1
|
Meijlink B, van der Kooij HR, Wang Y, Li H, Huveneers S, Kooiman K. Ultrasound-activated microbubbles mediate F-actin disruptions and endothelial gap formation during sonoporation. J Control Release 2024; 376:1176-1189. [PMID: 39500409 DOI: 10.1016/j.jconrel.2024.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/14/2024]
Abstract
Locally opening up the endothelial barrier in a safe and controlled way is beneficial for drug delivery into the extravascular tissue. Although ultrasound-induced microbubble oscillations can affect the endothelial barrier integrity, the mechanism remains unknown. Here we uncover a new role for F-actin in microbubble-mediated endothelial gap formation. Unique simultaneous high-resolution confocal microscopy and ultra-high-speed camera imaging (10 million frames per second) reveal that single oscillating microbubbles (radius 1.3-3.8 μm; n = 48) induce sonoporation in all cells in which F-actin remodeling occurred. F-actin disruption only mainly resulted in tunnel formation (75 %), while F-actin stress fiber severing and recoil mainly resulted in cell-cell contact opening within 15 s upon treatment (54 %) and tunnel formation (15 %). F-actin stress fiber severing occurred when the fibers were within reach of the microbubble's maximum radius during oscillation, requiring normal forces of ≥230 nN. In the absence of F-actin stress fibers, oscillating microbubbles induced F-actin remodeling but no cell-cell contact opening. Together, these findings reveal a novel mechanism of microbubble-mediated transendothelial drug delivery, which associates with the underlying cytoskeletal F-actin organization.
Collapse
Affiliation(s)
- Bram Meijlink
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - H Rhodé van der Kooij
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Yuchen Wang
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Hongchen Li
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Stephan Huveneers
- Dept. Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Klazina Kooiman
- Biomedical Engineering, Dept. of Cardiology, Cardiovascular Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Scholz J, Stephan T, Pérez AG, Csiszár A, Hersch N, Fischer LS, Brühmann S, Körber S, Litschko C, Mijanovic L, Kaufmann T, Lange F, Springer R, Pich A, Jakobs S, Peckham M, Tarantola M, Grashoff C, Merkel R, Faix J. Decisive role of mDia-family formins in cell cortex function of highly adherent cells. SCIENCE ADVANCES 2024; 10:eadp5929. [PMID: 39475610 PMCID: PMC11524191 DOI: 10.1126/sciadv.adp5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.
Collapse
Affiliation(s)
- Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Aina Gallemí Pérez
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Agnes Csiszár
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisa S. Fischer
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lucija Mijanovic
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Wu M, Marchando P, Meyer K, Tang Z, Woolfson DN, Weiner OD. The WAVE complex forms linear arrays at negative membrane curvature to instruct lamellipodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600855. [PMID: 39026726 PMCID: PMC11257481 DOI: 10.1101/2024.07.08.600855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cells generate a wide range of actin-based membrane protrusions for various cell behaviors. These protrusions are organized by different actin nucleation promoting factors. For example, N-WASP controls finger-like filopodia, whereas the WAVE complex controls sheet-like lamellipodia. These different membrane morphologies likely reflect different patterns of nucleator self-organization. N-WASP phase separation has been successfully studied through biochemical reconstitutions, but how the WAVE complex self-organizes to instruct lamellipodia is unknown. Because WAVE complex self-organization has proven refractory to cell-free studies, we leverage in vivo biochemical approaches to investigate WAVE complex organization within its native cellular context. With single molecule tracking and molecular counting, we show that the WAVE complex forms highly regular multilayered linear arrays at the plasma membrane that are reminiscent of a microtubule-like organization. Similar to the organization of microtubule protofilaments in a curved array, membrane curvature is both necessary and sufficient for formation of these WAVE complex linear arrays, though actin polymerization is not. This dependency on negative membrane curvature could explain both the templating of lamellipodia and their emergent behaviors, including barrier avoidance. Our data uncover the key biophysical properties of mesoscale WAVE complex patterning and highlight an integral relationship between NPF self-organization and cell morphogenesis.
Collapse
Affiliation(s)
- Muziyue Wu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kirstin Meyer
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| | - Ziqi Tang
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
- Bristol BioDesign Institute, University of Bristol, Bristol, UK
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute,University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Morel C, Lemerle E, Tsai FC, Obadia T, Srivastava N, Marechal M, Salles A, Albert M, Stefani C, Benito Y, Vandenesch F, Lamaze C, Vassilopoulos S, Piel M, Bassereau P, Gonzalez-Rodriguez D, Leduc C, Lemichez E. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane. eLife 2024; 12:RP92078. [PMID: 38517935 PMCID: PMC10959525 DOI: 10.7554/elife.92078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.
Collapse
Affiliation(s)
- Camille Morel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Eline Lemerle
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Feng-Ching Tsai
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and AnalyticsParisFrance
| | - Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Maud Marechal
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT)ParisFrance
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis HubParisFrance
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Department of ImmunologySeattleUnited States
| | - Yvonne Benito
- Centre National de Référence des Staphylocoques, Hospices Civiles de LyonLyonFrance
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, FranceLyonFrance
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR3666, Membrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParisFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Patricia Bassereau
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | | | - Cecile Leduc
- Université Paris Cité, Institut Jacques Monod, CNRS UMR7592ParisFrance
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| |
Collapse
|
5
|
Tessier E, Cheutin L, Garnier A, Vigne C, Tournier JN, Rougeaux C. Early Circulating Edema Factor in Inhalational Anthrax Infection: Does It Matter? Microorganisms 2024; 12:308. [PMID: 38399712 PMCID: PMC10891819 DOI: 10.3390/microorganisms12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Anthrax toxins are critical virulence factors of Bacillus anthracis and Bacillus cereus strains that cause anthrax-like disease, composed of a common binding factor, the protective antigen (PA), and two enzymatic proteins, lethal factor (LF) and edema factor (EF). While PA is required for endocytosis and activity of EF and LF, several studies showed that these enzymatic factors disseminate within the body in the absence of PA after intranasal infection. In an effort to understand the impact of EF in the absence of PA, we used a fluorescent EF chimera to facilitate the study of endocytosis in different cell lines. Unexpectedly, EF was found inside cells in the absence of PA and showed a pole-dependent endocytosis. However, looking at enzymatic activity, PA was still required for EF to induce an increase in intracellular cAMP levels. Interestingly, the sequential delivery of EF and then PA rescued the rise in cAMP levels, indicating that PA and EF may functionally associate during intracellular trafficking, as well as it did at the cell surface. Our data shed new light on EF trafficking and the potential location of PA and EF association for optimal cytosolic delivery.
