1
|
Bhowmik S, Pathak A, Pandey S, Devnath K, Sett A, Jyoti N, Bhando T, Akhter J, Chugh S, Singh R, Sharma TK, Pathania R. Acinetobacter baumannii represses type VI secretion system through a manganese-dependent small RNA-mediated regulation. mBio 2025; 16:e0302524. [PMID: 39704509 PMCID: PMC11796373 DOI: 10.1128/mbio.03025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Type VI secretion system (T6SS) is utilized by many Gram-negative bacteria to eliminate competing bacterial species and manipulate host cells. Acinetobacter baumannii ATCC 17978 utilizes T6SS at the expense of losing pAB3 plasmid to induce contact-dependent killing of competitor microbes, resulting in the loss of antibiotic resistance carried by pAB3. However, the regulatory network associated with T6SS in A. baumannii remains poorly understood. Here, we identified an Mn2+-dependent post-transcriptional regulation of T6SS mediated by a bonafide small RNA, AbsR28. A. baumannii utilizes MumT, an Mn2+-uptake inner membrane transporter, for the uptake of extracellular Mn2+ during oxidative stress. We demonstrate that the abundance of intracellular Mn2+ enables complementary base pairing of AbsR28-tssM mRNA (that translates to TssM, one of the vital inner membrane components of T6SS), inducing RNase E-mediated degradation of tssM mRNA and resulting in T6SS repression. Thus, AbsR28 mediates a crosstalk between MumT and T6SS in A. baumannii.IMPORTANCESmall RNAs (sRNAs) are identified as critical components within the bacterial regulatory networks involved in fine regulation of virulence-associated factors. The sRNA-mediated regulation of type VI secretion system (T6SS) in Acinetobacter baumannii was unchartered. Previously, it was demonstrated that A. baumannii ATCC 17978 cells switch from T6- to T6+ phenotype, resulting in the loss of antibiotic resistance conferred by plasmid pAB3. Furthermore, the derivatives of pAB3 found in recent clinical isolates of A. baumannii harbor expanded antibiotic resistance genes and multiple determinants for virulence factors. Hence, the loss of this plasmid for T6SS activity renders A. baumannii T6+ cells susceptible to antibiotics and compromises their virulence. Our findings show how A. baumannii tends to inactivate T6SS through an sRNA-mediated regulation that relies on Mn2+ and retains pAB3 during infection to retain antibiotic resistance genes carried on the plasmid.
Collapse
Affiliation(s)
- Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shivam Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nishant Jyoti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Center of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
2
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Loeven NA, Dabi C, Pennington JP, Reuven AD, McGee AP, Mwaura BW, Bliska JB. A type VI secretion system in Burkholderia species cenocepacia and orbicola triggers distinct macrophage death pathways independent of the pyrin inflammasome. Infect Immun 2024; 92:e0031624. [PMID: 39480100 PMCID: PMC11629634 DOI: 10.1128/iai.00316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
The Burkholderia cepacia complex contains opportunistic pathogens that cause chronic infections and inflammation in the lungs of people with cystic fibrosis. Two closely related species within this complex are Burkholderia cenocepacia and the recently classified Burkholderia orbicola. B. cenocepacia and B. orbicola encode a type VI secretion system and the effector TecA, which is detected by the pyrin/caspase-1 inflammasome, and triggers macrophage inflammatory death. We previously showed that the pyrin inflammasome was dispensable for lung inflammation in mice infected with B. orbicola AU1054, indicating this species activates an alternative pathway of macrophage inflammatory death. Notably, B. cenocepacia strains J2315 and K56-2 can damage macrophage phagosomes, and K56-2 triggers activation of the caspase-11 inflammasome, which detects cytosolic lipopolysaccharide. Here, we investigated inflammatory cell death in pyrin- (Mefv-/-) or caspase-1/caspase-11- (Casp1/11-/-) deficient mouse macrophages infected with B. cenocepacia J2315 or K56-2 or B. orbicola AU1054 or PC184. Macrophage inflammatory death was measured by cleavage of gasdermin D protein, the release of cytokines IL-1α and IL-1β, and plasma membrane rupture. We found that J2315 and K56-2 are detected by the caspase-11 inflammasome in Mefv-/- macrophages, resulting in IL-1β release. By contrast, inflammasome activation was not detected in Mefv-/- macrophages infected with AU1054 or PC184. Instead, AU1054 triggered an alternative macrophage inflammatory death pathway that required TecA and resulted in plasma membrane rupture and IL-1α release. Structural modeling of TecA orthologs in B. cenocepacia and B. orbicola suggested that amino acid changes in the latter may underlie its ability to trigger a non-inflammasome macrophage death pathway.
Collapse
Affiliation(s)
- Nicole A. Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Clarrisa Dabi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Joseph P. Pennington
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Arianna D. Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Abigail P. McGee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - Bethany W. Mwaura
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
5
|
Campbell C, Mayatra JM, Neve AJ, Fletcher JM, Johnston DGW. Inflammasomes: emerging therapeutic targets in hidradenitis suppurativa? Br J Dermatol 2024; 191:670-679. [PMID: 38913409 DOI: 10.1093/bjd/ljae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent inflammatory lesions, which affect skin and hair follicles in intertriginous areas. HS has a multifactorial aetiology resulting in barrier dysfunction associated with aberrant immune activation. There is increased evidence for the role of inflammasomes in the pathophysiology of inflammatory skin diseases, including HS. Inflammasomes are multiprotein complexes activated following exposure to danger signals, including microbial ligands and components of damaged host cells. Inflammasome activation induces many signalling cascades and subsequent cleavage of proinflammatory cytokines - most notably interleukin (IL)-1β - which have a role in HS pathogenesis. Limited immunotherapies are approved for treating moderate-to-severe HS, with variable response rates influenced by disease heterogeneity. Inflammasomes represent attractive targets to suppress multiple inflammatory pathways in HS, including IL-1β and IL-17. This review aims to summarize the role of inflammasomes in HS and to evaluate evidence for inflammasomes as therapeutic targets for HS treatment.
Collapse
Affiliation(s)
- Ciara Campbell
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Jay M Mayatra
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Ashish J Neve
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Daniel G W Johnston
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Al Mamun A, Geng P, Wang S, Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J Inflamm Res 2024; 17:7037-7056. [PMID: 39377044 PMCID: PMC11457779 DOI: 10.2147/jir.s486878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis-dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in utilizing pyroptosis to develop effective anti-cancer therapies.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Chuxiao Shao
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| |
Collapse
|
7
|
Xu N, Jiang J, Jiang F, Dong G, Meng L, Wang M, Chen J, Li C, Shi Y, He S, Li R. CircCDC42-encoded CDC42-165aa regulates macrophage pyroptosis in Klebsiella pneumoniae infection through Pyrin inflammasome activation. Nat Commun 2024; 15:5730. [PMID: 38977695 PMCID: PMC11231140 DOI: 10.1038/s41467-024-50154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Meng Wang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Li
- Xuzhou Key Laboratory of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yongping Shi
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
9
|
Loeven NA, Reuven AD, McGee AP, Dabi C, Mwaura BW, Bliska JB. A Type VI Secretion System in Burkholderia Species cenocepacia and orbicola Triggers Distinct Macrophage Death Pathways Independent of the Pyrin Inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.559184. [PMID: 38826213 PMCID: PMC11142134 DOI: 10.1101/2023.09.28.559184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Burkholderia cepacia complex contains opportunistic pathogens that cause chronic infections and inflammation in lungs of people with cystic fibrosis. Two closely related species within this complex are Burkholderia cenocepacia and the recently classified Burkholderia orbicola. B. cenocepacia and B. orbicola encode a type VI secretion system and the effector TecA, which is detected by the pyrin/caspase-1 inflammasome, and triggers macrophage inflammatory death. In our earlier study the pyrin inflammasome was dispensable for lung inflammation in mice infected with B. orbicola AU1054, indicating this species activates an alternative pathway of macrophage inflammatory death. Notably, B. cenocepacia J2315 and K56-2 can damage macrophage phagosomes and K56-2 triggers activation of the caspase-11 inflammasome, which detects cytosolic LPS. Here we investigated inflammatory cell death in pyrin-deficient ( Mefv -/- ) mouse macrophages infected with B. cenocepacia J2315 or K56-2 or B. orbicola AU1054 or PC184. Macrophage inflammatory death was measured by cleavage of gasdermin D protein, release of cytokines IL-1α and IL-1β and plasma membrane rupture. Findings suggest that J2315 and K56-2 are detected by the caspase-11 inflammasome in Mefv -/- macrophages, resulting in IL-1β release. In contrast, inflammasome activation is not detected in Mefv -/- macrophages infected with AU1054 or PC184. Instead, AU1054 triggers an alternative macrophage inflammatory death pathway that requires TecA and results in plasma membrane rupture and IL-1α release. Amino acid variation between TecA isoforms in B. cenocepacia and B. orbicola may explain how the latter species triggers a non-inflammasome macrophage death pathway.
