1
|
Hilligan KL, Darrah PA, Seder RA, Sher A. Deconvoluting the interplay of innate and adaptive immunity in BCG-induced nonspecific and TB-specific host resistance. J Exp Med 2025; 222:e20240496. [PMID: 40100096 PMCID: PMC11917170 DOI: 10.1084/jem.20240496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
BCG is the oldest vaccine in continuous use. While current intradermal vaccination regimens confer limited protection outside the context of pediatric extrapulmonary tuberculosis (TB), promising new data indicate that when administered mucosally or intravenously at a higher dose, BCG can induce sterilizing immunity against pulmonary TB in nonhuman primates. BCG is also known to promote nonspecific host resistance against a variety of unrelated infections and is a standard immunotherapy for bladder cancer, suggesting that this innate immune function may contribute to its protective role against TB. Here, we propose that both the mycobacterial-specific and off-target effects of BCG depend on the interplay of adaptive and innate cells and the cytokines they produce, and that the elucidation of this interaction should be a major strategy in the development of more effective BCG-based vaccines and immunotherapies.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research , Wellington, New Zealand
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Arbués A, Schmidiger S, Reinhard M, Borrell S, Gagneux S, Portevin D. Soluble immune mediators orchestrate protective in vitro granulomatous responses across Mycobacterium tuberculosis complex lineages. eLife 2025; 13:RP99062. [PMID: 40162896 PMCID: PMC11957536 DOI: 10.7554/elife.99062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets-a phenotype associated with dormancy-that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.
Collapse
Affiliation(s)
- Ainhoa Arbués
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sarah Schmidiger
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Damien Portevin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
3
|
Krueger G, Faisal S, Dorhoi A. Microenvironments of tuberculous granuloma: advances and opportunities for therapy. Front Immunol 2025; 16:1575133. [PMID: 40196129 PMCID: PMC11973276 DOI: 10.3389/fimmu.2025.1575133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
The hallmark tissue lesions of tuberculosis (TB) are granulomas. These multicellular structures exhibit varying degrees of cellular complexity, are dynamic, and show considerable diversity within and between hosts. Categorization based on gross pathologic features, particularly caseation and necrosis, was historically coined prior to the identification of mycobacteria as the causative agent of TB. More recently, granuloma zonation based on immune cell composition, metabolite abundance, and physical characteristics has gained attention. With the advent of single-cell analyses, distinct microenvironments and cellular ecosystems within TB granulomas have been identified. We summarize the architecture of TB granulomas and highlight their cellular heterogeneity, including cell niches as well as physical factors such as oxygen gradients that modulate lesion fate. We discuss opportunities for therapy, highlighting new models and the power of in silico modeling to unravel granuloma features and trajectories. Understanding the relevance of the granuloma microenvironment to disease pathophysiology will facilitate the development of more effective interventions, such as host-directed therapies for TB.
Collapse
Affiliation(s)
- Gesa Krueger
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Shah Faisal
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Lukeman H, Al-Wassiti H, Fabb SA, Lim L, Wang T, Britton WJ, Steain M, Pouton CW, Triccas JA, Counoupas C. An LNP-mRNA vaccine modulates innate cell trafficking and promotes polyfunctional Th1 CD4 + T cell responses to enhance BCG-induced protective immunity against Mycobacterium tuberculosis. EBioMedicine 2025; 113:105599. [PMID: 39955975 PMCID: PMC11871481 DOI: 10.1016/j.ebiom.2025.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Mycobacterium tuberculosis remains the largest infectious cause of mortality worldwide, even with over a century of widespread administration of the only licenced tuberculosis (TB) vaccine, Bacillus Calmette-Guérin (BCG). mRNA technology remains an underexplored approach for combating chronic bacterial infections such as TB. METHODS We have developed a lipid nanoparticle (LNP)-mRNA vaccine, termed mRNACV2, encoding for the M. tuberculosis CysVac2 fusion protein, which we have previously formulated as an adjuvanted subunit vaccine. This LNP-mRNA vaccine was administered intramuscularly to female C57BL/6 mice as a standalone vaccine or as booster to BCG to assess immunogenicity and efficacy of the construct. FINDINGS Vaccination with mRNACV2 induced high frequencies of polyfunctional, antigen-specific Th1 CD4+ T cells in the blood and lungs, which was associated with the rapid recruitment of both innate and adaptive immune cells to lymph nodes draining the site of immunisation. mRNACV2 vaccination also provided significant pulmonary protection in M. tuberculosis-infected mice, reducing bacterial load and inflammatory infiltration in the lungs. Importantly, mRNACV2 enhanced immune responses and long-term protection when used to boost BCG-primed mice. INTERPRETATION These findings of a protective LNP-mRNA vaccine for TB highlight the potential of the LNP-mRNA platform for TB control and support further research to facilitate translation to humans. FUNDING This work was supported by the NHMRC Centre of Research Excellence in Tuberculosis Control to JAT and WJB (APP1153493), and MRFF mRNA Clinical Trial Enabling Infrastructure grant to CWP and HAW (MRFCTI000006).
Collapse
Affiliation(s)
- Hannah Lukeman
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Hareth Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
5
|
Vance RE. Tuberculosis as an unconventional interferonopathy. Curr Opin Immunol 2025; 92:102508. [PMID: 39637776 DOI: 10.1016/j.coi.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, a bacterium that accounts for more human mortality than any other. Evidence is accumulating for the view that tuberculosis is an interferonopathy - a disease driven by type I interferons. However, how type I interferons exacerbate tuberculosis remains poorly understood. As an infection, tuberculosis is distinct from conventional interferonopathies, which are autoinflammatory diseases. Here I consider the hypothesis that type I interferons promote bacterial replication by impairing key antibacterial immune responses, including those orchestrated by interleukin-1 and interferon γ. Paradoxically, during tuberculosis, the underlying state of impaired antibacterial immunity co-exists with overt (but ineffective) inflammation. Conceiving of tuberculosis as an unconventional interferonopathy may suggest fruitful avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA USA.
