1
|
Dugied G, Douche T, Dos Santos M, Giai Gianetto Q Q, Cassonnet C, Vuillier F, Cassonnet P, Jacob Y, van der Werf S, Komarova A, Matondo M, Karim M, Demeret C. Profiling Cullin4-E3 ligases interactomes and their rewiring in influenza A virus infection. Mol Cell Proteomics 2024:100856. [PMID: 39383947 DOI: 10.1016/j.mcpro.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two Substrate Recognition Factors (SRF), DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume Dugied
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Thibaut Douche
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Melanie Dos Santos
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Quentin Giai Gianetto Q
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris
| | - Camille Cassonnet
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Françoise Vuillier
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Patricia Cassonnet
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Yves Jacob
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Sylvie van der Werf
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Anastassia Komarova
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Marwah Karim
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France.
| | - Caroline Demeret
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
2
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
3
|
Rhamadianti AF, Abe T, Tanaka T, Ono C, Katayama H, Makino Y, Deng L, Matsui C, Moriishi K, Shima F, Matsuura Y, Shoji I. SARS-CoV-2 papain-like protease inhibits ISGylation of the viral nucleocapsid protein to evade host anti-viral immunity. J Virol 2024; 98:e0085524. [PMID: 39120134 PMCID: PMC11406913 DOI: 10.1128/jvi.00855-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.
Collapse
Affiliation(s)
- Aulia Fitri Rhamadianti
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Chikako Ono
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hisashi Katayama
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiteru Makino
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
- Center for Cell Signaling and Medical Innovation, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chieko Matsui
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Fumi Shima
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Diseases Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Wang Y, Dong Y, Luan T, Chen Y, Lin L, Li S, Feng D, Wei J, Fei Y, Wang G, Pan J, Wang Y, Zhong Z, Zhao W. TRIM56 restricts Coxsackievirus B infection by mediating the ubiquitination of viral RNA-dependent RNA polymerase 3D. PLoS Pathog 2024; 20:e1012594. [PMID: 39348396 PMCID: PMC11476688 DOI: 10.1371/journal.ppat.1012594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Coxsackievirus B (CVB) is the major causative pathogen for severe diseases such as viral myocarditis, meningitis, and pancreatitis. There is no effective antiviral therapy currently available for CVB infection primarily due to that the pathogenesis of CVB has not been completely understood. Viruses are obligate intracellular pathogens which subvert cellular processes to ensure viral replication. Dysregulation of ubiquitination has been implicated in CVB infection. However, how ubiquitination is involved in CVB infection remains unclear. Here we found that the 3D protein of CVB3, the RNA-dependent RNA polymerase, was modified at K220 by K48-linked polyubiquitination which promoted its degradation through proteasome. Proteomic analysis showed that the E3 ligase TRIM56 was upregulated in CVB3-infected cells, while the majority of TRIMs remained unchanged. Pull-down and immunoprecipitation analyses showed that TRIM56 interacted with CVB3 3D. Immunofluorescence observation showed that viral 3D protein was colocalized with TRIM56. TRIM56 overexpression resulted in enhanced ubiquitination of CVB3 3D and decreased virus yield. Moreover, TRIM56 was cleaved by viral 3C protease in CVB3-infected cells. Taken together, this study demonstrated that TRIM56 mediates the ubiquitination and proteasomal degradation of the CVB3 3D protein. These findings demonstrate that TRIM56 is an intrinsic cellular restriction factor against CVB infection, and enhancing viral protein degradation could be a potential strategy to control CVB infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Danxiang Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jianwei Wei
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, Harbin Medical University, Harbin, China
| | - Jiahui Pan
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
6
|
Shallal MJM, Nasser HA, Naif AAH. Sequence analysis of isolated strains of herpes zoster virus among patients with shingles. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:524-535. [PMID: 39267939 PMCID: PMC11389764 DOI: 10.18502/ijm.v16i4.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Herpes zoster, or shingles, is caused by the varicella-zoster virus (VZV), which initially presents as chickenpox in children. VZV is a global health concern, especially in winter and spring, affecting 10-20% of adults over 50 and posing a 30% risk for the general population. This study used PCR to detect VZV, confirming results with duplicated DNA samples and identifying 234 bp fragments by targeting the gpB gene. Materials and Methods This study examined 50 herpes zoster cases from October 2020 to April 2021, involving 30 males and 20 females aged 10 to 90, diagnosed by dermatologists. Data were collected via a questionnaire. PCR detected VZV by amplifying the gpB and MCP genes from skin lesion samples. Six positive 234-bp PCR products were sequenced at Macrogen Inc. in Seoul, South Korea. Results Six DNA samples with 234 bp amplicons were sequenced, showing 99-100% similarity to human alpha herpesvirus sequences in the gpB gene. NCBI BLAST matched these sequences to a reference (GenBank acc. MT370830.1), assigning accession numbers LC642111, LC642112, and LC642113. Eight nucleic acid substitutions caused amino acid changes in the gpB protein: isoleucine to threonine, serine to isoleucine, and threonine to Proline. These variants were deposited in NCBI GenBank as gpB3 samples. Conclusion The study found high sequence similarity to known VZV sequences, identifying six nucleic acid variations and eight SNPs. Notable amino acid changes in the gpB protein were deposited in NCBI GenBank as the gpB3 sample.
Collapse
Affiliation(s)
| | - Hind Ali Nasser
- Department of Microbiology, College of Medicine, University of Thi-Qar, Thi-Qar, Iraq
| | | |
Collapse
|
7
|
Nan D, Rao C, Tang Z, Yang W, Wu P, Chen J, Xia Y, Yan J, Liu W, Zhang Z, Hu Z, Chen H, Liao Y, Mao X, Liu X, Zou Q, Li Q. Burkholderia pseudomallei BipD modulates host mitophagy to evade killing. Nat Commun 2024; 15:4740. [PMID: 38834545 PMCID: PMC11150414 DOI: 10.1038/s41467-024-48824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.
