1
|
Cai X, Yu M, Li B, Zhang Y, Han Y. Cobalt ions-derived nanoenzyme array for endosseous neural network reconstruction and osseointegration. Bioact Mater 2024; 42:1-17. [PMID: 39246698 PMCID: PMC11378756 DOI: 10.1016/j.bioactmat.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Interactions between bone cells and neurocytes are crucial for endosseous nerve and ensuing bone regeneration. However, absence of neural stem cells in bone makes the innervation of implant osseointegration a major challenge. Herein, a nanorod-like array of sodium hydrogen titanate (ST) co-doped with Co2+ and Co3+, namely STCh that behaves as a reactive oxygen species (ROS)-scavenging enzyme, was hydrothermally formed on Ti substrate. We show that the doped Co2+ and Co3+ locate at TiO6 octahedral interlayers and within octahedra of STCh lattice, appearing releasable and un-releasable, respectively, leading to an increase in Co3+/Co2+ ratio and enzyme activity of the array with immersion. The nanoenzyme-released Co2+ triggers macrophages (MΦs) towards M1 phenotype, then the nanoenzyme scavenges extracellular ROS inducing M1-to-M2 transition. The neurogenic factors secreted by STCh-regulated MΦs, in combination with the released Co2+, promote mesenchymal stem cells to differentiate into neurons and Schwann cells compared to sole Co2+and ST. STCh array greatly enhances nerve reconstruction, type-H capillary formation and ensuing osseointegration in normal rat bone, and antibacteria via engulfing S. aureus by MΦs and osteogenesis in infective case. This nanoenzyme provides an alternative strategy to orchestrate endosseous nerve regeneration for osseointegration without loading exogenous neurotrophins in implants.
Collapse
Affiliation(s)
- Xinmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
McBride MA, Caja KR, Patil TK, Owen AM, Luan L, Bohannon JK, Hernandez A, Stothers CL, Trenary IA, Rahim M, Young JD, Calcutt MW, Stephens VR, Davis X, Oliver MA, Hao D, Si C, McRae M, Nguyen KK, Davis NS, Wang J, Patil NK, Sherwood ER. Immunoresponsive Gene 1 Facilitates TLR4-agonist-Induced Augmentation of Innate Antimicrobial Immunity. J Leukoc Biol 2024:qiae198. [PMID: 39351765 DOI: 10.1093/jleuko/qiae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/09/2024] Open
Abstract
Treatment with the toll-like receptor (TLR) 4 agonist monophosphoryl lipid A (MPLA) conditions innate immunocytes to respond robustly to subsequent infection, a phenotype termed innate immune memory. Our published studies show that metabolic reprogramming of macrophages is a prominent feature of the memory phenotype. We undertook studies to define the functional contributions of tricarboxylic acid (TCA) cycle reprogramming to innate immune memory. We observed that priming of wild type (WT) mice with MPLA potently facilitated accumulation of the TCA cycle metabolite itaconate at sites of infection and enhanced microbial clearance. Augmentation of itaconate accumulation and microbial clearance was ablated in immuneresponsive gene 1 (Irg1) -deficient mice. We further observed that MPLA potently induces expression of Irg1 and accumulation of itaconate in macrophages. Compared to WT macrophages, the ability of Irg1-deficient macrophages to kill Pseudomonas aeruginosa was impaired. We further observed that itaconate is directly antimicrobial against P. aeruginosa at pH 5, which is characteristic of the phagolysosome, and is facilitated by reactive oxygen species. MPLA-induced augmentation of glycolysis, oxidative phosphorylation and accumulation of the TCA cycle metabolites succinate and malate was decreased in Irg1 KO macrophages compared to WT controls. RNA sequencing revealed suppressed transcription of genes associated with phagolysosome function and increased expression of genes associated with cytokine production and chemotaxis in Irg1 deficient macrophages. This study identifies a contribution of itaconate to MPLA-induced augmentation of innate antimicrobial immunity via facilitation of microbial killing as well as impact on metabolic and transcriptional adaptations.
Collapse
Affiliation(s)
- Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine R Caja
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Tazeen K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Julia K Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Cody L Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - M Wade Calcutt
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| | - Victoria R Stephens
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xenia Davis
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Mary A Oliver
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Hao
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Clara Si
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Malik McRae
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Kenny K Nguyen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicholas S Davis
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Edward R Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Surgery, East Tennessee State University, Quillen College of Medicine, Johnson City, TN
- Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Quillen College of Medicine, Johnson City, TN
| |
Collapse
|
3
|
Bennett FC, Bennett ML. Microglia cannibalism during neurodevelopment results in necroptotic cell death. PLoS Biol 2024; 22:e3002869. [PMID: 39480876 PMCID: PMC11527359 DOI: 10.1371/journal.pbio.3002869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Clearance of dying neurons by microglia is critical to healthy neurodevelopment, but what else do microglia eat? A new study in PLOS Biology demonstrates that microglia not only eat neurons but each other, and that this "microglia cannibalism" causes necroptotic cell death.
Collapse
Affiliation(s)
- F. Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mariko L. Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Tanaka T, Yano T, Usuki S, Seo Y, Mizuta K, Okaguchi M, Yamaguchi M, Hanyu-Nakamura K, Toyama-Sorimachi N, Brückner K, Nakamura A. Endocytosed dsRNAs induce lysosomal membrane permeabilization that allows cytosolic dsRNA translocation for Drosophila RNAi responses. Nat Commun 2024; 15:6993. [PMID: 39143098 PMCID: PMC11324899 DOI: 10.1038/s41467-024-51343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
RNA interference (RNAi) is a gene-silencing mechanism triggered by the cytosolic entry of double-stranded RNAs (dsRNAs). Many animal cells internalize extracellular dsRNAs via endocytosis for RNAi induction. However, it is not clear how the endocytosed dsRNAs are translocated into the cytosol across the endo/lysosomal membrane. Herein, we show that in Drosophila S2 cells, endocytosed dsRNAs induce lysosomal membrane permeabilization (LMP) that allows cytosolic dsRNA translocation. LMP mediated by dsRNAs requires the lysosomal Cl-/H+ antiporter ClC-b/DmOstm1. In clc-b or dmostm1 knockout S2 cells, extracellular dsRNAs are endocytosed and reach the lysosomes normally but fail to enter the cytosol. Pharmacological induction of LMP restores extracellular dsRNA-directed RNAi in clc-b or dmostm1-knockout cells. Furthermore, clc-b or dmostm1 mutant flies are defective in extracellular dsRNA-directed RNAi and its associated antiviral immunity. Therefore, endocytosed dsRNAs have an intrinsic ability to induce ClC-b/DmOstm1-dependent LMP that allows cytosolic dsRNA translocation for RNAi responses in Drosophila cells.
Collapse
Affiliation(s)
- Tsubasa Tanaka
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tamaki Yano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yoko Seo
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kento Mizuta
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maho Okaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Maki Yamaguchi
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Research and Development Center for Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
6
|
Sharafutdinov I, Friedrich B, Rottner K, Backert S, Tegtmeyer N. Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Mol Microbiol 2024; 122:165-183. [PMID: 38868928 DOI: 10.1111/mmi.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Friedrich
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Xiang L, An Z, Wu X, Wang J, Cai S, Lu Y, Li L, Huang W, Wu D, Lu L, Shi S, Bi H, Kou X. Carbon Dot-Loaded Apoptotic Vesicles Improve the Liver Kupffer Cell-Mediated Antibacterial Effect to Synergistically Alleviate Sepsis. ACS NANO 2024; 18:16726-16742. [PMID: 38888383 DOI: 10.1021/acsnano.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Sepsis is a lethal systemic inflammatory disease against infection that lacks effective therapeutic approaches. Liver resident macrophage Kupffer cell (KC)-initiated bacterial clearance is crucial for the host to defend against infection. However, it remains unclear whether this process also governs the antibacterial therapy of sepsis that would be used to improve therapeutic outcomes. Here, we found that copper-doped carbon dots (Cu-CDs) exhibited superior antibacterial capabilities in vitro but displayed limited therapeutic effects in septic mice due to their limited ability to target the liver and restore KC antimicrobial capacity. Thus, we developed a composite nanodrug of copper-doped carbon dot-loaded apoVs (CC-apoVs) that combined the antibacterial ability of Cu-CDs and liver KC targeting features of apoV. Moreover, intravenous injection of CC-apoVs markedly alleviated the systemic infection and decreased the mortality of septic mice compared to Cu-CD and apoV infusion alone. Mechanistically, CC-apoV injection rescued impaired liver KCs during sepsis and enhanced their ability to capture and kill bloodborne bacteria. In addition, apoV-promoted macrophage killing of bacteria could be blocked by the inhibition of small GTPase Rab5. This study reveals a liver KC-targeted therapeutic strategy for sepsis and provides a nanodrug CC-apoV to improve the host antibacterial defense and amplify the therapeutic effect of the nanodrug.