Collapse
|
10
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Li Y, Jv M, Zhuang Y, Zhao X, Hu X. A hypervirulent Acinetobacter baumannii strain has robust anti-phagocytosis ability. BMC Microbiol 2024; 24:106. [PMID: 38561652 PMCID: PMC10983618 DOI: 10.1186/s12866-024-03264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is associated with both hospital-acquired infections (HAP) and community-acquired pneumonia (CAP). In this study, we present a novel CAP-associated A. baumannii (CAP-AB) strain causing severe pneumonia in an afore healthy male patient without underlying conditions. Subsequently, we investigated the pathogenicity and immunogenicity of this CAP-AB strain using a mice pneumonia model. RESULTS A 58-year-old male patient with no underlying conditions experienced worsening symptoms of a productive cough, sputum, and fever that developed acutely, in just 24 h. The diagnosis was severe community-acquired pneumonia (CAP) and type-1 respiratory failure. An A. baumannii strain was isolated from his sputum and blood cultures. To gain a deeper understanding of the rapid progression of its pathology, we utilized the CAP-associated A. baumannii strain YC128, a previously obtained hospital-acquired pneumonia A. baumannii (HAP-AB) strain YC156, and a highly virulent A. baumannii control strain LAC-4 to construct a mouse pneumonia model, and subsequently compared the mortality rate of the three groups. Following inoculation with 107 CFU of A. baumannii, the mortality rate for the YC128, LAC-4, and YC156 groups was 60% (6/10), 30% (3/10), and 0%, respectively. The bacterial burden within the pulmonary, liver, and spleen tissues of mice in the YC128 group was significantly higher than that of the YC156 group, and slightly higher than that of the LAC-4 group. Pathological analysis of lung tissue using HE-staining revealed that the inflammatory pathological changes in mice from the YC128 group were significantly more severe than those in the YC156 group. Additionally, CT scan images displayed more pronounced inflammation in the lungs of mice from the YC128 group compared to the YC156 group. Local levels of cytokines/chemokines such as IL-1β, IL-6, TNF-α, and CXCL1 were assessed via RT-qPCR in lung tissues. In comparison with the YC156 strain, the highly virulent YC128 strain induced the expression of proinflammatory cytokines more rapidly and severely. Furthermore, we examined the in vitro anti-phagocytosis ability of YC128 and YC156 strains against mice peritoneal macrophages, revealing that the highly virulent YC128 isolate displayed greater resistance to macrophage uptake in contrast to YC156. Results from Whole Genome Sequencing (WGS) indicated that YC128 harbored a complete type VI secretion system (T6SS) gene cluster, while YC156 lacked the majority of genes within the T6SS gene cluster. The other virulence-related genes exhibited minimal differences between YC128 and YC156. Drawing from previous studies, we postulated that the T6SS is linked to the hypervirulence and robust anti-phagocytic ability of YC128. CONCLUSIONS This article reports on the isolation of a novel hypervirulent CAP-AB strain, YC128, from a severe CAP patient. The results demonstrate that this CAP-AB strain, YC128, is capable of inducing fatal pneumonia and extrapulmonary dissemination in a mouse pneumonia model. Moreover, this highly virulent CAP-AB strain exhibits significantly stronger anti-phagocytic abilities compared to the HAP-AB YC156 strain. Genome sequencing comparisons reveal that the heightened hypervirulence and enhanced anti-phagocytosis abilities observed in YC128 may be attributed to the presence of the T6SS.
Collapse
Affiliation(s)
- Yan Li
- Division of Infectious Diseases, Yichun People's Hospital, Yichun, Jiangxi Province, China
| | - Mohan Jv
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Infectious Diseases, People's Hospital of Rizhao, Ri Zhao, Shandong Province, China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Huashan Hospital Fujian Campus, Fudan University, Fuzhou, Fujian Province, China.
| | - Xiaoxiong Hu
- Division of Infectious Diseases, Yichun People's Hospital, Yichun, Jiangxi Province, China.
| |
Collapse
|
12
|
Jabeen I, Islam S, Hassan AKMI, Tasnim Z, Shuvo SR. A brief insight into Citrobacter species - a growing threat to public health. FRONTIERS IN ANTIBIOTICS 2023; 2:1276982. [PMID: 39816660 PMCID: PMC11731968 DOI: 10.3389/frabi.2023.1276982] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2025]
Abstract
Citrobacter spp. are Gram-negative, non-spore forming, rod-shaped, facultative anaerobic bacteria from the Enterobacteriaceae family often found in soil, sewage, sludge, water, food, and the intestinal tracts of animals and humans. Several members of Citrobacter spp. especially C. freundii, C. koseri, C. braakii are frequently detected in newborn illnesses, urinary tract infections, and patients with severe underlying conditions, including hypertension, diabetes, cancer, and respiratory infections, or those who are immunocompromised. Strains of Citrobacter spp. can spread vertically or horizontally from carriers or other hospital sources and thus cause nosocomial infections in hospital settings. A total of 19 Citrobacter genomospecies have been recognized based on genomics. It has been noted that the Citrobacter genus acquired antimicrobial resistance and virulence, including invasion, colonization, biofilm formation, and toxin production. The recent emergence and spread of antimicrobial resistance to β-lactams, carbapenems, fluoroquinolones, aminoglycosides, and colistin in Citrobacter spp. through chromosomal and plasmid-mediated resistance limits the empiric treatment options. Therefore, combination therapy involving costly and potentially hazardous antibiotics poses significant challenges in treating Citrobacter infections. Here we summarized the nomenclature of Citrobacter spp., clinical manifestations, epidemiology, pathogenesis, antibiotic resistance mechanisms, and treatments from various clinical samples. This review will expand our knowledge of the genomics and epidemiology of Citrobacter spp., enabling improved control of infections and the spread of these organisms.
