1
|
Escalera A, Laporte M, Turner S, Karakus U, Gonzalez-Reiche AS, van de Guchte A, Farrugia K, Khalil Z, van Bakel H, Smith D, García-Sastre A, Aydillo T. The impact of S2 mutations on Omicron SARS-CoV-2 cell surface expression and fusogenicity. Emerg Microbes Infect 2024; 13:2297553. [PMID: 38112266 PMCID: PMC10866063 DOI: 10.1080/22221751.2023.2297553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 Omicron subvariants are still emerging and spreading worldwide. These variants contain a high number of polymorphisms in the spike (S) glycoprotein that could potentially impact their pathogenicity and transmission. We have previously shown that the S:655Y and P681H mutations enhance S protein cleavage and syncytia formation. Interestingly, these polymorphisms are present in Omicron S protein. Here, we characterized the cleavage efficiency and fusogenicity of the S protein of different Omicron sublineages. Our results showed that Omicron BA.1 subvariant is efficiently cleaved but it is poorly fusogenic compared to previous SARS-CoV-2 strains. To understand the basis of this phenotype, we generated chimeric S protein using combinations of the S1 and S2 domains from WA1, Delta and Omicron BA.1 variants. We found that the S2 domain of Omicron BA.1 hindered efficient cell-cell fusion. Interestingly, this domain only contains six unique polymorphisms never detected before in ancestral SARS-CoV-2 variants. WA1614G S proteins containing the six individuals S2 Omicron mutations were assessed for their fusogenicity and S surface expression after transfection in cells. Results showed that the S:N856K and N969K substitutions decreased syncytia formation and impacted S protein cell surface levels. However, we observed that "first-generation" Omicron sublineages that emerged subsequently, had convergently evolved to an enhanced fusogenic activity and S expression on the surface of infected cells while "second-generation" Omicron variants have highly diverged and showed lineage-specific fusogenic properties. Importantly, our findings could have potential implications in the improvement and redesign of COVID-19 vaccines.
Collapse
Affiliation(s)
- Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manon Laporte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Umut Karakus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zain Khalil
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Cool K, Gaudreault NN, Trujillo JD, Morozov I, McDowell CD, Bold D, Kwon T, Balaraman V, Assato P, Madden DW, Mantlo E, Souza-Neto J, Matias-Ferreyra F, Retallick J, Singh G, Schotsaert M, Carossino M, Balasuriya UBR, Wilson WC, Pogranichniy RM, García-Sastre A, Richt JA. Experimental co-infection of calves with SARS-CoV-2 Delta and Omicron variants of concern. Emerg Microbes Infect 2024; 13:2281356. [PMID: 37938158 PMCID: PMC10763854 DOI: 10.1080/22221751.2023.2281356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Since emerging in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly crossed the species barrier with natural infections reported in various domestic and wild animal species. The emergence and global spread of SARS-CoV-2 variants of concern (VOCs) has expanded the range of susceptible host species. Previous experimental infection studies in cattle using Wuhan-like SARS-CoV-2 isolates suggested that cattle were not likely amplifying hosts for SARS-CoV-2. However, SARS-CoV-2 sero- and RNA-positive cattle have since been identified in Europe, India, and Africa. Here, we investigated the susceptibility and transmission of the Delta and Omicron SARS-CoV-2 VOCs in cattle. Eight Holstein calves were co-infected orally and intranasally with a mixed inoculum of SARS-CoV-2 VOCs Delta and Omicron BA.2. Twenty-four hours post-challenge, two sentinel calves were introduced to evaluate virus transmission. The co-infection resulted in a high proportion of calves shedding SARS-CoV-2 RNA at 1- and 2-days post-challenge (DPC). Extensive tissue distribution of SARS-CoV-2 RNA was observed at 3 and 7 DPC and infectious virus was recovered from two calves at 3 DPC. Next-generation sequencing revealed that only the SARS-CoV-2 Delta variant was detected in clinical samples and tissues. Similar to previous experimental infection studies in cattle, we observed only limited seroconversion and no clear evidence of transmission to sentinel calves. Together, our findings suggest that cattle are more permissive to infection with SARS-CoV-2 Delta than Omicron BA.2 and Wuhan-like isolates but, in the absence of horizontal transmission, are not likely to be reservoir hosts for currently circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Chester D. McDowell
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dashzeveg Bold
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Patricia Assato
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Emily Mantlo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jayme Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Franco Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jaime Retallick
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, United States Department of Agriculture, Manhattan, KS, USA
| | - Roman M. Pogranichniy
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
3
|
Aydillo T, Balsera-Manzanero M, Rojo-Fernandez A, Escalera A, Salamanca-Rivera C, Pachón J, Del Mar Muñoz-García M, Sánchez-Cordero MJ, Sánchez-Céspedes J, García-Sastre A, Cordero E. Concomitant administration of seasonal influenza and COVID-19 mRNA vaccines. Emerg Microbes Infect 2024; 13:2292068. [PMID: 38054302 PMCID: PMC10798284 DOI: 10.1080/22221751.2023.2292068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Current clinical guidelines support the concomitant administration of seasonal influenza vaccines and COVID-19 mRNA boosters vaccine. Whether dual vaccination may impact vaccine immunogenicity due to an interference between influenza or SARS-CoV-2 antigens is unknown. We aimed to understand the impact of mRNA COVID-19 vaccines administered concomitantly on the immune response to influenza vaccines. For this, 128 volunteers were vaccinated during the 22-23 influenza season. Three groups of vaccination were assembled: FLU vaccine only (46, 35%) versus volunteers that received the mRNA bivalent COVID-19 vaccines concomitantly to seasonal influenza vaccines, FluCOVID vaccine in the same arm (42, 33%) or different arm (40, 31%), respectively. Sera and whole blood were obtained the day of vaccination, +7, and +28 days after for antibody and T cells response quantification. As expected, side effects were increased in individuals who received the FluCOVID vaccine as compared to FLU vaccine only based on the known reactogenicity of mRNA vaccines. In general, antibody levels were high at 4 weeks post-vaccination and differences were found only for the H3N2 virus when administered in different arms compared to the other groups at day 28 post-vaccination. Additionally, our data showed that subjects that received the FluCOVID vaccine in different arm tended to have better antibody induction than those receiving FLU vaccines for H3N2 virus in the absence of pre-existing immunity. Furthermore, no notable differences in the influenza-specific cellular immune response were found for any of the vaccination groups. Our data supports the concomitant administration of seasonal influenza and mRNA COVID-19 vaccines.