Collapse
Affiliation(s)
- Lei Xiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhe An
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Jinyang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Simin Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yongxi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Longchuang Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Weiying Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
8
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
9
|
Turner ME, Che J, Mirhaidari GJM, Kennedy CC, Blum KM, Rajesh S, Zbinden JC, Breuer CK, Best CA, Barker JC. The lysosomal trafficking regulator "LYST": an 80-year traffic jam. Front Immunol 2024; 15:1404846. [PMID: 38774881 PMCID: PMC11106369 DOI: 10.3389/fimmu.2024.1404846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.
Collapse
Affiliation(s)
- Mackenzie E. Turner
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jingru Che
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gabriel J. M. Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine C. Kennedy
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kevin M. Blum
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sahana Rajesh
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jacob C. Zbinden
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Cameron A. Best
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Jenny C. Barker
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Chatterjee R, Setty SRG, Chakravortty D. SNAREs: a double-edged sword for intravacuolar bacterial pathogens within host cells. Trends Microbiol 2024; 32:477-493. [PMID: 38040624 DOI: 10.1016/j.tim.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
In the tug-of-war between host and pathogen, both evolve to combat each other's defence arsenals. Intracellular phagosomal bacteria have developed strategies to modify the vacuolar niche to suit their requirements best. Conversely, the host tries to target the pathogen-containing vacuoles towards the degradative pathways. The host cells use a robust system through intracellular trafficking to maintain homeostasis inside the cellular milieu. In parallel, intracellular bacterial pathogens have coevolved with the host to harbour strategies to manipulate cellular pathways, organelles, and cargoes, facilitating the conversion of the phagosome into a modified pathogen-containing vacuole (PCV). Key molecular regulators of intracellular traffic, such as changes in the organelle (phospholipid) composition, recruitment of small GTPases and associated effectors, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs), etc., are hijacked to evade lysosomal degradation. Legionella, Salmonella, Coxiella, Chlamydia, Mycobacterium, and Brucella are examples of pathogens which diverge from the endocytic pathway by using effector-mediated mechanisms to overcome the challenges and establish their intracellular niches. These pathogens extensively utilise and modulate the end processes of secretory pathways, particularly SNAREs, in repurposing the PCV into specialised compartments resembling the host organelles within the secretory network; at the same time, they avoid being degraded by the host's cellular mechanisms. Here, we discuss the recent research advances on the host-pathogen interaction/crosstalk that involves host SNAREs, conserved cellular processes, and the ongoing host-pathogen defence mechanisms in the molecular arms race against each other. The current knowledge of SNAREs, and intravacuolar bacterial pathogen interactions, enables us to understand host cellular innate immune pathways, maintenance of homeostasis, and potential therapeutic strategies to combat ever-growing antimicrobial resistance.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Li K, Guo Y, Wang Y, Zhu R, Chen W, Cheng T, Zhang X, Jia Y, Liu T, Zhang W, Jan LY, Jan YN. Drosophila TMEM63 and mouse TMEM63A are lysosomal mechanosensory ion channels. Nat Cell Biol 2024; 26:393-403. [PMID: 38388853 PMCID: PMC10940159 DOI: 10.1038/s41556-024-01353-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024]
Abstract
Cells sense physical forces and convert them into electrical or chemical signals, a process known as mechanotransduction. Whereas extensive studies focus on mechanotransduction at the plasma membrane, little is known about whether and how intracellular organelles sense mechanical force and the physiological functions of organellar mechanosensing. Here we identify the Drosophila TMEM63 (DmTMEM63) ion channel as an intrinsic mechanosensor of the lysosome, a major degradative organelle. Endogenous DmTMEM63 proteins localize to lysosomes, mediate lysosomal mechanosensitivity and modulate lysosomal morphology and function. Tmem63 mutant flies exhibit impaired lysosomal degradation, synaptic loss, progressive motor deficits and early death, with some of these mutant phenotypes recapitulating symptoms of TMEM63-associated human diseases. Importantly, mouse TMEM63A mediates lysosomal mechanosensitivity in Neuro-2a cells, indicative of functional conservation in mammals. Our findings reveal DmTMEM63 channel function in lysosomes and its physiological roles in vivo and provide a molecular basis to explore the mechanosensitive process in subcellular organelles.
Collapse
Affiliation(s)
- Kai Li
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yanmeng Guo
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yayu Wang
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ruijun Zhu
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Wei Chen
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Tong Cheng
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Xiaofan Zhang
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Lily Yeh Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Li T, Xu B, Li W, Cheng X, Tantai W, Zheng H, Zhao L, Li N, Han C. Allosteric inhibitor of SHP2 enhances macrophage endocytosis and bacteria elimination by increasing caveolae activation and protects against bacterial sepsis. Pharmacol Res 2024; 201:107096. [PMID: 38320736 DOI: 10.1016/j.phrs.2024.107096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
The uncontrolled bacterial infection-induced cytokine storm and sequential immunosuppression are commonly observed in septic patients, which indicates that the activation of phagocytic cells and the efficient and timely elimination of bacteria are crucial for combating bacterial infections. However, the role of dysregulated immune cells and their disrupted function in sepsis remains unclear. Here, we found that macrophages exhibited the impaired endocytosis capabilities in sepsis by Single-cell RNA sequencing and bulk RNA sequencing. Caveolae protein Caveolin-1 (Cav-1) of macrophages was inactivated by SHP2 rapidly during Escherichia coli (E.coli) infection. Allosteric inhibitor of SHP2 effectively maintains Cav-1 phosphorylation to enhance macrophage to endocytose and eliminate bacteria. Additionally, TLR4 endocytosis of macrophage was also enhanced upon E.coli infection by SHP099, inducing an increased and rapidly resolved inflammatory response. In vivo, pretreatment or posttreatment with inhibitor of SHP2 significantly reduced the bacterial burden in organs and mortality of mice subjected E.coli infection or CLP-induced sepsis. The cotreatment of inhibitor of SHP2 with an antibiotic conferred complete protection against mortality in mice. Our findings suggest that Cav-1-mediated endocytosis and bacterial elimination may play a critical role in the pathogenesis of sepsis, highlighting inhibitor of SHP2 as a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Tianliang Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Bing Xu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wenqian Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaotao Cheng
- Suzhou Jizhi Medical Corporation, Jiangsu 215400, China
| | - Wenjing Tantai
- Department of Histology and Embryology and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai 200433, China
| | - Haiyan Zheng
- Department of Emergency, Dongfang Hospital, Tongji University, Shanghai 200210, China
| | - Liming Zhao
- Department of Emergency, Dongfang Hospital, Tongji University, Shanghai 200210, China.
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Chaofeng Han
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China; Department of Histology and Embryology and Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Minaychev VV, Smirnova PV, Kobyakova MI, Teterina AY, Smirnov IV, Skirda VD, Alexandrov AS, Gafurov MR, Shlykov MA, Pyatina KV, Senotov AS, Salynkin PS, Fadeev RS, Komlev VS, Fadeeva IS. Low-Temperature Calcium Phosphate Ceramics Can Modulate Monocytes and Macrophages Inflammatory Response In Vitro. Biomedicines 2024; 12:263. [PMID: 38397865 PMCID: PMC10887285 DOI: 10.3390/biomedicines12020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.
Collapse
Affiliation(s)
- Vladislav V. Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Polina V. Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anastasia Yu. Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Igor V. Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir D. Skirda
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Artem S. Alexandrov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Marat R. Gafurov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia; (V.D.S.); (M.R.G.)
| | - Mikhail A. Shlykov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Kira V. Pyatina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Anatoliy S. Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Pavel S. Salynkin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Vladimir S. Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| | - Irina S. Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.V.M.); (M.I.K.); (A.S.S.); (I.S.F.)