Collapse
Affiliation(s)
| | | | | | | | - Sabbir R. Shuvo
- Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Xie H, Xu J, Zhao Q. Identification of a potential prognostic model combining pyroptosis-related gene with immune microenvironment for pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:17175-17187. [PMID: 37782328 DOI: 10.1007/s00432-023-05436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatal tumor with grave prognosis. Pyroptosis, a programmed cell death, is involved in tumorigenesis. However, a few studies have elucidated the functions of pyroptosis in PDAC. METHODS The mRNA expression profiles were downloaded from the TCGA and GEO databases. Univariate and LASSO Cox regression analyses were used to screen out differentially expressed genes (DEGs) and construct the pyroptosis-related genes (PRGs) risk model. The efficiency of model was examined by Kaplan-Meier curve, ROC curve, and nomogram. Univariate and multivariate Cox regression analyses were utilized to assess whether the risk model could be used as an independent prognostic factor. The biological function was analyzed by GO, KEGG, and GSEA enrichment analysis. qRT-PCR and immunohistochemical staining detected gene expression. RESULTS Totally 9 PRGs with differential expression were identified between normal and PDAC tissues. Then, according to PRGs, we filtered out three key DEGs and constructed the prognostic risk model. Kaplan-Meier curve, ROC curve, and nomogram indicated that the prognostic risk model had high survival prediction efficiency. Meanwhile, the risk model had also shown to be an independent prognostic factor. Further functional enrichment analysis showed that cell adhesion, PI3K-AKT signaling pathway, and dysregulated immune status may be associated with PDAC development. External validation of the model was carried out in the GEO cohort, and the results were similar to that in the TCGA cohort. Finally, the expression of three genes was verified by qRT-PCR and immunohistochemical staining. CONCLUSION The prognostic risk model established in this study can give a good prediction of the prognosis of PDAC patients, which might provide insights into clinical treatments and prognostic prediction of PDAC.
Collapse
Affiliation(s)
- Haoran Xie
- Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jingxian Xu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Anderson AJG, Morrell B, Lopez Campos G, Valvano MA. Distribution and diversity of type VI secretion system clusters in Enterobacter bugandensis and Enterobacter cloacae. Microb Genom 2023; 9:001148. [PMID: 38054968 PMCID: PMC10763514 DOI: 10.1099/mgen.0.001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.
Collapse
Affiliation(s)
- Amy J. G. Anderson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Becca Morrell
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
15
|
Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, Bliska JB. Phosphoprotein phosphatase activity positively regulates oligomeric pyrin to trigger inflammasome assembly in phagocytes. mBio 2023; 14:e0206623. [PMID: 37787552 PMCID: PMC10653879 DOI: 10.1128/mbio.02066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.
Collapse
Affiliation(s)
- Haleema S. Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Nicole A. Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jose M. Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Lebanon, New Hampshire, USA
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
16
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Hu YY, Chen S, Zhang YD, Lu QW, Wang F, Ren A, Liu CX. Value of T6SS Core Gene hcp in Acinetobacter baumannii Respiratory Tract Infection. Indian J Microbiol 2023; 63:291-298. [PMID: 37781009 PMCID: PMC10533764 DOI: 10.1007/s12088-023-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 10/03/2023] Open
Abstract
Hospital-acquired pneumonia caused by Acinetobacter baumannii is a major healthcare burden. Type VI Secretion System (T6SS) contributes to both virulence and drug resistance in this bacteria. This study aims to investigate the diagnostic value of hemolysin co-regulated protein (Hcp) gene in A. baumannii pneumonia and further explore the effect of hcp on clinical, pathogenicity and drug resistance. 53 clinical A. baumannii strains from patients' respiratory tract at a teaching hospital were included in this study. Real-time quantitative polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hcp. Recombinant Hcp expression plasmids (pET-28a(+)-hcp) were constructed and his-tagged Hcp were purified to stimulate Tohoku Hospital Pediatrics-1 (THP-1) macrophages. Nuclear Factor Kappa B p65 (NF-κBp65) and Interleukin 8 (IL-8) were detected by qRT-PCR. Antimicrobial susceptibility testing (AST) were examined by an automated instrument system. Hcp gene had 92.6% sensitivity and 75% specificity for distinguishing invasive or colonizing A. baumannii from the respiratory tract. His-tagged Hcp induced NF-κBp65 and IL-8 at gene level in THP-1 macrophages. Additional, high hcp expression isolates showed higher rate of antimicrobial agent exposure (< 30 days) of carbapenems, antibiotic combination therapy and multiple or extensive drug-resistant (MDR/XDR) and exhibited higher resistance rate to clinical commonly-used antimicrobial agents. Hcp gene could serve as a novel diagnostic biomarker to distinguish A. baumannii respiratory tract infection from colonization and participate in eliciting inflammatory responses in vitro. T6SS/hcp may play a role in the development of carbapenem-resistant A. baumannii (CRAB), multiple or extensive drug-resistant A. baumannii (MDRAB/XDRAB). Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01083-8.
Collapse
Affiliation(s)
- Yin-yin Hu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Shuo Chen
- Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Ya-dong Zhang
- Department of Breast Surgery, Nan yang Second General Hospital, Nanyang, 473000 Henan Province China
| | - Qing-wen Lu
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Fei Wang
- Department of Clinical Laboratory, Nanyang Central Hospital, Nanyang, 473000 Henan Province China
| | - Aijuan Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| | - Cai-xia Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province China
| |
Collapse
|
18
|
Okin D, Kagan JC. Inflammasomes as regulators of non-infectious disease. Semin Immunol 2023; 69:101815. [PMID: 37506489 PMCID: PMC10527946 DOI: 10.1016/j.smim.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Inflammasomes are cytoplasmic organelles that stimulate inflammation upon cellular detection of infectious or non-infectious stress. While much foundational work has focused on the infection-associated aspects of inflammasome activities, recent studies have highlighted the role of inflammasomes in non-infectious cellular and organismal functions. Herein, we discuss the evolution of inflammasome components and highlight characteristics that permit inflammasome regulation of physiologic processes. We focus on emerging data that highlight the importance of inflammasome proteins in the regulation of reproduction, development, and malignancy. A framework is proposed to contextualize these findings.
Collapse
Affiliation(s)
- Daniel Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Kan Y, Zhang Y, Lin W, Dong T. Differential plant cell responses to Acidovorax citrulli T3SS and T6SS reveal an effective strategy for controlling plant-associated pathogens. mBio 2023; 14:e0045923. [PMID: 37288971 PMCID: PMC10470598 DOI: 10.1128/mbio.00459-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Acidovorax citrulli is a gram-negative plant pathogen that employs the type Ⅲ secretion system (T3SS) to infect cucurbit crops and cause bacterial fruit blotch. This bacterium also possesses an active type Ⅵ secretion system (T6SS) with strong antibacterial and antifungal activities. However, how plant cells respond to these two secretion systems and whether there is any cross talk between T3SS and T6SS during infection remain unknown. Here, we employ transcriptomic analysis to compare cellular responses to the T3SS and the T6SS during in planta infection and report distinctive effects on multiple pathways. The T3SS-mediated differentially expressed genes were enriched in the pathways of phenylpropanoid biosynthesis, plant-pathogen interaction, MAPK signaling pathway, and glutathione metabolism, while the T6SS uniquely affected genes were related to photosynthesis. The T6SS does not contribute to the in planta virulence of A. citrulli but is critical for the survival of the bacterium when mixed with watermelon phyllosphere bacteria. In addition, T3SS-mediated virulence is independent of the T6SS, and the inactivation of the T3SS does not affect the T6SS-mediated competition against a diverse set of bacterial pathogens that commonly contaminate edible plants or directly infect plants. A T6SS-active T3SS-null mutant (Acav) could inhibit the growth of Xanthomonas oryzae pv. oryzae significantly both in vitro and in vivo and also reduce symptoms of rice bacterial blight. In conclusion, our data demonstrate the T6SS in A. citrulli is nonpathogenic to the plant host and can be harnessed as a pathogen killer against plant-associated bacteria. IMPORTANCE Chemical pesticides are widely used to protect crops from various pathogens. Still, their extensive use has led to severe consequences, including drug resistance and environmental contamination. Here, we show that an engineered T6SS-active, but avirulent mutant of Acidovorax citrulli has strong inhibition capabilities against several pathogenic bacteria, demonstrating an effective strategy that is an alternative to chemical pesticides for sustainable agricultural practices.