Collapse
Affiliation(s)
- Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
| | - Maria Balsera-Manzanero
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Amaya Rojo-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
| | - Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Celia Salamanca-Rivera
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- Department of Preventive Medicine, University of Seville, Spain
| | - Jerónimo Pachón
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Sevilla, Sevilla, Spain
| | | | | | - Javier Sánchez-Céspedes
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- CIBERINFEC, CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, Global Health and Emerging Pathogens Institute, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, USA
| | - Elisa Cordero
- Viral Diseases and Infections in Immunodeficiencies Research Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Sevilla, Spain
- CIBERINFEC, CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine, University of Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Zhang T, Wang Y, Teng X, Deng R, Li J. Preamplification-free viral RNA diagnostics with single-nucleotide resolution using MARVE, an origami paper-based colorimetric nucleic acid test. Nat Protoc 2024; 19:3426-3455. [PMID: 39026122 DOI: 10.1038/s41596-024-01022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/08/2024] [Indexed: 07/20/2024]
Abstract
The evolution and mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgent concerns as they pose the risk of vaccine failure and increased viral transmission. However, affordable and scalable tools allowing rapid identification of SARS-CoV-2 variants are not readily available, which impedes diagnosis and epidemiological surveillance. Here we present a colorimetric nucleic acid assay named MARVE (multiplexed, preamplification-free, single-nucleotide-resolved viral evolution) that is convenient to perform and yields single-nucleotide resolution. The assay integrates nucleic acid strand displacement reactions with enzymatic amplification to colorimetrically sense viral RNA using a metal ion-incorporated DNA probe (TEprobe). We provide detailed guidelines to design TEprobes for discriminating single-nucleotide variations in viral RNAs, and to fabricate a test paper for the detection of SARS-CoV-2 variants of concern. Compared with other nucleic acid assays, our assay is preamplification-free, single-nucleotide-resolvable and results are visible via a color change. Besides, it is smartphone readable, multiplexed, quick and cheap ($0.30 per test). The protocol takes ~2 h to complete, from the design and preparation of the DNA probes and test papers (~1 h) to the detection of SARS-CoV-2 or its variants (30-45 min). The design of the TEprobes requires basic knowledge of molecular biology and familiarity with NUPACK or the Python programming language. The fabrication of the origami papers requires access to a wax printer using the CAD and PDF files provided or requires users to be familiar with AutoCAD to design new origami papers. The protocol is also applicable for designing assays to detect other pathogens and their variants.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
- College of Biomass Science and Engineering, Department of Respiration and Critical Care Medine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- College of Biomass Science and Engineering, Department of Respiration and Critical Care Medine, West China Hospital, Sichuan University, Chengdu, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
- Beijing Institute of Life Science and Technology, Beijing, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Department of Respiration and Critical Care Medine, West China Hospital, Sichuan University, Chengdu, China.
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China.
- Beijing Institute of Life Science and Technology, Beijing, China.
| |
Collapse
|
5
|
Li M, Lv F, Li Z, Zhao C, Wang X, Zhu P, Zhou X. Cross-Species Susceptibility of Emerging Variants of SARS-CoV-2 Spike. Genes (Basel) 2024; 15:1321. [PMID: 39457447 PMCID: PMC11507407 DOI: 10.3390/genes15101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The continuous evolution of SARS-CoV-2 and the emergence of novel variants with numerous mutations have heightened concerns surrounding the possibility of cross-species transmission and the establishment of natural animal reservoirs for the virus, but the host range of emerging SARS-CoV-2 variants has not been fully explored yet. METHODS We employed an in vitro model comprising VSV∆G* pseudotyped viruses bearing SARS-CoV-2 spike proteins to explore the plausible host range of SARS-CoV-2 emerging variants. RESULTS The overall host tropism of emerging SARS-CoV-2 variants are consistent with that of the SARS-CoV-2 wuhan-hu-1 strain with minor difference. Pseudotyped viruses bearing spike protein from RaTG13 and RmYN02 can enter cell cultures from a broad range of mammalian species, revealing that mink and hamsters may act as potential intermediate hosts. We further investigated 95 potential site-specific mutations in the SARS-CoV-2 spike protein that could impact viral infectivity across different species. The results showed that 13 of these mutations notably increased the transduction rates by more than two-fold when compared to the wild-type spike protein. Further examination of these 13 mutations within cell cultures from 31 different species revealed heightened sensitivity in cells derived from palm civets, minks, and Chinese horseshoe bats to the VSV∆G*-SARS2-S mutants. Specific mutations, such as L24F, R158G, and L212I, were seen to significantly enhance the capacity for SARS-CoV-2 of cross-species transmission. CONCLUSIONS This study offers critical insights for the ongoing surveillance and monitoring efforts of SARS-CoV-2 evolution, emphasizing the need for the vigilant monitoring of specific mutations in both human and animal populations.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyu Zhao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.L.); (F.L.); (Z.L.); (C.Z.); (X.W.); (P.Z.)