Collapse
Affiliation(s)
- Emilie Tessier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Laurence Cheutin
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Annabelle Garnier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Clarisse Vigne
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| | - Jean-Nicolas Tournier
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
- Institut Pasteur, 75015 Paris, France
| | - Clémence Rougeaux
- Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France (C.R.)
| |
Collapse
|
6
|
Duan Y, Su P, Gu Y, Lv X, Cao X, Wang S, Yuan Z, Sun W. A Study of the Resistance of Hu Sheep Lambs to Escherichia coli F17 Based on Whole Genome Sequencing. Animals (Basel) 2024; 14:161. [PMID: 38200892 PMCID: PMC10778179 DOI: 10.3390/ani14010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study aims to analyze the whole genome sequencing of E. coli F17 in antagonistic and susceptible Hu sheep lambs. The objective is to investigate the critical mutation loci in sheep and understand the genetic mechanism of sheep resistance to E. coli F17 at the genome level. Antagonist and susceptible venous blood samples were collected from Hu sheep lambs for whole genome sequencing and whole genome association analysis. A total of 466 genes with significant SNPs (p < 1.0 × 10-3) were found. GO and KEGG enrichment analysis and protein interaction network analysis were performed on these genes, and preliminary investigations showed that SNPs on CTNNB1, CDH8, APOD, HCLS1, Tet2, MTSS1 and YAP1 genes may be associated with the antagonism and susceptibility of Hu sheep lambs to E. coli F17. There are still some shortcomings that have not been explored via in vivo and in vitro functional experiments of the candidate genes, which will be our next research work. This study provides genetic loci and candidate genes for resistance of Hu sheep lambs to E. coli F17 infection, and provides a genetic basis for breeding disease-resistant sheep.
Collapse
Affiliation(s)
- Yanjun Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Zheng S, Wang X, Matskova L, Zhou X, Zhang Z, Kashuba E, Ernberg I, Aspenström P. MTSS1 is downregulated in nasopharyngeal carcinoma (NPC) which disrupts adherens junctions leading to enhanced cell migration and invasion. Front Cell Dev Biol 2023; 11:1275668. [PMID: 37920825 PMCID: PMC10618355 DOI: 10.3389/fcell.2023.1275668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Loss of cell-cell adhesions is the indispensable first step for cancer cells to depart from the primary tumor mass to metastasize. Metastasis suppressor 1 (MTSS1) is frequently lost in metastatic tissues, correlating to advanced tumor stages and poor prognosis across a variety of cancers. Here we explore the anti-metastatic mechanisms of MTSS1, which have not been well understood. We found that MTSS1 is downregulated in NPC tissues. Lower levels of MTSS1 expression correlate to worse prognosis. We show that MTSS1 suppresses NPC cell migration and invasion in vitro through cytoskeletal remodeling at cell-cell borders and assembly of E-cadherin/β-catenin/F-actin in adherens junctions. The I-BAR domain of MTSS1 was both necessary and sufficient to restore this formation of E-cadherin/β-catenin/F-actin-mediated cell adherens junctions.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Scientific Research Centre, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Senju Y, Mushtaq T, Vihinen H, Manninen A, Saarikangas J, Ven K, Engel U, Varjosalo M, Jokitalo E, Lappalainen P. Actin-rich lamellipodia-like protrusions contribute to the integrity of epithelial cell-cell junctions. J Biol Chem 2023; 299:104571. [PMID: 36871754 PMCID: PMC10173786 DOI: 10.1016/j.jbc.2023.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis-suppressor 1 (MTSS1) is a membrane-interacting scaffolding protein that regulates the integrity of epithelial cell-cell junctions and functions as a tumor suppressor in a wide range of carcinomas. MTSS1 binds phosphoinositide-rich membranes through its I-BAR domain, and is capable of sensing and generating negative membrane curvature in vitro. However, the mechanisms by which MTSS1 localizes to intercellular junctions in epithelial cells, and contributes to their integrity and maintenance have remained elusive. By carrying out electron microscopy and live-cell imaging on cultured Madin-Darby canine kidney (MDCK) cell monolayers, we provide evidence that adherens junctions of epithelial cells harbor lamellipodia-like, dynamic actin-driven membrane folds, which exhibit high negative membrane curvature at their distal edges. BioID proteomics and imaging experiments demonstrated that MTSS1 associates with an Arp2/3 complex activator, the WAVE-2 complex, in dynamic actin-rich protrusions at cell-cell junctions. Inhibition of Arp2/3 or WAVE-2 suppressed actin filament assembly at adherens junctions, decreased the dynamics of junctional membrane protrusions, and led to defects in epithelial integrity. Together, these results support a model in which membrane-associated MTSS1, together with the WAVE-2 and Arp2/3 complexes, promotes the formation of dynamic lamellipodia-like actin protrusions that contribute to the integrity of cell-cell junctions in epithelial monolayers.
Collapse
Affiliation(s)
- Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Japan.
| | - Toiba Mushtaq
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Aki Manninen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, Neuroscience Center, University of Helsinki, Finland
| | - Katharina Ven
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Ulrike Engel
- Nikon Imaging Center and Centre for Organismal Studies, Heidelberg University, Germany
| | - Markku Varjosalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| | - Pekka Lappalainen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
10
|
Activation of SIRT1 promotes membrane resealing via cortactin. Sci Rep 2022; 12:15328. [PMID: 36097021 PMCID: PMC9468153 DOI: 10.1038/s41598-022-19136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.
Collapse
|
11
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
12
|
Tsai MC, Fleuriot L, Janel S, Gonzalez-Rodriguez D, Morel C, Mettouchi A, Debayle D, Dallongeville S, Olivo-Marin JC, Antonny B, Lafont F, Lemichez E, Barelli H. DHA-phospholipids control membrane fusion and transcellular tunnel dynamics. J Cell Sci 2021; 135:273659. [PMID: 34878112 DOI: 10.1242/jcs.259119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.
Collapse
Affiliation(s)
- Meng-Chen Tsai
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France.,Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Lucile Fleuriot
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Sébastien Janel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Camille Morel
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Amel Mettouchi
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Delphine Debayle
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | | | | | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| | - Frank Lafont
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emmanuel Lemichez
- Institut Pasteur, Université de Paris, CNRS UMR2001, Unité des Toxines Bactériennes, 75015 Paris, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS and Université Côte d'Azur, 06560, Valbonne, France
| |
Collapse
|
13
|
Pipathsouk A, Brunetti RM, Town JP, Graziano BR, Breuer A, Pellett PA, Marchuk K, Tran NHT, Krummel MF, Stamou D, Weiner OD. The WAVE complex associates with sites of saddle membrane curvature. J Cell Biol 2021; 220:e202003086. [PMID: 34096975 PMCID: PMC8185649 DOI: 10.1083/jcb.202003086] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.