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia; (P.V.S.); (A.Y.T.); (M.A.S.)
| |
Collapse
|
15
|
Guo L, Ding J, Zhou W. Converting bacteria into autologous tumor vaccine via surface biomineralization of calcium carbonate for enhanced immunotherapy. Acta Pharm Sin B 2023; 13:5074-5090. [PMID: 38045045 PMCID: PMC10692385 DOI: 10.1016/j.apsb.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 12/05/2023] Open
Abstract
Autologous cancer vaccine that stimulates tumor-specific immune responses for personalized immunotherapy holds great potential for tumor therapy. However, its efficacy is still suboptimal due to the immunosuppressive tumor microenvironment (ITM). Here, we report a new type of bacteria-based autologous cancer vaccine by employing calcium carbonate (CaCO3) biomineralized Salmonella (Sal) as an in-situ cancer vaccine producer and systematical ITM regulator. CaCO3 can be facilely coated on the Sal surface with calcium ionophore A23187 co-loading, and such biomineralization did not affect the bioactivities of the bacteria. Upon intratumoral accumulation, the CaCO3 shell was decomposed at an acidic microenvironment to attenuate tumor acidity, accompanied by the release of Sal and Ca2+/A23187. Specifically, Sal served as a cancer vaccine producer by inducing cancer cells' immunogenic cell death (ICD) and promoting the gap junction formation between tumor cells and dendritic cells (DCs) to promote antigen presentation. Ca2+, on the other hand, was internalized into various types of immune cells with the aid of A23187 and synergized with Sal to systematically regulate the immune system, including DCs maturation, macrophages polarization, and T cells activation. As a result, such bio-vaccine achieved remarkable efficacy against both primary and metastatic tumors by eliciting potent anti-tumor immunity with full biocompatibility. This work demonstrated the potential of bioengineered bacteria as bio-active vaccines for enhanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
16
|
Guo L, Chen H, Ding J, Rong P, Sun M, Zhou W. Surface engineering Salmonella with pH-responsive polyserotonin and self-activated DNAzyme for better microbial therapy of tumor. EXPLORATION (BEIJING, CHINA) 2023; 3:20230017. [PMID: 38264692 PMCID: PMC10742197 DOI: 10.1002/exp.20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/06/2023] [Indexed: 01/25/2024]
Abstract
Bacteria-based microbial immunotherapy shows various unique properties for tumor therapy owing to their active tropism to tumor and multiple anti-tumor mechanisms. However, its clinical benefit is far from satisfactory, which is limited by rapid systemic clearance and neutrophils-mediated immune restriction to compromise the efficacy, as well as non-specific distribution to cause toxicity. To address all these limitations, herein we reported a polyserotonin (PST) coated Salmonella (Sal) with surface adsorption of DNAzyme (Dz)-functionalized MnO2 nanoparticles (DzMN) for tumor therapy. PST could facilely coat on Sal surface via oxidation and self-polymerization of its serotonin monomer, which enabled surface stealth to avoid rapid systemic clearance while maintaining the tumor homing effect. Upon targeting to tumor, the PST was degraded and exfoliated in response to acidic tumor microenvironment, thus liberating Sal to recover its anti-tumor activities. Meanwhile, the DzMN was also delivered into tumor via hitchhiking Sal, which could release Dz and Mn2+ after tumor cells internalization. The Dz was then activated by its cofactor of Mn2+ to cleave target PD-L1 mRNA, thus serving as a self-activated system for gene silencing. Combining Sal and Dz for immune activation and PD-L1 knockdown, respectively, anti-tumor immunotherapy was achieved with enhanced efficacy. Notably, PST coating could significantly decrease infection potential and non-specific colonization of Sal at normal organs, achieving high in vivo biosafety. This work addresses the key limitations of Sal for in vivo application via biomaterials modification, and provides a promising platform for better microbial immunotherapy.
Collapse
Affiliation(s)
- Lina Guo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Hao Chen
- Department of PathologyShihezi University School of MedicineShiheziChina
| | - Jinsong Ding
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| | - Pengfei Rong
- Department of RadiologyThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Ming Sun
- Division of Systems Pharmacology and PharmacyLeiden Academic Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
17
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
18
|
Wang YN, Wang YY, Wang J, Bai WJ, Miao NJ, Wang J. Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune response. J Immunother Cancer 2023; 11:e007253. [PMID: 37652576 PMCID: PMC10476141 DOI: 10.1136/jitc-2023-007253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response. METHOD We used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment. RESULTS Here, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages. CONCLUSIONS This study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-Na Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Juan Bai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nai-Jun Miao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wu JZ, Zeziulia M, Kwon W, Jentsch TJ, Grinstein S, Freeman SA. ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution. J Cell Biol 2023; 222:e202208155. [PMID: 37010469 PMCID: PMC10072274 DOI: 10.1083/jcb.202208155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Degradative organelles contain enzymes that function optimally at the acidic pH generated by the V-ATPase. The resulting transmembrane H+ gradient also energizes the secondary transport of several solutes, including Cl-. We report that Cl- influx, driven by the 2Cl-/H+ exchanger ClC-7, is necessary for the resolution of phagolysosomes formed by macrophages. Cl- transported via ClC-7 had been proposed to provide the counterions required for electrogenic H+ pumping. However, we found that deletion of ClC-7 had a negligible effect on phagosomal acidification. Instead, luminal Cl- was found to be required for activation of a wide range of phagosomal hydrolases including proteases, nucleases, and glycosidases. These findings argue that the primary role of ClC-7 is the accumulation of (phago)lysosomal Cl- and that the V-ATPases not only optimize the activity of degradative hydrolases by lowering the pH but, importantly, also play an indirect role in their activation by providing the driving force for accumulation of luminal Cl- that stimulates hydrolase activity allosterically.
Collapse
Affiliation(s)
- Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Mariia Zeziulia
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Graduate Program of the Freie Universität Berlin, Berlin, Germany
| | - Whijin Kwon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité University Medicine Berlin, Berlin, Germany
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Satoh AO, Fujioka Y, Kashiwagi S, Yoshida A, Fujioka M, Sasajima H, Nanbo A, Amano M, Ohba Y. Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation. Cell Rep 2023; 42:112229. [PMID: 36906852 DOI: 10.1016/j.celrep.2023.112229] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
Collapse
Affiliation(s)
- Aya O Satoh
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Sayaka Kashiwagi
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Aiko Yoshida
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Mari Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Hitoshi Sasajima
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | - Maho Amano
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15W7, Kita-ku, Sapporo 060-8638, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
21
|
Li K, McCaw JM, Cao P. Enhanced viral infectivity and reduced interferon production are associated with high pathogenicity for influenza viruses. PLoS Comput Biol 2023; 19:e1010886. [PMID: 36758109 PMCID: PMC9946260 DOI: 10.1371/journal.pcbi.1010886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Epidemiological and clinical evidence indicates that humans infected with the 1918 pandemic H1N1 influenza virus and highly pathogenic avian H5N1 influenza viruses often displayed severe lung pathology. High viral load and extensive infiltration of macrophages are the hallmarks of highly pathogenic (HP) influenza viral infections. However, it remains unclear what biological mechanisms primarily determine the observed difference in the kinetics of viral load and macrophages between HP and low pathogenic (LP) viral infections, and how the mechanistic differences are associated with viral pathogenicity. In this study, we develop a mathematical model of viral dynamics that includes the dynamics of different macrophage populations and interferon. We fit the model to in vivo kinetic data of viral load and macrophage level from BALB/c mice infected with an HP or LP strain of H1N1/H5N1 virus to estimate model parameters using Bayesian inference. Our primary finding is that HP viruses have a higher viral infection rate, a lower interferon production rate and a lower macrophage recruitment rate compared to LP viruses, which are strongly associated with more severe tissue damage (quantified by a higher percentage of epithelial cell loss). We also quantify the relative contribution of macrophages to viral clearance and find that macrophages do not play a dominant role in the direct clearance of free viruses although their role in mediating immune responses such as interferon production is crucial. Our work provides new insight into the mechanisms that convey the observed difference in viral and macrophage kinetics between HP and LP infections and establishes an improved model-fitting framework to enhance the analysis of new data on viral pathogenicity.