Collapse
Affiliation(s)
- Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenbo Yang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiangao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenzheng Liu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hai Chen
- Sanya People's Hospital, Sanya, China
| | - Yaling Liao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
8
|
Mukhopadhyay D, Chakraborty B, Sarkar S, Alam N, Panda CK. Clinical implications of activation of the LIMD1-VHL-HIF1α pathway during head-&-neck squamous cell carcinoma development. Indian J Med Res 2024; 159:479-493. [PMID: 39382421 PMCID: PMC11463245 DOI: 10.25259/ijmr_1262_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Given the importance of the role of hypoxia induced pathway in different cancers including head-and-neck squamous cell carcinoma (HNSCC), this study delved into elucidating the molecular mechanism of hypoxia-inducible factor-1α (HIF1α) activation in HNSCC. Additionally, it analyzes the alterations of its regulatory genes [von Hippel-Lindau (VHL) and LIM domain containing 1 (LIMD1)] and target gene vascular endothelial growth factor (VEGF) in head-and-neck lesions at different clinical stages in relation with human papillomavirus (HPV) infection. Methods Global mRNA expression profiles of HIF1α, VHL, LIMD1 and VEGF were evaluated from public datasets of HNSCC, followed by validation of their expression (mRNA/protein) in an independent set of HPV+ve/-ve HNSCC samples of different clinical stages. Results A diverse expression pattern of the HIF1α pathway genes was observed, irrespective of HPV infection, in the datasets. In validation in an independent set of HNSCC samples, high mRNA expressions of HIF1α/VEGF were observed particularly in HPV positive samples. However, VHL/LIMD1 mRNA expression was low in tumours regardless of HPV infection status. In immunohistochemical analysis, high/medium (H/M) expression of HIF1α/VEGF was observed in basal/parabasal layers of normal epithelium, with significantly higher expression in tumours, especially in HPV-positive samples. Conversely, high cytoplasmic VHL expression in these layers gradually decreased with the progression of HNSCC, regardless of HPV infection. A similar trend was noted in LIMD1 expression (nuclear/cytoplasmic) during the disease development. The methylation pattern of VHL and LIMD1 promoters in the basal/parabasal layers of normal epithelium correlated with their expression, exhibiting a gradual increase with the progression of HNSCC. The H/M expression of HIF1α/VEGF proteins and reduced VHL expression was associated with poor clinical outcomes. Interpretation & conclusions The results of this study showed differential regulation of the LIMD1-VHL-HIF1α pathway in HPV positive and negative HNSCC samples, illustrating the molecular distinctiveness of these two groups.
Collapse
Affiliation(s)
- Debalina Mukhopadhyay
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Shreya Sarkar
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
- New Brunswick Heart Centre, Saint John, NB, Canada
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Cho BH, Kim J, Jang YS. The Papain-like Protease Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Conjugated with Human Beta-Defensin 2 and Co1 Induces Mucosal and Systemic Immune Responses against the Virus. Vaccines (Basel) 2024; 12:441. [PMID: 38675823 PMCID: PMC11053661 DOI: 10.3390/vaccines12040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Most of the licensed vaccines against SARS-CoV-2 target spike proteins to induce viral neutralizing antibodies. However, currently prevalent SARS-CoV-2 variants contain many mutations, especially in their spike proteins. The development of vaccine antigens with conserved sequences that cross-react with variants of SARS-CoV-2 is needed to effectively defend against SARS-CoV-2 infection. Given that viral infection is initiated in the respiratory mucosa, strengthening the mucosal immune response would provide effective protection. We constructed a mucosal vaccine antigen using the papain-like protease (PLpro) domain of non-structural protein 3 of SARS-CoV-2. To potentiate the mucosal immune response, PLpro was combined with human beta-defensin 2, an antimicrobial peptide with mucosal immune adjuvant activity, and Co1, an M-cell-targeting ligand. Intranasal administration of the recombinant PLpro antigen conjugate into C57BL/6 and hACE2 knock-in (KI) mice induced antigen-specific T-cell and antibody responses with complement-dependent cytotoxic activity. Viral challenge experiments using the Wuhan and Delta strains of SARS-CoV-2 provided further evidence that immunized hACE2 KI mice were protected against viral challenge infections. Our study shows that PLpro is a useful candidate vaccine antigen against SARS-CoV-2 infection and that the inclusion of human beta-defensin 2 and Co1 in the recombinant construct may enhance the efficacy of the vaccine.
Collapse
Affiliation(s)
- Byeol-Hee Cho
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
10
|
Zhang L, Li Y, Kuhn JH, Zhang K, Song Q, Liu F. Polyubiquitylated rice stripe virus NS3 translocates to the nucleus to promote cytosolic virus replication via miRNA-induced fibrillin 2 upregulation. PLoS Pathog 2024; 20:e1012112. [PMID: 38507423 PMCID: PMC10984529 DOI: 10.1371/journal.ppat.1012112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Yao Li
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick; Frederick, Maryland; United States of America
| | - Kun Zhang
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| | - Qisheng Song
- Division of Plant Science and Technology; College of Agriculture; Food and Natural Resources; University of Missouri; Columbia, Missouri; United States of America
| | - Fang Liu
- College of Plant Protection; Yángzhōu University; Yángzhōu, Jiāngsū Province; China
| |
Collapse
|
11
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
13
|
Wang S, Tian X, Zhou Y, Xie J, Gao M, Zhong Y, Zhang C, Yu K, Bai L, Qin Q, Zhong B, Lin D, Feng P, Lan K, Zhang J. Non-canonical regulation of the reactivation of an oncogenic herpesvirus by the OTUD4-USP7 deubiquitinases. PLoS Pathog 2024; 20:e1011943. [PMID: 38215174 PMCID: PMC10810452 DOI: 10.1371/journal.ppat.1011943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yaru Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jun Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yunhong Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Keying Yu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Bo Zhong
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Wallace I, Baek K, Prabu JR, Vollrath R, von Gronau S, Schulman BA, Swatek KN. Insights into the ISG15 transfer cascade by the UBE1L activating enzyme. Nat Commun 2023; 14:7970. [PMID: 38042859 PMCID: PMC10693564 DOI: 10.1038/s41467-023-43711-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
The attachment of the ubiquitin-like protein ISG15 to substrates by specific E1-E2-E3 enzymes is a well-established signalling mechanism of the innate immune response. Here, we present a 3.45 Å cryo-EM structure of a chemically trapped UBE1L-UBE2L6 complex bound to activated ISG15. This structure reveals the details of the first steps of ISG15 recognition and UBE2L6 recruitment by UBE1L (also known as UBA7). Taking advantage of viral effector proteins from severe acute respiratory coronavirus 2 (SARS-CoV-2) and influenza B virus (IBV), we validate the structure and confirm the importance of the ISG15 C-terminal ubiquitin-like domain in the adenylation reaction. Moreover, biochemical characterization of the UBE1L-ISG15 and UBE1L-UBE2L6 interactions enables the design of ISG15 and UBE2L6 mutants with altered selectively for the ISG15 and ubiquitin conjugation pathways. Together, our study helps to define the molecular basis of these interactions and the specificity determinants that ensure the fidelity of ISG15 signalling during the antiviral response.