Collapse
Affiliation(s)
- Anne Pipathsouk
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Jason P. Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Brian R. Graziano
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Artù Breuer
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Kyle Marchuk
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Ngoc-Han T. Tran
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Matthew F. Krummel
- Department of Pathology and Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA
| | - Dimitrios Stamou
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Lemichez E, Popoff MR, Satchell KJF. Cellular microbiology: Bacterial toxin interference drives understanding of eukaryotic cell function. Cell Microbiol 2021; 22:e13178. [PMID: 32185903 DOI: 10.1111/cmi.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
Intimate interactions between the armament of pathogens and their host dictate tissue and host susceptibility to infection also forging specific pathophysiological outcomes. Studying these interactions at the molecular level has provided an invaluable source of knowledge on cellular processes, as ambitioned by the Cellular Microbiology discipline when it emerged in early 90s. Bacterial toxins act on key cell regulators or membranes to produce major diseases and therefore constitute a remarkable toolbox for dissecting basic biological processes. Here, we review selected examples of recent studies on bacterial toxins illustrating how fruitful the discipline of cellular microbiology is in shaping our understanding of eukaryote processes. This ever-renewing discipline unveils new virulence factor biochemical activities shared by eukaryotic enzymes and hidden rules of cell proteome homeostasis, a particularly promising field to interrogate the impact of proteostasis breaching in late onset human diseases. It is integrating new concepts from the physics of soft matter to capture biomechanical determinants forging cells and tissues architecture. The success of this discipline is also grounded by the development of therapeutic tools and new strategies to treat both infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- Unité des Toxines Bactériennes, CNRS ERL6002, Institut Pasteur, Paris, France
| | | | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
15
|
Rougeaux C, Becher F, Goossens PL, Tournier JN. Very Early Blood Diffusion of the Active Lethal and Edema Factors of Bacillus anthracis After Intranasal Infection. J Infect Dis 2020; 221:660-667. [PMID: 31574153 PMCID: PMC6996859 DOI: 10.1093/infdis/jiz497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 11/22/2022] Open
Abstract
Background Lethal and edema toxins are critical virulence factors of Bacillus anthracis. Few data are available on their presence in the early stage of intranasal infection. Methods To investigate the diffusion of edema factor (EF) and lethal factor (LF), we use sensitive quantitative methods to measure their enzymatic activities in mice intranasally challenged with a wild-type B anthracis strain or with an isogenic mutant deficient for the protective antigen. Results One hour after mouse challenge, although only 7% of mice presented bacteremia, LF and EF were detected in the blood of 100% and 42% of mice, respectively. Protective antigen facilitated the diffusion of LF and EF into the blood compartment. Toxins played a significant role in the systemic dissemination of B anthracis in the blood, spleen, and liver. A mouse model of intoxination further confirmed that LT and ET could diffuse rapidly in the circulation, independently of bacteria. Conclusions In this inhalational model, toxins have disseminated rapidly in the blood, playing a significant and novel role in the early systemic diffusion of bacteria, demonstrating that they may represent a very early target for the diagnosis and the treatment of anthrax.
Collapse
Affiliation(s)
- Clémence Rougeaux
- Unité Biothérapies Anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| | - François Becher
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
| | - Jean-Nicolas Tournier
- Unité Biothérapies Anti-Infectieuses et Immunité, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,Pathogénie des Toxi-Infections Bactériennes, Institut Pasteur, Paris, France.,Ecole du Val-de-Grâce, Paris, France.,Centre National de Référence-Laboratoire Expert Charbon, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
16
|
Helfield B, Chen X, Watkins SC, Villanueva FS. Transendothelial Perforations and the Sphere of Influence of Single-Site Sonoporation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1686-1697. [PMID: 32402675 PMCID: PMC7293920 DOI: 10.1016/j.ultrasmedbio.2020.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/08/2020] [Accepted: 02/27/2020] [Indexed: 05/28/2023]
Abstract
Acoustically driven gas bubble cavitation locally concentrates energy and can result in physical phenomena including sonoluminescence and erosion. In biomedicine, ultrasound-driven microbubbles transiently increase plasma membrane permeability (sonoporation) to promote drug/gene delivery. Despite its potential, little is known about cellular response in the aftermath of sonoporation. In the work described here, using a live-cell approach, we assessed the real-time interplay between transendothelial perforations (∼30-60 s) up to 650 µm2, calcium influx, breaching of the local cytoskeleton and sonoporation resealing upon F-actin recruitment to the perforation site (∼5-10 min). Through biophysical modeling, we established the critical role of membrane line tension in perforation resealing velocity (10-30 nm/s). Membrane budding/shedding post-sonoporation was observed on complete perforation closure, yet successful pore repair does not mark the end of sonoporation: protracted cell mobility from 8 µs of ultrasound is observed up to 4 h post-treatment. Taken holistically, we established the biophysical context of endothelial sonoporation repair with application in drug/gene delivery.
Collapse
Affiliation(s)
- Brandon Helfield
- Department of Physics, Concordia University, Montreal, Quebec, Canada; Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Angely C, Ladant D, Planus E, Louis B, Filoche M, Chenal A, Isabey D. Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin. PLoS One 2020; 15:e0228606. [PMID: 32392246 PMCID: PMC7213728 DOI: 10.1371/journal.pone.0228606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023] Open
Abstract
Bordetella pertussis, the causative agent of whopping cough, produces an adenylate cyclase toxin (CyaA) that plays a key role in the host colonization by targeting innate immune cells which express CD11b/CD18, the cellular receptor of CyaA. CyaA is also able to invade non-phagocytic cells, via a unique entry pathway consisting in a direct translocation of its catalytic domain across the cytoplasmic membrane of the cells. Within the cells, CyaA is activated by calmodulin to produce high levels of cyclic adenosine monophosphate (cAMP) and alter cellular physiology. In this study, we explored the effects of CyaA toxin on the cellular and molecular structure remodeling of A549 alveolar epithelial cells. Using classical imaging techniques, biochemical and functional tests, as well as advanced cell mechanics method, we quantify the structural and functional consequences of the massive increase of intracellular cyclic AMP induced by the toxin: cell shape rounding associated to adhesion weakening process, actin structure remodeling for the cortical and dense components, increase in cytoskeleton stiffness, and inhibition of migration and repair. We also show that, at low concentrations (0.5 nM), CyaA could significantly impair the migration and wound healing capacities of the intoxicated alveolar epithelial cells. As such concentrations might be reached locally during B. pertussis infection, our results suggest that the CyaA, beyond its major role in disabling innate immune cells, might also contribute to the local alteration of the epithelial barrier of the respiratory tract, a hallmark of pertussis.
Collapse
Affiliation(s)
- Christelle Angely
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
| | - Daniel Ladant
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Emmanuelle Planus
- Institut pour l’Avancée des Biosciences (IAB), Centre de Recherche UGA/ Inserm U1209 / CNRS UMR 5309, La Tronche, France
| | - Bruno Louis
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
| | - Marcel Filoche
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Alexandre Chenal
- Unité de Biochimie des Interactions Macromoléculaires (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Daniel Isabey
- Equipe 13, Biomécanique & Appareil Respiratoire, Inserm U955, Créteil, France
- UMR 955, UPEC, Université Paris-Est, Créteil, France
- ERL 7000, CNRS, Créteil, France
- * E-mail:
| |
Collapse
|
18
|
Xiong S, Zhou T, Zheng F, Liang X, Cao Y, Wang C, Feng Z, Tang Q, Zhu J. Different mechanisms of two anti-anthrax protective antigen antibodies and function comparison between them. BMC Infect Dis 2019; 19:940. [PMID: 31699037 PMCID: PMC6836657 DOI: 10.1186/s12879-019-4508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis causes a highly lethal infectious disease primarily due to toxin-mediated injury. Antibiotics are no longer effective to treat the accumulation of anthrax toxin, thereby new strategies of antibody treatment are essential. Two anti- anthrax protective antigen (PA) antibodies, hmPA6 and PA21, have been reported by our lab previously. METHODS The mechanisms of the two antibodies were elucidated by Electrophoresis, Competitive Enzyme-linked immune sorbent assay, Western blot analysis and immunoprecipitation test, and in vitro, in vivo (F344 rats) treatment test. The epitopes of the two antibodies were proved by Western blot and Enzyme-linked immune sorbent assay with different domains of PA. RESULTS In this study, we compared affinity and neutralization of these two antibodies. PA21 was better in protecting cells and rats, whereas hmPA6 had higher affinity. Furthermore, the neutralization mechanisms of the two antibodies and their recognition domains of PA were studied. The results showed that hmPA6 recognized domain IV, thus PA could not bind to cell receptors. Conversely, PA21 recognized domain II, thereby limiting heptamer oligomerization of PA63 in cells. CONCLUSIONS Our studies elucidated the mechanisms and epitopes of hmPA6 and PA21. The present investigation can advance future use of the two antibodies in anthrax treatment or prophylaxis, and potentially as a combination treatment as the antibodies target different epitopes.