| |
Collapse
|
6
|
Wang W, Jin Q, Liu R, Zeng W, Zhu P, Li T, Wang T, Xiang H, Zhang H, Chen Q, Gao Y, Lai Y, Yan F, Xia X, Li J, Wang X, Gao Y. Virological characteristics of SARS-CoV-2 Omicron BA.5.2.48. Front Immunol 2024; 15:1427284. [PMID: 39411709 PMCID: PMC11473351 DOI: 10.3389/fimmu.2024.1427284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
With the prevalence of sequentially-emerged sublineages including BA.1, BA.2 and BA.5, SARS-CoV-2 Omicron infection has transformed into a regional epidemic disease. As a sublineage of BA.5, the BA.5.2.48 outbroke and evolved into multi-subvariants in China without clearly established virological characteristics. Here, we evaluated the virological characteristics of two isolates of the prevalent BA.5.2.48 subvariant, DY.2 and DY.1.1 (a subvariant of DY.1). Compared to the normal BA.5 spike, the double-mutated DY.1.1 spike demonstrates efficient cleavage, reduced fusogenicity and higher hACE2 binding affinity. BA.5.2.48 demonstrated enhanced airborne transmission capacity than BA.2 in hamsters. The pathogenicity of BA.5.2.48 is greater than BA.2, as revealed in Omicron-lethal H11-K18-hACE2 rodents. In both naïve and convalescent hamsters, DY.1.1 shows stronger fitness than DY.2 in hamster turbinates. Thus regional outbreaking of BA.5.2.48 promotes the multidirectional evolution of its subvariants, gaining either enhanced pathogenicity or a fitness in upper airways which is associated with higher transmission.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Life Sciences, Northeast Normal University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiushi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruixue Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wentao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Pengfei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Tingting Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haiyang Xiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hang Zhang
- Senior Cadre Department, The 964(th) Hospital of Joint Logistics Support, Chinese People's Liberation Army (PLA), Changchun, China
| | - Qin Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Yun Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Yana Lai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Fang Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianmin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jiangsu Laboratory Animal Center, Jiangsu Animal Experimental Center of Medicine and Pharmacy, Department of Cell Biology, Animal Core Facility, Key Laboratory of Model Animal, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Xuefeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
7
|
Haowei Y, Mahyuddin N, Bin Nik Ghazali NN, Wang Z, Liu Y, Pan S, Badruddin IA. A critical review of research methodologies for COVID-19 transmission in indoor built environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3413-3477. [PMID: 38385569 DOI: 10.1080/09603123.2024.2308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19) has caused massive losses for the global economy. Scholars have used different methods to study the transmission mode and influencing factors of the virus to find effective methods to provide people with a healthy built environment. However, these studies arrived at different or even contradictory conclusions. This review presents the main research methodologies utilized in this field, summarizes the main investigation methods, and critically discusses their related conclusions. Data statistical analysis, sample collection, simulation models, and replication transmission scenarios are the main research methods. The summarized conclusion for prevention from all reviewed papers are: adequate ventilation and proper location of return air vents, proper use of personal protective equipment, as well as the reasonable and strict enforcement of policies are the main methods for reducing the transmission. Recommendations including standardized databases, causation clarification, rigorous experiment design, improved simulation accuracy and verification are provided.
Collapse
Affiliation(s)
- Yu Haowei
- Centre for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya, Kuala Lumpur, Malaysia
| | - Norhayati Mahyuddin
- Centre for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya, Kuala Lumpur, Malaysia
| | - Nik Nazri Bin Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Zeyu Wang
- China Nuclear Power Engineering Co. Ltd, Beijing Institute of Nuclear Engineering, Beijing, China
| | - Yiqiao Liu
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Song Pan
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun, PR China
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Kustova DD, Pochtovyi AA, Shpakova OG, Shtinova IA, Kuznetsova NA, Kleimenov DA, Komarov AG, Gushchin VA. [The Molecular and Biological Patterns Underlying Sustained SARS-CoV-2 Circulation in the Human Population]. Vopr Virusol 2024; 69:329-340. [PMID: 39361927 DOI: 10.36233/0507-4088-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION For four years, SARS-CoV-2, the etiological agent of COVID-19, has been circulating among humans. By the end of the second year, an absence of immunologically naive individuals was observed, attributable to extensive immunization efforts and natural viral exposure. This study focuses on delineating the molecular and biological patterns that facilitate the persistence of SARS-CoV-2, thereby informing predictions on the epidemiological trajectory of COVID-19 toward refining pandemic countermeasures. The aim of this study was to describe the molecular biological patterns identified that contribute to the persistence of the virus in the human population. MATERIALS AND METHODS For over three years since the beginning of the COVID-19 pandemic, molecular genetic monitoring of SARS-CoV-2 has been conducted, which included the collection of nasopharyngeal swabs from infected individuals, assessment of viral load, and subsequent whole-genome sequencing. RESULTS We discerned dominant genetic lineages correlated with rising disease incidence. We scrutinized amino acid substitutions across SARS-CoV-2 proteins and quantified viral loads in swab samples from patients with emerging COVID-19 variants. Our findings suggest a model of viral persistence characterized by 1) periodic serotype shifts causing substantial diminutions in serum virus-neutralizing activity (> 10-fold), 2) serotype-specific accrual of point mutations in the receptor-binding domain (RBD) to modestly circumvent neutralizing antibodies and enhance receptor affinity, and 3) a gradually increasing amount of virus being shed in mucosal surfaces within a single serotype. CONCLUSION This model aptly accounts for the dynamics of COVID-19 incidence in Moscow. For a comprehensive understanding of these dynamics, acquiring population-level data on immune tension and antibody neutralization relative to genetic lineage compositions is essential.