Collapse
Affiliation(s)
- Iona Wallace
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Kirby N Swatek
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
15
|
Brewitz L, Henry Chan HT, Lukacik P, Strain-Damerell C, Walsh MA, Duarte F, Schofield CJ. Mass spectrometric assays monitoring the deubiquitinase activity of the SARS-CoV-2 papain-like protease inform on the basis of substrate selectivity and have utility for substrate identification. Bioorg Med Chem 2023; 95:117498. [PMID: 37857256 PMCID: PMC10933793 DOI: 10.1016/j.bmc.2023.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| | - H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| |
Collapse
|
16
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
17
|
Yuan X, Zhang X, Wang H, Mao X, Sun Y, Tan L, Song C, Qiu X, Ding C, Liao Y. The Ubiquitin-Proteasome System Facilitates Membrane Fusion and Uncoating during Coronavirus Entry. Viruses 2023; 15:2001. [PMID: 37896778 PMCID: PMC10610886 DOI: 10.3390/v15102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiaoman Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| |
Collapse
|
18
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
19
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zhao M, Zhang M, Yang Z, Zhou Z, Huang J, Zhao B. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1217383. [PMID: 37360529 PMCID: PMC10288995 DOI: 10.3389/fcimb.2023.1217383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| |
Collapse
|
21
|
Bhatnagar P, Bajpai P, Shrinet J, Kaja MK, Chandele A, Sitaraman R. Prediction of human protein interactome of dengue virus non-structural protein 5 (NS5) and its downstream immunological implications. 3 Biotech 2023; 13:180. [PMID: 37193327 PMCID: PMC10182223 DOI: 10.1007/s13205-023-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
The non-structural protein 5 (NS5) is the most conserved protein among flaviviruses, a family that includes the dengue virus. It functions both as an RNA-dependent RNA polymerase and an RNA-methyltransferase and is therefore essential for the replication of viral RNA. The discovery that dengue virus NS5 protein (DENV-NS5) can also localize to the nucleus has resulted in renewed interest in its potential roles at the host-virus interface. In this study, we have used two complementary computational approaches in parallel - one based on linear motifs (ELM) and another based on tertiary structure of the protein (DALI) - to predict the host proteins that DENV-NS5 might interact with. Of the 42 human proteins predicted by both these methods, 34 are novel. Pathway analysis of these 42 human proteins shows that they are involved in key host cellular processes related to cell cycle regulation, proliferation, protein degradation, apoptosis, and immune responses. A focused analysis of transcription factors that directly interact with the predicted DENV-NS5 interacting proteins was performed, followed by the identification of downstream genes that are differentially expressed after dengue infection using previously published RNA-seq data. Our study provides unique insights into the DENV-NS5 interaction network and delineates mechanisms whereby DENV-NS5 could impact the host-virus interface. The novel interactors identified in this study could be potentially targeted by NS5 to modulate the host cellular environment in general, and the immune response in particular, thereby extending the role of DENV-NS5 beyond its known enzymatic functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03569-0.
Collapse
Affiliation(s)
- Priya Bhatnagar
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Murali Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Department of Pediatrics and Emory Vaccine Centre, Emory University School of Medicine, Atlanta, GA USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | |
Collapse
|
22
|
Wang J, Gu Y, Yan X, Zhang J, Wang J, Ding Y. USP38 inhibits colorectal cancer cell proliferation and migration via downregulating HMX3 ubiquitylation. Cell Cycle 2023; 22:1169-1181. [PMID: 36204976 PMCID: PMC10193867 DOI: 10.1080/15384101.2022.2042776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence has shown that H6 Family Homeobox 3 (HMX3) plays a crucial role in nervous system regulation. However, the regulatory mechanism of HMX3 in colorectal cancer (CRC) has seldom been studied. Herein, HMX3 was significantly downregulated in CRC, as demonstrated by qRT-PCR and WB analysis on clinical samples and a panel of cell lines. Besides, it was found that the expression of HMX3 was negatively correlated with survival of CRC patients. The functional analyses (EdU staining, CCK-8, colony formation, Transwell, and wound scratch assays) showed that CRC cell proliferation, migration, and invasion were significantly suppressed by HMX3 overexpression, while enhanced by HMX3 knockdown. Moreover, in vivo experiment revealed HMX3 overexpression could also suppress tumor growth. Combining bioinformatics and WB analysis, we preliminarily uncovered that HMX3 was involved in apoptosis and KRAS signaling pathways. Mechanistically, Ubiquitin-specific protease 38 (USP38) was identified as a novel post-translational regulator of HMX3, which could directly interact with HMX3 to stabilize its protein expression via deubiquitination. Furthermore, the role of USP38 silencing in promoting cell proliferation, migration, and invasion of CRC cells was blocked by HMX3 overexpression. In conclusion, our findings suggested that USP38/HMX3 axis is a novel promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jun Wang
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| | - Yongxing Gu
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| | - Xueqin Yan
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| | - Jie Zhang
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| | - Jun Wang
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| | - Yong Ding
- Department of General Surgery, Huai’an People’s Hospital of Hongze District, Huai ‘An City, Jiangsu Province, China
| |
Collapse
|
23
|
Duncan-Lowey J, Crabill E, Jarret A, Reed SCO, Roy CR. The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling. Proc Natl Acad Sci U S A 2023; 120:e2217602120. [PMID: 36893270 PMCID: PMC10089202 DOI: 10.1073/pnas.2217602120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.
Collapse
Affiliation(s)
- Jeffrey Duncan-Lowey
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Emerson Crabill
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
- Department of Biology, Angelo State University, San Angelo, TX76909
| | - Abigail Jarret
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06536
| | - Shawna C. O. Reed
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| |
Collapse
|
24
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
25
|
Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase. Nat Commun 2023; 14:1141. [PMID: 36854765 PMCID: PMC9973250 DOI: 10.1038/s41467-023-36754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naïve animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.