Collapse
Affiliation(s)
- Siping Xiong
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China.,Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Tingting Zhou
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China
| | - Feng Zheng
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China
| | - Xudong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yongping Cao
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China
| | - Chunhui Wang
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China
| | - Zhengqin Feng
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China.
| | - Jin Zhu
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, 210002, China. .,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
20
|
Kawabata Galbraith K, Fujishima K, Mizuno H, Lee SJ, Uemura T, Sakimura K, Mishina M, Watanabe N, Kengaku M. MTSS1 Regulation of Actin-Nucleating Formin DAAM1 in Dendritic Filopodia Determines Final Dendritic Configuration of Purkinje Cells. Cell Rep 2018; 24:95-106.e9. [DOI: 10.1016/j.celrep.2018.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022] Open
|
21
|
Ng WP, Webster KD, Stefani C, Schmid EM, Lemichez E, Bassereau P, Fletcher DA. Force-induced transcellular tunnel formation in endothelial cells. Mol Biol Cell 2017; 28:mbc.E17-01-0080. [PMID: 28794268 PMCID: PMC5620373 DOI: 10.1091/mbc.e17-01-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/21/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023] Open
Abstract
The endothelium serves as a protective semipermeable barrier in blood vessels and lymphatic vessels. Leukocytes and pathogens can pass directly through the endothelium by opening holes in endothelial cells, known as transcellular tunnels, which are formed by contact and self-fusion of the apical and basal plasma membranes. Here we test the hypothesis that the actin cytoskeleton is the primary barrier to transcellular tunnel formation using a combination of atomic force microscopy and fluorescence microscopy of live cells. We find that localized mechanical forces are sufficient to induce the formation of transcellular tunnels in HUVECs. When HUVECs are exposed to the bacterial toxin EDIN, which can induce spontaneous transcellular tunnels, less mechanical work is required to form tunnels due to the reduced cytoskeletal stiffness and thickness of these cells, similar to the effects of a ROCK inhibitor. We also observe actin enrichment in response to mechanical indentation that is reduced in cells exposed to the bacterial toxin. Our study shows that the actin cytoskeleton of endothelial cells provides both passive and active resistance against transcellular tunnel formation, serving as a mechanical barrier that can be overcome by mechanical force as well as disruption of the cytoskeleton.
Collapse
Affiliation(s)
- Win Pin Ng
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Kevin D Webster
- Department of Bioengineering, University of California, Berkeley, California 94720
- Biophysics Graduate Group, University of California, Berkeley, California 94720
| | - Caroline Stefani
- INSERM, U1065, Université de Nice-Sophie-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France
| | - Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Emmanuel Lemichez
- INSERM, U1065, Université de Nice-Sophie-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Daniel A Fletcher
- UC Berkeley/UC San Francisco Graduate Group in Bioengineering, Berkeley, California 94720
- Department of Bioengineering, University of California, Berkeley, California 94720
- Biophysics Graduate Group, University of California, Berkeley, California 94720
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
22
|
How tetraspanins shape endothelial and leukocyte nano-architecture during inflammation. Biochem Soc Trans 2017; 45:999-1006. [PMID: 28710286 DOI: 10.1042/bst20170163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/13/2023]
Abstract
Tetraspanins are ubiquitous membrane proteins that induce local membrane curvature and hence co-ordinate cell-to-cell contacts. This review highlights their role in inflammation, which requires control of the nano-architecture of attachment sites between endothelial cells and leukocytes. The active role of endothelial cells in preparing for transmigration of leukocytes and determining the severity of an inflammation is often underscored. A clear hint to endothelial pre-activation is their ability to protrude clustered adhesion proteins upward prior to leukocyte contact. The elevation of molecular adhesive platforms toward the blood stream is crucially dependent on tetraspanins. In addition, leukocytes require tetraspanins for their activation. The example of the B-cell receptor is referenced in some detail here, since it provides deeper insights into the receptor-coreceptor interplay. To lift the role of tetraspanins from an abstract model of inflammation toward a player of clinical significance, two pathologies are analyzed for the known contributions of tetraspanins. The recent publication of the first crystal structure of a full-length tetraspanin revealed a cholesterol-binding site, which provides a strong link to the pathophysiological condition of atherosclerosis. Dysregulation of the inflammatory cascade in autoimmune diseases by endothelial cells is exemplified by the involvement of tetraspanins in multiple sclerosis.
Collapse
|
23
|
Fedorov EG, Shemesh T. Physical Model for Stabilization and Repair of Trans-endothelial Apertures. Biophys J 2017; 112:388-397. [PMID: 28122224 DOI: 10.1016/j.bpj.2016.11.3207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/13/2023] Open
Abstract
Bacterial toxins that disrupt the stability of contractile structures in endothelial cells promote the opening of large-scale apertures, thereby breaching the endothelium barrier. These apertures are formed by fusion of the basal and apical membranes into a tunnel that spans the height of the cell. Subsequent to the aperture formation, an active repair process, driven by a stimulated polymerization of actin, results in asymmetrical membrane protrusions and, ultimately, the closure of the aperture. Here, we propose a physics-based model for the generation, stabilization and repair of trans-endothelial apertures. Our model is based on the mechanical interplay between tension in the plasma membrane and stresses that develop within different actin structures at the aperture's periphery. We suggest that accumulation of cytoskeletal fragments around the aperture's rim during the expansion phase results in parallel bundles of actin filaments and myosin motors, generating progressively greater contraction forces that resist further expansion of the aperture. Our results indicate that closure of the tunnel is driven by mechanical stresses that develop within a cross-linked actin gel that forms at localized regions of the aperture periphery. We show that stresses within the gel are due to continuous polymerization of actin filaments against the membrane surfaces of the aperture's edges. Based on our mechanical model, we construct a dynamic simulation of the aperture repair process. Our model fully accounts for the phenomenology of the trans-endothelial aperture formation and stabilization, and recaptures the experimentally observed asymmetry of the intermediate aperture shapes during closure. We make experimentally testable predictions for localization of myosin motors to the tunnel periphery and of adhesion complexes to the edges of apertures undergoing closure, and we estimate the minimal nucleation size of cross-linked actin gel that can lead to a successful repair of the aperture.