| |
Collapse
|
6
|
Nieto Ramirez LM, Mehaffy C, Dobos KM. Systematic review of innate immune responses against Mycobacterium tuberculosis complex infection in animal models. Front Immunol 2025; 15:1467016. [PMID: 39949719 PMCID: PMC11821578 DOI: 10.3389/fimmu.2024.1467016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) complex (MTBC) includes ten species that affect mammals and pose a significant global health concern. Upon infection, Mtb induces various stages in the host, including early bacterial elimination, which may or may not involve memory responses. Deciphering the role of innate immune responses during MTBC infection is crucial for understanding disease progression or protection. Over the past decade, there has been growing interest in the innate immune response to Mtb, with new preclinical models emerging. Methods We conducted a systematic review following PRISMA guidelines, focused on innate immune mediators linked to protection or disease progression in animal models of MTBC infection. We searched two databases: National Library of Medicine and Web of Science. Two researchers independently extracted data based on specific inclusion and exclusion criteria. Results Eighty-three articles were reviewed. Results were categorized in four groups: MTBC species, animal models, soluble factors and innate pathways, and other molecules (metabolites and drugs). Mtb and M. bovis were the only species studied. P2X7R receptor's role in disease progression and higher macrophage recruitment were observed differentially after infection with hypervirulent Mtb strains. Mice and non-human primates (NHPs) were the most used mammals, with emerging models like Galleria mellonella and planarians also studied. NHPs provided insights into age-dependent immunity and markers for active tuberculosis (ATB). Key innate immune factors/pathways identified included TNF-α, neutrophil recruitment, ROS/RNS responses, autophagy, inflammasomes, and antimicrobial peptides, with homologous proteins identified in insects. Metabolites like vitamin B5 and prostaglandin E2 were associated with protection. Immunomodulatory drugs targeting autophagy and other mechanisms were studied, exhibiting their potential as therapeutic alternatives. Conclusion Simpler, physiologically relevant, and ethically sound models, such as G. mellonella, are needed for studying innate responses in MTBC infection. While insects lack adaptive immunity, they could provide insights into "pure" innate immune responses. The dissection of "pure," "sustained" (later than 7 days post-infection), and trained innate immunity presents additional challenges that require high-resolution temporospatial analytical methods. Identifying early innate immune mediators and targetable pathways in the blood and affected tissues could identify biomarkers for immunization efficiency, disease progression, and potential synergistic therapies for ATB.
Collapse
Affiliation(s)
- Luisa Maria Nieto Ramirez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | | | - Karen Marie Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. mSphere 2025; 10:e0086424. [PMID: 39651886 PMCID: PMC11774039 DOI: 10.1128/msphere.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is unclear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk of progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, the characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (replacement, reduction, and refinement) approach we reanalyzed heterogeneous publicly available transcriptional data sets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3, and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes and have been carefully evaluated across several clinical cohorts. These data suggest that in certain experimental designs and in several tissue types, human COR signatures correlate with disease progression as measured by the bacterial burden in the preclinical TB model pipeline. We observed the best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. IMPORTANCE Understanding the strengths or limitations of back-translating human-derived correlate of risk (COR) RNA signatures into the preclinical pipeline may help streamline down-selection of therapeutic vaccine and drug candidates and better align preclinical models with proposed clinical trial efficacy endpoints.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Helen A. Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew Fiore-Gartland
- Biostatistics, Bioinformatics and Epidemiology Program, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
Dai Y, Wang X, Du W, Chen R, Ma F, Ma T, Yue L, Fang T, Wang G, Geng L, Wang T, Wu L. NK cell-derived exosomes inhibit survival of Mycobacterium tuberculosis by promoting apoptosis in mice. Cytokine 2025; 185:156820. [PMID: 39612656 DOI: 10.1016/j.cyto.2024.156820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
AIM To investigate anti-Mycobacterium tuberculosis (Mtb) influences exerted by natural killer cell-derived exosomes (NK-exo) on mice and to elucidate underlying immunologic mechanisms. METHODS We established tuberculosis (TB) model in mouse by injecting Mtb H37Ra (1 × 106 colony counting (CFU), i.v.) into tail vein for 14 days. The survival rate of Mtb was assessed through CFU, apoptosis rates were measured utilizing flow cytometry, and inflammation relief was quantified via HE staining. Expressions of apoptosis, inflammation, and pyroptosis-related proteins were quantified by Western blotting and RT-qPCR. ELISA was utilized for detecting inflammatory cytokines production. Intracellular reactive oxygen species (ROS) levels were assessed through DCFH-DA fluorescent probe assay. RESULTS NK-exo treatment reduced Mtb load in lung and spleen tissues and alleviated inflammation in mice lung tissues. NK-exo intervention increased protein levels of markers associated with apoptosis, PARP and caspase-3/8/9, downregulating the concentrations of pro-inflammatory cytokines, comprising IL-1β, TNF-α, IL-6, along with protein expressions of biomarkers, ASC, NLRP3, GSDMD, associated to inflammation and pyroptosis. NK-exo also elevated ROS levels without affecting lactate dehydrogenase (LDH) release from macrophages. CONCLUSION NK-exo exhibits anti-tuberculosis activity in experimental TB mice. The underlying mechanism involve regulating caspase-dependent apoptotic signaling pathway to promote cell apoptosis, as well as modulating NLRP3 signaling pathway to suppress the inflammatory response.
Collapse
Affiliation(s)
- Yumei Dai
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan, China
| | - Xuan Wang
- Nanchang University Queen Mary School, Nan Chang 330031, China
| | - Wenya Du
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ruifeng Chen
- Yanji Customs District P.R.China, Yanji 136200, China
| | - Fengqian Ma
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Tao Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Linzhi Yue
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Tongrui Fang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Guofu Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ling Geng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan, China
| | - Tao Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan, China.
| | - Lixian Wu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Dali University, Dali 671000, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan, China.
| |
Collapse
|
9
|
Ganusov VV, Kolloli A, Subbian S. Mathematical modeling suggests heterogeneous replication of Mycobacterium tuberculosis in rabbits. PLoS Comput Biol 2024; 20:e1012563. [PMID: 39585901 PMCID: PMC11627432 DOI: 10.1371/journal.pcbi.1012563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/09/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a major health problem with 10.6 million cases of the disease and 1.6 million deaths in 2021. It is well understood that pulmonary TB is due to Mtb growth in the lung but quantitative estimates of rates of Mtb replication and death in lungs of patients or animals such as monkeys or rabbits remain largely unknown. We performed experiments with rabbits infected with a novel, virulent clinical Mtb isolate of the Beijing lineage, HN878, carrying an unstable plasmid pBP10. In our in vitro experiments we found that pBP10 is more stable in HN878 strain than in a more commonly used laboratory-adapted Mtb strain H37Rv (the segregation coefficient being s = 0.10 in HN878 vs. s = 0.18 in H37Rv). Interestingly, the kinetics of plasmid-bearing bacteria in lungs of Mtb-infected rabbits did not follow an expected monotonic decline; the percent of plasmid-bearing cells increased between 28 and 56 days post-infection and remained stable between 84 and 112 days post-infection despite a large increase in bacterial numbers in the lung at late time points. Mathematical modeling suggested that such a non-monotonic change in the percent of plasmid-bearing cells can be explained if the lung Mtb population consists of several (at least 2) sub-populations with different replication/death kinetics: one major population expanding early and being controlled/eliminated, while another, a smaller population expanding at later times causing a counterintuitive increase in the percent of plasmid-bearing cells. Importantly, a model with one kinetically homogeneous Mtb population could not explain the data including when the model was run stochastically. Given that in rabbits HN878 strain forms well circumscribed granulomas, our results suggest independent bacterial dynamics in subsets of such granulomas. Our model predictions can be tested in future experiments in which HN878-pBP10 dynamics in individual granulomas is followed over time. Taken together, our new data and mathematical modeling-based analyses illustrate differences in Mtb dynamics in mice and rabbits confirming a perhaps somewhat obvious observation that "rabbits are not mice".