Collapse
Affiliation(s)
- Ke Li
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| | - James M. McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, VIC, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pengxing Cao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Yu K, Zhao X, Xiang Y, Li C. Phenotypic and functional characterization of two coelomocyte subsets in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108453. [PMID: 36471560 DOI: 10.1016/j.fsi.2022.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The hemocytes of invertebrates are composed of different cell subsets with different morphologies and structures. Different cell subsets have different immune functions, which play an important role in innate immune response against pathogens. However, the understanding of the classification of Apostichopus japonicus coelomocytes and the molecular basis of immune function of different cell subsets is very limited. In this study, two coelomocyte subpopulations of A. japonicus were isolated by Percoll density gradient centrifugation. They were identified from their morphological and structural characteristics, namely, spherical cells with a size of 10-12 μm spherical in shape and a large number of small granules inside; lymphocyte-like cells with a size of 4-5 μm spherical or oval in shape, and 1-3 filopodia. Functionally, the phagocytic capacity and lysosomal activity in spherical cells were significantly greater than those in lymphocyte-like cells. The results suggest that spherical cells may play a more critical role in the immune responses. Meanwhile, transcriptome sequencing analysis was performed to further clarify the functional differences between the two cell subsets. The data indicated significantly different gene expression patterns in them. Spherical cells tend to participate in immune defense, whereas lymphocyte-like cells tend to participate in energy metabolism. In addition, lymphocyte-like cells may convert oxidative phosphorylation to glycolysis by changing the manner of energy metabolism to quickly adapt to the energy demand of external stimuli. Spherical cells may respond to LPS stimulation through phagocytosis, and their response time is slower than that of lymphocyte-like cells. The expression of genes involved in endocytosis, phagocytosis, and lysosomal and humoral immunity in spherical cells was significantly higher than that in lymphocyte-like cells. These data provide valuable information for understanding the molecular basis of cellular and humoral immunity in A. japonicus.
Collapse
Affiliation(s)
- Kangrong Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Yangxi Xiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
23
|
Juhas M. The World of Microorganisms. BRIEF LESSONS IN MICROBIOLOGY 2023:1-16. [DOI: 10.1007/978-3-031-29544-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Li Z, Hadlich F, Wimmers K, Murani E. Glucocorticoid receptor hypersensitivity enhances inflammatory signaling and inhibits cell cycle progression in porcine PBMCs. Front Immunol 2022; 13:976454. [PMID: 36505401 PMCID: PMC9730246 DOI: 10.3389/fimmu.2022.976454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The consequences of glucocorticoid receptor (GR) hypersensitivity during infection have so far received little attention. We previously discovered that a natural gain-of-function Ala610Val substitution in the porcine GR aggravates response of pigs to lipopolysaccharide (LPS)-induced endotoxemia, which can be alleviated by dexamethasone (DEX) pretreatment. In this work, we investigated the relevant molecular basis of these phenotypes by transcriptomic profiling of porcine peripheral blood mononuclear cells (PBMCs) carrying different GR genotypes, in unstimulated conditions or in response to DEX and/or LPS in vitro. The Val allele differentially regulated abunda+nt genes in an additive-genetic manner. A subset of more than 200 genes was consistently affected by the substitution across treatments. This was associated with upregulation of genes related i.a. to endo-lysosomal system, lipid and protein catabolism, and immune terms including platelet activation, and antigen presentation, while downregulated genes were mainly involved in cell cycle regulation. Most importantly, the set of genes constitutively upregulated by Val includes members of the TLR4/LPS signaling pathway, such as LY96. Consequently, when exposing PBMCs to LPS treatment, the Val variant upregulated a panel of additional genes related to TLR4 and several other pattern recognition receptors, as well as cell death and lymphocyte signaling, ultimately amplifying the inflammatory responses. In contrast, when stimulated by DEX treatment, the Val allele orchestrated several genes involved in anti-inflammatory responses during infection. This study provides novel insights into the impact of GR hypersensitivity on the fate and function of immune cells, which may be useful for endotoxemia therapy.
Collapse
Affiliation(s)
- Zhiwei Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Eduard Murani,
| |
Collapse
|
25
|
Vaibhvi V, Künzel S, Roeder T. Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections. Front Immunol 2022; 13:1040510. [PMID: 36505446 PMCID: PMC9726733 DOI: 10.3389/fimmu.2022.1040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila is an excellent model to study the response of different immunocompetent organs during systemic infection. In the present study, we intended to test the hypothesis that the only professional immune organs of the fly, the fat body and hemocytes, show substantial similarities in their responses to systemic infection. However, comprehensive transcriptome analysis of isolated organs revealed highly divergent transcript signatures, with the few commonly regulated genes encoding mainly classical immune effectors from the antimicrobial peptide family. The fat body and the hemocytes each have specific reactions that are not present in the other organ. Fat body-specific responses comprised those enabling an improved peptide synthesis and export. This reaction is accompanied by transcriptomic shifts enabling the use of the energy resources of the fat body more efficiently. Hemocytes, on the other hand, showed enhanced signatures related to phagocytosis. Comparing immune-induced signatures of both cell types with those of whole-body responses showed only a minimal correspondence, mostly restricted again to antimicrobial peptide genes. In summary, the two major immunocompetent cell types of Drosophila show highly specific responses to infection, which are closely linked to the primary function of the respective organ in the landscape of the systemic immune response.
Collapse
Affiliation(s)
- Vaibhvi Vaibhvi
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany,German Center for Lung Research, Airway Research Center North, Kiel, Germany,*Correspondence: Thomas Roeder,
| |
Collapse
|
26
|
Moreno-Echeverri AM, Susnik E, Vanhecke D, Taladriz-Blanco P, Balog S, Petri-Fink A, Rothen-Rutishauser B. Pitfalls in methods to study colocalization of nanoparticles in mouse macrophage lysosomes. J Nanobiotechnology 2022; 20:464. [PMID: 36309696 PMCID: PMC9618187 DOI: 10.1186/s12951-022-01670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background In the field of nanoscience there is an increasing interest to follow dynamics of nanoparticles (NP) in cells with an emphasis on endo-lysosomal pathways and long-term NP fate. During our research on this topic, we encountered several pitfalls, which can bias the experimental outcome. We address some of these pitfalls and suggest possible solutions. The accuracy of fluorescence microscopy methods has an important role in obtaining insights into NP interactions with lysosomes at the single cell level including quantification of NP uptake in a specific cell type. Methods Here we use J774A.1 cells as a model for professional phagocytes. We expose them to fluorescently-labelled amorphous silica NP with different sizes and quantify the colocalization of fluorescently-labelled NP with lysosomes over time. We focus on confocal laser scanning microscopy (CLSM) to obtain 3D spatial information and follow live cell imaging to study NP colocalization with lysosomes. Results We evaluate different experimental parameters that can bias the colocalization coefficients (i.e., Pearson’s and Manders’), such as the interference of phenol red in the cell culture medium with the fluorescence intensity and image post-processing (effect of spatial resolution, optical slice thickness, pixel saturation and bit depth). Additionally, we determine the correlation coefficients for NP entering the lysosomes under four different experimental set-ups. First, we found out that not only Pearson’s, but also Manders’ correlation coefficient should be considered in lysosome-NP colocalization studies; second, there is a difference in NP colocalization when using NP of different sizes and fluorescence dyes and last, the correlation coefficients might change depending on live-cell and fixed-cell imaging set-up. Conclusions The results summarize detailed steps and recommendations for the experimental design, staining, sample preparation and imaging to improve the reproducibility of colocalization studies between the NP and lysosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01670-9.