Collapse
Affiliation(s)
- Eduard G Fedorov
- Department of Biology, Israel Institute of Technology, Haifa, Israel
| | - Tom Shemesh
- Department of Biology, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
24
|
Ezrin enhances line tension along transcellular tunnel edges via NMIIa driven actomyosin cable formation. Nat Commun 2017. [PMID: 28643776 PMCID: PMC5490010 DOI: 10.1038/ncomms15839] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.
Collapse
|
25
|
A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection. Toxins (Basel) 2017; 9:toxins9030099. [PMID: 28287432 PMCID: PMC5371854 DOI: 10.3390/toxins9030099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Developing drugs to treat the toxic effects of lethal toxin (LT) and edema toxin (ET) produced by B. anthracis is of global interest. We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound’s mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection.
Collapse
|
26
|
Lubkin A, Torres VJ. Bacteria and endothelial cells: a toxic relationship. Curr Opin Microbiol 2016; 35:58-63. [PMID: 28013162 DOI: 10.1016/j.mib.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/26/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
Abstract
Pathogenic bacteria use the bloodstream as a highway for getting around the body, and thus have to find ways to enter and exit through the endothelium. Many bacteria approach this problem by producing toxins that can breach the endothelial barrier through diverse creative mechanisms, including directly killing endothelial cells (ECs), weakening the cytoskeleton within ECs, and breaking the junctions between ECs. Toxins can also modulate the immune response by influencing endothelial biology, and can modulate endothelial function by influencing the response of leukocytes. Understanding these interactions, in both the in vitro and in vivo contexts, is of critical importance for designing new therapies for sepsis and other severe bacterial diseases.
Collapse
Affiliation(s)
- Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, United States
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
27
|
Luo W, Lieu ZZ, Manser E, Bershadsky AD, Sheetz MP. Formin DAAM1 Organizes Actin Filaments in the Cytoplasmic Nodal Actin Network. PLoS One 2016; 11:e0163915. [PMID: 27760153 PMCID: PMC5070803 DOI: 10.1371/journal.pone.0163915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/17/2016] [Indexed: 01/13/2023] Open
Abstract
A nodal cytoplasmic actin network underlies actin cytoplasm cohesion in the absence of stress fibers. We previously described such a network that forms upon Latrunculin A (LatA) treatment, in which formin DAAM1 was localized at these nodes. Knock down of DAAM1 reduced the mobility of actin nodes but the nodes remained. Here we have investigated DAAM1 containing nodes after LatA washout. DAAM1 was found to be distributed between the cytoplasm and the plasma membrane. The membrane binding likely occurs through an interaction with lipid rafts, but is not required for F-actin assembly. Interesting the forced interaction of DAAM1 with plasma membrane through a rapamycin-dependent linkage, enhanced F-actin assembly at the cell membrane (compared to the cytoplasm) after the LatA washout. However, immediately after addition of both rapamycin and LatA, the cytoplasmic actin nodes formed transiently, before DAAM1 moved to the membrane. This was consistent with the idea that DAAM1 was initially anchored to cytoplasmic actin nodes. Further, photoactivatable tracking of DAAM1 showed DAAM1 was immobilized at these actin nodes. Thus, we suggest that DAAM1 organizes actin filaments into a nodal complex, and such nodal complexes seed actin network recovery after actin depolymerization.
Collapse
Affiliation(s)
- Weiwei Luo
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Zi Zhao Lieu
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Ed Manser
- sGSK Group, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Proteos Building, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alexander D. Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, New York, 10027, United States of America
- * E-mail:
| |
Collapse
|
28
|
Charles-Orszag A, Lemichez E, Tran Van Nhieu G, Duménil G. Microbial pathogenesis meets biomechanics. Curr Opin Cell Biol 2016; 38:31-7. [PMID: 26849533 DOI: 10.1016/j.ceb.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Introducing concepts from soft matter physics and mechanics has largely contributed to our understanding of a variety of biological processes. In this review, we argue that this holds true for bacterial pathogenesis. We base this argument on three examples of bacterial pathogens and their interaction with host cells during infection: (i) Shigella flexneri exploits actin-dependent forces to come into close contact with epithelial cells prior to invasion of the epithelium; (ii) Neisseria meningitidis manipulates endothelial cells to resist shear stress during vascular colonization; (iii) bacterial toxins take advantage of the biophysical properties of the host cell plasma membrane to generate transcellular macroapertures in the vascular wall. Together, these examples show that a multidisciplinary approach integrating physics and biology is more necessary than ever to understand complex infectious phenomena. Moreover, this avenue of research will allow the exploration of general processes in cell biology, highlighted by pathogens, in the context of other non-communicable human diseases.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Lemichez
- INSERM, U1065, Microbial Toxins in Host-Pathogen Interactions, Centre Méditerranéen De Médecine Moléculaire, C3M, 151 Route St Antoine de Ginestière, 06204 Nice, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR 7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Guillaume Duménil
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
29
|
Nanoscale Imaging Reveals a Tetraspanin-CD9 Coordinated Elevation of Endothelial ICAM-1 Clusters. PLoS One 2016; 11:e0146598. [PMID: 26731655 PMCID: PMC4701507 DOI: 10.1371/journal.pone.0146598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023] Open
Abstract
Endothelial barriers have a central role in inflammation as they allow or deny the passage of leukocytes from the vasculature into the tissue. To bind leukocytes, endothelial cells form adhesive clusters containing tetraspanins and ICAM-1, so-called endothelial adhesive platforms (EAPs). Upon leukocyte binding, EAPs evolve into docking structures that emanate from the endothelial surface while engulfing the leukocyte. Here, we show that TNF-α is sufficient to induce apical protrusions in the absence of leukocytes. Using advanced quantitation of atomic force microscopy (AFM) recordings, we found these structures to protrude by 160 ± 80 nm above endothelial surface level. Confocal immunofluorescence microscopy proved them positive for ICAM-1, JAM-A, tetraspanin CD9 and f-actin. Microvilli formation was inhibited in the absence of CD9. Our findings indicate that stimulation with TNF-α induces nanoscale changes in endothelial surface architecture and that—via a tetraspanin CD9 depending mechanism—the EAPs rise above the surface to facilitate leukocyte capture.
Collapse
|
30
|
Abstract
The virulence of highly pathogenic bacteria such as Salmonella, Yersinia, Staphylococci, Clostridia, and pathogenic strains of Escherichia coli involves intimate cross-talks with the host actin cytoskeleton and its upstream regulators. A large number of virulence factors expressed by these pathogens modulate Rho GTPase activities either by mimicking cellular regulators or by catalyzing posttranslational modifications of these small proteins. This impressive convergence of virulence toward Rho GTPases and actin indeed offers pathogens the capacity to breach host defenses and invade their host, while it promotes inflammatory reactions. In return, the study of this targeting of Rho GTPases in infection has been an invaluable source of information in cell signaling, cell biology, and biomechanics, as well as in immunology. Through selected examples, I highlight the importance of recent studies on this crosstalk, which have unveiled new mechanisms of regulation of Rho GTPases; the relationship between cell shape and actin cytoskeleton organization; and the relationship between Rho GTPases and innate immune signaling.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- UCA, Inserm, C3M, U1065, Team Microbial Toxins in Host Pathogen Interactions, Equipe Labellisée la Ligue Contre le Cancer, Nice, 06204, France.