Collapse
Affiliation(s)
- Vitaly V. Ganusov
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Afsal Kolloli
- Public Health Research Institute, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Selvakumar Subbian
- Public Health Research Institute, The State University of New Jersey, Newark, New Jersey, United States of America
| |
Collapse
|
10
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
11
|
Larsen SE, Abdelaal HFM, Plumlee CR, Cohen SB, Kim HD, Barrett HW, Liu Q, Harband MH, Berube BJ, Baldwin SL, Fortune SM, Urdahl KB, Coler RN. The chosen few: Mycobacterium tuberculosis isolates for IMPAc-TB. Front Immunol 2024; 15:1427510. [PMID: 39530100 PMCID: PMC11551615 DOI: 10.3389/fimmu.2024.1427510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The three programs that make up the Immune Mechanisms of Protection Against Mycobacterium tuberculosis Centers (IMPAc-TB) had to prioritize and select strains to be leveraged for this work. The CASCADE team based at Seattle Children's Research Institute are leveraging M.tb H37Rv, M.tb CDC1551, and M.tb SA161. The HI-IMPACT team based at Harvard T.H. Chan School of Public Health, Boston, have selected M.tb Erdman as well as a novel clinical isolate recently characterized during a longitudinal study in Peru. The PHOENIX team also based at Seattle Children's Research Institute have selected M.tb HN878 and M.tb Erdman as their isolates of choice. Here, we describe original source isolation, genomic references, key virulence characteristics, and relevant tools that make these isolates attractive for use. The global context for M.tb lineage 2 and 4 selection is reviewed including what is known about their relative abundance and acquisition of drug resistance. Host-pathogen interactions seem driven by genomic differences on each side, and these play an important role in pathogenesis and immunity. The few M.tb strains chosen for this work do not reflect the vast genomic diversity within this species. They do, however, provide specific virulence, pathology, and growth kinetics of interest to the consortium. The strains selected should not be considered as "representative" of the growing available array of M.tb isolates, but rather tools that are being used to address key outstanding questions in the field.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Hazem F. M. Abdelaal
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Courtney R. Plumlee
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Sara B. Cohen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Ho D. Kim
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Holly W. Barrett
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Qingyun Liu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew H. Harband
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Bryan J. Berube
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Kevin B. Urdahl
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Ganusov VV, Kolloli A, Subbian S. Mathematical modeling suggests heterogeneous replication of Mycobacterium tuberculosis in rabbits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579301. [PMID: 38370790 PMCID: PMC10871370 DOI: 10.1101/2024.02.07.579301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a major health problem with 10.6 million cases of the disease and 1.6 million deaths in 2021. It is well understood that pulmonary TB is due to Mtb growth in the lung but quantitative estimates of rates of Mtb replication and death in lungs of patients or animals such as monkeys or rabbits remain largely unknown. We performed experiments with rabbits infected with a novel, virulent clinical Mtb isolate of the Beijing lineage, HN878, carrying an unstable plasmid pBP10. In our in vitro experiments we found that pBP10 is more stable in HN878 strain than in a more commonly used laboratory-adapted Mtb strain H37Rv (the segregation coefficient being s = 0.10 in HN878 vs. s = 0.18 in H37Rv). Interestingly, the kinetics of plasmid-bearing bacteria in lungs of Mtb-infected rabbits did not follow an expected monotonic decline; the percent of plasmid-bearing cells increased between 28 and 56 days post-infection and remained stable between 84 and 112 days post-infection despite a large increase in bacterial numbers in the lung at late time points. Mathematical modeling suggested that such a non-monotonic change in the percent of plasmid-bearing cells can be explained if the lung Mtb population consists of several (at least 2) sub-populations with different replication/death kinetics: one major population expanding early and being controlled/eliminated, while another, a smaller population expanding at later times causing a counterintuitive increase in the percent of plasmid-bearing cells. Importantly, a model with one kinetically homogeneous Mtb population could not explain the data including when the model was run stochastically. Given that in rabbits HN878 strain forms well circumscribed granulomas, our results suggest independent bacterial dynamics in subsets of such granulomas. Our model predictions can be tested in future experiments in which HN878-pBP10 dynamics in individual granulomas is followed over time. Taken together, our new data and mathematical modeling-based analyses illustrate differences in Mtb dynamics in mice and rabbits confirming a perhaps somewhat obvious observation that "rabbits are not mice".
Collapse
Affiliation(s)
- Vitaly V. Ganusov
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Afsal Kolloli
- Public Health Research Institute, The State University of New Jersey, Newark, NJ, USA
| | - Selvakumar Subbian
- Public Health Research Institute, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
13
|
Leal APF, Nieto Marín V, Cabistany VV, Morales J, Buccini DF, Franco OL. Applicability of mouse models for induction of severe acute lung injury. Pulm Pharmacol Ther 2024; 86:102316. [PMID: 39069252 DOI: 10.1016/j.pupt.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Acute lung injury (ALI) is a significant clinical challenge associated with high morbidity and mortality. Worldwide, it affects approximately 200.000 individuals annually, with a staggering 40 % mortality rate in hospitalized cases and persistent complications in out-of-hospital cases. This review focuses on the key immunological pathways underlying bacterial ALI and the exploration of mouse models as tools for its induction. These models serve as indispensable platforms for unraveling the inflammatory cascades and biological responses inherent to ALI, while also facilitating the evaluation of novel therapeutic agents. However, their utility is not without challenges, mainly due to the stringent biosafety protocols required by the diverse bacterial virulence profiles. Simple and reproducible models of pulmonary bacterial infection are currently available, including intratracheal, intranasal, pleural and, intraperitoneal approaches. These models use endotoxins such as commercially available lipopolysaccharide (LPS) or live pathogens such as Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Streptococcus pneumoniae, all of which are implicated in the pathogenesis of ALI. Combining murine models of bacterial lung infection with in-depth studies of the underlying immunological mechanisms is a cornerstone in advancing the therapeutic landscape for acute bacterial lung injury.
Collapse
Affiliation(s)
- Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Vinícius Varzim Cabistany
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Júlia Morales
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Pontifícia Universidade Católica Dom Bosco, Campo Grande, MS, 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Pontifícia Universidade Católica de Brasília, Brasília, DF, 70790160, Brazil.
