1
|
Wang Y, Li S, Wang W. The ubiquitin-proteasome system in the tumor immune microenvironment: a key force in combination therapy. Front Immunol 2024; 15:1436174. [PMID: 39315102 PMCID: PMC11416925 DOI: 10.3389/fimmu.2024.1436174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a crucial role in modulating the proliferation, activation, and normal functioning of immune cells through the regulation of protein degradation and function. By influencing the expression of immune checkpoint-associated proteins, the UPS modulates T cell-mediated anti-tumor immune responses and can potentially facilitate the immune escape of tumor cells. Additionally, the UPS contributes to the remodeling of the tumor immunosuppressive microenvironment (TIME) by regulating B cells, dendritic cells (DCs), macrophages, and Treg cells. Targeting the UPS in conjunction with immune checkpoint-associated proteins, and combining these with other therapeutic approaches, may significantly enhance the efficacy of combination therapies and pave the way for novel cancer treatment strategies. In this review, we first summarize the composition and alterations of the TIME, with a particular emphasis on the role of the UPS in TIME and its interactions with various immune cell types. Finally, we explore the potential of combining UPS-targeted therapies with immunotherapy to substantially improve the effectiveness of immunotherapy and enhance patient survival outcomes.
Collapse
Affiliation(s)
- Yongmei Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Saisai Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenqin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
3
|
Allen JC, Natta SS, Nasrin S, Toapanta FR, Tennant SM. Deletion of an immune evasion gene, steD, from a live Salmonella enterica serovar Typhimurium vaccine improves vaccine responses in aged mice. Front Immunol 2024; 15:1376734. [PMID: 38911854 PMCID: PMC11190192 DOI: 10.3389/fimmu.2024.1376734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.
Collapse
Affiliation(s)
- Jessica C. Allen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shanaliz S. Natta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Walker TJ, Reyes-Alvarez E, Hyndman BD, Sugiyama MG, Oliveira LCB, Rekab AN, Crupi MJF, Cabral-Dias R, Guo Q, Dahia PLM, Richardson DS, Antonescu CN, Mulligan LM. Loss of tumor suppressor TMEM127 drives RET-mediated transformation through disrupted membrane dynamics. eLife 2024; 12:RP89100. [PMID: 38687678 PMCID: PMC11060712 DOI: 10.7554/elife.89100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.
Collapse
Affiliation(s)
- Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Eduardo Reyes-Alvarez
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Brandy D Hyndman
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan UniversityTorontoCanada
| | - Larissa CB Oliveira
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Aisha N Rekab
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Mathieu JF Crupi
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| | - Rebecca Cabral-Dias
- Department of Chemistry and Biology, Toronto Metropolitan UniversityTorontoCanada
| | - Qianjin Guo
- Division of Hematology and Medical Oncology, University of Texas Health Science CenterSan AntonioUnited States
| | - Patricia LM Dahia
- Division of Hematology and Medical Oncology, University of Texas Health Science CenterSan AntonioUnited States
| | - Douglas S Richardson
- Department of Molecular and Cellular Biology, Harvard Center for Biological Imaging, Scientific Image Analysis Group, Harvard UniversityCambridgeUnited States
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan UniversityTorontoCanada
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s UniversityKingstonCanada
| |
Collapse
|
5
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Walker TJ, Reyes-Alvarez E, Hyndman BD, Sugiyama MG, Oliveira LC, Rekab AN, Crupi MJ, Cabral-Dias R, Guo Q, Dahia PL, Richardson DS, Antonescu CN, Mulligan LM. Loss of Tumour Suppressor TMEM127 Drives RET-mediated Transformation Through Disrupted Membrane Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546955. [PMID: 37425958 PMCID: PMC10327082 DOI: 10.1101/2023.06.28.546955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTK) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumour pheochromocytoma (PCC) can be caused by activating mutations of the RET receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumour suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability, and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.