- UFR Médecine, Université de Nice-Sophia-Antipolis, Nice, France.
| |
Collapse
|
31
|
Simunovic M, Voth GA, Callan-Jones A, Bassereau P. When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends Cell Biol 2015; 25:780-792. [PMID: 26519988 DOI: 10.1016/j.tcb.2015.09.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/22/2022]
Abstract
Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response, or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637, USA; Institut Curie, Centre de Recherche, F-75248 Paris, France
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637, USA
| | - Andrew Callan-Jones
- Université Paris Diderot, F-75205 Paris, France; CNRS, Matière et Systèmes Complexes, UMR 7057, F-75205 Paris, France
| | - Patricia Bassereau
- Institut Curie, Centre de Recherche, F-75248 Paris, France; CNRS, PhysicoChimie Curie, UMR 168, F-75248 Paris, France; Université Pierre et Marie Curie, F-75252 Paris, France.
| |
Collapse
|
32
|
Barth H, Fischer S, Möglich A, Förtsch C. Clostridial C3 Toxins Target Monocytes/Macrophages and Modulate Their Functions. Front Immunol 2015; 6:339. [PMID: 26175735 PMCID: PMC4485225 DOI: 10.3389/fimmu.2015.00339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/17/2015] [Indexed: 12/01/2022] Open
Abstract
The C3 enzymes from Clostridium (C.) botulinum (C3bot) and Clostridium limosum (C3lim) are single chain protein toxins of about 25 kDa that mono-ADP-ribosylate Rho-A, -B, and -C in the cytosol of mammalian cells. We discovered that both C3 proteins are selectively internalized into the cytosol of monocytes and macrophages by an endocytotic mechanism, comparable to bacterial AB-type toxins, while they are not efficiently taken up into the cytosol of other cell types including epithelial cells and fibroblasts. C3-treatment results in disturbed macrophage functions, such as migration and phagocytosis, suggesting a novel function of clostridial C3 toxins as virulence factors, which selectively interfere with these immune cells. Moreover, enzymatic inactive C3 protein serves as a transport system to selectively deliver pharmacologically active molecules into the cytosol of monocytes/macrophages without damaging these cells. This review addresses also the generation of C3-based molecular tools for experimental macrophage pharmacology and cell biology as well as the exploitation of C3 for development of novel therapeutic strategies against monocyte/macrophage-associated diseases.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , Ulm , Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , Ulm , Germany ; Institute of Organic Chemistry III, University of Ulm , Ulm , Germany
| | - Amelie Möglich
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , Ulm , Germany
| | - Christina Förtsch
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , Ulm , Germany
| |
Collapse
|
33
|
MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev Cell 2015; 33:644-59. [PMID: 26051541 DOI: 10.1016/j.devcel.2015.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/28/2015] [Accepted: 04/21/2015] [Indexed: 11/21/2022]
Abstract
Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.
Collapse
|
34
|
Micropatterned macrophage analysis reveals global cytoskeleton constraints induced by Bacillus anthracis edema toxin. Infect Immun 2015; 83:3114-25. [PMID: 26015478 DOI: 10.1128/iai.00479-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/16/2015] [Indexed: 12/20/2022] Open
Abstract
Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.
Collapse
|
35
|
Remy KE, Cui X, Li Y, Sun J, Solomon SB, Fitz Y, Barochia AV, Al-Hamad M, Moayeri M, Leppla SH, Eichacker PQ. Raxibacumab augments hemodynamic support and improves outcomes during shock with B. anthracis edema toxin alone or together with lethal toxin in canines. Intensive Care Med Exp 2015; 3:9. [PMID: 26097803 PMCID: PMC4473792 DOI: 10.1186/s40635-015-0043-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lethal and edema toxin contribute to shock and lethality with Bacillus anthracis. We showed previously in a 96-h sedated canine model that raxibacumab, a monoclonal antibody against protective antigen, augmented hemodynamic support (HS) and improved survival with lethal toxin challenge. Here we study raxibacumab further. Using this model, we have now studied raxibacumab with 24 h edema toxin challenges (Study 1), and lethal and edema toxin challenges together (Study 2). METHODS Using our canine model, we have now studied raxibacumab with 24h edema toxin challenges (Study-1), and lethal and edema toxin challenges together (Study-2). RESULTS In Study 1, compared to no treatment, HS (titrated fluid and norepinephrine) increased mean arterial blood pressure (MAP, p ≤ 0.05) but not survival [0 of 10 (0/10) animals survived in each group] or median survival time [43.8 h (range 16.8 to 80.3) vs. 45.2 h (21.0 to 57.1)]. Compared to HS, HS with raxibacumab treatment at or 6 h after the beginning of edema toxin increased MAP and survival rate (6/7 and 7/8, respectively) and time [96.0 h (39.5 to 96.0) and 96.0 h (89.5 to 96.0), respectively]; (p ≤ 0.05). HS with raxibacumab at 12 h increased MAP (p ≤ 0.05) but not survival [1/5; 55.3 h (12.6 to 96.0)]. In Study-2, survival rate and time increased with HS and raxibacumab at 0 h (4/4) or 6 h after (3/3) beginning lethal and edema toxin compared to HS [0/5; 71.5 h (65 to 93)] (p = 0.01 averaged over raxibacumab groups). CONCLUSIONS Raxibacumab augments HS and improves survival during shock with lethal and edema toxin.
Collapse
Affiliation(s)
- Kenneth E Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Steven B Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Amisha V Barochia
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mariam Al-Hamad
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| | - Mahtab Moayeri
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bldg 10, Rm 2C145, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Braakman ST, Pedrigi RM, Read AT, Smith JAE, Stamer WD, Ethier CR, Overby DR. Biomechanical strain as a trigger for pore formation in Schlemm's canal endothelial cells. Exp Eye Res 2014; 127:224-35. [PMID: 25128579 PMCID: PMC4175173 DOI: 10.1016/j.exer.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023]
Abstract
The bulk of aqueous humor passing through the conventional outflow pathway must cross the inner wall endothelium of Schlemm's canal (SC), likely through micron-sized transendothelial pores. SC pore density is reduced in glaucoma, possibly contributing to obstructed aqueous humor outflow and elevated intraocular pressure (IOP). Little is known about the mechanisms of pore formation; however, pores are often observed near dome-like cellular outpouchings known as giant vacuoles (GVs) where significant biomechanical strain acts on SC cells. We hypothesize that biomechanical strain triggers pore formation in SC cells. To test this hypothesis, primary human SC cells were isolated from three non-glaucomatous donors (aged 34, 44 and 68), and seeded on collagen-coated elastic membranes held within a membrane stretching device. Membranes were then exposed to 0%, 10% or 20% equibiaxial strain, and the cells were aldehyde-fixed 5 min after the onset of strain. Each membrane contained 3-4 separate monolayers of SC cells as replicates (N = 34 total monolayers), and pores were assessed by scanning electron microscopy in 12 randomly selected regions (∼65,000 μm(2) per monolayer). Pores were identified and counted by four independent masked observers. Pore density increased with strain in all three cell lines (p < 0.010), increasing from 87 ± 36 pores/mm(2) at 0% strain to 342 ± 71 at 10% strain; two of the three cell lines showed no additional increase in pore density beyond 10% strain. Transcellular "I-pores" and paracellular "B-pores" both increased with strain (p < 0.038), however B-pores represented the majority (76%) of pores. Pore diameter, in contrast, appeared unaffected by strain (p = 0.25), having a mean diameter of 0.40 μm for I-pores (N = 79 pores) and 0.67 μm for B-pores (N = 350 pores). Pore formation appears to be a mechanosensitive process that is triggered by biomechanical strain, suggesting that SC cells have the ability to modulate local pore density and filtration characteristics of the inner wall endothelium based on local biomechanical cues. The molecular mechanisms of pore formation and how they become altered in glaucoma may be studied in vitro using stretched SC cells.