| |
Collapse
|
14
|
Cooper SK, Ackart DF, Lanni F, Henao-Tamayo M, Anderson GB, Podell BK. Heterogeneity in immune cell composition is associated with Mycobacterium tuberculosis replication at the granuloma level. Front Immunol 2024; 15:1427472. [PMID: 39253081 PMCID: PMC11381408 DOI: 10.3389/fimmu.2024.1427472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The control of bacterial growth is key to the prevention and treatment of tuberculosis (TB). Granulomas represent independent foci of the host immune response that present heterogeneous capacity for control of bacterial growth. At the whole tissue level, B cells and CD4 or CD8 T cells have an established role in immune protection against TB. Immune cells interact within each granuloma response, but the impact of granuloma immune composition on bacterial replication remains unknown. Here we investigate the associations between immune cell composition, including B cell, CD4, and CD8 T cells, and the state of replicating Mycobacterium tuberculosis (Mtb) within the granuloma. A measure of ribosomal RNA synthesis, the RS ratio®, represents a proxy measure of Mtb replication at the whole tissue level. We adapted the RS ratio through use of in situ hybridization, to identify replicating and non-replicating Mtb within each designated granuloma. We applied a regression model to characterize the associations between immune cell populations and the state of Mtb replication within each respective granuloma. In the evaluation of nearly 200 granulomas, we identified heterogeneity in both immune cell composition and proportion of replicating bacteria. We found clear evidence of directional associations between immune cell composition and replicating Mtb. Controlling for vaccination status and endpoint post-infection, granulomas with lower CD4 or higher CD8 cell counts are associated with a higher percent of replicating Mtb. Conversely, changes in B cell proportions were associated with little change in Mtb replication. This study establishes heterogeneity across granulomas, demonstrating that certain immune cell types are differentially associated with control of Mtb replication. These data suggest that evaluation at the granuloma level may be imperative to identifying correlates of immune protection.
Collapse
Affiliation(s)
- Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - David Forrest Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Faye Lanni
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
| | - G Brooke Anderson
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Phoenix Immune Mechanisms of Protection Against Tuberculosis Center, Seattle, WA, United States
- Consortium for Applied Microbial Metrics, Aurora, CO, United States
| |
Collapse
|
15
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Cohen SB, Plumlee CR, Engels L, Mai D, Murray TA, Jahn AN, Alexander B, Delahaye JL, Cross LM, Maciag K, Schrader S, Durga K, Gold ES, Aderem A, Gerner MY, Gern BH, Diercks AH, Urdahl KB. Host and pathogen genetic diversity shape vaccine-mediated protection to Mycobacterium tuberculosis. Front Immunol 2024; 15:1427846. [PMID: 39007152 PMCID: PMC11239334 DOI: 10.3389/fimmu.2024.1427846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
To investigate how host and pathogen diversity govern immunity against Mycobacterium tuberculosis (Mtb), we performed a large-scale screen of vaccine-mediated protection against aerosol Mtb infection using three inbred mouse strains [C57BL/6 (B6), C3HeB/FeJ (C3H), Balb/c x 129/SvJ (C129F1)] and three Mtb strains (H37Rv, CDC1551, SA161) representing two lineages and distinct virulence properties. We compared three protective modalities, all of which involve inoculation with live mycobacteria: Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, delivered either subcutaneously or intravenously, and concomitant Mtb infection (CoMtb), a model of pre-existing immunity in which a low-level Mtb infection is established in the cervical lymph node following intradermal inoculation. We examined lung bacterial burdens at early (Day 28) and late (Day 98) time points after aerosol Mtb challenge and histopathology at Day 98. We observed substantial heterogeneity in the reduction of bacterial load afforded by these modalities at Day 28 across the combinations and noted a strong positive correlation between bacterial burden in unvaccinated mice and the degree of protection afforded by vaccination. Although we observed variation in the degree of reduction in bacterial burdens across the nine mouse/bacterium strain combinations, virtually all protective modalities performed similarly for a given strain-strain combination. We also noted dramatic variation in histopathology changes driven by both host and bacterial genetic backgrounds. Vaccination improved pathology scores for all infections except CDC1551. However, the most dramatic impact of vaccination on lesion development occurred for the C3H-SA161 combination, where vaccination entirely abrogated the development of the large necrotic lesions that arise in unvaccinated mice. In conclusion, we find that substantial TB heterogeneity can be recapitulated by introducing variability in both host and bacterial genetics, resulting in changes in vaccine-mediated protection as measured both by bacterial burden as well as histopathology. These differences can be harnessed in future studies to identify immune correlates of vaccine efficacy.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Courtney R. Plumlee
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Lindsay Engels
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Dat Mai
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tara A. Murray
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Ana N. Jahn
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Bridget Alexander
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Jared L. Delahaye
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Lauren M. Cross
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Karolina Maciag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Sam Schrader
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Kaitlin Durga
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Elizabeth S. Gold
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Alan Aderem
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Michael Y. Gerner
- Department of Immunology, University of Washington, Seattle, WA, United States
| | - Benjamin H. Gern
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Alan H. Diercks
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Kevin B. Urdahl
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600067. [PMID: 38948876 PMCID: PMC11212953 DOI: 10.1101/2024.06.21.600067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.
Collapse
|
18
|
Kayukova SI, Karpina NL, Ulyumdzhieva VA, Semenova LA, Donnikov AE, Bocharova IV, Nikonenko BV. Impact of Experimental Tuberculosis on Fertility of Female BALB/c Mice. Bull Exp Biol Med 2024; 177:256-260. [PMID: 39093472 DOI: 10.1007/s10517-024-06168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 08/04/2024]
Abstract
The study revealed no effects of pregnancy and childbirth on the course of tuberculosis in female BALB/c mice after aerosol infection with Mycobacterium tuberculosis. However, we demonstrated a negative effect of tuberculosis infection on the fertility of infected females, which manifested in a longer period from mating to pregnancy and in a smaller litter size. Impaired reproductive function in response to the effect of the systemic infectious process was accompanied by the development of immunosuppression confirmed by an immunological test (delayed-type hypersensitivity to tuberculin) and the formation of genital tract dysbiosis during pregnancy and postpartum period.
Collapse
Affiliation(s)
- S I Kayukova
- Central Research Institute of Tuberculosis, Moscow, Russia.
| | - N L Karpina
- Central Research Institute of Tuberculosis, Moscow, Russia
| | | | - L A Semenova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | - A E Donnikov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Bocharova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | - B V Nikonenko
- Central Research Institute of Tuberculosis, Moscow, Russia
| |
Collapse
|
19
|
Cui X, Wang YT. Function of autophagy genes in innate immune defense against mucosal pathogens. Curr Opin Microbiol 2024; 79:102456. [PMID: 38554450 DOI: 10.1016/j.mib.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024]
Abstract
Mucosal immunity is posed to constantly interact with commensal microbes and invading pathogens. As a fundamental cell biological pathway affecting immune response, autophagy regulates the interaction between mucosal immunity and microbes through multiple mechanisms, including direct elimination of microbes, control of inflammation, antigen presentation and lymphocyte homeostasis, and secretion of immune mediators. Some of these physiologically important functions do not involve canonical degradative autophagy but rely on certain autophagy genes and their 'autophagy gene-specific functions.' Here, we review the relationship between autophagy and important mucosal pathogens, including influenza virus, Mycobacterium tuberculosis, Salmonella enterica, Citrobacter rodentium, norovirus, and herpes simplex virus, with a particular focus on distinguishing the canonical versus gene-specific mechanisms of autophagy genes.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ya-Ting Wang
- Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
20
|
Gern BH, Klas JM, Foster KA, Cohen SB, Plumlee CR, Duffy FJ, Neal ML, Halima M, Gustin AT, Diercks AH, Aderem A, Gale M, Aitchison JD, Gerner MY, Urdahl KB. CD4-mediated immunity shapes neutrophil-driven tuberculous pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589315. [PMID: 38659794 PMCID: PMC11042216 DOI: 10.1101/2024.04.12.589315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.