Collapse
Affiliation(s)
- D D Kustova
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
| | - A A Pochtovyi
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | | | | | - N A Kuznetsova
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - D A Kleimenov
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | | | - V A Gushchin
- National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
- Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| |
Collapse
|
9
|
da Cruz TCD, Pavon JAR, de Azevedo FSK, de Souza EC, Ribeiro BM, Slhessarenko RD. Associations between epidemiological and laboratory parameters and disease severity in hospitalized patients with COVID-19 during first and second epidemic waves in middle south Mato Grosso. Braz J Microbiol 2024; 55:2613-2629. [PMID: 38834861 PMCID: PMC11405551 DOI: 10.1007/s42770-024-01379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND COVID-19 is a multisystemic disease characterized by respiratory distress. Disease severity is associated with several factors. Here we characterize virological findings and evaluate the association of laboratorial, epidemiological, virological findings and clinical outcomes of 251 patients during the first and second epidemic waves of COVID-19. METHODS This transversal study used biological samples and data from patients hospitalized with COVID-19 between May 2020 and August 2021 in the metropolitan region of Cuiabá, Mato Grosso Brazil. Biological samples were subjected to RT-qPCR and MinION sequencing. Univariate and multivariate logistic regression and Odds ratio were used to correlate clinical, laboratorial, epidemiological data. FINDINGS Patients were represented by males (61.7%) with mean age of 52.4 years, mild to moderate disease (49,0%), overweight/obese (69.3%), with comorbidities (66.1%) and evolving to death (55.38%). Severe cases showing symptoms for prolonged time, ≥ 25% of ground-glass opacities in the lungs and fatality rate increased significantly in second wave. Fatality was statistically associated to > 61 years of age,>25% ground-glass opacities in the lungs, immune, cardiac, or metabolic comorbidities. Higher viral load (p < 0.01/p = 0.02 in each wave), decreased erythrocyte (p < 0.01), hemoglobin (p < 0.05/p < 0.01), hematocrit (p < 0.01), RDW (p < 0.01), lymphocyte (p < 0.01), increased leucocyte (p < 0.01), neutrophil (p < 0.01) and CRP levels (p < 0.01) showed significant association with fatality in both waves, as did Neutrophil/Platelet (NPR; p < 0.01), Neutrophil/Lymphocyte (NLR; p < 0.01) and Monocyte/Lymphocyte ratio (MLR; p < 0.01). SARS-CoV-2 genomes from lineage B.1.1.33(n = 8) and Gamma/P.1(n = 15) shared 6/7 and 20/23 lineage-defining mutations, respectively. MAIN CONCLUSIONS Severity and mortality of COVID-19 associated with a panel of epidemiological and laboratorial findings, being second wave, caused by Gamma variant, more severe in this in-hospital population.
Collapse
Affiliation(s)
- Thais Campos Dias da Cruz
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
| | - Janeth Aracely Ramirez Pavon
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
| | - Francisco Scoffoni Kennedy de Azevedo
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil
- Hospital e Pronto Socorro de Várzea Grande, Secretaria Municipal de Saúde, UFMT, Várzea Grande, Mato Grosso, Brasil
| | - Edila Cristina de Souza
- Curso de Graduação em Estatística, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brasil
| | - Bergman Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UNB), Brasília, Distrito Federal, Brasil
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), B Boa Esperança, 78060-900, Cuiabá, MT, Brasil.