Collapse
Affiliation(s)
- Sietse T Braakman
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - A Thomas Read
- Department of Ophthalmology and Vision Sciences, University of Toronto, Canada
| | - James A E Smith
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University Medical School, USA
| | - C Ross Ethier
- Department of Bioengineering, Imperial College London, London, United Kingdom; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
37
|
García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 2014; 113:20-36. [PMID: 25183310 DOI: 10.1160/th14-04-0298] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023]
Abstract
The endothelial barrier of the vasculature is of utmost importance for separating the blood stream from underlying tissues. This barrier is formed by tight and adherens junctions (TJ and AJ) that form intercellular endothelial contacts. TJ and AJ are integral membrane structures that are connected to the actin cytoskeleton via various adaptor molecules. Consequently, the actin cytoskeleton plays a crucial role in regulating the stability of endothelial cell contacts and vascular permeability. While a circumferential cortical actin ring stabilises junctions, the formation of contractile stress fibres, e. g. under inflammatory conditions, can contribute to junction destabilisation. However, the role of actin-binding proteins (ABP) in the control of vascular permeability has long been underestimated. Naturally, ABP regulate permeability via regulation of actin remodelling but some actin-binding molecules can also act independently of actin and control vascular permeability via various signalling mechanisms such as activation of small GTPases. Several studies have recently been published highlighting the importance of actin-binding molecules such as cortactin, ezrin/radixin/moesin, Arp2/3, VASP or WASP for the control of vascular permeability by various mechanisms. These proteins have been described to regulate vascular permeability under various pathophysiological conditions and are thus of clinical relevance as targets for the development of treatment strategies for disorders that are characterised by vascular hyperpermeability such as sepsis. This review highlights recent advances in determining the role of ABP in the control of endothelial cell contacts and vascular permeability.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schnoor
- Dr. Michael Schnoor, CINVESTAV del IPN, Department for Molecular Biomedicine, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360 Mexico City, Mexico, Tel.: +52 55 5747 3321, Fax: +52 55 5747 3938, E-mail:
| |
Collapse
|
38
|
Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 2014; 5:28209. [PMID: 25203748 DOI: 10.4161/sgtp.28209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris, France
| |
Collapse
|
39
|
Guichard A, Cruz-Moreno B, Cruz-Moreno BC, Aguilar B, van Sorge NM, Kuang J, Kurkciyan AA, Wang Z, Hang S, Pineton de Chambrun GP, McCole DF, Watnick P, Nizet V, Bier E. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2014; 14:294-305. [PMID: 24034615 DOI: 10.1016/j.chom.2013.08.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 06/21/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022]
Abstract
Cholera toxin (CT), a virulence factor elaborated by Vibrio cholerae, is sufficient to induce the severe diarrhea characteristic of cholera. The enzymatic moiety of CT (CtxA) increases cAMP synthesis in intestinal epithelial cells, leading to chloride ion (Cl(-)) efflux through the CFTR Cl(-) channel. To preserve electroneutrality and osmotic balance, sodium ions and water also flow into the intestinal lumen via a paracellular route. We find that CtxA-driven cAMP increase also inhibits Rab11/exocyst-mediated trafficking of host proteins including E-cadherin and Notch signaling components to cell-cell junctions in Drosophila, human intestinal epithelial cells, and ligated mouse ileal loops, thereby disrupting barrier function. Additionally, CtxA induces junctional damage, weight loss, and dye leakage in the Drosophila gut, contributing to lethality from live V. cholerae infection, all of which can be rescued by Rab11 overexpression. These barrier-disrupting effects of CtxA may act in parallel with Cl(-) secretion to drive the pathophysiology of cholera.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Remy KE, Qiu P, Li Y, Cui X, Eichacker PQ. B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components. BMC Med 2013; 11:217. [PMID: 24107194 PMCID: PMC3851549 DOI: 10.1186/1741-7015-11-217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/13/2013] [Indexed: 01/31/2023] Open
Abstract
The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the individual pathogenic effects of these different components and their interactions will be important for improving the management of B. anthracis infection and shock.
Collapse
Affiliation(s)
- Kenneth E Remy
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 2013; 501:63-8. [PMID: 23995686 DOI: 10.1038/nature12510] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/31/2013] [Indexed: 02/01/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.
Collapse
|
43
|
Lemichez E, Aktories K. Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 2013; 319:2329-36. [PMID: 23648569 DOI: 10.1016/j.yexcr.2013.04.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 01/01/2023]
Abstract
Highly pathogenic bacteria, including Yersinia, Salmonella, E. coli and Clostridia, produce an amazing array of virulence factors that target Rho proteins. These pathogens exploit and/or impair many aspects of Rho protein activities by activating or inhibiting these key molecular switches. Here, we describe examples illustrating how modulation of Rho protein activity is the underlying molecular mechanism used by pathogens to disrupt host epithelial/endothelial barriers, paralyze immune cell migration and phagocytic functions, invade epithelial cells, replicate, and form reservoirs or disseminate in epithelia. Remarkably, emerging evidence points to the capacity of target cells to not only perceive the imbalance of Rho activity induced by virulence factors but also to respond by stimulating the production of anti-microbial responses that alert the host to the pathogenic threat. Furthermore, toxins that activate Rho proteins have been extremely useful in revealing the exquisite cellular regulations of these GTPases, notably by the ubiquitin and proteasome system. Finally, a number of studies indicate that toxins targeting Rho proteins have great potential in the development of new therapeutic tools.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia-Antipolis, 06204 Cedex 3 Nice, France.