Collapse
Affiliation(s)
- Benjamin H Gern
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Pediatrics, Seattle, Washington, United States of America
| | - Josepha M Klas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Kimberly A Foster
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Sara B Cohen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Courtney R Plumlee
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Fergal J Duffy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Mehnaz Halima
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Andrew T Gustin
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael Y Gerner
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
| | - Kevin B Urdahl
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Pediatrics, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
- Lead Contact
| |
Collapse
|
21
|
Kwon KW, Choi HG, Choi HH, Choi E, Kim H, Kim HJ, Shin SJ. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine 2024; 42:1941-1952. [PMID: 38368223 DOI: 10.1016/j.vaccine.2024.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hagyu Kim
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea; Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea.
| |
Collapse
|
22
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
23
|
Kumari N, Sharma R, Ali J, Chandra G, Singh S, Krishnan MY. The use of Mycobacterium tuberculosis H37Ra-infected immunocompetent mice as an in vivo model of persisters. Tuberculosis (Edinb) 2024; 145:102479. [PMID: 38262199 DOI: 10.1016/j.tube.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.
Collapse
Affiliation(s)
- Neetu Kumari
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Romil Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Juned Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Gyan Chandra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Manju Y Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
24
|
Dewan KK, Harvill ET. Koch's curse: How models of extreme pathology bias studies of host-pathogen interactions. PLoS Pathog 2024; 20:e1011997. [PMID: 38489258 PMCID: PMC10942049 DOI: 10.1371/journal.ppat.1011997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
25
|
Feng S, McNehlan ME, Kinsella RL, Sur Chowdhury C, Chavez SM, Naik SK, McKee SR, Van Winkle JA, Dubey N, Samuels A, Swain A, Cui X, Hendrix SV, Woodson R, Kreamalmeyer D, Smirnov A, Artyomov MN, Virgin HW, Wang YT, Stallings CL. Autophagy promotes efficient T cell responses to restrict high-dose Mycobacterium tuberculosis infection in mice. Nat Microbiol 2024; 9:684-697. [PMID: 38413834 DOI: 10.1038/s41564-024-01608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.
Collapse
Affiliation(s)
- Siwei Feng
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob A Van Winkle
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Samuels
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyan Cui
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Skyler V Hendrix
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ya-Ting Wang
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Luo G, Zeng D, Liu J, Li D, Takiff HE, Song S, Gao Q, Yan B. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol 2024; 115:525-535. [PMID: 37982587 DOI: 10.1093/jleuko/qiad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.
Collapse
Affiliation(s)
- Geyang Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Jianxin Liu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
- School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, 639 Manufacturing Bureau Rd., Huangpu District, 200011 Shanghai, People's Republic of China
| | - Duoduo Li
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Howard E Takiff
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, 1020A, Venezuela
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| |
Collapse
|
27
|
Chakraborty D, Batabyal S, Ganusov VV. A brief overview of mathematical modeling of the within-host dynamics of Mycobacterium tuberculosis. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2024; 10:1355373. [PMID: 39906541 PMCID: PMC11793202 DOI: 10.3389/fams.2024.1355373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Tuberculosis (TB), a disease caused by bacteria Mycobacterium tuberculosis (Mtb), remains one of the major infectious diseases of humans with 10 million TB cases and 1.5 million deaths due to TB worldwide yearly. Upon exposure of a new host to Mtb, bacteria typically infect one local site in the lung, but over time, Mtb disseminates in the lung and in some cases to extrapulmonary sites. The contribution of various host components such as immune cells to Mtb dynamics in the lung, its dissemination in the lung and outside of the lung, remains incompletely understood. Here we overview different types of mathematical models used to gain insights in within-host dynamics of Mtb; these include models based on ordinary or partial differential equations (ODEs and PDEs), stochastic simulation models based on ODEs, agent-based models (ABMs), and hybrid models (ODE-based models linked to ABMs). We illustrate results from several of such models and identify areas for future resesarch.
Collapse
Affiliation(s)
- Dipanjan Chakraborty
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Saikat Batabyal
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
| | - Vitaly V. Ganusov
- Host-Pathogen Interactions program, Texas Biomedical Research Institute, San Antonio, TX 78277, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN37996, USA
| |
Collapse
|
28
|
Chang M, Venkatasubramanian S, Barrett H, Urdahl KB, Weigel KM, Cangelosi GA, Shah JA, Saha A, Feng L, Adams KN, Sherman DR, Smith N, Seshadri C, Kublin JG, Murphy SC. Molecular detection of pre-ribosomal RNAs of Mycobacterium bovis bacille Calmette-Guérin and Mycobacterium tuberculosis to enhance pre-clinical tuberculosis drug and vaccine development. Diagn Microbiol Infect Dis 2024; 108:116106. [PMID: 37931386 PMCID: PMC10729053 DOI: 10.1016/j.diagmicrobio.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Efforts are underway globally to develop effective vaccines and drugs against M. tuberculosis (Mtb) to reduce the morbidity and mortality of tuberculosis. Improving detection of slow-growing mycobacteria could simplify and accelerate efficacy studies of vaccines and drugs in animal models and human clinical trials. Here, a real-time reverse transcription PCR (RT-PCR) assay was developed to detect pre-ribosomal RNA (pre-rRNA) of Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mtb. This pre-rRNA biomarker is indicative of bacterial viability. In two different mouse models, the presence of pre-rRNA from BCG and Mtb in ex vivo tissues showed excellent agreement with slower culture-based colony-forming unit assays. The addition of a brief nutritional stimulation prior to molecular viability testing further differentiated viable but dormant mycobacteria from dead mycobacteria. This research has set the stage to evaluate pre-rRNA as a BCG and/or Mtb infection biomarker in future drug and vaccine clinical studies.
Collapse
Affiliation(s)
- Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Holly Barrett
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kevin B Urdahl
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kris M Weigel
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Gerard A Cangelosi
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Javeed A Shah
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA; Veterans' Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Aparajita Saha
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Libing Feng
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kristin N Adams
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Nahum Smith
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Solomon SL, Bryson BD. Single-cell analysis reveals a weak macrophage subpopulation response to Mycobacterium tuberculosis infection. Cell Rep 2023; 42:113418. [PMID: 37963018 PMCID: PMC10842899 DOI: 10.1016/j.celrep.2023.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains one of society's greatest human health challenges. Macrophages integrate multiple signals derived from ontogeny, infection, and the environment. This integration proceeds heterogeneously during infection. Some macrophages are infected, while others are not; therefore, bulk approaches mask the subpopulation dynamics. We establish a modular, targeted, single-cell protein analysis framework to study the immune response to Mtb. We demonstrate that during Mtb infection, only a small fraction of resting macrophages produce tumor necrosis factor (TNF) protein. We demonstrate that Mtb infection results in muted phosphorylation of p38 and JNK, regulators of inflammation, and leverage our single-cell methods to distinguish between pathogen-mediated interference in host signaling and weak activation of host pathways. We demonstrate that the inflammatory signal magnitude is decoupled from the ability to control Mtb growth. These data underscore the importance of developing pathogen-specific models of signaling and highlight barriers to activation of pathways that control inflammation.