Collapse
Affiliation(s)
- Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Li YT, Tan XY, Ma LX, Li HH, Zhang SH, Zeng CM, Huang LN, Xiong JX, Fu L. Targeting LGSN restores sensitivity to chemotherapy in gastric cancer stem cells by triggering pyroptosis. Cell Death Dis 2023; 14:545. [PMID: 37612301 PMCID: PMC10447538 DOI: 10.1038/s41419-023-06081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Gastric cancer (GC) is notoriously resistant to current therapies due to tumor heterogeneity. Cancer stem cells (CSCs) possess infinite self-renewal potential and contribute to the inherent heterogeneity of GC. Despite its crucial role in chemoresistance, the mechanism of stemness maintenance of gastric cancer stem cells (GCSCs) remains largely unknown. Here, we present evidence that lengsin, lens protein with glutamine synthetase domain (LGSN), a vital cell fate determinant, is overexpressed in GCSCs and is highly correlated with malignant progression and poor survival in GC patients. Ectopic overexpression of LGSN in GCSC-derived differentiated cells facilitated their dedifferentiation and treatment resistance by interacting with vimentin and inducing an epithelial-to-mesenchymal transition. Notably, genetic interference of LGSN effectively suppressed tumor formation by inhibiting GCSC stemness maintenance and provoking gasdermin-D-mediated pyroptosis through vimentin degradation/NLRP3 signaling. Depletion of LGSN combined with the chemo-drugs 5-fluorouracil and oxaliplatin could offer a unique and promising approach to synergistically rendering this deadly cancer eradicable in vivo. Our data place focus on the role of LGSN in GCSC regeneration and emphasize the critical importance of pyroptosis in battling GCSC.
Collapse
Affiliation(s)
- Yu-Ting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Xiang-Yu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Li-Xiang Ma
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hua-Hui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Shu-Hong Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Chui-Mian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liu-Na Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ji-Xian Xiong
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
21
|
Hug S, Heiniger B, Bolli K, Paszti S, Eberl L, Ahrens CH, Pessi G. Paraburkholderia sabiae Uses One Type VI Secretion System (T6SS-1) as a Powerful Weapon against Notorious Plant Pathogens. Microbiol Spectr 2023; 11:e0162223. [PMID: 37439699 PMCID: PMC10434147 DOI: 10.1128/spectrum.01622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Paraburkholderia sabiae LMG24235 is a nitrogen-fixing betaproteobacterium originally isolated from a root nodule of Mimosa caesalpiniifolia in Brazil. We show here that this strain effectively kills strains from several bacterial families (Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae) which include important plant pathogens in a contact-dependent manner. De novo assembly of the first complete genome of P. sabiae using long sequencing reads and subsequent annotation revealed two gene clusters predicted to encode type VI secretion systems (T6SS), which we named T6SS-1 and T6SS-3 according to previous classification methods (G. Shalom, J. G. Shaw, and M. S. Thomas, Microbiology, 153:2689-2699, 2007, https://doi.org/10.1099/mic.0.2007/006585-0). We created P. sabiae with mutations in each of the two T6SS gene clusters that abrogated their function, and the T6SS-1 mutant was no longer able to outcompete other strains in a contact-dependent manner. Notably, our analysis revealed that T6SS-1 is essential for competition against several important plant pathogens in vitro, including Burkholderia plantarii, Ralstonia solanacearum, Pseudomonas syringae, and Pectobacterium carotovorum. The 9-log reduction in P. syringae cells in the presence of P. sabiae was particularly remarkable. Importantly, in an in vivo assay, P. sabiae was able to protect potato tubers from bacterial soft rot disease caused by P. carotovorum, and this protection was partly dependent on T6SS-1. IMPORTANCE Rhizobia often display additional beneficial traits such as the production of plant hormones and the acquisition of limited essential nutrients that improve plant growth and enhance plant yields. Here, we show that the rhizobial strain P. sabiae antagonizes important phytopathogens such as P. carotovorum, P. syringae, and R. solanacearum and that this effect is due to contact-dependent killing mediated by one of two T6SS systems identified in the complete, de novo assembled genome sequence of P. sabiae. Importantly, co-inoculation of Solanum tuberosum tubers with P. sabiae also resulted in a drastic reduction of soft rot caused by P. carotovorum in an in vivo model system. This result highlights the protective potential of P. sabiae against important bacterial plant diseases, which makes it a valuable candidate for application as a biocontrol agent. It also emphasizes the particular potential of rhizobial inoculants that combine several beneficial effects such as plant growth promotion and biocontrol for sustainable agriculture.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Kim Bolli
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
22
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
23
|
Singh RP, Kumari K. Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality. Biotechnol Lett 2023; 45:309-331. [PMID: 36683130 DOI: 10.1007/s10529-023-03354-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023]
Abstract
Bacterial secretion systems are nanomolecular complexes that release a diverse set of virulence factors/or proteins into its surrounding or translocate to their target host cells. Among these systems, type VI secretion system 'T6SS' is a recently discovered molecular secretion system which is widely distributed in Gram-negative (-ve) bacteria, and shares structural similarity with the puncturing device of bacteriophages. The presence of T6SS is an advantage to many bacteria as it delivers toxins to its neighbour pathogens for competitive survival, and also translocates protein effectors to the host cells, leading to disruption of lipid membranes, cell walls, and cytoskeletons etc. Recent studies have characterized both anti-prokaryotic and anti-eukaryotic effectors, where T6SS is involved in diverse cellular functions including favouring colonization, enhancing the survival, adhesive modifications, internalization, and evasion of the immune system. With the evolution of advanced genomics and proteomics tools, there has been an increase in the number of characterized T6SS effector arsenals and also more clear information about the adaptive significance of this complex system. The functions of T6SS are generally regulated at the transcription, post-transcription and post-translational levels through diverse mechanisms. In the present review, we aimed to provide information about the distribution of T6SS in diverse bacteria, any structural similarity/or dissimilarity, effectors proteins, functional significance, and regulatory mechanisms. We also tried to provide information about the diverse roles played by T6SS in its natural environments and hosts, and further any changes in the microbiome.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
24
|
Liu M, Zhao MY, Wang H, Wang ZH, Wang Z, Liu Y, Li YP, Dong T, Fu Y. Pesticin-Like Effector VgrG3 cp Targeting Peptidoglycan Delivered by the Type VI Secretion System Contributes to Vibrio cholerae Interbacterial Competition. Microbiol Spectr 2023; 11:e0426722. [PMID: 36625646 PMCID: PMC9927483 DOI: 10.1128/spectrum.04267-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Vibrio cholerae can utilize a type VI secretion system (T6SS) to increase its intra- and interspecies competition. However, much still remains to be understood about the underlying mechanism of this intraspecies competition. In this study, we isolated an environmental V. cholerae strain E1 that lacked the typical virulence factors toxin-coregulated pilus and cholera toxin and that encoded a functional T6SS. We identified an evolved VgrG3 variant with a predicted C-terminal pesticin-like domain in V. cholerae E1, designated VgrG3cp. Using heterologous expression, protein secretion, and peptidoglycan-degrading assays, we demonstrated that VgrG3cp is a T6SS-dependent effector harboring cell wall muramidase activity and that its toxicity can be neutralized by cognate immunity protein TsiV3cp. Site-directed mutagenesis proved that the aspartic acid residue at position 867 is crucial for VgrG3cp-mediated antibacterial activity. Bioinformatic analysis showed that genes encoding VgrG3cp-like homologs are distributed in Vibrio