| | | |
Collapse
|
44
|
Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Am J Physiol Heart Circ Physiol 2013; 305:H238-50. [PMID: 23585140 DOI: 10.1152/ajpheart.00185.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
B. anthracis edema toxin (ET) and lethal toxin (LT) are each composed of protective antigen (PA), necessary for toxin uptake by host cells, and their respective toxic moieties, edema factor (EF) and lethal factor (LF). Although both toxins likely contribute to shock during infection, their mechanisms are unclear. To test whether ET and LT produce arterial relaxation, their effects on phenylephrine (PE)-stimulated contraction in a Sprague-Dawley rat aortic ring model were measured. Rings were prepared and connected to pressure transducers. Their viability was confirmed, and peak contraction with 60 mM KCl was determined. Compared with PA pretreatment (control, 60 min), ET pretreatment at concentrations similar to those noted in vivo decreased the mean (±SE) maximum contractile force (MCF; percent peak contraction) in rings generated during stimulation with increasing PE concentrations (96.2 ± 7.0 vs. 57.3 ± 9.1) and increased the estimated PE concentration producing half the MCF (EC50; 10(-7) M, 1.1 ± 0.3 vs. 3.7 ± 0.8, P ≤ 0.002). ET inhibition with PA-directed monoclonal antibodies, selective EF inhibition with adefovir, or removal of the ring endothelium inhibited the effects of ET on MCF and EC50 (P ≤ 0.02). Consistent with its adenyl cyclase activity, ET increased tissue cAMP in endothelium-intact but not endothelium-denuded rings (P < 0.0001 and 0.25, respectively). LT pretreatment, even in high concentrations, did not significantly decrease MCF or increase EC50 (all P > 0.05). In rings precontracted with PE compared with posttreatment with PA (90 min), ET posttreatment produced progressive reductions in contractile force and increases in relaxation in endothelium-intact rings (P < 0.0001) but not endothelium-denuded rings (P = 0.51). Thus, ET may contribute to shock by producing arterial relaxation.
Collapse
Affiliation(s)
- Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med 2013; 3:a013573. [PMID: 23378599 DOI: 10.1101/cshperspect.a013573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens produce protein toxins to influence host-pathogen interactions and tip the outcome of these encounters toward the benefit of the pathogen. Protein toxins modify host-specific targets through posttranslational modifications (PTMs) or noncovalent interactions that may inhibit or activate host cell physiology to benefit the pathogen. Recent advances have identified new PTMs and host targets for toxin action. Understanding the mechanisms of toxin action provides a basis to develop vaccines and therapies to combat bacterial pathogens and to develop new strategies to use toxin derivatives for the treatment of human disease.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Microbial Toxins in Host-Pathogen Interactions, C3M, Université de Nice-Sophia-Antipolis, UFR Médecine, 06204 Nice, France.
| | | |
Collapse
|
46
|
Lemichez E, Gonzalez-Rodriguez D, Bassereau P, Brochard-Wyart F. Transcellular tunnel dynamics: Control of cellular dewetting by actomyosin contractility and I-BAR proteins. Biol Cell 2013. [PMID: 23189935 DOI: 10.1111/boc.201200063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dewetting is the spontaneous withdrawal of a liquid film from a non-wettable surface by nucleation and growth of dry patches. Two recent reports now propose that the principles of dewetting explain the physical phenomena underpinning the opening of transendothelial cell macroaperture (TEM) tunnels, referred to as cellular dewetting. This was discovered by studying a group of bacterial toxins endowed with the property of corrupting actomyosin cytoskeleton contractility. For both liquid and cellular dewetting, the growth of holes is governed by a competition between surface forces and line tension. We also discuss how the dynamics of TEM opening and closure represent remarkable systems to investigate actin cytoskeleton regulation by sensors of plasma membrane curvature and investigate the impact on membrane tension and the role of TEM in vascular dysfunctions.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Université de Nice-Sophia-Antipolis, Centre Méditerranéen de Médecine Moléculaire, C3M, Nice 06204, France.
| | | | | | | |
Collapse
|
47
|
Beitzinger C, Stefani C, Kronhardt A, Rolando M, Flatau G, Lemichez E, Benz R. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA). PLoS One 2012; 7:e46964. [PMID: 23056543 PMCID: PMC3466187 DOI: 10.1371/journal.pone.0046964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022] Open
Abstract
It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to −70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Caroline Stefani
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Angelika Kronhardt
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Monica Rolando
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
| | - Gilles Flatau
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
| | - Emmanuel Lemichez
- Toxines microbiennes dans la relation hôte-pathogènes, C3M, U1065, Inserm, Nice, France
- UFR Médecine, IFR50, Université de Nice-Sophia Antipolis, Nice, France
- * E-mail: (EL); (RB)
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (EL); (RB)
| |
Collapse
|
48
|
Lowe DE, Glomski IJ. Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012; 2:76. [PMID: 22919667 PMCID: PMC3417473 DOI: 10.3389/fcimb.2012.00076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/16/2012] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, secretes a tri-partite exotoxin that exerts pleiotropic effects on the host. The purification of the exotoxin components, protective antigen, lethal factor, and edema factor allowed the rapid characterization of their physiologic effects on the host. As molecular biology matured, interest focused on the molecular mechanisms and cellular alterations induced by intoxication. Only recently have researchers begun to connect molecular and cellular knowledge back to the broader physiological effects of the exotoxin. This review focuses on the progress that has been made bridging molecular knowledge back to the exotoxin’s physiological effects on the host.
Collapse
Affiliation(s)
- David E Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville VA, USA
| | | |
Collapse
|
49
|
Gonzalez-Rodriguez D, Maddugoda MP, Stefani C, Janel S, Lafont F, Cuvelier D, Lemichez E, Brochard-Wyart F. Cellular dewetting: opening of macroapertures in endothelial cells. PHYSICAL REVIEW LETTERS 2012; 108:218105. [PMID: 23003307 DOI: 10.1103/physrevlett.108.218105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Indexed: 06/01/2023]
Abstract
Pathogenic bacteria can cross from blood vessels to host tissues by opening transendothelial cell macroapertures (TEMs). To induce TEM opening, bacteria intoxicate endothelial cells with proteins that disrupt the contractile cytoskeletal network. Cell membrane tension is no longer resisted by contractile fibers, leading to the opening of TEMs. Here we model the opening of TEMs as a new form of dewetting. While liquid dewetting is irreversible, we show that cellular dewetting is transient. Our model predicts the minimum radius for hole nucleation, the maximum TEM size, and the dynamics of TEM opening, in good agreement with experimental data. The physical model is then coupled with biological experimental data to reveal that the protein missing in metastasis (MIM) controls the line tension at the rim of the TEM and opposes its opening.
Collapse
|
50
|
Trescos Y, Tournier JN. Cytoskeleton as an emerging target of anthrax toxins. Toxins (Basel) 2012; 4:83-97. [PMID: 22474568 PMCID: PMC3317109 DOI: 10.3390/toxins4020083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/21/2012] [Accepted: 01/26/2012] [Indexed: 01/29/2023] Open
Abstract
Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT) and edema toxin (ET). So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.
Collapse
Affiliation(s)
- Yannick Trescos
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents pathogènes, Institut de Recherche Biomédicale des Armées, Centre de Recherche du Service de Santé des Armées, BP 87, 24 avenue des Maquis du Grésivaudan 38702 La Tronche Cedex, France;
- Ecole du Val-de-Grâce, 1 place Alphonse Lavéran, 75005 Paris, France
- Author to whom correspondence should be addressed; ; Tel.: +33-4-76636850; Fax: +33-4-76636917
| |
Collapse
|