Collapse
|
27
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Park JG, Aziz N, Parameswaran N, Cho JY. Syk promotes phagocytosis by inducing reactive oxygen species generation and suppressing SOCS1 in macrophage-mediated inflammatory responses. Int J Immunopathol Pharmacol 2022; 36:3946320221133018. [PMID: 36214175 PMCID: PMC9548688 DOI: 10.1177/03946320221133018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Inflammation, a vital innate immune response against infection and injury, is mediated by macrophages. Spleen tyrosine kinase (Syk) regulates inflammatory responses in macrophages; however, its role and underlying mechanisms are uncertain. MATERIALS AND METHODS In this study, overexpression and knockout (KO) cell preparations, phagocytosis analysis, confocal microscopy, reactive oxygen species (ROS) determination, mRNA analysis, and immunoprecipitation/western blotting analyses were used to investigate the role of Syk in phagocytosis and its underlying mechanisms in macrophages during inflammatory responses. RESULTS Syk inhibition by Syk KO, Syk-specific small interfering RNA (siSyk), and a selective Syk inhibitor (piceatannol) significantly reduced the phagocytic activity of RAW264.7 cells. Syk inhibition also decreased cytochrome c generation by inhibiting ROS-generating enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and ROS scavenging suppressed the phagocytic activity of RAW264.7 cells. LPS induced the tyrosine nitration (N-Tyr) of suppressor of cytokine signaling 1 (SOCS1) through Syk-induced ROS generation in RAW264.7 cells. On the other hand, ROS scavenging suppressed the N-Tyr of SOCS1 and phagocytosis. Moreover, SOCS1 overexpression decreased phagocytic activity, and SOCS1 inhibition increased the phagocytic activity of RAW264.7 cells. CONCLUSION These results suggest that Syk plays a critical role in the phagocytic activity of macrophages by inducing ROS generation and suppressing SOCS1 through SOCS1 nitration during inflammatory responses.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Department of Life Sciences, Kyonggi University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| |
Collapse
|
28
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
29
|
Yan Y, Sigle LT, Rinker DC, Estévez-Lao TY, Capra JA, Hillyer JF. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol 2022; 12:220111. [PMID: 36069078 PMCID: PMC9449813 DOI: 10.1098/rsob.220111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune and circulatory systems of animals are functionally integrated. In mammals, the spleen and lymph nodes filter and destroy microbes circulating in the blood and lymph, respectively. In insects, immune cells that surround the heart valves (ostia), called periostial haemocytes, destroy pathogens in the areas of the body that experience the swiftest haemolymph (blood) flow. An infection recruits additional periostial haemocytes, amplifying heart-associated immune responses. Although the structural mechanics of periostial haemocyte aggregation have been defined, the genetic factors that regulate this process remain less understood. Here, we conducted RNA sequencing in the African malaria mosquito, Anopheles gambiae, and discovered that an infection upregulates multiple components of the immune deficiency (IMD) and c-Jun N-terminal kinase (JNK) pathways in the heart with periostial haemocytes. This upregulation is greater in the heart with periostial haemocytes than in the circulating haemocytes or the entire abdomen. RNA interference-based knockdown then showed that the IMD and JNK pathways drive periostial haemocyte aggregation and alter phagocytosis and melanization on the heart, thereby demonstrating that these pathways regulate the functional integration between the immune and circulatory systems. Understanding how insects fight infection lays the foundation for novel strategies that could protect beneficial insects and harm detrimental ones.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Leah T. Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA,Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
30
|
Jiang Z, Liu S, Xiao X, Jiang G, Qu Q, Miao X, Wu R, Shi R, Guo R, Liu J. High-throughput probing macrophage-bacteria interactions at the single cell level with microdroplets. LAB ON A CHIP 2022; 22:2944-2953. [PMID: 35766807 DOI: 10.1039/d2lc00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pathogenic infections may lead to disruption of homeostasis, thus becoming a serious threat to the human health. Understanding the interactions between bacteria and macrophages is critical for therapeutic development against sepsis or inflammatory bowel disease. Here, we report a technique using droplet biosensors for the detection of nitric oxide (NO) secreted by a single macrophage under inflammatory stimuli. We demonstrated that the limit of detection can be promoted more than two orders of magnitude by our approach, in comparison to the conventional microplate format. The experiments of co-encapsulating single macrophages and different numbers of Escherichia coli (E. coli) enabled fluorescence monitoring of NO secretion by single macrophages over the incubation, and investigation of their interactions inside the isolated droplet for their separate fates. Our approach provides a unique platform to study the bacteria-macrophage interactions at the single cell level.
Collapse
Affiliation(s)
- Zhongyun Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Sidi Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Xiang Xiao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Guimei Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Qing Qu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Xingxing Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Renfei Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Ruochen Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, 215123 China.
| |
Collapse
|
31
|
Florance I, Chandrasekaran N, Gopinath PM, Mukherjee A. Exposure to polystyrene nanoplastics impairs lipid metabolism in human and murine macrophages in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113612. [PMID: 35561548 DOI: 10.1016/j.ecoenv.2022.113612] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The use of polystyrene micro and nanoplastics in cosmetics and personal care products continues to grow every day. The harmful effects of their biological accumulation in organisms of all trophic levels including humans have been reported by several studies. While we have accumulating evidence on the impact of nanoplastics on different organ systems in humans, only a handful of reports on the impact of polystyrene nanoplastics upon direct contact with the immune system at the cellular level are avialable. The present study offers significant evidence on the cell-specific harmful impact of sulfate-modified nanoplastics (S-NPs) on human macrophages. Here we report that exposure of human macrophages to S-NPs (100 µg/mL) stimulated the accumulation of lipids droplets (LDs) in the cytoplasm resulting in the differentiation of macrophages into foam cells. The observed effect was specific for human and murine macrophages but not for other cell types, especially human keratinocytes, liver, and lung cell models. Furthermore, we found that S-NPs mediated LDs accumulation in human macrophages was accompanied by acute mitochondrial oxidative stress. The accumulated LDs were further delivered and accumulated into lysosomes leading to impaired lysosomal clearance. In conclusion, our study reveals that exposure to polystyrene nanoplastics stabilized with anionic surfactants can be a potent stimulus for dysregulation of lipid metabolism and macrophage foam cell formation, a characteristic feature observed during atherosclerosis posing a serious threat to human health.
Collapse
Affiliation(s)
- Ida Florance
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India; School of Bioseciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| | - Ponnusamy Manogaran Gopinath
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India; School of Bioseciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| |
Collapse
|
32
|
Sahashi D, Kubo Y, Ishii M, Ikeda A, Yamasaki C, Komatsu M, Shiozaki K. Neu1 deficiency increases the susceptibility of zebrafish to Edwardsiella piscicida infection via lysosomal dysfunction. Gene 2022; 836:146667. [PMID: 35714800 DOI: 10.1016/j.gene.2022.146667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Neu1 is a lysosomal glycosidase that catalyzes the removal of sialic acids from glycoconjugates. Although Neu1 sialidase is highly conserved among vertebrates, the role of fish Neu1 is not fully understood because of its unique aquatic living situation. Compared to land animals, fish have a higher chance of bacterial infection, and to understand the role of fish Neu1, the susceptibility of Neu1 knockout zebrafish (Neu1-KO) was evaluated using Edwardsiella piscicida, a fish pathogen. Neu1-KO larvae showed high susceptibility to E. piscicida, despite the activation of macrophages, and presented increased lysosomal signals induced by the accumulation of Sia α2-3 linked oligosaccharides. The accumulation coincided with the signal of the macrophage marker, suggesting that the dysfunction of lysosomes in macrophages would result in a high susceptibility of Neu1-KO to E. piscicida. Chloroquine, an inhibitor of lysosomal degradation, induced high mortality of wild type zebrafish with E. piscicida infection accompanied by increased lysosomal accumulation, similar to Neu1-KO zebrafish. This study revealed that Neu1 sialidase plays a crucial role in the lysosomal degradation of macrophages with a bacterial infection.