Collapse
|
26
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
27
|
Dong B, Li F, Wang J, Lv S, Miao L, Guo G, Shen Z. Effect of ubiquitin-proteasome system and autophagy-lysosome pathway on intracellular replication of Brucella.suis. Vet Microbiol 2023; 280:109699. [PMID: 36812863 DOI: 10.1016/j.vetmic.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
The ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) are two major protein degradation pathways in eukaryotic cells. In the present study, we investigated the role of two systems and their interaction after Brucella.suis (B.suis) infected RAW264.7 murine macrophage. We demonstrated that B.suis activated ALP by upregulating LC3-Ⅱlevels as well as incomplete inhibition of P62 expression in RAW264.7 cells. On the other hand, we used pharmacological agents to confirm that ALP contributed the intracellular proliferation of B.suis. At present, the studies on the relationship between UPS and Brucella remain less understanding. In the study, we demonstrated that UPS machinery was also activated by promoting expression of 20 s proteasome after B.suis infected RAW264.7 cells, and that, the UPS could also promote intracellular proliferation of B.suis. Many recent studies propose the close link and dynamic interconversion between UPS and ALP. Currently, the experiments demonstrated that after RAW264.7 cells infected B.suis, ALP was activated following UPS inhibition, while the UPS was not effectively activated after ALP inhibition. Last, we compared the ability to promote intracellular proliferation of B.suis between UPS and ALP. The results displayed that the ability of UPS to promote intracellular proliferation of B.suis was stronger than that of ALP, and simultaneous inhibition of UPS and ALP led to seriously affection on intracellular proliferation of B.suis. All above, our research provides a better understanding on the interaction between Brucella and both systems.
Collapse
Affiliation(s)
- Bingmei Dong
- College of Life Science, Cangzhou Normal University, Guofeng South Avenue 16#, Cangzhou 061001, Hebei, China; Shandong Lvdu Biological Technology Co. Ltd, Binzhou 256600, Shandong, China
| | - Feng Li
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China
| | - Jinliang Wang
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China
| | - Sufang Lv
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China
| | - Lizhong Miao
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China
| | - Guangjun Guo
- Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China
| | - Zhiqiang Shen
- Shandong Lvdu Biological Technology Co. Ltd, Binzhou 256600, Shandong, China; Binzhou Animal Science and Veterinary Medicine Academy, Binzhou 256600, Shandong, China.
| |
Collapse
|
28
|
Chen X, Chen K, Zhang Z, Wei P, Zhang L, Xu Y, Lun Q, Ma Y, Wu F, Zhang Y, Wang Y, Zhao J, Zhou Y, Zhan J, Xu W. Investigating Derivatives of Tanshinone IIA Sulfonate Sodium and Chloroxine for Their Inhibition Activities against the SARS-CoV-2 Papain-like Protease. ACS OMEGA 2022; 7:48416-48426. [PMID: 36591160 PMCID: PMC9798770 DOI: 10.1021/acsomega.2c06675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 has caused a global pandemic of COVID-19, posing a huge threat to public health. The SARS-CoV-2 papain-like cysteine protease (PLpro) plays a significant role in virus replication and host immune regulation, which is a promising antiviral drug target. Several potential inhibitors have been identified in vitro. However, the detailed mechanism of action and structure-activity relationship require further studies. Here, we investigated the structure-activity relationships of the series of derivatives of tanshinone IIA sulfonate sodium (TSS) and chloroxine based on biochemical analysis and molecular dynamics simulation. We found that compound 7, a derivative of chloroxine, can disrupt PLpro-ISG15 interaction and exhibits an antiviral effect for SARS-CoV-2 variants (wild type, delta, and omicron) at the low micromolar level. These studies confirmed that inhibiting PLpro-ISG15 interaction and, thus, restoring the host's innate immunity are effective methods for fighting against viral infection.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangzhou
Eighth People’s Hospital, Guangzhou
Medical University, Guangzhou, Guangdong 510060, China
| | - Ke Chen
- Institute
for Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518038, China
- Shenzhen
Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Zhaoyong Zhang
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Centre for Respiratory Disease, Guangzhou
Institute of Respiratory Health, the First Affiliated Hospital of
Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Peilan Wei
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Centre for Respiratory Disease, Guangzhou
Institute of Respiratory Health, the First Affiliated Hospital of
Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Lu Zhang
- Guangzhou
Customs District Technology Centre, Guangzhou, Guangdong 510623, China
| | - Yunxia Xu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qili Lun
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanhong Ma
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Wu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ying Zhang
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yanqun Wang
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Centre for Respiratory Disease, Guangzhou
Institute of Respiratory Health, the First Affiliated Hospital of
Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Jincun Zhao
- Guangzhou
Eighth People’s Hospital, Guangzhou
Medical University, Guangzhou, Guangdong 510060, China
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Centre for Respiratory Disease, Guangzhou
Institute of Respiratory Health, the First Affiliated Hospital of
Guangzhou Medical University, Guangzhou, Guangdong 511436, China
- Guangzhou
Laboratory, Bio-island, Guangzhou, Guangdong 510320, China
- Shanghai
Institute for Advanced Immunochemical Studies, School of Life Science
and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaoqi Zhou
- Institute
for Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518038, China
- Shenzhen
Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Jian Zhan
- Institute
for Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518038, China
| | - Wei Xu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangzhou
Eighth People’s Hospital, Guangzhou
Medical University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
29
|
Gorka M, Magnussen HM, Kulathu Y. Chemical biology tools to study Deubiquitinases and Ubl proteases. Semin Cell Dev Biol 2022; 132:86-96. [PMID: 35216867 DOI: 10.1016/j.semcdb.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
The reversible attachment of ubiquitin (Ub) and ubiquitin like modifiers (Ubls) to proteins are crucial post-translational modifications (PTMs) for many cellular processes. Not only do cells possess hundreds of ligases to mediate substrate specific modification with Ub and Ubls, but they also have a repertoire of more than 100 dedicated enzymes for the specific removal of ubiquitin (Deubiquitinases or DUBs) and Ubl modifications (Ubl-specific proteases or ULPs). Over the past two decades, there has been significant progress in our understanding of how DUBs and ULPs function at a molecular level and many novel DUBs and ULPs, including several new DUB classes, have been identified. Here, the development of chemical tools that can bind and trap active DUBs has played a key role. Since the introduction of the first activity-based probe for DUBs in 1986, several innovations have led to the development of more sophisticated tools to study DUBs and ULPs. In this review we discuss how chemical biology has led to the development of activity-based probes and substrates that have been invaluable to the study of DUBs and ULPs. We summarise our currently available toolbox, highlight the main achievements and give an outlook of how these tools may be applied to gain a better understanding of the regulatory mechanisms of DUBs and ULPs.
