes our current understanding of recognizing HEV-associated molecular patterns by host cell Pattern Recognition Receptors (PRRs) in eliciting innate immune response during HEV infection as well as mechanisms of virus-mediated immune evasion.
Collapse
|
39
|
Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study. MATERIALS 2021; 14:ma14154166. [PMID: 34361359 PMCID: PMC8347735 DOI: 10.3390/ma14154166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
The wear-debris particles released by shearing forces during dental implant insertion may contribute to inflammatory reactions or osteolysis associated with peri-implantitis by stimulating inflammasome-activation. The study aim was to examine cytotoxic and pro-inflammatory effects of titanium (TiO2) and zirconia (ZrO2) particles in macrophages regarding their nature/particle concentration over time under sterile lipopolysaccharide (LPS) inflammation. Macrophages were exposed to TiO2 and ZrO2 particles (≤5 µm) in cell culture. Dental glass was used as inert control and LPS (1 μg/mL) was used to promote sterile inflammation. Cytotoxicity was determined using MTT assays and cytokine expression of TNF-α, IL-1β and IL-6 was evaluated by qRT-PCR. Data were analyzed using Student's t-test and ANOVA (p ≤ 0.05). Cytotoxicity was significantly increased when exposed to higher concentrations of glass, TiO2 and ZrO2 (≥107 particles/mL) compared to controls (p ≤ 0.05). Macrophages challenged with TiO2 particles expressed up to ≈3.5-fold higher upregulation than ZrO2 from 12 to 48 h. However, when exposed to LPS, TiO2 and ZrO2 particle-induced pro-inflammatory gene expression was further enhanced (p ≤ 0.05). Our data suggest that ZrO2 particles produce less toxicity/inflammatory cytokine production than TiO2. The present study shows that the biological reactivity of TiO2 and ZrO2 depends on the type and concentration of particles in a time-dependent manner.
Collapse
|
40
|
Rajpoot S, Wary KK, Ibbott R, Liu D, Saqib U, Thurston TLM, Baig MS. TIRAP in the Mechanism of Inflammation. Front Immunol 2021; 12:697588. [PMID: 34305934 PMCID: PMC8297548 DOI: 10.3389/fimmu.2021.697588] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP) represents a key intracellular signalling molecule regulating diverse immune responses. Its capacity to function as an adaptor molecule has been widely investigated in relation to Toll-like Receptor (TLR)-mediated innate immune signalling. Since the discovery of TIRAP in 2001, initial studies were mainly focused on its role as an adaptor protein that couples Myeloid differentiation factor 88 (MyD88) with TLRs, to activate MyD88-dependent TLRs signalling. Subsequent studies delineated TIRAP’s role as a transducer of signalling events through its interaction with non-TLR signalling mediators. Indeed, the ability of TIRAP to interact with an array of intracellular signalling mediators suggests its central role in various immune responses. Therefore, continued studies that elucidate the molecular basis of various TIRAP-protein interactions and how they affect the signalling magnitude, should provide key information on the inflammatory disease mechanisms. This review summarizes the TIRAP recruitment to activated receptors and discusses the mechanism of interactions in relation to the signalling that precede acute and chronic inflammatory diseases. Furthermore, we highlighted the significance of TIRAP-TIR domain containing binding sites for several intracellular inflammatory signalling molecules. Collectively, we discuss the importance of the TIR domain in TIRAP as a key interface involved in protein interactions which could hence serve as a therapeutic target to dampen the extent of acute and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Rachel Ibbott
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States.,School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore (IITI), Indore, India
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
41
|
Rabaan AA, Al-Ahmed SH, Garout MA, Al-Qaaneh AM, Sule AA, Tirupathi R, Mutair AA, Alhumaid S, Hasan A, Dhawan M, Tiwari R, Sharun K, Mohapatra RK, Mitra S, Emran TB, Bilal M, Singh R, Alyami SA, Moni MA, Dhama K. Diverse Immunological Factors Influencing Pathogenesis in Patients with COVID-19: A Review on Viral Dissemination, Immunotherapeutic Options to Counter Cytokine Storm and Inflammatory Responses. Pathogens 2021; 10:565. [PMID: 34066983 PMCID: PMC8150955 DOI: 10.3390/pathogens10050565] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still not fully unraveled. Though preventive vaccines and treatment methods are out on the market, a specific cure for the disease has not been discovered. Recent investigations and research studies primarily focus on the immunopathology of the disease. A healthy immune system responds immediately after viral entry, causing immediate viral annihilation and recovery. However, an impaired immune system causes extensive systemic damage due to an unregulated immune response characterized by the hypersecretion of chemokines and cytokines. The elevated levels of cytokine or hypercytokinemia leads to acute respiratory distress syndrome (ARDS) along with multiple organ damage. Moreover, the immune response against SARS-CoV-2 has been linked with race, gender, and age; hence, this viral infection's outcome