Collapse
Affiliation(s)
- Daichi Sahashi
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yurina Kubo
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Mika Ishii
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Asami Ikeda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Chiharu Yamasaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
33
|
Mawhinney M, Kulle A, Thanabalasuriar A. From infection to repair: Understanding the workings of our innate immune cells. WIREs Mech Dis 2022; 14:e1567. [PMID: 35674186 DOI: 10.1002/wsbm.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
In a world filled with microbes, some posing a threat to our body, our immune system is key to living a healthy life. The innate immune system is made of various cell types that act to guard our bodies. Unlike the adaptive immune system that has a specific response, our innate immune system encompasses cells that elicit unspecific immune responses, triggered whenever the right signals are detected. Our understanding of immunity started with the concept of our immune system only responding to "nonself" like the pathogens that invade our body. However, over the past few decades, we have learned that the immune system is more than an on/off switch that recognizes nonself. The innate immune system regularly patrols our bodies for pathogens and tissue damage. Our innate immune system not only seeks to resolve infection but also repair tissue injury, through phagocytosing debris and initiating the release of growth factors. Recently, we are starting to see that it is not just recognizing danger, our innate immune system plays a crucial role in repair. Innate immune cells phenotypically change during repair. In the context of severe injury or trauma, our innate immune system is modified quite drastically to help repair, resulting in reduced infection control. Moreover, these changes in immune cell function can be modified by sex as a biological variable. From past to present, in this overview, we provide a summary of the innate immune cells and pathways in infection and tissue repair. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Martin Mawhinney
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Amelia Kulle
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ajitha Thanabalasuriar
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Mazumdar V, Joshi K, Nandi BR, Namani S, Gupta VK, Radhakrishnan G. Host F-Box Protein 22 Enhances the Uptake of Brucella by Macrophages and Drives a Sustained Release of Proinflammatory Cytokines through Degradation of the Anti-Inflammatory Effector Proteins of Brucella. Infect Immun 2022; 90:e0006022. [PMID: 35420446 PMCID: PMC9119127 DOI: 10.1128/iai.00060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Brucella species are intracellular bacterial pathogens, causing the worldwide zoonotic disease brucellosis. Brucella invades professional and nonprofessional phagocytic cells, followed by resisting intracellular killing and establishing a replication permissive niche. Brucella also modulates the innate and adaptive immune responses of the host for its chronic persistence. The complex intracellular cycle of Brucella depends in a major way on multiple host factors, but limited information is available on host and bacterial proteins that play an essential role in the invasion, intracellular replication, and modulation of host immune responses. By employing a small interfering RNA (siRNA) screening, we identified a role for the host protein FBXO22 in the Brucella-macrophage interaction. FBXO22 is the key element in the SCF E3 ubiquitination complex, where it determines the substrate specificity for ubiquitination and degradation of various host proteins. Downregulation of FBXO22 by siRNA or the CRISPR-Cas9 system resulted in diminished uptake of Brucella into macrophages, which was dependent on NF-κB-mediated regulation of phagocytic receptors. FBXO22 expression was upregulated in Brucella-infected macrophages, which resulted in induction of phagocytic receptors and enhanced production of proinflammatory cytokines through NF-κB. Furthermore, we found that FBXO22 recruits the effector proteins of Brucella, including the anti-inflammatory proteins TcpB and OMP25, for degradation through the SCF complex. We did not observe any role for another F-box-containing protein of the SCF complex, β-TrCP, in the Brucella-macrophage interaction. Our findings unravel novel functions of FBXO22 in host-pathogen interaction and its contribution to pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Varadendra Mazumdar
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Kiranmai Joshi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Binita Roy Nandi
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Swapna Namani
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Vivek Kumar Gupta
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, India
| | - Girish Radhakrishnan
- Laboratory of Immunology and Microbial Pathogenesis, National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| |
Collapse
|
35
|
Chan H, Li Q, Wang X, Liu WY, Hu W, Zeng J, Xie C, Kwong TNY, Ho IHT, Liu X, Chen H, Yu J, Ko H, Chan RCY, Ip M, Gin T, Cheng ASL, Zhang L, Chan MTV, Wong SH, Wu WKK. Vitamin D 3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification. Autophagy 2022; 18:2050-2067. [PMID: 34989311 PMCID: PMC9466624 DOI: 10.1080/15548627.2021.2016004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea. TcdB is a major C. difficile exotoxin that activates macrophages to promote inflammation and epithelial damage. Lysosome impairment is a known trigger for inflammation. Herein, we hypothesize that TcdB could impair macrophage lysosomal function to mediate inflammation during CDI. Effects of TcdB on lysosomal function and the downstream pro-inflammatory SQSTM1/p62-NFKB (nuclear factor kappa B) signaling were assessed in cultured macrophages and in a murine CDI model. Protective effects of two lysosome activators (i.e., vitamin D3 and carbamazepine) were assessed. Results showed that TcdB inhibited CTNNB1/β-catenin activity to downregulate MITF (melanocyte inducing transcription factor) and its direct target genes encoding components of lysosomal membrane vacuolar-type ATPase, thereby suppressing lysosome acidification in macrophages. The resulting lysosomal dysfunction then impaired autophagic flux and activated SQSTM1-NFKB signaling to drive the expression of IL1B/IL-1β (interleukin 1 beta), IL8 and CXCL2 (chemokine (C-X-C motif) ligand 2). Restoring MITF function by enforced MITF expression or restoring lysosome acidification with 1α,25-dihydroxyvitamin D3 or carbamazepine suppressed pro-inflammatory cytokine expression in vitro. In mice, gavage with TcdB-hyperproducing C. difficile or injection of TcdB into ligated colon segments caused prominent MITF downregulation in macrophages. Vitamin D3 and carbamazepine lessened TcdB-induced lysosomal dysfunction, inflammation and histological damage. In conclusion, TcdB inhibits the CTNNB1-MITF axis to suppress lysosome acidification and activates the downstream SQSTM1-NFKB signaling in macrophages during CDI. Vitamin D3 and carbamazepine protect against CDI by restoring MITF expression and lysosomal function in mice.
Collapse
Affiliation(s)
- Hung Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qing Li
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiansong Wang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing Yingzhi Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Judeng Zeng
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chuan Xie
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Thomas Ngai Yeung Kwong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Idy Hiu Ting Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ho Ko
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raphael Chiu Yeung Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Margaret Ip
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Alfred Sze Lok Cheng
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sunny Hei Wong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.,Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
36
|
Abstract
Live cell microscopy has become a common technique for exploring dynamic biological processes. When combined with fluorescent markers of cellular structures of interest, or fluorescent reporters of a biological activity of interest, live cell microscopy enables precise temporally and spatially resolved quantitation of the biological processes under investigation. However, because living cells are not normally exposed to light, live cell fluorescence imaging is significantly hindered by the effects of photodamage, which encompasses photobleaching of fluorophores and phototoxicity of the cells under observation. In this chapter, we outline several methods for optimizing and maintaining long-term imaging of live cells while simultaneously minimizing photodamage. This protocol demonstrates the intracellular trafficking of early and late endosomes following phagocytosis using both two and three dimensional imaging, but this protocol can easily be modified to image any biological process of interest in nearly any cell type.
Collapse
Affiliation(s)
- Alex Lac
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Austin Le Lam
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Robarts Research Institute, London, ON, Canada.