species, are linked with T6SS structural genes and auxiliary genes, and the vgrG3cp-tsiV3cp gene pair of V. cholerae probably evolved from Vibrio anguillarum and Vibrio fluvialis via homologous recombination. Through a time-lapse microscopy assay, we directly determined that cells accumulating VgrG3cp disrupted bacterial division, while the cells continued to increase in size until the loss of membrane potential and cell wall breakage and finally burst. The results of the competitive killing assay showed that VgrG3cp contributes to V. cholerae interspecies competition. Collectively, our study revealed a novel T6SS E-I pair representing a new T6SS toxin family which allows V. cholerae to gain dominance within polymicrobial communities by T6SS. IMPORTANCE The type VI secretion system used by a broad range of Gram-negative bacteria delivers toxic proteins to target adjacent eukaryotic and prokaryotic cells. Diversification of effector proteins determines the complex bacterium-bacterium interactions and impacts the health of hosts and environmental ecosystems in which bacteria reside. This work uncovered an evolved valine-glycine repeat protein G3, carrying a C-terminal pesticin-like domain (VgrG3cp), which has been suggested to harbor cell wall hydrolase activity and is able to affect cell division and the integrity of cell wall structure. Pesticin-like homologs constitute a family of T6SS-associated effectors targeting bacterial peptidoglycan which are distributed in Vibrio species, and genetic loci of them are linked with T6SS structural genes and auxiliary genes. T6SS-delivered VgrG3cp mediated broad-spectrum antibacterial activity for several microorganisms tested, indicating that VgrG3cp-mediated antimicrobial activity is capable of conferring bacteria a competitive advantage over competitors in the same niches.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yin-Peng Li
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
25
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
26
|
Wang Y, Zeng M, Xia L, Valerie Olovo C, Su Z, Zhang Y. Bacterial strategies for immune systems - Role of the type VI secretion system. Int Immunopharmacol 2023; 114:109550. [PMID: 36525796 DOI: 10.1016/j.intimp.2022.109550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
The process of host infection by bacteria is complicated. Bacterial infections strongly induce the host immune system, which necessitates a robust clearance of the infection. However, bacteria have over time developed strategies that enable their evasion of attacks by the host immune system. One such strategy is the type VI secretion system (T6SS), a special needle-like secretion system that is widespread in Gram-negative bacteria and is responsible for delivering effector proteins into the external bacterial environment or directly into the host cell cytosol. Bacterial T6SS and its secreted effector proteins play an important role in the interaction between bacteria and host immune system. They also serve as antigens that are employed in the development of vaccines for clinical trials as well as future vaccine candidates. This review focuses mainly on aspects of T6SS effectors that impact the strength of the host immune system, including inflammation, autophagy, and apoptosis (silent programmed cell death). The T6SS-based vaccines are also described.
Collapse
Affiliation(s)
- Yurou Wang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Chinasa Valerie Olovo
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Zhaoliang Su
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhang
- Institute for Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
27
|
Qian K, Shan L, Shang S, Li T, Wang S, Wei M, Tang B, Xi J. Manganese enhances macrophage defense against Mycobacterium tuberculosis via the STING-TNF signaling pathway. Int Immunopharmacol 2022; 113:109471. [DOI: 10.1016/j.intimp.2022.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
|
28
|
Oh C, Li L, Verma A, Reuven AD, Miao EA, Bliska JB, Aachoui Y. Neutrophil inflammasomes sense the subcellular delivery route of translocated bacterial effectors and toxins. Cell Rep 2022; 41:111688. [PMID: 36417874 PMCID: PMC9827617 DOI: 10.1016/j.celrep.2022.111688] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/23/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
In neutrophils, caspase-11 cleaves gasdermin D (GSDMD), causing pyroptosis to clear cytosol-invasive bacteria. In contrast, caspase-1 also cleaves GSDMD but seems to not cause pyroptosis. Here, we show that this pyroptosis-resistant caspase-1 activation is specifically programmed by the site of translocation of the detected microbial virulence factors. We find that pyrin and NLRC4 agonists do not trigger pyroptosis in neutrophils when they access the cytosol from endosomal compartment. In contrast, when the same ligands penetrate through the plasma membrane, they cause pyroptosis. Consistently, pyrin detects extracellular Yersinia pseudotuberculosis ΔyopM in neutrophils, driving caspase-1-GSDMD pyroptosis. This pyroptotic response drives PAD4-dependent H3 citrullination and results in extrusion of neutrophil extracellular traps (NETs). Our data indicate that caspase-1, GSDMD, or PAD4 deficiency renders mice more susceptible to Y. pseudotuberculosis ΔyopM infection. Therefore, neutrophils induce pyroptosis in response to caspase-1-activating inflammasomes triggered by extracellular bacterial pathogens, but after they phagocytose pathogens, they are programmed to forego pyroptosis.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Arianna D Reuven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Edward A Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03768, USA
| | - Youssef Aachoui
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
29
|
Torre C, Boyer L. Effector-Triggered Trained Immunity: An Innate Immune Memory to Microbial Virulence Factors? Toxins (Basel) 2022; 14:toxins14110798. [PMID: 36422972 PMCID: PMC9696518 DOI: 10.3390/toxins14110798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In the last decade, a major dogma in the field of immunology has been called into question by the identification of a cell autonomous innate immune memory. This innate immune memory (also named trained immunity) was found to be mostly carried by innate immune cells and to be characterized by an exacerbated inflammatory response with a heightened expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-1β. Unlike the vast majority of cytokines, IL-1β is produced as a proform (pro-IL-1β) and requires a proteolytic cleavage to exert its biological action. This cleavage takes place mainly within complex molecular platforms named inflammasomes. These platforms are assembled upon both the infectious or sterile activation of NOD-like receptors (NLRs), thereby allowing for the recruitment and activation of caspases and the subsequent maturation of pro-IL-1β into IL-1β. The NLRP3 inflammasome has recently been implicated both in western diet-induced trained immunity, and in the detection of microbial virulence factors (effector-triggered immunity (ETI)). Here, we will attempt to link these two immune processes and provide arguments to hypothesize the existence of trained immunity triggered by microbial virulence factors (effector-triggered trained immunity (ETTI)).
Collapse
|
30
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. Int J Mol Sci 2022; 23:7750. [PMID: 35887098 PMCID: PMC9319215 DOI: 10.3390/ijms23147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Chronic inflammation and decline in lung function are major reasons for morbidity in CF. Mutant CFTR expressed in phagocytic cells such as macrophages contributes to persistent infection, inflammation, and lung disease in CF. Macrophages play a central role in innate immunity by eliminating pathogenic microbes by a process called phagocytosis. Phagocytosis is required for tissue homeostasis, balancing inflammation, and crosstalk with the adaptive immune system for antigen presentation. This review focused on (1) current understandings of the signaling underlying phagocytic mechanisms; (2) existing evidence for phagocytic dysregulation in CF; and (3) the emerging role of CFTR modulators in influencing CF phagocytic function. Alterations in CF macrophages from receptor initiation to phagosome formation are linked to disease progression in CF. A deeper understanding of macrophages in the context of CFTR and phagocytosis proteins at each step of phagosome formation might contribute to the new therapeutic development of dysregulated innate immunity in CF. Therefore, the review also indicates future areas of research in the context of CFTR and macrophages.