| |
Collapse
|
10
|
Bolsinger MM, Drobny A, Wilfling S, Reischl S, Krach F, Moritz R, Balta D, Hehr U, Sock E, Bleibaum F, Hanses F, Winner B, Huarcaya SP, Arnold P, Zunke F. SARS-CoV-2 Spike Protein Induces Time-Dependent CTSL Upregulation in HeLa Cells and Alveolarspheres. J Cell Biochem 2024; 125:e30627. [PMID: 38971996 DOI: 10.1002/jcb.30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Autophagy and lysosomal pathways are involved in the cell entry of SARS-CoV-2 virus. To infect the host cell, the spike protein of SARS-CoV-2 binds to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). To allow the fusion of the viral envelope with the host cell membrane, the spike protein has to be cleaved. One possible mechanism is the endocytosis of the SARS-CoV-2-ACE2 complex and subsequent cleavage of the spike protein, mainly by the lysosomal protease cathepsin L. However, detailed molecular and dynamic insights into the role of cathepsin L in viral cell entry remain elusive. To address this, HeLa cells and iPSC-derived alveolarspheres were treated with recombinant SARS-CoV-2 spike protein, and the changes in mRNA and protein levels of cathepsins L, B, and D were monitored. Additionally, we studied the effect of cathepsin L deficiency on spike protein internalization and investigated the influence of the spike protein on cathepsin L promoters in vitro. Furthermore, we analyzed variants in the genes coding for cathepsin L, B, D, and ACE2 possibly associated with disease progression using data from Regeneron's COVID Results Browser and our own cohort of 173 patients with COVID-19, exhibiting a variant of ACE2 showing significant association with COVID-19 disease progression. Our in vitro studies revealed a significant increase in cathepsin L mRNA and protein levels following exposure to the SARS-CoV-2 spike protein in HeLa cells, accompanied by elevated mRNA levels of cathepsin B and D in alveolarspheres. Moreover, an increase in cathepsin L promoter activity was detected in vitro upon spike protein treatment. Notably, the knockout of cathepsin L resulted in reduced internalization of the spike protein. The study highlights the importance of cathepsin L and lysosomal proteases in the SARS-CoV-2 spike protein internalization and suggests the potential of lysosomal proteases as possible therapeutic targets against COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Magdalena M Bolsinger
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Stephanie Reischl
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raul Moritz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susy Prieto Huarcaya
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Zhu B, Lin H, Huang JS, Zhang W. Semi-Covariance Coefficient Analysis of Spike Proteins from SARS-CoV-2 and Its Variants Omicron, BA.5, EG.5, and JN.1 for Viral Infectivity, Virulence and Immune Escape. Viruses 2024; 16:1192. [PMID: 39205166 PMCID: PMC11360586 DOI: 10.3390/v16081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Semi-covariance has attracted significant attention in recent years and is increasingly employed to elucidate statistical phenomena exhibiting fluctuations, such as the similarity or difference in charge patterns of spike proteins among coronaviruses. In this study, by examining values above and below the average/mean based on the positive and negative charge patterns of amino acid residues in the spike proteins of SARS-CoV-2 and its current circulating variants, the proposed methods offer profound insights into the nonlinear evolving trends in those viral spike proteins. Our study indicates that the charge span value can predict the infectivity of the virus and the charge density can estimate the virulence of the virus, and both predicated infectivity and virulence appear to be associated with the capability of viral immune escape. This semi-covariance coefficient analysis may be used not only to predict the infectivity, virulence and capability of immune escape for coronaviruses but also to analyze the functionality of other viral proteins. This study improves our understanding of the trend of viral evolution in terms of viral infectivity, virulence or the capability of immune escape, which remains further validated by more future studies and statistical data.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Electrical and Computer engineering, Western University, London, ON N6A 5B9, Canada;
| | - Huancheng Lin
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Jun Steed Huang
- School of Information Technology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, Building M54, Ottawa, ON K1A 0R6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Dadonaite B, Brown J, McMahon TE, Farrell AG, Figgins MD, Asarnow D, Stewart C, Lee J, Logue J, Bedford T, Murrell B, Chu HY, Veesler D, Bloom JD. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 2024; 631:617-626. [PMID: 38961298 PMCID: PMC11254757 DOI: 10.1038/s41586-024-07636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
SARS-CoV-2 variants acquire mutations in the spike protein that promote immune evasion1 and affect other properties that contribute to viral fitness, such as ACE2 receptor binding and cell entry2,3. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning4 to measure how more than 9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully affected ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456 and 473; however, the antigenic effects of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however, many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Teagan E McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marlin D Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Y Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
14
|
Penrice-Randal R, Bentley EG, Sharma P, Kirby A, Donovan-Banfield I, Kipar A, Mega DF, Bramwell C, Sharp J, Owen A, Hiscox JA, Stewart JP. The effect of molnupiravir and nirmatrelvir on SARS-CoV-2 genome diversity in severe models of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582110. [PMID: 38464327 PMCID: PMC10925244 DOI: 10.1101/2024.02.27.582110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Objectives Immunocompromised individuals are susceptible to severe COVID-19 and potentially contribute to the emergence of variants with altered pathogenicity due to persistent infection. This study investigated the impact of immunosuppression on SARS-CoV-2 infection in k18-hACE2 mice and the effectiveness of antiviral treatments in this context during the first 7 days of infection. Methods Mice were immunosuppressed using cyclophosphamide and infected with a B lineage of SARS-CoV-2. Molnupiravir and nirmatrelvir, alone and in combination, were administered and viral load and viral sequence diversity was assessed. Results Treatment of infected but immune compromised mice with both compounds either singly or in combination resulted in decreased viral loads and pathological changes compared to untreated animals. Treatment also abrogated infection of neuronal tissue. However, no consistent changes in the viral consensus sequence were observed, except for the emergence of the S:H655Y mutation. Molnupiravir, but not nirmatrelvir or immunosuppression alone, increased the transition/transversion (Ts/Tv) ratio, representative of A>G and C>U mutations and this increase was not altered by the co-administration of nirmatrelvir with molnupiravir.Notably, immunosuppression itself did not appear to promote the emergence of mutational characteristic of variants of concern (VOCs). Conclusions Further investigations are warranted to fully understand the role of immunocompromised individuals in VOC development, especially by taking persistence into consideration, and to inform optimised public health strategies. It is more likely that immunodeficiency promotes viral persistence but does not necessarily lead to substantial consensus-level changes in the absence of antiviral selection pressure. Consistent with mechanisms of action, molnupiravir showed a stronger mutagenic effect than nirmatrelvir in this model.