Collapse
Affiliation(s)
- Timothy J. Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Eduardo Reyes-Alvarez
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Brandy D. Hyndman
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Michael G. Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Larissa C.B. Oliveira
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Aisha N. Rekab
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Mathieu J.F. Crupi
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca Cabral-Dias
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Qianjin Guo
- Division of Hematology and Medical Oncology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Patricia L.M. Dahia
- Division of Hematology and Medical Oncology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Douglas S. Richardson
- Department of Molecular and Cellular Biology; Harvard Center for Biological Imaging; Scientific Image Analysis Group, Harvard University, Cambridge, MA, USA
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Lois M. Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
7
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Wang J, Lu Q, Chen X, Aifantis I. Targeting MHC-I inhibitory pathways for cancer immunotherapy. Trends Immunol 2024; 45:177-187. [PMID: 38433029 DOI: 10.1016/j.it.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
The MHC-I antigen presentation (AP) pathway is key to shaping mammalian CD8+ T cell immunity, with its aberrant expression closely linked to low tumor immunogenicity and immunotherapy resistance. While significant attention has been given to genetic mutations and downregulation of positive regulators that are essential for MHC-I AP, there is a growing interest in understanding how tumors actively evade MHC-I expression and/or AP through the induction of MHC-I inhibitory pathways. This emerging field of study may offer more viable therapeutic targets for future cancer immunotherapy. Here, we explore potential mechanisms by which cancer cells evade MHC-I AP and function and propose therapeutic strategies that might target these MHC-I inhibitors to restore impaired T cell immunity within the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
9
|
Bullones-Bolaños A, Martín-Muñoz P, Vallejo-Grijalba C, Bernal-Bayard J, Ramos-Morales F. Specificities and redundancies in the NEL family of bacterial E3 ubiquitin ligases of Salmonella enterica serovar Typhimurium. Front Immunol 2024; 15:1328707. [PMID: 38361917 PMCID: PMC10867120 DOI: 10.3389/fimmu.2024.1328707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Salmonella enterica serovar Typhimurium expresses two type III secretion systems, T3SS1 and T3SS2, which are encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. These are essential virulent factors that secrete more than 40 effectors that are translocated into host animal cells. This study focuses on three of these effectors, SlrP, SspH1, and SspH2, which are members of the NEL family of E3 ubiquitin ligases. We compared their expression, regulation, and translocation patterns, their role in cell invasion and intracellular proliferation, their ability to interact and ubiquitinate specific host partners, and their effect on cytokine secretion. We found that transcription of the three genes encoding these effectors depends on the virulence regulator PhoP. Although the three effectors have the potential to be secreted through T3SS1 and T3SS2, the secretion of SspH1 and SspH2 is largely restricted to T3SS2 due to their expression pattern. We detected a role for these effectors in proliferation inside fibroblasts that is masked by redundancy. The generation of chimeric proteins allowed us to demonstrate that the N-terminal part of these proteins, containing the leucine-rich repeat motifs, confers specificity towards ubiquitination targets. Furthermore, the polyubiquitination patterns generated were different for each effector, with Lys48 linkages being predominant for SspH1 and SspH2. Finally, our experiments support an anti-inflammatory role for SspH1 and SspH2.
Collapse
Affiliation(s)
| | | | | | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
10
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
11
|
Thurston TLM, Holden DW. The Salmonella Typhi SPI-2 injectisome enigma. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001405. [PMID: 37862087 PMCID: PMC10634361 DOI: 10.1099/mic.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.
Collapse
Affiliation(s)
- Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Guo Q, Cheng ZM, Gonzalez-Cantú H, Rotondi M, Huelgas-Morales G, Ethiraj P, Qiu Z, Lefkowitz J, Song W, Landry BN, Lopez H, Estrada-Zuniga CM, Goyal S, Khan MA, Walker TJ, Wang E, Li F, Ding Y, Mulligan LM, Aguiar RCT, Dahia PLM. TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation. Cell Rep 2023; 42:113070. [PMID: 37659079 PMCID: PMC10637630 DOI: 10.1016/j.celrep.2023.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
The TMEM127 gene encodes a transmembrane protein of poorly known function that is mutated in pheochromocytomas, neural crest-derived tumors of adrenomedullary cells. Here, we report that, at single-nucleus resolution, TMEM127-mutant tumors share precursor cells and transcription regulatory elements with pheochromocytomas carrying mutations of the tyrosine kinase receptor RET. Additionally, TMEM127-mutant pheochromocytomas, human cells, and mouse knockout models of TMEM127 accumulate RET and increase its signaling. TMEM127 contributes to RET cellular positioning, trafficking, and lysosome-mediated degradation. Mechanistically, TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127 C-terminal PxxY motifs. Lastly, increased cell proliferation and tumor burden after TMEM127 loss can be reversed by selective RET inhibitors in vitro and in vivo. Our results define TMEM127 as a component of the ubiquitin system and identify aberrant RET stabilization as a likely mechanism through which TMEM127 loss-of-function mutations cause pheochromocytoma.