Collapse
Affiliation(s)
- Magdalena Gorka
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Helge Magnus Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Che Y, Jiang D, Zhang Y, Zhang J, Xu T, Sun Y, Fan J, Wang J, Chang N, Wu Y, Yang S, Xu L, Ding J, Hu C, Huang Y, Zhang J, Yang K. Elevated ubiquitination contributes to protective immunity against severe SARS-CoV-2 infection. Clin Transl Med 2022; 12:e1103. [PMID: 36447039 PMCID: PMC9708907 DOI: 10.1002/ctm2.1103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.
Collapse
Affiliation(s)
- Yinggang Che
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Dongbo Jiang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- The Key Laboratory of Medicine for Bio‐Hazard Prevention and Treatment of People's Liberation ArmyBasic Medicine School, Air‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yong Zhang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Junqi Zhang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Tianqi Xu
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yuanjie Sun
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jiangjiang Fan
- Department of Thoracic SurgeryTangdu HospitalAir‐Force Medical UniversityXi'anShaanxiChina
| | - Jiawei Wang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Ning Chang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yingtong Wu
- First Sanatorium of Air Force Healthcare Center for Special ServicesHangzhouZhejiangChina
| | - Shuya Yang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Leidi Xu
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jiaqi Ding
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Chenchen Hu
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Yinan Huang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Jian Zhang
- Department of Respiratory MedicineXijing HospitalAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
| | - Kun Yang
- Department of ImmunologyBasic Medicine SchoolAir‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- The Key Laboratory of Medicine for Bio‐Hazard Prevention and Treatment of People's Liberation ArmyBasic Medicine School, Air‐Force Medical University (The Fourth Military Medical University)Xi'anShaanxiChina
- Department of Rheumatology and ImmunologyTangdu HospitalAir‐Force Medical UniversityXi'anShaanxiChina
| |
Collapse
|
31
|
Onoja A, Picchiotti N, Fallerini C, Baldassarri M, Fava F, Colombo F, Chiaromonte F, Renieri A, Furini S, Raimondi F. An explainable model of host genetic interactions linked to COVID-19 severity. Commun Biol 2022; 5:1133. [PMID: 36289370 PMCID: PMC9606365 DOI: 10.1038/s42003-022-04073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.
Collapse
Affiliation(s)
- Anthony Onoja
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Nicola Picchiotti
- University of Siena, DIISM-SAILAB, Siena, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Fava
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Colombo
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Segrate, MI, Italy
| | - Francesca Chiaromonte
- Dept. of Statistics and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Institute of Economics and EMbeDS, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Medical Genetics, University of Siena, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
32
|
Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection. Int J Mol Sci 2022; 23:ijms231911692. [PMID: 36232993 PMCID: PMC9570369 DOI: 10.3390/ijms231911692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.
Collapse
|
33
|
Chen Z, Song M, Wang T, Gao J, Lin F, Dai H, Zhang C. Role of circRNA in E3 Modification under Human Disease. Biomolecules 2022; 12:biom12091320. [PMID: 36139159 PMCID: PMC9496110 DOI: 10.3390/biom12091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNA (circRNA) is often regarded as a special kind of non-coding RNA, involved in the regulation mechanism of various diseases, such as tumors, neurological diseases, and inflammation. In a broad spectrum of biological processes, the modification of the 76-amino acid ubiquitin protein generates a large number of signals with different cellular results. Each modification may change the result of signal transduction and participate in the occurrence and development of diseases. Studies have found that circRNA-mediated ubiquitination plays an important role in a variety of diseases. This review first introduces the characteristics of circRNA and ubiquitination and summarizes the mechanism of circRNA in the regulation of ubiquitination in various diseases. It is hoped that the emergence of circRNA-mediated ubiquitination can broaden the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Zishuo Chen
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Minkai Song
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Wang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Jiawen Gao
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Lin
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Hui Dai
- Hospital Office, Ganzhou People’s Hospital, Ganzhou 341000, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
- Hospital Office, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou 341000, China
- Correspondence: (H.D.); (C.Z.)
| |
Collapse
|
34
|
Wang J, Fan P, Wei Y, Wang J, Zou W, Zhou G, Zhong D, Zheng X. Isobaric tags for relative and absolute quantification-based proteomic analysis of host-pathogen protein interactions in the midgut of Aedes albopictus during dengue virus infection. Front Microbiol 2022; 13:990978. [PMID: 36187964 PMCID: PMC9515977 DOI: 10.3389/fmicb.2022.990978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aedes albopictus (Ae. albopictus), an important vector of dengue virus (DENV), is distributed worldwide. Identifying host proteins involved in flavivirus replication in Ae. albopictus and determining their natural antiviral mechanisms are critical to control virus transmission. Revealing the key proteins related to virus replication and exploring the host-pathogen interaction are of great significance in finding new pathways of the natural immune response in Ae. albopictus. Isobaric tags for relative and absolute quantification (iTRAQ) was used to perform a comparative proteomic analysis between the midgut of Ae. albopictus infected with DENV and the control. 3,419 proteins were detected, of which 162 were ≥ 1.2-fold differentially upregulated or ≤ 0.8-fold differentially downregulated (p < 0.05) during DENV infections. Differentially expressed proteins (DEPs) were mainly enriched in ubiquitin ligase complex, structural constituent of cuticle, carbohydrate metabolism, and lipid metabolism pathways. We found that one of the DEPs, a putative pupal cuticle (PC) protein could inhibit the replication of DENV and interact with the DENV-E protein. In addition, the result of immunofluorescence (IF) test showed that there was co-localization between ubiquitin carboxyl-terminal hydrolase (UCH) protein and the DENV-E protein, and virus infection reduced the level of this protein. iTRAQ-based proteomic analysis of the Ae. albopictus midgut identified dengue infection-induced upregulated and downregulated proteins. The interaction between the PC and UCH proteins in the midgut of Ae. albopictus might exert a natural antiviral mechanism in mosquito.