Collapse
Affiliation(s)
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - I’ah Donovan-Banfield
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Daniele F. Mega
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, UK
| |
Collapse
|
15
|
An K, Yang X, Luo M, Yan J, Xu P, Zhang H, Li Y, Wu S, Warshel A, Bai C. Mechanistic study of the transmission pattern of the SARS-CoV-2 omicron variant. Proteins 2024; 92:705-719. [PMID: 38183172 PMCID: PMC11059747 DOI: 10.1002/prot.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) characterized by 30 mutations in its spike protein, has rapidly spread worldwide since November 2021, significantly exacerbating the ongoing COVID-19 pandemic. In order to investigate the relationship between these mutations and the variant's high transmissibility, we conducted a systematic analysis of the mutational effect on spike-angiotensin-converting enzyme-2 (ACE2) interactions and explored the structural/energy correlation of key mutations, utilizing a reliable coarse-grained model. Our study extended beyond the receptor-binding domain (RBD) of spike trimer through comprehensive modeling of the full-length spike trimer rather than just the RBD. Our free-energy calculation revealed that the enhanced binding affinity between the spike protein and the ACE2 receptor is correlated with the increased structural stability of the isolated spike protein, thus explaining the omicron variant's heightened transmissibility. The conclusion was supported by our experimental analyses involving the expression and purification of the full-length spike trimer. Furthermore, the energy decomposition analysis established those electrostatic interactions make major contributions to this effect. We categorized the mutations into four groups and established an analytical framework that can be employed in studying future mutations. Additionally, our calculations rationalized the reduced affinity of the omicron variant towards most available therapeutic neutralizing antibodies, when compared with the wild type. By providing concrete experimental data and offering a solid explanation, this study contributes to a better understanding of the relationship between theories and observations and lays the foundation for future investigations.
Collapse
Affiliation(s)
- Ke An
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| | - Xianzhi Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen, 518060, China
| | - Junfang Yan
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Peiyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Honghui Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
| | - Yuqing Li
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- Department of Urology, South China Hospital of Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Warshel Institute for Computational Biology
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang, 310005, P.R. China
| |
Collapse
|
16
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
17
|
de Rioja VL, Perramon-Malavez A, Alonso S, Andrés C, Antón A, Bordoy AE, Càmara J, Cardona PJ, Català M, López D, Martí S, Martró E, Saludes V, Prats C, Alvarez-Lacalle E. Mathematical modeling of SARS-CoV-2 variant substitutions in European countries: transmission dynamics and epidemiological insights. Front Public Health 2024; 12:1339267. [PMID: 38855458 PMCID: PMC11160439 DOI: 10.3389/fpubh.2024.1339267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Countries across Europe have faced similar evolutions of SARS-CoV-2 variants of concern, including the Alpha, Delta, and Omicron variants. Materials and methods We used data from GISAID and applied a robust, automated mathematical substitution model to study the dynamics of COVID-19 variants in Europe over a period of more than 2 years, from late 2020 to early 2023. This model identifies variant substitution patterns and distinguishes between residual and dominant behavior. We used weekly sequencing data from 19 European countries to estimate the increase in transmissibility ( Δ β ) between consecutive SARS-CoV-2 variants. In addition, we focused on large countries with separate regional outbreaks and complex scenarios of multiple competing variants. Results Our model accurately reproduced the observed substitution patterns between the Alpha, Delta, and Omicron major variants. We estimated the daily variant prevalence and calculated Δ β between variants, revealing that: ( i ) Δ β increased progressively from the Alpha to the Omicron variant; ( i i ) Δ β showed a high degree of variability within Omicron variants; ( i i i ) a higher Δ β was associated with a later emergence of the variant within a country; ( i v ) a higher degree of immunization of the population against previous variants was associated with a higher Δ β for the Delta variant; ( v ) larger countries exhibited smaller Δ β , suggesting regionally diverse outbreaks within the same country; and finally ( v i ) the model reliably captures the dynamics of competing variants, even in complex scenarios. Conclusion The use of mathematical models allows for precise and reliable estimation of daily cases of each variant. By quantifying Δ β , we have tracked the spread of the different variants across Europe, highlighting a robust increase in transmissibility trend from Alpha to Omicron. Additionally, we have shown that the geographical characteristics of a country, as well as the timing of new variant entrances, can explain some of the observed differences in variant substitution dynamics across countries.
Collapse
Affiliation(s)
- Víctor López de Rioja
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Aida Perramon-Malavez
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sergio Alonso
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Andrés
- Microbiology Department, Vall D’Hebron Hospital Universitari, Vall D’Hebron Institut de Recerca, Vall D’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Biomedical Research Networking Center in Infectious Diseases, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Antón
- Microbiology Department, Vall D’Hebron Hospital Universitari, Vall D’Hebron Institut de Recerca, Vall D’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Biomedical Research Networking Center in Infectious Diseases, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni E. Bordoy
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere-Joan Cardona
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Martí Català
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Daniel López
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Elisa Martró
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Verónica Saludes
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Clara Prats
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Enrique Alvarez-Lacalle
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
18
|
Duan H, Zhang E, Ren G, Cheng Y, Yang B, Liu L, Jolicoeur N, Hu H, Xu Y, Liu B. Exploring immune evasion of SARS-CoV-2 variants using a pseudotyped system. Heliyon 2024; 10:e29939. [PMID: 38699727 PMCID: PMC11063423 DOI: 10.1016/j.heliyon.2024.e29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
In the United States, coronavirus disease 2019 (COVID-19) cases have consistently been linked to the prevailing variant XBB.1.5 of SARS-CoV-2 since late 2022. A system has been developed for producing and infecting cells with a pseudovirus (PsV) of SARS-CoV-2 to investigate the infection in a Biosafety Level 2 (BSL-2) laboratory. This system utilizes a lentiviral vector carrying ZsGreen1 and Firefly luciferase (Fluc) dual reporter genes, facilitating the analysis of experimental results. In addition, we have created a panel of PsV variants that depict both previous and presently circulating mutations found in circulating SARS-CoV-2 strains. A series of PsVs includes the prototype SARS-CoV-2, Delta B.1.617.2, BA.5, XBB.1, and XBB.1.5. To facilitate the study of infections caused by different variants of SARS-CoV-2 PsV, we have developed a HEK-293T cell line expressing mCherry and human angiotensin converting enzyme 2 (ACE2). To validate whether different SARS-CoV-2 PsV variants can be used for neutralization assays, we employed serum from rats immunized with the PF-D-Trimer protein vaccine to investigate its inhibitory effect on the infectivity of various SARS-CoV-2 PsV variants. According to our observations, the XBB variant, particularly XBB.1.5, exhibits stronger immune evasion capabilities than the prototype SARS-CoV-2, Delta B.1.617.2, and BA.5 PsV variants. Hence, utilizing the neutralization test, this study has the capability to forecast the effectiveness in preventing future SARS-CoV-2 variants infections.