Collapse
Affiliation(s)
- Qianjin Guo
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zi-Ming Cheng
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Gonzalez-Cantú
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Matthew Rotondi
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Gabriela Huelgas-Morales
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Purushoth Ethiraj
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zhijun Qiu
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Jonathan Lefkowitz
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Wan Song
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Bethany N Landry
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Lopez
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Cynthia M Estrada-Zuniga
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Shivi Goyal
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Mohammad Aasif Khan
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Exing Wang
- Department Cell Structure and Anatomy, UTHSCSA, San Antonio, TX, USA
| | - Faqian Li
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Yanli Ding
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Ricardo C T Aguiar
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA
| | - Patricia L M Dahia
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
13
|
Bialek W, Collawn JF, Bartoszewski R. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Molecules 2023; 28:6740. [PMID: 37764516 PMCID: PMC10536765 DOI: 10.3390/molecules28186740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.
Collapse
Affiliation(s)
- Wojciech Bialek
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Rafal Bartoszewski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
14
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
15
|
Loterio RK, Thomas DR, Andrade W, Lee YW, Santos LL, Mascarenhas DPA, Steiner TM, Chiaratto J, Fielden LF, Lopes L, Bird LE, Goldman GH, Stojanovski D, Scott NE, Zamboni DS, Newton HJ. Coxiella co-opts the Glutathione Peroxidase 4 to protect the host cell from oxidative stress-induced cell death. Proc Natl Acad Sci U S A 2023; 120:e2308752120. [PMID: 37639588 PMCID: PMC10483631 DOI: 10.1073/pnas.2308752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
The causative agent of human Q fever, Coxiella burnetii, is highly adapted to infect alveolar macrophages by inhibiting a range of host responses to infection. Despite the clinical and biological importance of this pathogen, the challenges related to genetic manipulation of both C. burnetii and macrophages have limited our knowledge of the mechanisms by which C. burnetii subverts macrophages functions. Here, we used the related bacterium Legionella pneumophila to perform a comprehensive screen of C. burnetii effectors that interfere with innate immune responses and host death using the greater wax moth Galleria mellonella and mouse bone marrow-derived macrophages. We identified MceF (Mitochondrial Coxiella effector protein F), a C. burnetii effector protein that localizes to mitochondria and contributes to host cell survival. MceF was shown to enhance mitochondrial function, delay membrane damage, and decrease mitochondrial ROS production induced by rotenone. Mechanistically, MceF recruits the host antioxidant protein Glutathione Peroxidase 4 (GPX4) to the mitochondria. The protective functions of MceF were absent in primary macrophages lacking GPX4, while overexpression of MceF in human cells protected against oxidative stress-induced cell death. C. burnetii lacking MceF was replication competent in mammalian cells but induced higher mortality in G. mellonella, indicating that MceF modulates the host response to infection. This study reveals an important C. burnetii strategy to subvert macrophage cell death and host immunity and demonstrates that modulation of the host antioxidant system is a viable strategy to promote the success of intracellular bacteria.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - David R. Thomas
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Warrison Andrade
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Yi Wei Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Leonardo L. Santos
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Danielle P. A. Mascarenhas
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Thiago M. Steiner
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Jéssica Chiaratto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14040-903, Brazil
| | - Laura F. Fielden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Leticia Lopes
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Lauren E. Bird
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Gustavo H. Goldman
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14040-903, Brazil
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP14049-900, Brazil
| | - Hayley J. Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC3000, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
16
|
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia PLM, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023; 186:3903-3920.e21. [PMID: 37557169 PMCID: PMC10961051 DOI: 10.1016/j.cell.2023.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jia Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Baoling Lai
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangyan Zhang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Wafa Al-Santli
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qianjin Guo
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jia You
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ahmad Boukhris
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, CA 94608, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Patricia L M Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michele Pagano
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
17
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Godlee C, Holden DW. Transmembrane substrates of type three secretion system injectisomes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001292. [PMID: 36748571 PMCID: PMC9993115 DOI: 10.1099/mic.0.001292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The type three secretion system injectisome of Gram-negative bacterial pathogens injects virulence proteins, called effectors, into host cells. Effectors of mammalian pathogens carry out a range of functions enabling bacterial invasion, replication, immune suppression and transmission. The injectisome secretes two translocon proteins that insert into host cell membranes to form a translocon pore, through which effectors are delivered. A subset of effectors also integrate into infected cell membranes, enabling a unique range of biochemical functions. Both translocon proteins and transmembrane effectors avoid cytoplasmic aggregation and integration into the bacterial inner membrane. Translocated transmembrane effectors locate and integrate into the appropriate host membrane. In this review, we focus on transmembrane translocon proteins and effectors of bacterial pathogens of mammals. We discuss what is known about the mechanisms underlying their membrane integration, as well as the functions conferred by the position of injectisome effectors within membranes.