| |
Collapse
|
37
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
38
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
39
|
Desale SE, Chinnathambi S. α- Linolenic acid modulates phagocytosis and endosomal pathways of extracellular Tau in microglia. Cell Adh Migr 2021; 15:84-100. [PMID: 33724164 PMCID: PMC7971307 DOI: 10.1080/19336918.2021.1898727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia, the resident immune cells, were found to be activated to inflammatory phenotype in Alzheimer's disease (AD). The extracellular burden of amyloid-β plaques and Tau seed fabricate the activation of microglia. The seeding effect of extracellular Tau species is an emerging aspect to study about Tauopathies in AD. Tau seeds enhance the propagation of disease along with its contribution to microglia-mediated inflammation. The excessive neuroinflammation cumulatively hampers phagocytic function of microglia reducing the clearance of extracellular protein aggregates. Omega-3 fatty acids, especially docosahexaenoic acid and eicosapentaenoic acid, are recognized to induce anti-inflammatory phenotype of microglia. In addition to increased cytokine production, omega-3 fatty acids enhance phagocytic receptors expression in microglia. In this study, we have observed the phagocytosis of extracellular Tau in the presence of α-linolenic acid (ALA). The increased phagocytosis of extracellular Tau monomer and aggregates have been observed upon ALA exposure to microglia cells. After internalization, the degradation status of Tau has been studied with early and late endosomal markers Rab5 and Rab7. Further, the lysosome-mediated degradation of internalized Tau was studied with LAMP-2A, a lysosome marker. The enhanced migratory ability in the presence of ALA could be beneficial for microglia to access the target and clear it. The increased migration of microglia was found to induce the microtubule-organizing center repolarization. The data indicate that the dietary fatty acids ALA could significantly enhance phagocytosis and intracellular degradation of internalized Tau. Our results suggest that microglia could be influenced to reduce extracellular Tau seed with dietary fatty acids.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical LaboratoryPune, India
- Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
40
|
Ma L, Li W, Zhang Y, Qi L, Zhao Q, Li N, Lu Y, Zhang L, Zhou F, Wu Y, He Y, Yu H, He Y, Wei B, Wang H. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy 2021; 18:1385-1400. [PMID: 34632918 DOI: 10.1080/15548627.2021.1985338] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Macrophages rapidly undergo glycolytic reprogramming in response to macroautophagy/autophagy, inflammasome activation and pyroptosis for the clearance of bacteria. Identification the key molecules involved in these three events will provide critical potential therapeutic applications. Upon S. typhimurium infection, FLT4/VEGFR3 and its ligand VEGFC were inducibly expressed in macrophages, and FLT4 signaling inhibited CASP1 (caspase 1)-dependent inflammasome activation and pyroptosis but enhanced MAP1LC3/LC3 activation for elimination of the bacteria. Consistently, FLT4 mutants lacking the extracellular ligand-binding domain increased production of the proinflammatory metabolites such as succinate and lactate, and reduced antimicrobial metabolites including citrate and NAD(P)H in macrophages and liver upon infection. Mechanistically, FLT4 recruited AMP-activated protein kinase (AMPK) and phosphorylated Y247 and Y441/442 in the PRKAA/alpha subunit for AMPK activation. The AMPK agonist AICAR could rescue glycolytic reprogramming and inflammasome activation in macrophages expressing the mutant FLT4, which has potential translational application in patients carrying Flt4 mutations to prevent recurrent infections. Collectively, we have elucidated that the FLT4-AMPK module in macrophages coordinates glycolytic reprogramming, autophagy, inflammasome activation and pyroptosis to eliminate invading bacteria.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Yanbo Zhang
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qi Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Na Li
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luqing Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China
| | - Fei Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China
| | - Yichun Wu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Shanghai Key Laboratory of Molecular Andrology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hongxiu Yu
- Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Cam-Su Genomic Resources Center, Soochow University, Suzhou, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,School of Life Sciences, Shanghai University, Shanghai, China.,School of Medicine, Cancer Center, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Cas Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,Bio-Research Innovation Center Suzhou, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
41
|
An apocrine mechanism delivers a fully immunocompetent exocrine secretion. Sci Rep 2021; 11:15915. [PMID: 34354130 PMCID: PMC8342421 DOI: 10.1038/s41598-021-95309-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Apocrine secretion is a recently discovered widespread non-canonical and non-vesicular secretory mechanism whose regulation and purpose is only partly defined. Here, we demonstrate that apocrine secretion in the prepupal salivary glands (SGs) of Drosophila provides the sole source of immune-competent and defense-response proteins to the exuvial fluid that lies between the metamorphosing pupae and its pupal case. Genetic ablation of its delivery from the prepupal SGs to the exuvial fluid decreases the survival of pupae to microbial challenges, and the isolated apocrine secretion has strong antimicrobial effects in "agar-plate" tests. Thus, apocrine secretion provides an essential first line of defense against exogenously born infection and represents a highly specialized cellular mechanism for delivering components of innate immunity at the interface between an organism and its external environment.
Collapse
|
42
|
Jung J, Liao H, Coker SA, Liang H, Hancock JF, Denicourt C, Venkatachalam K. p53 mitigates the effects of oncogenic HRAS in urothelial cells via the repression of MCOLN1. iScience 2021; 24:102701. [PMID: 34222845 PMCID: PMC8243020 DOI: 10.1016/j.isci.2021.102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibition of TRPML1, which is encoded by MCOLN1, is known to deter cell proliferation in various malignancies. Here, we report that the tumor suppressor, p53, represses MCOLN1 in the urothelium such that either the constitutive loss or ectopic knockdown of TP53-in both healthy and bladder cancer cells-increased MCOLN1 expression. Conversely, nutlin-mediated activation of p53 led to the repression of MCOLN1. Elevated MCOLN1 expression in p53-deficient cancer cells, though not sufficient for bolstering proliferation, augmented the effects of oncogenic HRAS on proliferation, cytokine production, and invasion. Our data suggest that owing to derepression of MCOLN1, urothelial cells lacking p53 are poised for tumorigenesis driven by oncogenic HRAS. Given our prior findings that HRAS mutations predict addiction to TRPML1, this study points to the utility of TRPML1 inhibitors for mitigating the growth of a subset of urothelial tumors that lack p53.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Shannon A. Coker
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Graduate Program in Neuroscience, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
43
|
Nelson BN, Beakley SG, Posey S, Conn B, Maritz E, Seshu J, Wozniak KL. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans. Sci Rep 2021; 11:13619. [PMID: 34193926 PMCID: PMC8245489 DOI: 10.1038/s41598-021-92991-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Savannah G Beakley
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Sierra Posey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Brittney Conn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Emma Maritz
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, San Antonio, TX, USA
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK, 74078, USA.
| |
Collapse
|
44
|
Yefimova MG, Lefevre C, Bashamboo A, Eozenou C, Burel A, Lavault MT, Meunier AC, Pimentel C, Veau S, Neyroud AS, Jaillard S, Jégou B, Bourmeyster N, Ravel C. Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 2021; 35:1346-1362. [PMID: 32531067 DOI: 10.1093/humrep/deaa097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/14/2020] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Do human granulosa cells (GCs) ingest and destroy apoptotic oocytes? SUMMARY ANSWER Somatic GCs ingest and destroy apoptotic oocytes and other apoptotic substrates through unconventional autophagy-assisted phagocytosis. WHAT IS KNOWN ALREADY Most (99%) ovarian germ cells undergo apoptosis through follicular atresia. The mode of cleaning of atretic follicles from the ovary is unclear. Ovarian GCs share striking similarities with testicular Sertoli cells with respect to their origin and function. Somatic Sertoli cells are responsible for the elimination of apoptotic spermatogenic cells through unconventional autophagy-assisted phagocytosis. STUDY DESIGN, SIZE, DURATION Human GCs were tested for the ability to ingest and destroy the apoptotic oocytes and other apoptotic substrates. A systemic study of the main phagocytosis steps has been performed at different time points after loading of apoptotic substrates into the GC. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of GC retrieved following controlled ovarian stimulation of five women for IVF/ICSI and a human granulosa KGN cell line were incubated with different apoptotic substrates: oocytes which underwent spontaneous apoptosis during the cultivation of immature germ cells for IVF/ICSI; apoptotic KGN cells; and apoptotic membranes from rat retinas. Cultured GC were analyzed for the presence of specific molecular markers characteristic of different steps of phagocytic and autophagy machineries by immunocytochemistry, confocal microscopy, transmission electron microscopy and western blotting, before and after loading with apoptotic substrates. MAIN RESULTS AND THE ROLE OF CHANCE Incubation of human GC with apoptotic substrates resulted in their translocation in cell cytoplasm, concomitant with activation of the phagocytosis receptor c-mer proto-oncogene tyrosine kinase MERTK (P < 0.001), clumping of motor molecule myosin II, recruitment of autophagy proteins: autophagy-related protein 5 (ATG5), autophagy-related protein 6 (Beclin1) and the rise of a membrane form of microtubule-associated protein 1 light chain 3 (LC3-II) protein. Ingestion of apoptotic substrates was accompanied by increased expression of the lysosomal protease Cathepsin D (P < 0.001), and a rise of lysosomes in the GCs, as assessed by different techniques. The level of autophagy adaptor, sequestosome 1/p62 (p62) protein remained unchanged. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The number of patients described here is limited. Also the dependence of phagocytosis on reproductive hormone status of patients should be analyzed. WIDER IMPLICATIONS OF THE FINDINGS Removal of apoptotic oocytes by surrounding GC seems likely to be a physiological mechanism involved in follicular atresia. Proper functioning of this mechanism may be a new strategy for the treatment of ovarian dysfunctions associated with an imbalance in content of germ cells in the ovaries, such as premature ovarian failure and polycystic ovary syndrome. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by Rennes Metropole (AIS 2015) and Agence de BioMédecine. This work was supported by funding from Université de Rennes1, Institut National de la Santé et de la Recherche Médicale (INSERM) and CHU de Rennes. A.B. is funded in part by the program Actions Concertées Interpasteuriennes (ACIP) and a research grant from the European Society of Pediatric Endocrinology. This work is supported by the Agence Nationale de la Recherche Grants ANR-17-CE14-0038 and ANR-10-LABX-73. The authors declare no competing interests.