Collapse
Affiliation(s)
- Haixiao Duan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ershuai Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Ge Ren
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yining Cheng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Binfeng Yang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Lirong Liu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | | | - Han Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yan Xu
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| |
Collapse
|
19
|
Carrascosa-Sàez M, Marqués MC, Geller R, Elena SF, Rahmeh A, Dufloo J, Sanjuán R. Cell type-specific adaptation of the SARS-CoV-2 spike. Virus Evol 2024; 10:veae032. [PMID: 38779130 PMCID: PMC11110937 DOI: 10.1093/ve/veae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- Instituto de Biomedicina de Valencia (IBV), CSIC and CIBER de Enfermedades Raras (CIBERER), Valencia 46010, Spain
| | - Santiago F Elena
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Amal Rahmeh
- Departament de Medicina i Ciències de La Vida (MELIS), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Jérémy Dufloo
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio). University of Valencia—CSIC, Paterna, 46980, Spain
| |
Collapse
|
20
|
Minami S, Kotaki T, Sakai Y, Okamura S, Torii S, Ono C, Motooka D, Hamajima R, Nouda R, Nurdin JA, Yamasaki M, Kanai Y, Ebina H, Maeda Y, Okamoto T, Tachibana T, Matsuura Y, Kobayashi T. Vero cell-adapted SARS-CoV-2 strain shows increased viral growth through furin-mediated efficient spike cleavage. Microbiol Spectr 2024; 12:e0285923. [PMID: 38415690 PMCID: PMC10986611 DOI: 10.1128/spectrum.02859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.
Collapse
Affiliation(s)
- Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Okamura
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeffery A. Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hirotaka Ebina
- Virus Vaccine Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yusuke Maeda
- Laboratory of Viral Dynamism Research, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-creation Studies, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, Osaka, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Patiño LH, Ballesteros N, Muñoz M, Ramírez AL, Castañeda S, Galeano LA, Hidalgo A, Paniz-Mondolfi A, Ramírez JD. Global and genetic diversity of SARS-CoV-2 in wastewater. Heliyon 2024; 10:e27452. [PMID: 38463823 PMCID: PMC10923837 DOI: 10.1016/j.heliyon.2024.e27452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Angie Lorena Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Luis Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, Pasto, 52002, Colombia
| | - Arsenio Hidalgo
- Grupo de Investigación en Salud Pública, Departamento de Matemáticas, Universidad de Nariño, Pasto, 50002, Colombia
| | - Alberto Paniz-Mondolfi
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| |
Collapse
|
22
|
Chen M, Pekosz A, Villano JS, Shen W, Zhou R, Kulaga H, Li Z, Smith A, Gurung A, Beck SE, Witwer KW, Mankowski JL, Ramanathan M, Rowan NR, Lane AP. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. J Clin Invest 2024; 134:e174439. [PMID: 38483537 PMCID: PMC11014658 DOI: 10.1172/jci174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in nasal tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variant revealed that SARS-CoV-2 WA1 or Delta infect a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possessed broader cellular invasion capacity into the submucosa, while Omicron displayed enhanced nasal respiratory infection and longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon were more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa were accompanied by a decline of phagocytosis-related genes. Further, robust basal stem cell activation contributed to neuroepithelial regeneration and restored ACE2 expression postinfection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration after infection. The shifting characteristics of viral infection at the airway portal provide insight into the variability of COVID-19 clinical features, particularly long COVID, and may suggest differing strategies for early local intervention.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason S. Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenjuan Shen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heather Kulaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhexuan Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Smith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Asiana Gurung
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas R. Rowan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Powers JM, Leist SR, Mallory ML, Yount BL, Gully KL, Zweigart MR, Bailey AB, Sheahan TP, Harkema JR, Baric RS. Divergent pathogenetic outcomes in BALB/c mice following Omicron subvariant infection. Virus Res 2024; 341:199319. [PMID: 38224840 PMCID: PMC10835285 DOI: 10.1016/j.virusres.2024.199319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.
Collapse
Affiliation(s)
- John M Powers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Sarah R Leist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Boyd L Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis B Bailey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jack R Harkema
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Amidei A, Dobrovolny HM. Virus-mediated cell fusion of SARS-CoV-2 variants. Math Biosci 2024; 369:109144. [PMID: 38224908 DOI: 10.1016/j.mbs.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell-cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (6.4×10-4/h), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (9.7×10-2/h), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (2.8×10-3/h), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of 3.2×10-2/h and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.