Collapse
Affiliation(s)
- Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Emanuela M. Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
32
|
Antimicrobial peptide S100A12 (calgranulin C) inhibits growth, biofilm formation, pyoverdine secretion and suppresses type VI secretion system in Pseudomonas aeruginosa. Microb Pathog 2022; 169:105654. [PMID: 35753599 DOI: 10.1016/j.micpath.2022.105654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is the major cause of corneal infections in India and worldwide. The increase in antimicrobial resistance among Pseudomonas has prompted rise in significant research to develop alternative therapeutics. Antimicrobial peptides (AMPs) are considered as potent alternatives to combat bacterial infections. In this study, we investigated the role of S100A12, a host defense peptide, against PAO1 and an ocular clinical isolate. Increased expression of S100A12 was observed in corneal tissues obtained from Pseudomonas keratitis patients by immunohistochemistry. S100A12 significantly inhibited growth of Pseudomonas in vitro as determined from colony forming units. Furthermore, recombinant S100A12 reduced the corneal opacity and the bacterial load in a mouse model of Pseudomonas keratitis. Transcriptome changes in PAO1 in response to S100A12 was investigated using RNA sequencing. The pathway analysis of transcriptome data revealed that S100A12 inhibits expression of genes involved in pyoverdine synthesis and biofilm formation. It also impedes several important pathways like redox, pyocyanin synthesis and type 6 secretion system (T6SS). The transcriptome data was further validated by checking the expression of several affected genes by quantitative PCR. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics to combat infection in future.
Collapse
|
33
|
Le Goff M, Vastel M, Lebrun R, Mansuelle P, Diarra A, Grandjean T, Triponney P, Imbert G, Gosset P, Dessein R, Garnier F, Durand E. Characterization of the Achromobacter xylosoxidans Type VI Secretion System and Its Implication in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:859181. [PMID: 35782124 PMCID: PMC9245596 DOI: 10.3389/fcimb.2022.859181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Achromobacter are environmental germs, with an unknown reservoir. It can become opportunistic pathogens in immunocompromised patients, causing bacteremia, meningitis, pneumonia, or peritonitis. In recent years, Achromobacter xylosoxidans has emerged with increasing incidence in patients with cystic fibrosis (CF). Recent studies showed that A. xylosoxidans is involved in the degradation of the respiratory function of patients with CF. The respiratory ecosystem of patients with CF is colonized by bacterial species that constantly fight for space and access to nutrients. The type VI secretion system (T6SS) empowers this constant bacterial antagonism, and it is used as a virulence factor in several pathogenic bacteria. This study aimed to investigate the prevalence of the T6SS genes in A. xylosoxidans isolated in patients with CF. We also evaluated clinical and molecular characteristics of T6SS-positive A. xylosoxidans strains. We showed that A. xylosoxidans possesses a T6SS gene cluster and that some environmental and clinical isolates assemble a functional T6SS nanomachine. A. xylosoxidans T6SS is used to target competing bacteria, including other CF-specific pathogens. Finally, we demonstrated the importance of the T6SS in the internalization of A. xylosoxidans in lung epithelial cells and that the T6SS protein Hcp is detected in the sputum of patients with CF. Altogether, these results suggest for the first time a role of T6SS in CF-lung colonization by A. xylosoxidans and opens promising perspective to target this virulence determinant as innovative theranostic options for CF management.
Collapse
Affiliation(s)
- Mélanie Le Goff
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
| | - Manon Vastel
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
| | - Régine Lebrun
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Pascal Mansuelle
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Ava Diarra
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Teddy Grandjean
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques , Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Philippe Gosset
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Rodrigue Dessein
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Fabien Garnier
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Unité Mixte de Recherche (UMR) 7255, INSERM, Marseille, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| |
Collapse
|
34
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
35
|
Harvest CK, Miao EA. Autophagy May Allow a Cell to Forbear Pyroptosis When Confronted With Cytosol-Invasive Bacteria. Front Immunol 2022; 13:871190. [PMID: 35422805 PMCID: PMC9001894 DOI: 10.3389/fimmu.2022.871190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory caspases detect cytosol-invasive Gram-negative bacteria by monitoring for the presence of LPS in the cytosol. This should provide defense against the cytosol-invasive Burkholderia and Shigella species by lysing the infected cell via pyroptosis. However, recent evidence has shown caspase-11 and gasdermin D activation can result in two different outcomes: pyroptosis and autophagy. Burkholderia cepacia complex has the ability invade the cytosol but is unable to inhibit caspase-11 and gasdermin D. Yet instead of activating pyroptosis during infection with these bacteria, the autophagy pathway is stimulated through caspases and gasdermin D. In contrast, Burkholderia thailandensis can invade the cytosol where caspasae-11 and gasdermin D is activated but the result is pyroptosis of the infected cell. In this review we propose a hypothetical model to explain why autophagy would be the solution to kill one type of Burkholderia species, but another Burkholderia species is killed by pyroptosis. For pathogens with high virulence, pyroptosis is the only solution to kill bacteria. This explains why some pathogens, such as Shigella have evolved methods to inhibit caspase-11 and gasdermin D as well as autophagy. We also discuss similar regulatory steps that affect caspase-1 that may permit the cell to forbear undergoing pyroptosis after caspase-1 activates in response to bacteria with partially effective virulence factors.
Collapse
Affiliation(s)
- Carissa K Harvest
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Immunology, Duke University, Durham, NC, United States.,Department of Molecular Genetic and Microbiology, Duke University, Durham, NC, United States
| | - Edward A Miao
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Immunology, Duke University, Durham, NC, United States.,Department of Molecular Genetic and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
36
|
Activation and manipulation of inflammasomes and pyroptosis during bacterial infections. Biochem J 2022; 479:867-882. [PMID: 35438136 DOI: 10.1042/bcj20220051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
Abstract
Following detection of pathogen infection and disrupted cellular homeostasis, cells can activate a range of cell death pathways, such as apoptosis, necroptosis and pyroptosis, as part of their defence strategy. The initiation of pro-inflammatory, lytic pyroptosis is controlled by inflammasomes, which respond to a range of cellular perturbations. As is true for many host defence pathways, pathogens have evolved multiple mechanisms to subvert this pathway, many of which have only recently been described. Herein, we will discuss the mechanisms by which inflammasomes sense pathogen invasion and initiate pyroptosis and the effector mechanisms used by pathogens to suppress this pathway and preserve their niche.
Collapse
|
37
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Commun Biol 2022; 5:272. [PMID: 35347220 PMCID: PMC8960835 DOI: 10.1038/s42003-022-03186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Burkholderiapseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites. The crystal structure of the toxin from the pathogenic bacterium Burkholderia pseudomallei in complex with its target, human eIF4A, provides insights into substrate specificity and may facilitate the design of inhibitors for the treatment of melioidosis.