Collapse
Affiliation(s)
- Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- Present address: Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- *Correspondence: Camilla Godlee, ;
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- *Correspondence: David W. Holden,
| |
Collapse
|
19
|
Abstract
Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany; .,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
20
|
Capitani N, Baldari CT. The Immunological Synapse: An Emerging Target for Immune Evasion by Bacterial Pathogens. Front Immunol 2022; 13:943344. [PMID: 35911720 PMCID: PMC9325968 DOI: 10.3389/fimmu.2022.943344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Similar to other pathogens, bacteria have developed during their evolution a variety of mechanisms to overcome both innate and acquired immunity, accounting for their ability to cause disease or chronic infections. The mechanisms exploited for this critical function act by targeting conserved structures or pathways that regulate the host immune response. A strategic potential target is the immunological synapse (IS), a highly specialized structure that forms at the interface between antigen presenting cells (APC) and T lymphocytes and is required for the establishment of an effective T cell response to the infectious agent and for the development of long-lasting T cell memory. While a variety of bacterial pathogens are known to impair or subvert cellular processes essential for antigen processing and presentation, on which IS assembly depends, it is only recently that the possibility that IS may be a direct target of bacterial virulence factors has been considered. Emerging evidence strongly supports this notion, highlighting IS targeting as a powerful, novel means of immune evasion by bacterial pathogens. In this review we will present a brief overview of the mechanisms used by bacteria to affect IS assembly by targeting APCs. We will then summarize what has emerged from the current handful of studies that have addressed the direct impact of bacterial virulence factors on IS assembly in T cells and, based on the strategic cellular processes targeted by these factors in other cell types, highlight potential IS-related vulnerabilities that could be exploited by these pathogens to evade T cell mediated immunity.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
21
|
Godlee C, Cerny O, Liu M, Blundell S, Gallagher AE, Shahin M, Holden DW. The Salmonella transmembrane effector SteD hijacks AP1-mediated vesicular trafficking for delivery to antigen-loading MHCII compartments. PLoS Pathog 2022; 18:e1010252. [PMID: 35622870 PMCID: PMC9182567 DOI: 10.1371/journal.ppat.1010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
SteD is a transmembrane effector of the Salmonella SPI-2 type III secretion system that inhibits T cell activation by reducing the amounts of at least three proteins –major histocompatibility complex II (MHCII), CD86 and CD97 –from the surface of antigen-presenting cells. SteD specifically localises at the trans-Golgi network (TGN) and MHCII compartments; however, the targeting, membrane integration and trafficking of SteD are not understood. Using systematic mutagenesis, we identify distinct regions of SteD that are required for these processes. We show that SteD integrates into membranes of the ER/Golgi through a two-step mechanism of membrane recruitment from the cytoplasm followed by integration. SteD then migrates to and accumulates within the TGN. From here it hijacks the host adaptor protein (AP)1-mediated trafficking pathway from the TGN to MHCII compartments. AP1 binding and post-TGN trafficking require a short sequence in the N-terminal cytoplasmic tail of SteD that resembles the AP1-interacting dileucine sorting signal, but in inverted orientation, suggesting convergent evolution. Salmonella enterica is an intracellular pathogen that causes a range of diseases from gastroenteritis to systemic typhoid fever. Its pathogenesis relies on virulence proteins known as effectors that are delivered into host cells and modulate host cellular processes. The ability of the Salmonella effector SteD to localise within host MHCII compartment membranes is essential for its function in disrupting the adaptive immune response. Here we show that SteD integrates into membranes of the early secretory pathway through a two-step recruitment and integration mechanism. SteD then behaves like a transmembrane cargo protein and hijacks a post-Golgi vesicular trafficking pathway to reach MHCII compartments. This study highlights the sophistication by which bacterial pathogens interact with host cell biology at the molecular level.