Collapse
Affiliation(s)
- Sydney L Solomon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Ragon Institute of MGH, Harvard & MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Plumlee CR, Barrett HW, Shao DE, Lien KA, Cross LM, Cohen SB, Edlefsen PT, Urdahl KB. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog 2023; 19:e1011825. [PMID: 38011264 PMCID: PMC10703413 DOI: 10.1371/journal.ppat.1011825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/07/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Despite widespread immunization with Bacille-Calmette-Guérin (BCG), the only currently licensed tuberculosis (TB) vaccine, TB remains a leading cause of mortality globally. There are many TB vaccine candidates in the developmental pipeline, but the lack of a robust animal model to assess vaccine efficacy has hindered our ability to prioritize candidates for human clinical trials. Here we use a murine ultra-low dose (ULD) Mycobacterium tuberculosis (Mtb) challenge model to assess protection conferred by BCG vaccination. We show that BCG confers a reduction in lung bacterial burdens that is more durable than that observed after conventional dose challenge, curbs Mtb dissemination to the contralateral lung, and, in a small percentage of mice, prevents detectable infection. These findings are consistent with the ability of human BCG vaccination to mediate protection, particularly against disseminated disease, in specific human populations and clinical settings. Overall, our findings demonstrate that the ultra-low dose Mtb infection model can measure distinct parameters of immune protection that cannot be assessed in conventional dose murine infection models and could provide an improved platform for TB vaccine testing.
Collapse
Affiliation(s)
- Courtney R. Plumlee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Holly W. Barrett
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Global Health, Seattle, Washington, United States of America
| | - Danica E. Shao
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Katie A. Lien
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Lauren M. Cross
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Sara B. Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, Washington, United States of America
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- University of Washington, Dept. of Immunology, Seattle, Washington, United States of America
- University of Washington, Dept. of Pediatrics, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Bobba S, Howard NC, Das S, Ahmed M, Khan N, Marchante I, Barreiro LB, Sanz J, Divangahi M, Khader SA. Mycobacterium tuberculosis infection drives differential responses in the bone marrow hematopoietic stem and progenitor cells. Infect Immun 2023; 91:e0020123. [PMID: 37754680 PMCID: PMC10580947 DOI: 10.1128/iai.00201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole C. Howard
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Nargis Khan
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Ignacio Marchante
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Luis B. Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, Illinois, USA
| | - Joaquin Sanz
- Department of Theoretical Physics, University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
32
|
Lai R, Ogunsola AF, Rakib T, Behar SM. Key advances in vaccine development for tuberculosis-success and challenges. NPJ Vaccines 2023; 8:158. [PMID: 37828070 PMCID: PMC10570318 DOI: 10.1038/s41541-023-00750-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Breakthrough findings in the clinical and preclinical development of tuberculosis (TB) vaccines have galvanized the field and suggest, for the first time since the development of bacille Calmette-Guérin (BCG), that a novel and protective TB vaccine is on the horizon. Here we highlight the TB vaccines that are in the development pipeline and review the basis for optimism in both the clinical and preclinical space. We describe immune signatures that could act as immunological correlates of protection (CoP) to facilitate the development and comparison of vaccines. Finally, we discuss new animal models that are expected to more faithfully model the pathology and complex immune responses observed in human populations.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abiola F Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tasfia Rakib
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Foreman TW, Nelson CE, Sallin MA, Kauffman KD, Sakai S, Otaizo-Carrasquero F, Myers TG, Barber DL. CD30 co-stimulation drives differentiation of protective T cells during Mycobacterium tuberculosis infection. J Exp Med 2023; 220:e20222090. [PMID: 37097292 PMCID: PMC10130742 DOI: 10.1084/jem.20222090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Control of Mycobacterium tuberculosis (Mtb) infection requires generation of T cells that migrate to granulomas, complex immune structures surrounding sites of bacterial replication. Here we compared the gene expression profiles of T cells in pulmonary granulomas, bronchoalveolar lavage, and blood of Mtb-infected rhesus macaques to identify granuloma-enriched T cell genes. TNFRSF8/CD30 was among the top genes upregulated in both CD4 and CD8 T cells from granulomas. In mice, CD30 expression on CD4 T cells is required for survival of Mtb infection, and there is no major role for CD30 in protection by other cell types. Transcriptomic comparison of WT and CD30-/- CD4 T cells from the lungs of Mtb-infected mixed bone marrow chimeric mice showed that CD30 directly promotes CD4 T cell differentiation and the expression of multiple effector molecules. These results demonstrate that the CD30 co-stimulatory axis is highly upregulated on granuloma T cells and is critical for protective T cell responses against Mtb infection.
Collapse
Affiliation(s)
- Taylor W. Foreman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E. Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A. Sallin
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Otaizo-Carrasquero
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Vidal SJ, Sellers D, Yu J, Wakabayashi S, Sixsmith J, Aid M, Barrett J, Stevens SF, Liu X, Li W, Plumlee CR, Urdahl KB, Martinot AJ, Barouch DH. Attenuated Mycobacterium tuberculosis vaccine protection in a low-dose murine challenge model. iScience 2023; 26:106963. [PMID: 37378347 PMCID: PMC10291467 DOI: 10.1016/j.isci.2023.106963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) remains the only approved tuberculosis (TB) vaccine despite limited efficacy. Preclinical studies of next-generation TB vaccines typically use a murine aerosol model with a supraphysiologic challenge dose. Here, we show that the protective efficacy of a live attenuated Mycobacterium tuberculosis (Mtb) vaccine ΔLprG markedly exceeds that of BCG in a low-dose murine aerosol challenge model. BCG reduced bacterial loads but did not prevent establishment or dissemination of infection in this model. In contrast, ΔLprG prevented detectable infection in 61% of mice and resulted in anatomic containment of 100% breakthrough infections to a single lung. Protection was partially abrogated in a repeated low-dose challenge model, which showed serum IL-17A, IL-6, CXCL2, CCL2, IFN-γ, and CXCL1 as correlates of protection. These data demonstrate that ΔLprG provides increased protection compared to BCG, including reduced detectable infection and anatomic containment, in a low-dose murine challenge model.