differs among the patients. Many therapeutic strategies focusing on immunomodulation have been tested out to assuage the cytokine storm in patients with severe COVID-19. A thorough understanding of the diverse signaling pathways triggered by the SARS-CoV-2 virus is essential before contemplating relief measures. This present review explains the interrelationships of hyperinflammatory response or cytokine storm with organ damage and the disease severity. Furthermore, we have thrown light on the diverse mechanisms and risk factors that influence pathogenesis and the molecular pathways that lead to severe SARS-CoV-2 infection and multiple organ damage. Recognition of altered pathways of a dysregulated immune system can be a loophole to identify potential target markers. Identifying biomarkers in the dysregulated pathway can aid in better clinical management for patients with severe COVID-19 disease. A special focus has also been given to potent inhibitors of proinflammatory cytokines, immunomodulatory and immunotherapeutic options to ameliorate cytokine storm and inflammatory responses in patients affected with COVID-19.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia;
| | - Mohammed A. Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ayman M. Al-Qaaneh
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Anupam A Sule
- Department of Informatics and Outcomes, St Joseph Mercy Oakland, Pontiac, MI 48341, USA;
| | - Raghavendra Tirupathi
- Department of Medicine Keystone Health, Penn State University School of Medicine, Hershey, PA 16801, USA;
- Department of Medicine, Wellspan Chambersburg and Waynesboro (Pa.) Hospitals, Chambersburg, PA 16801, USA
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Alahsa 36342, Saudi Arabia;
- College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Alahsa 31982, Saudi Arabia;
| | - Abdulkarim Hasan
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt;
- Prince Mishari Bin Saud Hospital in Baljurashi, Ministry of Health, Baljurash 22888, Saudi Arabia
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India;
- The Trafford Group of Colleges, Manchester WA14 5PQ, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandha Sansthan (DUVASU), Mathura 281001, India;
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| |
Collapse
|
42
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
43
|
Heine H, Adanitsch F, Peternelj TT, Haegman M, Kasper C, Ittig S, Beyaert R, Jerala R, Zamyatina A. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Front Immunol 2021; 12:631797. [PMID: 33815382 PMCID: PMC8012497 DOI: 10.3389/fimmu.2021.631797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling mediated by Toll-like receptor 4 (TLR4)/myeloid differentiation-2 (MD-2) complex plays a crucial role in the instantaneous protection against infectious challenge and largely contributes to recovery from Gram-negative infection. Activation of TLR4 also boosts the adaptive immunity which is implemented in the development of vaccine adjuvants by application of minimally toxic TLR4 activating ligands. The modulation of pro-inflammatory responses via the TLR4 signaling pathway was found beneficial for management of acute and chronic inflammatory disorders including asthma, allergy, arthritis, Alzheimer disease pathology, sepsis, and cancer. The TLR4/MD-2 complex can recognize the terminal motif of Gram-negative bacterial lipopolysaccharide (LPS)—a glycophospholipid lipid A. Although immense progress in understanding the molecular basis of LPS-induced TLR4-mediated signaling has been achieved, gradual, and predictable TLR4 activation by structurally defined ligands has not yet been attained. We report on controllable modulation of cellular pro-inflammatory responses by application of novel synthetic glycolipids—disaccharide-based lipid A mimetics (DLAMs) having picomolar affinity for TLR4/MD-2. Using crystal structure inspired design we have developed endotoxin mimetics where the inherently flexible β(1 → 6)-linked diglucosamine backbone of lipid A is replaced by a conformationally restricted α,α-(1↔1)-linked disaccharide scaffold. The tertiary structure of the disaccharide skeleton of DLAMs mirrors the 3-dimensional shape of TLR4/MD-2 bound E. coli lipid A. Due to exceptional conformational rigidity of the sugar scaffold, the specific 3D organization of DLAM must be preserved upon interaction with proteins. These structural factors along with specific acylation and phosphorylation pattern can ensure picomolar affinity for TLR4 and permit efficient dimerization of TLR4/MD-2/DLAM complexes. Since the binding pose of lipid A in the binding pocket of MD-2 (±180°) is crucial for the expression of biological activity, the chemical structure of DLAMs was designed to permit a predefined binding orientation in the binding groove of MD-2, which ensured tailored and species-independent (human and mice) TLR4 activation. Manipulating phosphorylation and acylation pattern at the sugar moiety facing the secondary dimerization interface allowed for adjustable modulation of the TLR4-mediated signaling. Tailored modulation of cellular pro-inflammatory responses by distinct modifications of the molecular structure of DLAMs was attained in primary human and mouse immune cells, lung epithelial cells and TLR4 transfected HEK293 cells.