Collapse
Affiliation(s)
- Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (CG); (DWH)
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Mei Liu
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Samkeliso Blundell
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alanna E. Gallagher
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Meriam Shahin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (CG); (DWH)
| |
Collapse
|
22
|
Bayer-Santos E. A journey into Salmonella effectors: Specialized molecules for biological conflicts. Cell Host Microbe 2022; 30:423-426. [PMID: 35421335 DOI: 10.1016/j.chom.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nine years ago, while a postdoc at Imperial College London, I identified a Salmonella effector secreted via the SPI-2 T3SS that reduces MHC-II surface levels (Bayer-Santos et al., 2016). This commentary describes how this discovery came to be and discusses its implications in the development of my independent career.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-900, Brazil.
| |
Collapse
|
23
|
Liu H, Wilson KR, Firth AM, Macri C, Schriek P, Blum AB, Villar J, Wormald S, Shambrook M, Xu B, Lim HJ, McWilliam HEG, Hill AF, Edgington-Mitchell LE, Caminschi I, Lahoud MH, Segura E, Herold MJ, Villadangos JA, Mintern JD. Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nat Commun 2022; 13:1934. [PMID: 35411049 PMCID: PMC9001657 DOI: 10.1038/s41467-022-29524-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses.
Collapse
Affiliation(s)
- Haiyin Liu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Kayla R Wilson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Ashley M Firth
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Patrick Schriek
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Annabelle B Blum
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Samuel Wormald
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
| | - Hui Jing Lim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamish E G McWilliam
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005, Paris, France
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, VIC, 3010, Australia.
| |
Collapse
|
24
|
Dong MB, Tang K, Zhou X, Zhou JJ, Chen S. Tumor immunology CRISPR screening: present, past, and future. Trends Cancer 2022; 8:210-225. [PMID: 34920978 PMCID: PMC8854335 DOI: 10.1016/j.trecan.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Recent advances in immunotherapy have fundamentally changed the landscape of cancer treatment by leveraging the specificity and selectivity of the adaptive immune system to kill cancer cells. These successes have ushered in a new wave of research aimed at understanding immune recognition with the hope of developing newer immunotherapies. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) technologies and advancement of multiomics modalities have greatly accelerated the discovery process. Here, we review the current literature surrounding CRISPR screens within the context of tumor immunology, provide essential components needed to conduct immune-specific CRISPR screens, and present avenues for future research.
Collapse
Affiliation(s)
- Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Immunobiology Program, Yale University, New Haven, CT, USA,Department of Immunobiology, Yale University, New Haven, CT, USA,M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
| | - Kaiyuan Tang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA,Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jingjia J. Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA,System Biology Institute, Yale University, West Haven, CT, USA,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA; System Biology Institute, Yale University, West Haven, CT, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT, USA; Immunobiology Program, Yale University, New Haven, CT, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT, USA; Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X, Yang WH. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges. Cells 2021; 10:cells10123309. [PMID: 34943817 PMCID: PMC8699390 DOI: 10.3390/cells10123309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapies, including immune checkpoint inhibitors and immune pathway–targeted therapies, are promising clinical strategies for treating cancer. However, drug resistance and adverse reactions remain the main challenges for immunotherapy management. The future direction of immunotherapy is mainly to reduce side effects and improve the treatment response rate by finding new targets and new methods of combination therapy. Ubiquitination plays a crucial role in regulating the degradation of immune checkpoints and the activation of immune-related pathways. Some drugs that target E3 ubiquitin ligases have exhibited beneficial effects in preclinical and clinical antitumor treatments. In this review, we discuss mechanisms through which E3 ligases regulate tumor immune checkpoints and immune-related pathways as well as the opportunities and challenges for integrating E3 ligases targeting drugs into cancer immunotherapy.
Collapse
Affiliation(s)
- Peng Ye
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiaoxia Chi
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea;
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Shahang Luo
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Guanghui Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
| | - Xiuwen Yan
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Correspondence: (X.Y.); (W.-H.Y.)
| | - Wen-Hao Yang
- Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 910095, China; (P.Y.); (X.C.); (S.L.); (G.Y.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (X.Y.); (W.-H.Y.)