Collapse
|
39
|
Amaya FA, Blondel CJ, Barros-Infante MF, Rivera D, Moreno-Switt AI, Santiviago CA, Pezoa D. Identification of Type VI Secretion Systems Effector Proteins That Contribute to Interbacterial Competition in Salmonella Dublin. Front Microbiol 2022; 13:811932. [PMID: 35222335 PMCID: PMC8867033 DOI: 10.3389/fmicb.2022.811932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells via a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In Salmonella, five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes. Salmonella enterica serotype Dublin (S. Dublin) is a cattle-adapted pathogen that harbors both T6SSSPI-6 and T6SSSPI-19. Interestingly, while both systems have been linked to virulence and host colonization in S. Dublin, an antibacterial activity has not been detected for T6SSSPI-6 in this serotype. In addition, there is limited information regarding the repertoire of effector proteins encoded within T6SSSPI-6 and T6SSSPI-19 gene clusters in S. Dublin. In the present study, we demonstrate that T6SSSPI-6 and T6SSSPI-19 of S. Dublin CT_02021853 contribute to interbacterial competition. Bioinformatic and comparative genomic analyses allowed us to identify genes encoding three candidate antibacterial effectors located within SPI-6 and two candidate effectors located within SPI-19. Each antibacterial effector gene is located upstream of a gene encoding a hypothetic immunity protein, thus conforming an effector/immunity (E/I) module. Of note, the genes encoding these effectors and immunity proteins are widely distributed in Salmonella genomes, suggesting a relevant role in interbacterial competition and virulence. Finally, we demonstrate that E/I modules SED_RS01930/SED_RS01935 (encoded in SPI-6), SED_RS06235/SED_RS06230, and SED_RS06335/SED_RS06340 (both encoded in SPI-19) contribute to interbacterial competition in S. Dublin CT_02021853.
Collapse
Affiliation(s)
- Fernando A. Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Initiative on Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| | - David Pezoa
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- *Correspondence: Carlos A. Santiviago, David Pezoa,
| |
Collapse
|
40
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
41
|
Li J, Hu WW, Qu GX, Li XR, Xiang Y, Jiang P, Luo JQ, He WH, Jin YJ, Shi Q. Characterization of a Type VI Secretion System vgrG2 Gene in the Pathogenicity of Burkholderia thailandensis BPM. Front Microbiol 2022; 12:811343. [PMID: 35069514 PMCID: PMC8767068 DOI: 10.3389/fmicb.2021.811343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Burkholderia thailandensis is a clinically underestimated conditional pathogen in the genus Burkholderia, the pathogenicity of the infection caused by B. thailandensis remains poorly understood. According to previous studies, Type-VI secretion system (T6SS) is a protein secreting device widely existing in Gram-negative bacilli. Valine-glycine repeat protein G (VgrG) is not only an important component of T6SS, but also a virulence factor of many Gram-negative bacilli. In one of our previous studies, a unique T6SS vgrG gene (vgrG2 gene) was present in a virulent B. thailandensis strain BPM (BPM), but not in the relatively avirulent B. thailandensis strain E264 (E264). Meanwhile, transcriptome analysis of BPM and E264 showed that the vgrG2 gene was strongly expressed in BPM, but not in E264. Therefore, we identified the function of the vgrG2 gene by constructing the mutant and complemented strains in this study. In vitro, the vgrG2 gene was observed to be involved in the interactions with host cells. The animal model experiment showed that the deletion of vgrG2 gene significantly led to the decrease in the lethality of BPM and impaired its ability to trigger host immune response. In conclusion, our study provides a new perspective for studying the pathogenicity of B. thailandensis and lays the foundation for discovering the potential T6SS effectors.
Collapse
Affiliation(s)
- Jin Li
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei-Wei Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Xiao-Rong Li
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yi Xiang
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jiang-Qiao Luo
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wen-Huan He
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yu-Jia Jin
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qiong Shi
- M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Sun Z, Song ZG, Liu C, Tan S, Lin S, Zhu J, Dai FH, Gao J, She JL, Mei Z, Lou T, Zheng JJ, Liu Y, He J, Zheng Y, Ding C, Qian F, Zheng Y, Chen YM. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med 2022; 20:24. [PMID: 35045853 PMCID: PMC8769945 DOI: 10.1186/s12916-021-02212-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND COVID-19 is an infectious disease characterized by multiple respiratory and extrapulmonary manifestations, including gastrointestinal symptoms. Although recent studies have linked gut microbiota to infectious diseases such as influenza, little is known about the role of the gut microbiota in COVID-19 pathophysiology. METHODS To better understand the host-gut microbiota interactions in COVID-19, we characterized the gut microbial community and gut barrier function using metagenomic and metaproteomic approaches in 63 COVID-19 patients and 8 non-infected controls. Both immunohematological parameters and transcriptional profiles were measured to reflect the immune response in COVID-19 patients. RESULTS Altered gut microbial composition was observed in COVID-19 patients, which was characterized by decreased commensal species and increased opportunistic pathogenic species. Severe illness was associated with higher abundance of four microbial species (i.e., Burkholderia contaminans, Bacteroides nordii, Bifidobacterium longum, and Blautia sp. CAG 257), six microbial pathways (e.g., glycolysis and fermentation), and 10 virulence genes. These severity-related microbial features were further associated with host immune response. For example, the abundance of Bu. contaminans was associated with higher levels of inflammation biomarkers and lower levels of immune cells. Furthermore, human-origin proteins identified from both blood and fecal samples suggested gut barrier dysfunction in COVID-19 patients. The circulating levels of lipopolysaccharide-binding protein increased in patients with severe illness and were associated with circulating inflammation biomarkers and immune cells. Besides, proteins of disease-related bacteria (e.g., B. longum) were detectable in blood samples from patients. CONCLUSIONS Our results suggest that the dysbiosis of the gut microbiome and the dysfunction of the gut barrier might play a role in the pathophysiology of COVID-19 by affecting host immune homeostasis.
Collapse
Affiliation(s)
- Zhonghan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - Zhi-Gang Song
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenglin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shishang Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuchun Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fa-Hui Dai
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jia-Lei She
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhendong Mei
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tao Lou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiao-Jiao Zheng
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yi Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiang He
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China. .,Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Planès R, Santoni K, Meunier E. Analysis of Bacteria-Triggered Inflammasome: Activation in Neutrophils by Immunoblot. Methods Mol Biol 2022; 2523:265-279. [PMID: 35759203 DOI: 10.1007/978-1-0716-2449-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detection of microbes relies on the expression of germline-encoded pattern recognition receptors (PRRs). While PRRs can directly sense conserved pattern expressed by various microbes, they can also induce effector-triggered immunity (ETI) by sensing pathogenic alterations of cellular homeostasis. One consequence of ETI is the death of the infected cell through the induction of inflammasome-dependent cell death, namely, pyroptosis. Such process can be easily studied in macrophages and epithelial cells, yet neutrophils encode an arsenal of proteolytic enzymes that imped easy and reliable study of ETI-triggered inflammasome response. Here, we describe an immunoblotting methodology to study both ETI- and PRR-driven inflammasome responses in neutrophils upon bacterial infections. This method is also transposable to other microbial pathogen- and toxin-induced inflammasome response in neutrophils.
Collapse
Affiliation(s)
- Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
44
|
Chirita D, Jamilloux Y, Henry T, Magnotti F. Functional Assessment of Disease-Associated Pyrin Variants. Methods Mol Biol 2022; 2523:179-195. [PMID: 35759198 DOI: 10.1007/978-1-0716-2449-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pyrin inflammasome detects effectors and toxins that inhibit RhoA GTPases and triggers inflammatory cytokines release and a fast cell death termed pyroptosis. Ancient plague pandemics in the Mediterranean basin have selected in the human population pyrin variants that can trigger an autoinflammatory disease termed familial Mediterranean fever (FMF). In addition, distinct mutations in MEFV, the gene encoding pyrin, cause a different rare autoinflammatory disease termed pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). As of today, more than 385 MEFV variants have been described although for most of them, whether they are pathogenic variant or benign polymorphism is unknown.Here, we describe different methods using primary human monocytes or engineered monocytic cell lines to functionally characterize MEFV variants, determine their potential pathogenicity, and classify them as either FMF-like or PAAND-like variants.