Collapse
Affiliation(s)
- Samuel J. Vidal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Sellers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shoko Wakabayashi
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaimie Sixsmith
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sage F. Stevens
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wenjun Li
- Department of Public Health, University of Massachusetts Lowell, Lowell, MA, USA
| | - Courtney R. Plumlee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
38
|
Plumlee C, Barrett H, Shao D, Lien K, Cross L, Cohen S, Edlefsen P, Urdahl K. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533820. [PMID: 36993415 PMCID: PMC10055404 DOI: 10.1101/2023.03.22.533820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Despite widespread immunization with Bacille-Calmette-Guerin (BCG), the only currently licensed tuberculosis (TB) vaccine, TB remains a leading cause of mortality globally. There are many TB vaccine candidates in the developmental pipeline, but the lack of a robust animal model to assess vaccine efficacy has hindered our ability to prioritize candidates for human clinical trials. Here we use a murine ultra-low dose (ULD) Mycobacterium tuberculosis (Mtb) challenge model to assess protection conferred by BCG vaccination. We show that BCGconfers a reduction in lung bacterial burdens that is more durable than that observed afterconventional dose challenge, curbs Mtb dissemination to the contralateral lung, and, in a smallpercentage of mice, prevents detectable infection. These findings are consistent with the ability of human BCG vaccination to mediate protection, particularly against disseminated disease, in specific human populations and clinical settings. Overall, our findings demonstrate that the ultra-low dose Mtb infection model can measure distinct parameters of immune protection that cannot be assessed in conventional dose murine infection models and could provide an improved platform for TB vaccine testing.
Collapse
Affiliation(s)
- C.R. Plumlee
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
| | - H.W. Barrett
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
- University of Washington, Dept. of Global Health, Seattle, WA, 98109, USA
| | - D.E. Shao
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - K.A. Lien
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
| | - L.M. Cross
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
| | - S.B. Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
| | - P.T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - K.B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, 98109, USA
- University of Washington, Dept. of Immunology, Seattle, WA, 98109, USA
- University of Washington, Dept. of Pediatrics, Seattle, WA, 98109, USA
- Lead Contact
| |
Collapse
|
39
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
40
|
Kalam H, Chou CH, Kadoki M, Graham DB, Deguine J, Hung DT, Xavier RJ. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Cell Host Microbe 2023; 31:978-992.e5. [PMID: 37269834 PMCID: PMC10373099 DOI: 10.1016/j.chom.2023.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to establish latency affects disease and response to treatment. The host factors that influence the establishment of latency remain elusive. We engineered a multi-fluorescent Mtb strain that reports survival, active replication, and stressed non-replication states and determined the host transcriptome of the infected macrophages in these states. Additionally, we conducted a genome-wide CRISPR screen to identify host factors that modulated the phenotypic state of Mtb. We validated hits in a phenotype-specific manner and prioritized membrane magnesium transporter 1 (MMGT1) for a detailed mechanistic investigation. Mtb infection of MMGT1-deficient macrophages promoted a switch to persistence, upregulated lipid metabolism genes, and accumulated lipid droplets during infection. Targeting triacylglycerol synthesis reduced both droplet formation and Mtb persistence. The orphan G protein-coupled receptor GPR156 is a key inducer of droplet accumulation in ΔMMGT1 cells. Our work uncovers the role of MMGT1-GPR156-lipid droplets in the induction of Mtb persistence.
Collapse
Affiliation(s)
- Haroon Kalam
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Motohiko Kadoki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Tang J, Zhao Z, Zhou J, Jiao L, Zhou W, Ying B, Yang Y. Multiple CD59 Polymorphisms in Chinese Patients with Mycobacterium tuberculosis Infection. J Immunol Res 2023; 2023:1216048. [PMID: 37050931 PMCID: PMC10083888 DOI: 10.1155/2023/1216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023] Open
Abstract
Background and Objective. Tuberculosis (TB) is a major threat to human health, especially in developing countries. Its susceptibility and progression depend on interactions between mycobacterium tuberculosis, host immune system, and genetic and environmental factors. Up to now, many studies have presented the association between TB susceptibility and host genetic polymorphisms, but never regarding CD59 gene, which is an essential complement regulator. This study investigated the relationship between multiple CD59 single nucleotide polymorphisms (SNPs) and susceptibility to TB among Chinese patients. Methods. A case–control study was conducted to investigate the SNPs at CD59 rs1047581, rs7046, rs2231460, rs184251026, rs41275164, rs831633, rs704700, rs41275166, and rs10768024 by sequence-specific primer-polymerase chain reaction (SSP-PCR) in 900 tuberculosis patients and 1,534 controls. Results. The minor allele frequencies at rs2231460, rs184251026, rs41275164, and rs41275166 were extremely low both in the Cases (0.00%–0.61%) and in the Controls (0.07%–0.43%), comparatively at rs1047581, rs7046, rs831633, rs704700, and rs10768024 were notably higher both in the Cases (8.23%–48.39%) and in the Controls (8.57%–47.16%). Among the nine SNPs, only homozygous CC genotype at rs10768024 showed a significant protective effect against TB than homozygous TT genotype (OR(95% CI) = 0.59(0.38, 0.91), χ2 = 5.779,
), and homozygous TT and heterozygous CT genotypes showed a significant risk of TB infection in the recessive model (OR(95% CI) = 1.68(1.10, 2.56), χ2 = 5.769,
). Further analysis verified that rs10768024 CC genotype independently related to TB susceptibility (OR(95% CI) = 0.60(0.39, 0.91), Wald χ2 = 5.664,
) in multivariate logistic regression analysis, and its genetic mutation was independent of the other SNPs (r2 = 0.00–0.20) in haplotype analysis. Conclusions. The first investigation of the CD59 gene and susceptibility to TB suggests a significant risk with homozygous TT and heterozygous CT genotypes at rs10768024 loci. The homozygous CC mutation at rs10768024 loci showed a significant protection against TB susceptibility.
Collapse
Affiliation(s)
- Jie Tang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwei Yang
- Department of Laboratory Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
42
|
Zhu J, Liu YJ, Fortune SM. Spatiotemporal perspectives on tuberculosis chemotherapy. Curr Opin Microbiol 2023; 72:102266. [PMID: 36745965 PMCID: PMC10023397 DOI: 10.1016/j.mib.2023.102266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), accounts for over ten million infections and over 1.5 million deaths every year [1]. Upon infection, the seesaw between Mtb and our immune systems creates microenvironments that are compositionally distinctive and changing over time. While the field has begun to better understand the spatial complexity of TB disease, our understanding and experimental dissection of the temporal dynamics of TB and TB drug treatment is much more rudimentary. However, it is the combined spatiotemporal heterogeneity of TB disease that creates niches and time windows within which the pathogen can survive and thrive during treatment. Here, we review the emerging data on the interactions of spatial and temporal dynamics as they relate to TB disease and treatment. A better understanding of the interactions of Mtb, host, and antibiotics through space and time will elucidate treatment failure and potentially identify opportunities for new TB treatment regimens.