| |
Collapse
|
26
|
Kiritsy MC, Ankley LM, Trombley J, Huizinga GP, Lord AE, Orning P, Elling R, Fitzgerald KA, Olive AJ. A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation. eLife 2021; 10:65110. [PMID: 34747695 PMCID: PMC8598162 DOI: 10.7554/elife.65110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4+ T cell activation and effector function. Despite its central role, the dynamic regulation of IFNγ-induced MHCII is not well understood. Using a genome-wide CRISPR-Cas9 screen in murine macrophages, we identified genes that control MHCII surface expression. Mechanistic studies uncovered two parallel pathways of IFNγ-mediated MHCII control that require the multifunctional glycogen synthase kinase three beta (GSK3β) or the mediator complex subunit 16 (MED16). Both pathways control distinct aspects of the IFNγ response and are necessary for IFNγ-mediated induction of the MHCII transactivator Ciita, MHCII expression, and CD4+ T cell activation. Our results define previously unappreciated regulation of MHCII expression that is required to control CD4+ T cell responses.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Laurisa M Ankley
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Justin Trombley
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Gabrielle P Huizinga
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Audrey E Lord
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Pontus Orning
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Roland Elling
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Katherine A Fitzgerald
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| |
Collapse
|
27
|
Oleszycka E, Rodgers AM, Xu L, Moynagh PN. Dendritic Cell-Specific Role for Pellino2 as a Mediator of TLR9 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2325-2336. [PMID: 34588221 PMCID: PMC8525870 DOI: 10.4049/jimmunol.2100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Ubiquitination regulates immune signaling, and multiple E3 ubiquitin ligases have been studied in the context of their role in immunity. Despite this progress, the physiological roles of the Pellino E3 ubiquitin ligases, especially Pellino2, in immune regulation remain largely unknown. Accordingly, this study aimed to elucidate the role of Pellino2 in murine dendritic cells (DCs). In this study, we reveal a critical role of Pellino2 in regulation of the proinflammatory response following TLR9 stimulation. Pellino2-deficient murine DCs show impaired secretion of IL-6 and IL-12. Loss of Pellino2 does not affect TLR9-induced activation of NF-κB or MAPKs, pathways that drive expression of IL-6 and IL-12. Furthermore, DCs from Pellino2-deficient mice show impaired production of type I IFN following endosomal TLR9 activation, and it partly mediates a feed-forward loop of IFN-β that promotes IL-12 production in DCs. We also observe that Pellino2 in murine DCs is downregulated following TLR9 stimulation, and its overexpression induces upregulation of both IFN-β and IL-12, demonstrating the sufficiency of Pellino2 in driving these responses. This suggests that Pellino2 is critical for executing TLR9 signaling, with its expression being tightly regulated to prevent excessive inflammatory response. Overall, this study highlights a (to our knowledge) novel role for Pellino2 in regulating DC functions and further supports important roles for Pellino proteins in mediating and controlling immunity. Pellino2 mediates TLR9-induced cytokine production in dendritic cells. Pellino2 does not play a role in TLR9 signaling in macrophages. Pellino2 is a limiting factor for TLR9 signaling in dendritic cells.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Aoife M Rodgers
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Linan Xu
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and
| | - Paul N Moynagh
- Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Kildare, Ireland; and .,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Cerny O, Godlee C, Tocci R, Cross NE, Shi H, Williamson JC, Alix E, Lehner PJ, Holden DW. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog 2021; 17:e1009771. [PMID: 34314469 PMCID: PMC8345877 DOI: 10.1371/journal.ppat.1009771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/06/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII β chain. This requires the Nedd4 family HECT E3 ubiquitin ligase Wwp2 and a tumor-suppressing transmembrane protein adaptor Tmem127. Here, through a proteomic screen of dendritic cells, we found that SteD targets the plasma membrane protein CD97 for degradation by a similar mechanism. SteD enhanced ubiquitination of CD97 on K555 and mutation of this residue eliminated the effect of SteD on CD97 surface levels. We showed that CD97 localises to and stabilises the immunological synapse between dendritic cells and T cells. Removal of CD97 by SteD inhibited dendritic cell-T cell interactions and reduced T cell activation, independently of its effect on MHCII. Therefore, SteD suppresses T cell immunity by two distinct processes.