Collapse
Affiliation(s)
- M G Yefimova
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg 194223, Russia
| | - C Lefevre
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - A Bashamboo
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - C Eozenou
- Human Developmental Genetics, Institut Pasteur, 75724, Paris, France
| | - A Burel
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - M T Lavault
- MRic TEM Plateform, BIOSIT, Université Rennes 1, 35000 Rennes, France
| | - A C Meunier
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France
| | - C Pimentel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Veau
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - A S Neyroud
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - S Jaillard
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France
| | - B Jégou
- Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | - N Bourmeyster
- Laboratoire STIM, Université de Poitiers, 86022 Poitiers Cedex, France.,CHU POITIERS, Pôle Biospharm, secteur Biochimie, 86022 Poitiers Cedex, France
| | - C Ravel
- CHU RENNES, Département de Gynécologie Obstétrique et Reproduction Humaine - CECOS, F-35000 Rennes, France.,Université Rennes, INSERM, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
45
|
Wong CO, Karagas NE, Jung J, Wang Q, Rousseau MA, Chao Y, Insolera R, Soppina P, Collins CA, Zhou Y, Hancock JF, Zhu MX, Venkatachalam K. Regulation of longevity by depolarization-induced activation of PLC-β-IP 3R signaling in neurons. Proc Natl Acad Sci U S A 2021; 118:e2004253118. [PMID: 33859040 PMCID: PMC8072327 DOI: 10.1073/pnas.2004253118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial ATP production is a well-known regulator of neuronal excitability. The reciprocal influence of plasma-membrane potential on ATP production, however, remains poorly understood. Here, we describe a mechanism by which depolarized neurons elevate the somatic ATP/ADP ratio in Drosophila glutamatergic neurons. We show that depolarization increased phospholipase-Cβ (PLC-β) activity by promoting the association of the enzyme with its phosphoinositide substrate. Augmented PLC-β activity led to greater release of endoplasmic reticulum Ca2+ via the inositol trisphosphate receptor (IP3R), increased mitochondrial Ca2+ uptake, and promoted ATP synthesis. Perturbations that decoupled membrane potential from this mode of ATP synthesis led to untrammeled PLC-β-IP3R activation and a dramatic shortening of Drosophila lifespan. Upon investigating the underlying mechanisms, we found that increased sequestration of Ca2+ into endolysosomes was an intermediary in the regulation of lifespan by IP3Rs. Manipulations that either lowered PLC-β/IP3R abundance or attenuated endolysosomal Ca2+ overload restored animal longevity. Collectively, our findings demonstrate that depolarization-dependent regulation of PLC-β-IP3R signaling is required for modulation of the ATP/ADP ratio in healthy glutamatergic neurons, whereas hyperactivation of this axis in chronically depolarized glutamatergic neurons shortens animal lifespan by promoting endolysosomal Ca2+ overload.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | - Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Morgan A Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Ryan Insolera
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Pushpanjali Soppina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030;
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
46
|
Morgan AJ, Davis LC, Galione A. Choreographing endo-lysosomal Ca 2+ throughout the life of a phagosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119040. [PMID: 33872669 DOI: 10.1016/j.bbamcr.2021.119040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| |
Collapse
|
47
|
Wong CW, Pratiwi FW, Chen P, Mou CY, Hsu SH. Revealing the Phagosomal pH Regulation and Inflammation of Macrophages after Endocytosing Polyurethane Nanoparticles by A Ratiometric pH Nanosensor. Adv Biol (Weinh) 2021; 5:e2000200. [PMID: 33724730 DOI: 10.1002/adbi.202000200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/07/2020] [Indexed: 11/12/2022]
Abstract
The effect of the intracellular pH of macrophages after taking up biodegradable polymer nanoparticles (NPs) on immunomodulating functions has not been explored so far. Previous studies have demonstrated that biodegradable polyurethane (PU) NPs exhibit immunosuppressive activity. Yet, the intracellular mechanism is not clearly understood. In this study, a uniquely designed pH nanosensor is employed for tracking the intracellular pH value of macrophages to reveal the intracellular journey of PU NPs and to clarify the intracellular pH effect on the corresponding inflammatory response. First, fluorescent mesoporous silica nanoparticles (FRMSNs) is used to detect the pH change in macrophages after endo/phagocytosis of PU NPs. Second, PU is coated on the external surface of FRMSNs to examine the intracellular trafficking process of PU in the macrophages. The results show that the majority of PU-coated FRMSNs remain to stay at the cytosol-early endosome/phagosome regions. The intracellular pH value and other supporting results show that the immune response of PU NPs may be correlated to their internalization journey. The retardation in the degradation process of the PU NPs may intervene with the lysosome activity and repress the immunostimulatory effect, which contributes to the low immune response of PU NPs.
Collapse
Affiliation(s)
- Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.)
| | - Feby Wijaya Pratiwi
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan (R.O.C.).,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.)
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan (R.O.C.)
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.)
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.).,Research and Development Center for Medical Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C.).,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, 35053, Taiwan (R.O.C.)
| |
Collapse
|
48
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
49
|
Ma Z, Freeman MR. TrpML-mediated astrocyte microdomain Ca 2+ transients regulate astrocyte-tracheal interactions. eLife 2020; 9:58952. [PMID: 33284108 PMCID: PMC7721441 DOI: 10.7554/elife.58952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes exhibit spatially-restricted near-membrane microdomain Ca2+transients in their fine processes. How these transients are generated and regulate brain function in vivo remains unclear. Here we show that Drosophila astrocytes exhibit spontaneous, activity-independent microdomain Ca2+ transients in their fine processes. Astrocyte microdomain Ca2+ transients are mediated by the TRP channel TrpML, stimulated by reactive oxygen species (ROS), and can be enhanced in frequency by the neurotransmitter tyramine via the TyrRII receptor. Interestingly, many astrocyte microdomain Ca2+ transients are closely associated with tracheal elements, which dynamically extend filopodia throughout the central nervous system (CNS) to deliver O2 and regulate gas exchange. Many astrocyte microdomain Ca2+ transients are spatio-temporally correlated with the initiation of tracheal filopodial retraction. Loss of TrpML leads to increased tracheal filopodial numbers, growth, and increased CNS ROS. We propose that local ROS production can activate astrocyte microdomain Ca2+ transients through TrpML, and that a subset of these microdomain transients promotes tracheal filopodial retraction and in turn modulate CNS gas exchange.
Collapse
Affiliation(s)
- Zhiguo Ma
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
50
|
Edwards-Jorquera SS, Bosveld F, Bellaïche YA, Lennon-Duménil AM, Glavic Á. Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. J Cell Biol 2020; 219:133603. [PMID: 31940424 PMCID: PMC7055000 DOI: 10.1083/jcb.201905228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
Phagocytes use their actomyosin cytoskeleton to migrate as well as to probe their environment by phagocytosis or macropinocytosis. Although migration and extracellular material uptake have been shown to be coupled in some immune cells, the mechanisms involved in such coupling are largely unknown. By combining time-lapse imaging with genetics, we here identify the lysosomal Ca2+ channel Trpml as an essential player in the coupling of cell locomotion and phagocytosis in hemocytes, the Drosophila macrophage-like immune cells. Trpml is needed for both hemocyte migration and phagocytic processing at distinct subcellular localizations: Trpml regulates hemocyte migration by controlling actomyosin contractility at the cell rear, whereas its role in phagocytic processing lies near the phagocytic cup in a myosin-independent fashion. We further highlight that Vamp7 also regulates phagocytic processing and locomotion but uses pathways distinct from those of Trpml. Our results suggest that multiple mechanisms may have emerged during evolution to couple phagocytic processing to cell migration and facilitate space exploration by immune cells.
Collapse
Affiliation(s)
| | - Floris Bosveld
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Yohanns A Bellaïche
- Institut Curie, PSL Research University, Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique UMR 3215, Institut National de la Santé et de la Recherche Médicale U934, Paris, France
| | - Ana-María Lennon-Duménil
- Institut Curie, PSL Research University, Institut National de la Santé et de la Recherche Médicale U932 Immunité et Cancer, Paris, France
| | - Álvaro Glavic
- Centro de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|