Collapse
Affiliation(s)
- Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Yue J Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Zhu A, Ali S, Jiao T, Wang Z, Ouyang Q, Chen Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:1466-1494. [PMID: 36856528 DOI: 10.1111/1541-4337.13118] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Rapid control and prevention of diseases caused by foodborne pathogens is one of the existing food safety regulatory issues faced by various countries and has received wide attention from all sectors of society. The development of rapid and reliable detection methods for foodborne pathogens remains a hot research area for food safety and public health because of the limitations of complex steps, time-consuming, low sensitivity, or poor selectivity of commonly used methods. Surface-enhanced Raman spectroscopy (SERS), as a novel spectroscopic technique, has the advantages of high sensitivity, selectivity, rapid and nondestructive detection and has exhibited broad application prospects in the determination of pathogenic bacteria. In this study, the enhancement mechanisms of SERS are briefly introduced, then the characteristics and properties of liquid-phase, rigid solid-phase, and flexible solid-phase are categorized. Furthermore, a comprehensive review of the advances in label-free or label-based SERS strategies and SERS-compatible techniques for the detection of foodborne pathogens is provided, and the advantages and disadvantages of these methods are reviewed. Finally, the current challenges of SERS technology applied in practical applications are listed, and the possible development trends of SERS in the field of foodborne pathogens detection in the future are discussed.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.,College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
44
|
Nogueira I, Català M, White AD, Sharpe SA, Bechini J, Prats C, Vilaplana C, Cardona PJ. Surveillance of Daughter Micronodule Formation Is a Key Factor for Vaccine Evaluation Using Experimental Infection Models of Tuberculosis in Macaques. Pathogens 2023; 12:236. [PMID: 36839508 PMCID: PMC9961649 DOI: 10.3390/pathogens12020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is still a major worldwide health problem and models using non-human primates (NHP) provide the most relevant approach for vaccine testing. In this study, we analysed CT images collected from cynomolgus and rhesus macaques following exposure to ultra-low dose Mycobacterium tuberculosis (Mtb) aerosols, and monitored them for 16 weeks to evaluate the impact of prior intradermal or inhaled BCG vaccination on the progression of lung disease. All lesions found (2553) were classified according to their size and we subclassified small micronodules (<4.4 mm) as 'isolated', or as 'daughter', when they were in contact with consolidation (described as lesions ≥ 4.5 mm). Our data link the higher capacity to contain Mtb infection in cynomolgus with the reduced incidence of daughter micronodules, thus avoiding the development of consolidated lesions and their consequent enlargement and evolution to cavitation. In the case of rhesus, intradermal vaccination has a higher capacity to reduce the formation of daughter micronodules. This study supports the 'Bubble Model' defined with the C3HBe/FeJ mice and proposes a new method to evaluate outcomes in experimental models of TB in NHP based on CT images, which would fit a future machine learning approach to evaluate new vaccines.
Collapse
Affiliation(s)
- Isabel Nogueira
- Radiology Department, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
| | - Martí Català
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona Departament de Física, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain
| | - Andrew D. White
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sally A Sharpe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Jordi Bechini
- Radiology Department, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
| | - Clara Prats
- Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona Departament de Física, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain
| | - Cristina Vilaplana
- Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, 08916 Badalona, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Microbiology Department, North Metropolitan Clinical Laboratory, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Spain
| |
Collapse
|
45
|
Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens 2022; 12:pathogens12010049. [PMID: 36678397 PMCID: PMC9865329 DOI: 10.3390/pathogens12010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Science has been taking profit from animal models since the first translational experiments back in ancient Greece. From there, and across all history, several remarkable findings have been obtained using animal models. One of the most popular models, especially for research in infectious diseases, is the mouse. Regarding research in tuberculosis, the mouse has provided useful information about host and bacterial traits related to susceptibility to the infection. The effect of aging, sexual dimorphisms, the route of infection, genetic differences between mice lineages and unbalanced immunity scenarios upon Mycobacterium tuberculosis infection and tuberculosis development has helped, helps and will help biomedical researchers in the design of new tools for diagnosis, treatment and prevention of tuberculosis, despite various discrepancies and the lack of deep study in some areas of these traits.
Collapse
|
46
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
47
|
Berube BJ, Larsen SE, McNeil MB, Reese VA, Pecor T, Kaur S, Parish T, Baldwin SL, Coler RN. Characterizing in vivo loss of virulence of an HN878 Mycobacterium tuberculosis isolate from a genetic duplication event. Tuberculosis (Edinb) 2022; 137:102272. [PMID: 36375278 PMCID: PMC10019580 DOI: 10.1016/j.tube.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The increase of global cases of drug resistant (DR) Mycobacterium tuberculosis (M.tb) is a serious problem for the tuberculosis research community and the goals to END TB by 2030. Due to the need for advancing and screening next generation therapeutics and vaccines, we aimed to design preclinical DR models of Beijing lineage M.tb HN878 strain in different mouse backgrounds. We found escalating sensitivities of morbidity due to low dose aerosol challenge (50-100 bacilli) in CB6F1, C57BL/6 and SWR mice, respectively. We also observed that pulmonary bacterial burden at morbidity endpoints correlated inversely with survival over time between mouse strains. Interestingly, with in vitro passaging and in the process of selecting individual DR mutant colonies, we observed a significant decrease in in vivo HN878 strain virulence, which correlated with the acquisition of a large genetic duplication. We confirmed that low passage infection stocks with no or low prevalence of the duplication, including stocks directly acquired from the BEI resources biorepository, retained virulence, measured by morbidity over time. These data help confirm previous reports and emphasize the importance of monitoring virulence and stock fidelity.
Collapse
Affiliation(s)
- Bryan J Berube
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA; TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Sasha E Larsen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Matthew B McNeil
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA
| | - Valerie A Reese
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Tiffany Pecor
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Suhavi Kaur
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Tanya Parish
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA; TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Susan L Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| | - Rhea N Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
48
|
Wang Y, Qu M, Liu Y, Wang H, Dong Y, Zhou X. KLK12 Regulates MMP-1 and MMP-9 via Bradykinin Receptors: Biomarkers for Differentiating Latent and Active Bovine Tuberculosis. Int J Mol Sci 2022; 23:ijms232012257. [PMID: 36293113 PMCID: PMC9603359 DOI: 10.3390/ijms232012257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
It has been established that kallikrein12 (KLK12) expression is closely related to bovine tuberculosis (bTB) development. Herein, we sought to clarify the regulatory mechanism of KLK12 and its application in tuberculosis diagnosis. KLK12 knockdown macrophages were produced by siRNA transfection. Bradykinin receptors (BR, including B1R and B2R) were blocked with specific inhibitors. Mannose-capped lipoarabinomannan (ManLAM) was extracted from Mycobacterium bovis (M. bovis) and used to study the mechanism of KLK12 activation. In addition, we constructed different mouse models representing the latent and active stages of M. bovis infection. Mouse models and clinical serum samples were used to assess the diagnostic value of biomarkers. Through the above methods, we confirmed that KLK12 regulates MMP-1 and MMP-9 via BR. KLK12 upregulation is mediated by the M. bovis-specific antigen ManLAM. KLK12, MMP-1, and MMP-9 harbor significant value as serological markers for differentiating between latent and active bTB, especially KLK12. In conclusion, we identified a novel signaling pathway, KLK12/BR/ERK/MMPs, in M. bovis-infected macrophages, which is activated by ManLAM. From this signaling pathway, KLK12 can be used as a serological marker to differentiate between latent and active bTB. Importantly, KLK12 also has enormous potential for the clinical diagnosis of human tuberculosis (TB).
Collapse
|
49
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
50
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|