Collapse
Affiliation(s)
- Holger Heine
- Research Group Innate Immunity, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Florian Adanitsch
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Tina Tinkara Peternelj
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Mira Haegman
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | | | - Simon Ittig
- Biozentrum University of Basel, Basel, Switzerland
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, Ghent University, Center for Inflammation Research, VIB, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
44
|
Airway bacterial and fungal microbiome in chronic obstructive pulmonary disease. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Mou C, Pan S, Wu H, Chen Z. Disruption of interferon-β production by the N pro of atypical porcine pestivirus. Virulence 2021; 12:654-665. [PMID: 33538238 PMCID: PMC7872032 DOI: 10.1080/21505594.2021.1880773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is an emerging porcine virus that threatens global swine production. Pestiviruses can prevent interferon (IFN) production to avoid the host innate immune response, and the Npro viral protein can play a critical role. Knowledge of the host immune response to APPV infection is limited. Here, we showed that the IFN-β production was suppressed by APPV-Npro and the IFN regulatory factor 3 (IRF3) promoter activity stimulated by adaptor molecules of the IFN-β signaling pathway was also inhibited in the APPV-Npro-expressed cells. The APPV-Npro was able to interact with IRF3 and interfere the phosphorylation of IRF3, indicated that the IFN-β antagonism of APPV-Npro mainly depended on blocking IRF3 activity. To identify the functional region of APPV-Npro, a panel of truncated APPV-Npro was constructed, and its influence on the IRF3 activation was investigated. The results showed that the N-terminal 31–51 amino acids of APPV-Npro were mainly associated with inhibition of the IFN-β response. Taken together, this is the first study focusing on elucidating the function of APPV protein by revealing a novel mechanism of Npro in disruption of host IFN-β production, which will enlighten future study in addressing APPV pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
46
|
Huang XH, Ma Y, Lou H, Chen N, Zhang T, Wu LY, Chen YJ, Zheng MM, Lou YL, Xie DL. The Role of TSC1 in the Macrophages Against Vibrio vulnificus Infection. Front Cell Infect Microbiol 2021; 10:596609. [PMID: 33585271 PMCID: PMC7873526 DOI: 10.3389/fcimb.2020.596609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus (V. vulnificus) is an estuarine bacterium that is capable of causing rapidly fatal infection in humans. Proper polarization and bactericidal activity of macrophages play essential roles in defending against invading pathogens. How macrophages limit V. vulnificus infection remains not well understood. Here we report that tuberous sclerosis complex 1 (TSC1) is crucial for the regulation of V. vulnificus-induced macrophage polarization, bacterial clearance, and cell death. Mice with myeloid-specific deletion of TSC1 exhibit a significant reduction of survival time after V. vulnificus infection. V. vulnificus infection induces both M1 and M2 polarization. However, TSC1 deficient macrophages show enhanced M1 response to V. vulnificus infection. Interestedly, the absence of TSC1 in myeloid cells results in impaired bacterial clearance both in vivo and in vitro after V. vulnificus infection. Inhibition of the mammalian target of rapamycin (mTOR) activity significantly reverses V. vulnificus-induced hypersensitive M1 response and resistant bactericidal activity both in wild-type and TSC1-deficient macrophages. Moreover, V. vulnificus infection causes cell death of macrophages, possibly contributes to defective of bacterial clearance, which also exhibits in a mTORC1-dependent manner. These findings highlight an essential role for the TSC1-mTOR signaling in the regulation of innate immunity against V. vulnificus infection.