Collapse
Affiliation(s)
- Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weihao Zou
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Xueli Zheng,
| |
Collapse
|
35
|
Nie L, Wang C, Liu X, Teng H, Li S, Huang M, Feng X, Pei G, Hang Q, Zhao Z, Gan B, Ma L, Chen J. USP7 substrates identified by proteomics analysis reveal the specificity of USP7. Genes Dev 2022; 36:1016-1030. [PMID: 36302555 PMCID: PMC9732911 DOI: 10.1101/gad.349848.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
Deubiquitylating enzymes (DUBs) remove ubiquitin chains from proteins and regulate protein stability and function. USP7 is one of the most extensively studied DUBs, since USP7 has several well-known substrates important for cancer progression, such as MDM2, N-MYC, and PTEN. Thus, USP7 is a promising drug target. However, systematic identification of USP7 substrates has not yet been performed. In this study, we carried out proteome profiling with label-free quantification in control and single/double-KO cells of USP7and its closest homolog, USP47 Our proteome profiling for the first time revealed the proteome changes caused by USP7 and/or USP47 depletion. Combining protein profiling, transcriptome analysis, and tandem affinity purification of USP7-associated proteins, we compiled a list of 20 high-confidence USP7 substrates that includes known and novel USP7 substrates. We experimentally validated MGA and PHIP as new substrates of USP7. We further showed that MGA deletion reduced cell proliferation, similar to what was observed in cells with USP7 deletion. In conclusion, our proteome-wide analysis uncovered potential USP7 substrates, providing a resource for further functional studies.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA;,Human Genetics Center, School of Public Health, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Andreolla AP, Borges AA, Bordignon J, Duarte dos Santos CN. Mayaro Virus: The State-of-the-Art for Antiviral Drug Development. Viruses 2022; 14:1787. [PMID: 36016409 PMCID: PMC9415492 DOI: 10.3390/v14081787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
| | | |
Collapse
|
37
|
African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J Virol 2022; 96:e0094422. [PMID: 35972295 PMCID: PMC9472647 DOI: 10.1128/jvi.00944-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal hemorrhagic disease in domestic pigs and wild boars that has significant economic consequences for the pig industry. The type I interferon (IFN) signaling pathway is a pivotal component of the innate antiviral response, and ASFV has evolved multiple mechanisms to antagonize this pathway and facilitate infection. Here, we reported a novel function of ASFV pI215L in inhibiting type I IFN signaling. Our results showed that ASFV pI215L inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs) by triggering interferon regulatory factor 9 (IRF9) degradation. Additionally, we found that catalytically inactive pI215L mutations retained the ability to block type I IFN signaling, indicating that this only known viral E2 ubiquitin-conjugating enzyme mediates IFR9 degradation in a ubiquitin-conjugating activity-independent manner. By coimmunoprecipitation, confocal immunofluorescence, and subcellular fractionation approaches, we demonstrated that pI215L interacted with IRF9 and impaired the formation and nuclear translocation of IFN-stimulated gene factor 3 (ISGF3). Moreover, further mechanism studies supported that pI215L induced IRF9 degradation through the autophagy-lysosome pathway in both pI215L-overexpressed and ASFV-infected cells. These findings reveal a new immune evasion strategy evolved by ASFV in which pI215L acts to degrade host IRF9 via the autophagic pathway, thus inhibiting the type I IFN signaling and counteracting the host innate immune response. IMPORTANCE African swine fever virus (ASFV) causes a highly contagious and lethal disease in pigs and wild boars that is currently present in many countries, severely affecting the global pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking, and many fundamental questions regarding the molecular mechanisms underlying host innate immunity escape remain unclear. In this study, we identified ASFV pI215L, the only known viral E2 ubiquitin-conjugating enzyme, which is involved in antagonizing the type I interferon signaling. Mechanistically, pI215L interacted with interferon regulatory factor 9 for autophagic degradation, and this degradation was independent of its ubiquitin-conjugating activity. These results increase the current knowledge regarding ASFV evasion of innate immunity, which may instruct future research on antiviral strategies and dissection of ASFV pathogenesis.
Collapse
|
38
|
Karlowitz R, Stanifer ML, Roedig J, Andrieux G, Bojkova D, Bechtel M, Smith S, Kowald L, Schubert R, Boerries M, Cinatl J, Boulant S, van Wijk SJL. USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING. Cell Death Dis 2022; 13:684. [PMID: 35933402 PMCID: PMC9357023 DOI: 10.1038/s41419-022-05124-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023]
Abstract
Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Megan L. Stanifer
- grid.7700.00000 0001 2190 4373Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany ,grid.15276.370000 0004 1936 8091Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL USA
| | - Jens Roedig
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Geoffroy Andrieux
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Denisa Bojkova
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Marco Bechtel
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sonja Smith
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Lisa Kowald
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Ralf Schubert
- grid.411088.40000 0004 0578 8220Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Melanie Boerries
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Freiburg, 79110 Freiburg, Germany
| | - Jindrich Cinatl
- grid.411088.40000 0004 0578 8220Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Steeve Boulant
- grid.15276.370000 0004 1936 8091Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL USA ,grid.7700.00000 0001 2190 4373Department of Infectious Diseases, Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Sjoerd J. L. van Wijk
- grid.7839.50000 0004 1936 9721Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany ,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Inhibitors of Deubiquitinating Enzymes Interfere with the SARS-CoV-2 Papain-like Protease and Block Virus Replication In Vitro. Viruses 2022; 14:v14071404. [PMID: 35891385 PMCID: PMC9324251 DOI: 10.3390/v14071404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin proteasome system (UPS), particularly its deubiquitinating enzymes (DUBs), play a key role in the replication cycle of coronaviruses. The SARS-CoV-2 papain-like protease (Plpro) is known to process the viral polyproteins to form the replicase transcriptase complex and to counteract the host viral response. Recently, it was shown that this viral protease can also act as a deubiquitinating enzyme. In this study, we demonstrate that certain DUB-Inhibitors (DIs) interfere with SARS-CoV-2 replication. The DIs PR-619 and HBX41108 restrict SARS-CoV-2 in both Vero B4 and human Calu-3 lung cells where cells were infected with a Multiplicity of Infection (MOI) of 0.02. An in vitro protease assay using recombinant Plpro and Amido-4-methylcoumarin (AMC)-conjugated substrate revealed that PR-619 and HBX41108 are able to block the protease at concentrations where the interventions restricted virus replication. In contrast, DIs that do not inhibit Plpro had no influence on virus replication, which indicated that the protease might be at least one major target. Future vertical studies that would gain more insights into the mechanisms of how DUBs effect the replication of SARS-CoV-2 will further validate them as a potential therapeutic target.