Collapse
Affiliation(s)
- Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (OC); (DWH)
| | - Camilla Godlee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Romina Tocci
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nancy E. Cross
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Haoran Shi
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - James C. Williamson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Eric Alix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Paul J. Lehner
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - David W. Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- * E-mail: (OC); (DWH)
| |
Collapse
|
29
|
Zhou P, Lu Y, Xun Y, Xu J, Liu C, Xia Q, Lu J, Wang S, Hu J. Ubiquitin Modification Patterns of Clear Cell Renal Cell Carcinoma and the Ubiquitin Score to Aid Immunotherapy and Targeted Therapy. Front Cell Dev Biol 2021; 9:659294. [PMID: 34055790 PMCID: PMC8158301 DOI: 10.3389/fcell.2021.659294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Ubiquitin modification is the most common protein post-translational modification (PTM) process in organisms, and 1332 ubiquitin regulators have been identified in humans. Ubiquitin regulators, especially E3 ligases and deubiquitinases, are widely involved in immune processes. This study aims to explore the ubiquitin modification features of clear cell renal cell carcinoma (ccRCC) and to elucidate the role of such ubiquitin modifications in shaping anti-tumor immunity and individual benefits from immune checkpoint blockade (ICB). A comprehensive analysis was performed in the TCGA cohort (n = 530) and GEO cohort (n = 682). RNA sequencing data of 758 differentially expressed regulators, which was validated by the proteomics data, was used for k-means unsupervised consensus clustering and three ubiquitin patterns of ccRCC were identified. Then, we focused on the ubiquitin modification and tumor progression signatures, immune infiltration characteristics, and prognostic value. The three patterns with different ubiquitin modification signatures correspond to “immune desert phenotype,” “immune resistance phenotype,” and “immune-inflammatory phenotype,” respectively. To facilitate clinical application, we constructed a ubiquitin score to evaluate individual patients’ ubiquitination outcome, and it was demonstrated to be an independent risk factor for overall survival (OS) in multivariate Cox analysis. It was found that the high score group was correlated to higher immune cells infiltrating level and PD-1/PD-L1/CTLA-4 expression. More importantly, we found that the high score group was predicted to be sensitive to anti-PD-1 treatment, while the low-score group showed lower predicted IC50 values in treatment with Pazopanib and Axitinib. In summary, this study elucidated the potential link between ubiquitin modification and immune infiltration landscape of ccRCC for the first time and provided a new assessment protocol for the precise selection of treatment strategies for patients with advanced ccRCC.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenqian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junlin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging (Albany NY) 2021; 13:3886-3897. [PMID: 33461174 PMCID: PMC7906149 DOI: 10.18632/aging.202356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is a common malignant tumor, which has a high incidence and fatality. Therefore, it is important to clarify the molecular mechanism of the occurrence and development for GC and to find more effective treatments and targeted drugs. In this study, we found that the kinase suppressor of Ras1 (KSR1) was increased in GC tissues and cell lines. Silencing of KSR1 inhibited the proliferation, migration and invasion of MKN-45 cells. E3 ligase Praja2 was downregulated in GC tissues and cell lines. In addition, praja2 promoted ubiquitylation of KSR1, but inhibited MEK-ERK signal pathways. Functional analysis indicated overexpression of praja2 inhibited the proliferation, migration and invasion of MKN-45 cells, while MG132 or FGF2 treatment removed the inhibitory effects of praja2 on GC progression. In vivo tumorigenesis experiments indicated praja2 inhibited tumor growth via KSR1-MEK-ERK axis. In conclusion, praja2 promoted the ubiquitylation and degradation of KSR1, which disturbed MEK- ERK signaling and inhibited GC progression. Our study might provide a novel target for GC clinical treatment.
Collapse
|
31
|
Zhu B, Zhu L, Xia L, Xiong Y, Yin Q, Rui K. Roles of Ubiquitination and Deubiquitination in Regulating Dendritic Cell Maturation and Function. Front Immunol 2020; 11:586613. [PMID: 33329564 PMCID: PMC7717991 DOI: 10.3389/fimmu.2020.586613] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play a key role in immune homeostasis and the adaptive immune response. DC-induced immune tolerance or activation is strictly dependent on the distinct maturation stages and migration ability of DCs. Ubiquitination is a reversible protein post-translational modification process that has emerged as a crucial mechanism that regulates DC maturation and function. Recent studies have shown that ubiquitin enzymes, including E3 ubiquitin ligases and deubiquitinases (DUBs), are pivotal regulators of DC-mediated immune function and serve as potential targets for DC-based immunotherapy of immune-related disorders (e.g., autoimmune disease, infections, and tumors). In this review, we summarize the recent progress regarding the molecular mechanisms and function of ubiquitination in DC-mediated immune homeostasis and immune response.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuyun Xiong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Yin
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|