Collapse
Affiliation(s)
- Xian-Hui Huang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yao Ma
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Laboratory Medicine, Dong Yang People's Hospital, Jinhua, China
| | - Han Lou
- Department of Pathology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Na Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Ting Zhang
- Department of Laboratory Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Liu-Ying Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yi-Ju Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Department of Infection and Immunity, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
47
|
Nara PL, Sindelar D, Penn MS, Potempa J, Griffin WST. Porphyromonas gingivalis Outer Membrane Vesicles as the Major Driver of and Explanation for Neuropathogenesis, the Cholinergic Hypothesis, Iron Dyshomeostasis, and Salivary Lactoferrin in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1417-1450. [PMID: 34275903 PMCID: PMC8461682 DOI: 10.3233/jad-210448] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis (Pg) is a primary oral pathogen in the widespread biofilm-induced "chronic" multi-systems inflammatory disease(s) including Alzheimer's disease (AD). It is possibly the only second identified unique example of a biological extremophile in the human body. Having a better understanding of the key microbiological and genetic mechanisms of its pathogenesis and disease induction are central to its future diagnosis, treatment, and possible prevention. The published literature around the role of Pg in AD highlights the bacteria's direct role within the brain to cause disease. The available evidence, although somewhat adopted, does not fully support this as the major process. There are alternative pathogenic/virulence features associated with Pg that have been overlooked and may better explain the pathogenic processes found in the "infection hypothesis" of AD. A better explanation is offered here for the discrepancy in the relatively low amounts of "Pg bacteria" residing in the brain compared to the rather florid amounts and broad distribution of one or more of its major bacterial protein toxins. Related to this, the "Gingipains Hypothesis", AD-related iron dyshomeostasis, and the early reduced salivary lactoferrin, along with the resurrection of the Cholinergic Hypothesis may now be integrated into one working model. The current paper suggests the highly evolved and developed Type IX secretory cargo system of Pg producing outer membrane vesicles may better explain the observed diseases. Thus it is hoped this paper can provide a unifying model for the sporadic form of AD and guide the direction of research, treatment, and possible prevention.
Collapse
Affiliation(s)
| | | | - Marc S. Penn
- Summa Heart Health and Vascular Institute, Akron, OH, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases in the School of Dentistry, University of Louisville, Louisville, KY, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
48
|
Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, Gholizadeh S, Jafari A. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother 2020; 132:110859. [PMID: 33120236 PMCID: PMC7580677 DOI: 10.1016/j.biopha.2020.110859] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a member of the Coronaviridae family with positive-sense single- stranded RNA. In recent years, the CoVs have become a global problem to public health. The immune responses (innate and adaptive immunity) are essential for elimination and clearance of CoVs infections, however, uncontrolled immune responses can result in aggravating acute lung injury and significant immunopathology. Gaining profound understanding about the interaction between CoVs and the innate and adaptive immune systems could be a critical step in the field of treatment. In this review, we present an update on the host innate and adaptive immune responses against SARS-CoV, MERS-CoV and newly appeared SARS-CoV-2.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University of Medical Sciences, Tehran, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Gholizadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Department of Toxicology and Cellular and Molecular Research Center, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
49
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
50
|
Huang XH, Ma Y, Zheng MM, Chen N, Hu MN, Wu LY, Zheng Y, Lou YL, Xie DL. NLRP3 and mTOR Reciprocally Regulate Macrophage Phagolysosome Formation and Acidification Against Vibrio vulnificus Infection. Front Cell Dev Biol 2020; 8:587961. [PMID: 33117816 PMCID: PMC7578225 DOI: 10.3389/fcell.2020.587961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
The marine bacterium Vibrio vulnificus causes potentially fatal bloodstream infections, typically in patients with chronic liver diseases. The inflammatory response and anti-bacterial function of phagocytes are crucial for limiting bacterial infection in the human hosts. How V. vulnificus affects macrophages after phagocytosis is unclear. In this report, we found that the bactericidal activity of macrophages to internalize V. vulnificus was dependent on mammalian target of rapamycin (mTOR) and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) interaction. Additionally, the NLRP3 expression was dependent on mTORC1 activation. Inhibited mTORC1 or absence of NLRP3 in macrophages impaired V. vulnificus-induced phagosome acidification and phagolysosome formation, leading to a reduction of intracellular bacterial clearance. mTORC1 signaling overactivation could increase NLRP3 expression and restore insufficient phagosome acidification. Together, these findings indicate that the intracellular bactericidal activity of macrophages responding to V. vulnificus infection is tightly controlled by the crosstalk of NLRP3 and mTOR and provide critical insight into the host bactericidal activity basis of clearance of V. vulnificus through lyso/phagosome.
Collapse
Affiliation(s)
- Xian-Hui Huang
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yao Ma
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Meng-Meng Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Na Chen
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Mei-Na Hu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Liu-Ying Wu
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China
| | - Yi Zheng
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Yong-Liang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Dan-Li Xie
- Department of Microbiology and Immunology, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, China.,Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|