Collapse
|
40
|
Culver JA, Li X, Jordan M, Mariappan M. A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins. Bioessays 2022; 44:e2200014. [PMID: 35357021 PMCID: PMC9133216 DOI: 10.1002/bies.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone-bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal degradation. It remains enigmatic how molecular chaperones can mediate both maturation of nascent proteins and ubiquitination of misfolded proteins solely based on their exposed hydrophobic signals. In this review, we propose a dynamic ubiquitination and deubiquitination model in which ubiquitination of newly synthesized proteins serves as a "fix me" signal for either refolding of soluble proteins or retargeting of membrane proteins with the help of chaperones and deubiquitinases. Such a model would provide additional time for aberrant nascent proteins to fold or route for membrane insertion, thus avoiding excessive protein degradation and saving cellular energy spent on protein synthesis. Also see the video abstract here: https://youtu.be/gkElfmqaKG4.
Collapse
Affiliation(s)
- Jacob A. Culver
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Matthew Jordan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT 06516, USA
| |
Collapse
|
41
|
Wang L, Moreira EA, Kempf G, Miyake Y, Oliveira Esteves BI, Fahmi A, Schaefer JV, Dreier B, Yamauchi Y, Alves MP, Plückthun A, Matthias P. Disrupting the HDAC6-ubiquitin interaction impairs infection by influenza and Zika virus and cellular stress pathways. Cell Rep 2022; 39:110736. [PMID: 35476995 PMCID: PMC9065369 DOI: 10.1016/j.celrep.2022.110736] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
The deacetylase HDAC6 has tandem catalytic domains and a zinc finger domain (ZnF) binding ubiquitin (Ub). While the catalytic domain has an antiviral effect, the ZnF facilitates influenza A virus (IAV) infection and cellular stress responses. By recruiting Ub via the ZnF, HDAC6 promotes the formation of aggresomes and stress granules (SGs), dynamic structures associated with pathologies such as neurodegeneration. IAV subverts the aggresome/HDAC6 pathway to facilitate capsid uncoating during early infection. To target this pathway, we generate designed ankyrin repeat proteins (DARPins) binding the ZnF; one of these prevents interaction with Ub in vitro and in cells. Crystallographic analysis shows that it blocks the ZnF pocket where Ub engages. Conditional expression of this DARPin reversibly impairs infection by IAV and Zika virus; moreover, SGs and aggresomes are downregulated. These results validate the HDAC6 ZnF as an attractive target for drug discovery. A small synthetic protein (DARPin) blocks interaction between HDAC6 and ubiquitin This DARPin impairs infection by influenza and Zika virus at the uncoating step Both viruses contain ubiquitin associated with their capsid The DARPin also impacts the formation of aggresomes and stress granules
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Etori Aguiar Moreira
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Yasuyuki Miyake
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Amal Fahmi
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057 Zürich Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
42
|
Park ES, Dezhbord M, Lee AR, Kim KH. The Roles of Ubiquitination in Pathogenesis of Influenza Virus Infection. Int J Mol Sci 2022; 23:ijms23094593. [PMID: 35562987 PMCID: PMC9105177 DOI: 10.3390/ijms23094593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 01/14/2023] Open
Abstract
The ubiquitin system denotes a potent post-translational modification machinery that is capable of activation or deactivation of target proteins through reversible linkage of a single ubiquitin or ubiquitin chains. Ubiquitination regulates major cellular functions such as protein degradation, trafficking and signaling pathways, innate immune response, antiviral defense, and virus replication. The RNA sensor RIG-I ubiquitination is specifically induced by influenza A virus (IAV) to activate type I IFN production. Influenza virus modulates the activity of major antiviral proteins in the host cell to complete its full life cycle. Its structural and non-structural proteins, matrix proteins and the polymerase complex can regulate host immunity and antiviral response. The polymerase PB1-F2 of mutated 1918 IAV, adapts a novel IFN antagonist function by sending the DDX3 into proteasomal degradation. Ultimately the fate of virus is determined by the outcome of interplay between viral components and host antiviral proteins and ubiquitination has a central role in the encounter of virus and its host cell.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
43
|
Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem 2022; 98:107671. [PMID: 35429835 PMCID: PMC8958254 DOI: 10.1016/j.compbiolchem.2022.107671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed millions of people. Widespread vaccination is still uncertain, so many scientific efforts have been directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have addressed this protease’s interactions with the host proteome or their probable contribution to virulence. Too few host protein cleavages have been experimentally verified to fully understand 3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this protease’s targets and corresponding potential drug targets. Using a neural network trained on cleavages from 392 coronavirus proteomes with a Matthews correlation coefficient of 0.985, I predict that a large proportion of the human proteome is vulnerable to 3CLpro, with 4898 out of approximately 20,000 human proteins containing at least one putative cleavage site. These cleavages are nonrandomly distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion proteins, nuclear condensation and other epigenetics, host transcription and RNAi, ribosomal stoichiometry and nascent-chain detection and degradation, ubiquitination, pattern recognition receptors, coagulation, lipoproteins, redox, and apoptosis. This whole proteome cleavage prediction demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead me to propose more than a dozen potential therapeutic targets against coronaviruses, and should therefore be applied to all viral proteases and subsequently experimentally verified.