Collapse
Affiliation(s)
- Daria Chirita
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Yvan Jamilloux
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Thomas Henry
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France.
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France.
| | - Flora Magnotti
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France.
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France.
| |
Collapse
|
45
|
Li X, Xiao GY, Guo T, Song YJ, Li QM. Potential therapeutic role of pyroptosis mediated by the NLRP3 inflammasome in type 2 diabetes and its complications. Front Endocrinol (Lausanne) 2022; 13:986565. [PMID: 36387904 PMCID: PMC9646639 DOI: 10.3389/fendo.2022.986565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a new way of programmed cell death, pyroptosis plays a vital role in many diseases. In recent years, the relationship between pyroptosis and type 2 diabetes (T2D) has received increasing attention. Although the current treatment options for T2D are abundant, the occurrence and development of T2D appear to continue, and the poor prognosis and high mortality of patients with T2D remain a considerable burden in the global health system. Numerous studies have shown that pyroptosis mediated by the NLRP3 inflammasome can affect the progression of T2D and its complications; targeting the NLRP3 inflammasome has potential therapeutic effects. In this review, we described the molecular mechanism of pyroptosis more comprehensively, discussed the most updated progress of pyroptosis mediated by NLRP3 inflammasome in T2D and its complications, and listed some drugs and agents with potential anti-pyroptosis effects. Based on the available evidence, exploring more mechanisms of the NLRP3 inflammasome pathway may bring more options and benefits for preventing and treating T2D and drug development.
Collapse
|
46
|
The Burkholderia cenocepacia Type VI Secretion System Effector TecA Is a Virulence Factor in Mouse Models of Lung Infection. mBio 2021; 12:e0209821. [PMID: 34579569 PMCID: PMC8546862 DOI: 10.1128/mbio.02098-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of bacteria with members responsible for causing lung infections in cystic fibrosis (CF) patients. The most severe outcome of Bcc infection in CF patients is cepacia syndrome, a disease characterized by necrotizing pneumonia with bacteremia and sepsis. B. cenocepacia is strongly associated with cepacia syndrome, making it one of the most virulent members of the Bcc. Mechanisms underlying the pathogenesis of B. cenocepacia in lung infections and cepacia syndrome remain to be uncovered. B. cenocepacia is primarily an intracellular pathogen and encodes the type VI secretion system (T6SS) effector TecA, which is translocated into host phagocytes. TecA is a deamidase that inactivates multiple Rho GTPases, including RhoA. Inactivation of RhoA by TecA triggers assembly of the pyrin inflammasome, leading to secretion of proinflammatory cytokines, such as interleukin-1β, from macrophages. Previous work with the B. cenocepacia clinical isolate J2315 showed that TecA increases immunopathology during acute lung infection in C57BL/6 mice and suggested that this effector acts as a virulence factor by triggering assembly of the pyrin inflammasome. Here, we extend these results using a second B. cenocepacia clinical isolate, AU1054, to demonstrate that TecA exacerbates weight loss and lethality during lung infection in C57BL/6 mice and mice engineered to have a CF genotype. Unexpectedly, pyrin was dispensable for TecA virulence activity in both mouse infection models. Our findings establish that TecA is a B. cenocepacia virulence factor that exacerbates lung inflammation, weight loss, and lethality in mouse infection models.
Collapse
|
47
|
T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci U S A 2021; 118:2103526118. [PMID: 34625471 DOI: 10.1073/pnas.2103526118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+ Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.
Collapse
|
48
|
Disrupting RhoA activity by blocking Arhgef3 expression mitigates microglia-induced neuroinflammation post spinal cord contusion. J Neuroimmunol 2021; 359:577688. [PMID: 34390950 DOI: 10.1016/j.jneuroim.2021.577688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Excess inflammatory microglia activation deteriorates the pathological degree of spinal cord injury (SCI). We here employed microglia samples in vitro and murine model in vivo to trace the role of inhibition of Arhgef3 in inflammatory response post SCI. From the specimen analysis of lipopolysaccharide (LPS)-induced inflammatory microglia, we found that Arhgef3 expression was positively relative to microglia activation. In vitro, LPS caused the microglia inflammatory activation and induced upregulation of the Arhgef3 expression. Interestingly, presence of Arhgef3 could activate RhoA through promoting Rho GTPases, but silencing of Arhgef3 decreased RhoA activation and inhibited the microglia inflammation. Moreover, disruption of Arhgef3 inhibited the GTP-RhoA, resulted in a suppression of proinflammatory cytokines, and alleviated the LPS-elicited inflammatory genes expression. Moreover, artificially decreasing Arhgef3 expression remarkedly reduced ROS generation after LPS treatment. In vivo of a mouse mechanical contusion-induced SCI model, inhibition of Arhgef3 reduced the ratio of GTP-RhoA/Total-RhoA, and prevented SCI via mitigating the microglial inflammatory phenotype and decreased secondary neurological injury. Besides, inhibition of Arhgef3 prevented alleviated the degree of demyelination but did not affect neuronal regeneration. Meaningfully, absence of Arhgef3 improved mouse locomotor recovery post SCI. Taken together, Arhgef3 involves the microglial activation and inflammatory response following neural injury, and targeted disrupting of which may indicate a promising therapeutic direction in preventing SCI.
Collapse
|
49
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
50
|
Martirosyan A, Poghosyan D, Ghonyan S, Mkrtchyan N, Amaryan G, Manukyan G. Transmigration of Neutrophils From Patients With Familial Mediterranean Fever Causes Increased Cell Activation. Front Immunol 2021; 12:672728. [PMID: 34079554 PMCID: PMC8165278 DOI: 10.3389/fimmu.2021.672728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Familial Mediterranean fever (FMF) is caused by pyrin-encoding MEFV gene mutations and characterized by the self-limiting periods of intense inflammation, which are mainly mediated by a massive influx of polymorphonuclear neutrophils (PMNs) into the inflamed sites. Perturbation of actin polymerization by different pathogens was shown to activate the pyrin inflammasome. Our aim was to test whether cytoskeletal dynamics in the absence of pathogens may cause abnormal activation of PMNs from FMF patients. We also aimed to characterize immunophenotypes of circulating neutrophils and their functional activity. Circulating PMNs displayed heterogeneity in terms of cell size, granularity and immunophenotypes. Particularly, PMNs from the patients in acute flares (FMF-A) exhibited a characteristic of aged/activated cells (small cell size and granularity, up-regulated CXCR4), while PMNs form the patients in remission period (FMF-R) displayed mixed fresh/aged cell characteristics (normal cell size and granularity, up-regulated CD11b, CD49d, CXCR4, and CD62L). The findings may suggest that sterile tissue-infiltrated PMNs undergo reverse migration back to bone marrow and may explain why these PMNs do not cause immune-mediated tissue damage. A multidirectional expression of FcγRs on neutrophils during acute flares was also noteworthy: up-regulation of FcγRI and down-regulation of FcγRII/FcγRIII. We also observed spontaneous and fMPL-induced activation of PMNs from the patients after transmigration through inserts as seen by the increased expression of CD11b and intracellular expression of IL-1β. Our study suggests heightened sensitivity of mutated pyrin inflammasome towards cytoskeletal modifications in the absence of pathogens.
Collapse
Affiliation(s)
- Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - David Poghosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Susanna Ghonyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| | - Nune Mkrtchyan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Amaryan
- National Pediatrics Center of Familial Mediterranean Fever "Arabkir" Joint Medical Center- Institute of Child and Adolescent Health, Yerevan, Armenia.,Department of Pediatrics, Yerevan State Medical University, Yerevan, Armenia
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, Armenia
| |
Collapse
|