Collapse
|
44
|
Yu Y, Lian Z, Cui Y. The OH system: A panorama view of the PPV-host interaction. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105220. [PMID: 35066165 DOI: 10.1016/j.meegid.2022.105220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/19/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Poxviruses are a family of specialized cytoplasm-parasitic DNA viruses that replicate and assembly in virus factory. In Parapoxvirus (PPV) genus, with the orf virus (ORFV) as a representative species of this genus, their behaviors are significantly different from that of Orthopoxvirus, and the plots of viral practical solutions for evading host immunity are intricate and fascinating, particularly to anti-host and host's antiviral mechanisms. In order to protect the virus factory from immune elimination caused by infection, PPVs attempt to interfere with multiple stress levels of host, mainly by modulating innate immunity response (IIR) and adaptive immunity response (AIR). Given that temporarily constructed by virus infection, ORFV-HOST (OH) system accompanied by viral strategies is carefully managed in the virus factory, thus directing many life-critical events once undergoing the IIR and AIR. Evolutionarily, to reduce the risk of system destruction, ORFV have evolved into a mild-looking mode to avoid overstimulation. Moreover, the current version of development also focus on recognizing and hijacking more than eight antiviral security mechanisms of host cells, such as the 2',5'-oligoadenylate synthetase (OAS)/RNase L and PKR systems, the ubiquitin protease system (UPS), and so on. In summary, this review assessed inescapable pathways as mentioned above, through which viruses compete with their hosts strategically. The OH system provides a panoramic view and a powerful platform for us to study the PPV-Host interaction, as well as the corresponding implications on a great application potential in anti-virus design.
Collapse
Affiliation(s)
- Yongzhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100039, PR China
| | - Yudong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
45
|
Zhang Q, Jia Q, Gao W, Zhang W. The Role of Deubiquitinases in Virus Replication and Host Innate Immune Response. Front Microbiol 2022; 13:839624. [PMID: 35283827 PMCID: PMC8908266 DOI: 10.3389/fmicb.2022.839624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
As a critical post-translational modification, ubiquitination is known to affect almost all the cellular processes including immunity, signaling pathways, cell death, cancer development, and viral infection by controlling protein stability. Deubiquitinases (DUBs) cleave ubiquitin from proteins and reverse the process of ubiquitination. Thus, DUBs play an important role in the deubiquitination process and serve as therapeutic targets for various diseases. DUBs are found in eukaryotes, bacteria, and viruses and influence various biological processes. Here, we summarize recent findings on the function of DUBs in modulating viral infection, the mechanism by which viral DUBs regulate host innate immune response, and highlight those DUBs that have recently been discovered as antiviral therapeutic targets.
Collapse
Affiliation(s)
- Qinglin Zhang
- College of Life Sciences of Jilin University, Changchun, China
| | - Qizhen Jia
- College of Life Sciences of Jilin University, Changchun, China
| | - Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:125-147. [PMID: 35132598 DOI: 10.1007/978-3-030-85109-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The recent outbreak of coronavirus infection by SARS-CoV-2 that started from the Wuhan Province of China in 2019 has spread to most parts of the world infecting millions of people. Although the case fatality rate of SARS-CoV-2 infection is less than the previous epidemics by other closely related coronaviruses, due to its high infectivity, the total number of SARS-CoV-2 infection-associated disease, called Covid-19, is a matter of global concern. Despite drastic preventive measures, the number of Covid-19 cases are steadily increasing, and the future course of this pandemic is highly unpredictable. The most concerning fact about Covid-19 is the absence of specific and effective preventive or therapeutic agents against the disease. Finding an immediate intervention against Covid-19 is the need of the hour. In this chapter, we have discussed the role of different branches of the cellular proteostasis network, represented by Hsp70-Hsp40 chaperone system, Ubiquitin-Proteasome System (UPS), autophagy, and endoplasmic reticulum-Unfolded Protein Response (ER-UPR) pathway in the pathogenesis of coronavirus infections and in the host antiviral defense mechanisms. RESULTS Based on scientific literature, we present that pharmacological manipulation of proteostasis network can alter the fate of coronavirus infections and may help to prevent the resulting pathologies like Covid-19.
Collapse
|
47
|
Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. J Biol Chem 2022; 298:101584. [PMID: 35032548 PMCID: PMC8755419 DOI: 10.1016/j.jbc.2022.101584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.
Collapse
|
48
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
49
|
Lenoir JJ, Parisien JP, Horvath CM. Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF-κB activation. Cell Rep 2021; 37:110175. [PMID: 34965427 DOI: 10.1016/j.celrep.2021.110175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lysine 63-linked polyubiquitin (K63-Ub) chains activate a range of cellular immune and inflammatory signaling pathways, including the mammalian antiviral response. Interferon and antiviral genes are triggered by TRAF family ubiquitin ligases that form K63-Ub chains. LGP2 is a feedback inhibitor of TRAF-mediated K63-Ub that can interfere with diverse immune signaling pathways. Our results demonstrate that LGP2 inhibits K63-Ub by association with and sequestration of the K63-Ub-conjugating enzyme, Ubc13/UBE2N. The LGP2 helicase subdomain, Hel2i, mediates protein interaction that engages and inhibits Ubc13/UBE2N, affecting control over a range of K63-Ub ligase proteins, including TRAF6, TRIM25, and RNF125, all of which are inactivated by LGP2. These findings establish a unifying mechanism for LGP2-mediated negative regulation that can modulate a variety of K63-Ub signaling pathways.
Collapse
Affiliation(s)
- Jessica J Lenoir
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
50
|
Bauer M, Gomez-Gonzalez A, Suomalainen M, Schilling N, Hemmi S, Greber UF. A viral ubiquitination switch attenuates innate immunity and triggers nuclear import of virion DNA and infection. SCIENCE ADVANCES 2021; 7:eabl7150. [PMID: 34919430 PMCID: PMC8682987 DOI: 10.1126/sciadv.abl7150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antiviral defense and virus exclusion from the cell nucleus restrict foreign nucleic acid influx and infection. How the genomes of DNA viruses evade cytosolic pattern recognition and cross the nuclear envelope is incompletely understood. Here, we show that the virion protein V of adenovirus functions as a linchpin between the genome and the capsid, thereby securing particle integrity. Absence of protein V destabilizes cytoplasmic particles and promotes premature genome release, raising cytokine levels through the DNA sensor cGAS. Non-ubiquitinable V yields stable virions, genome misdelivery to the cytoplasm, and increased cytokine levels. In contrast, normal protein V is ubiquitinated at the nuclear pore complex, dissociates from the virion depending on the E3 ubiquitin ligase Mib1 and the proteasome, and allows genome delivery into the nucleus for infection. Our data uncover previously unknown cellular and viral mechanisms of viral DNA nuclear import in pathogenesis, vaccination, gene therapy, and synthetic biology.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH8057, Switzerland
| | - Alfonso Gomez-Gonzalez
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH8057, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, Zurich 8057, Switzerland
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH8057, Switzerland
| | - Nicolas Schilling
- Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH8057, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich CH8057, Switzerland
- Corresponding author.
| |
Collapse
|