Collapse
Affiliation(s)
- Ava Amidei
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
25
|
Bauer MS, Gruber S, Hausch A, Melo MCR, Gomes PSFC, Nicolaus T, Milles LF, Gaub HE, Bernardi RC, Lipfert J. Single-molecule force stability of the SARS-CoV-2-ACE2 interface in variants-of-concern. NATURE NANOTECHNOLOGY 2024; 19:399-405. [PMID: 38012274 DOI: 10.1038/s41565-023-01536-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/26/2023] [Indexed: 11/29/2023]
Abstract
Mutations in SARS-CoV-2 have shown effective evasion of population immunity and increased affinity to the cellular receptor angiotensin-converting enzyme 2 (ACE2). However, in the dynamic environment of the respiratory tract, forces act on the binding partners, which raises the question of whether not only affinity but also force stability of the SARS-CoV-2-ACE2 interaction might be a selection factor for mutations. Using magnetic tweezers, we investigate the impact of amino acid substitutions in variants of concern (Alpha, Beta, Gamma and Delta) and on force-stability and bond kinetic of the receptor-binding domain-ACE2 interface at a single-molecule resolution. We find a higher affinity for all of the variants of concern (>fivefold) compared with the wild type. In contrast, Alpha is the only variant of concern that shows higher force stability (by 17%) compared with the wild type. Using molecular dynamics simulations, we rationalize the mechanistic molecular origins of this increase in force stability. Our study emphasizes the diversity of contributions to the transmissibility of variants and establishes force stability as one of the several factors for fitness. Understanding fitness advantages opens the possibility for the prediction of probable mutations, allowing a rapid adjustment of therapeutics, vaccines and intervention measures.
Collapse
Affiliation(s)
- Magnus S Bauer
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sophia Gruber
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany
| | - Adina Hausch
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany
- Center for Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | | | | | - Thomas Nicolaus
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany
| | - Lukas F Milles
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hermann E Gaub
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany
| | | | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany.
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Korosec CS, Wahl LM, Heffernan JM. Within-host evolution of SARS-CoV-2: how often are de novo mutations transmitted from symptomatic infections? Virus Evol 2024; 10:veae006. [PMID: 38425472 PMCID: PMC10904108 DOI: 10.1093/ve/veae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Despite a relatively low mutation rate, the large number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has allowed for substantial genetic change, leading to a multitude of emerging variants. Using a recently determined mutation rate (per site replication), as well as within-host parameter estimates for symptomatic SARS-CoV-2 infection, we apply a stochastic transmission-bottleneck model to describe the survival probability of de novo SARS-CoV-2 mutations as a function of bottleneck size and selection coefficient. For narrow bottlenecks, we find that mutations affecting per-target-cell attachment rate (with phenotypes associated with fusogenicity and ACE2 binding) have similar transmission probabilities to mutations affecting viral load clearance (with phenotypes associated with humoral evasion). We further find that mutations affecting the eclipse rate (with phenotypes associated with reorganization of cellular metabolic processes and synthesis of viral budding precursor material) are highly favoured relative to all other traits examined. We find that mutations leading to reduced removal rates of infected cells (with phenotypes associated with innate immune evasion) have limited transmission advantage relative to mutations leading to humoral evasion. Predicted transmission probabilities, however, for mutations affecting innate immune evasion are more consistent with the range of clinically estimated household transmission probabilities for de novo mutations. This result suggests that although mutations affecting humoral evasion are more easily transmitted when they occur, mutations affecting innate immune evasion may occur more readily. We examine our predictions in the context of a number of previously characterized mutations in circulating strains of SARS-CoV-2. Our work offers both a null model for SARS-CoV-2 mutation rates and predicts which aspects of viral life history are most likely to successfully evolve, despite low mutation rates and repeated transmission bottlenecks.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Lindi M Wahl
- Applied Mathematics, Western University, 1151 Richmond St, London, ON N6A 5B7, Canada
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
27
|
Kandel S, Hartzell SL, Ingold AK, Turner GA, Kennedy JL, Ussery DW. Genomic surveillance of SARS-CoV-2 using long-range PCR primers. Front Microbiol 2024; 15:1272972. [PMID: 38440140 PMCID: PMC10910555 DOI: 10.3389/fmicb.2024.1272972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance of the COVID-19 pandemic. Several primer schemes have been developed to sequence nearly all of the ~30,000 nucleotide SARS-CoV-2 genome, using a multiplex PCR approach to amplify cDNA copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively) tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). Methods In this study we used a set of seven long-range PCR primer pairs to sequence clinical isolates of SARS-CoV-2 on Oxford Nanopore sequencer. These long-range primers generate seven amplicons approximately 4500 bp that covered whole genome of SARS-CoV-2. One of these regions includes the full-length S-gene by using a set of flanking primers. We also evaluated the performance of these long-range primers with Midnight primers by sequencing 94 clinical isolates in a Nanopore flow cell. Results and discussion Using a small set of long-range primers to sequence SARS-CoV-2 genomes reduces the possibility of amplicon dropout and coverage bias. The key finding of this study is that long range primers can be used in single-molecule sequencing of RNA viruses in surveillance of emerging variants. We also show that by designing primers flanking the S-gene, we can obtain reliable identification of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sangam Kandel
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Ashton K. Ingold
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Grace A. Turner
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Joshua L. Kennedy
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
28
|
Carossino M, Izadmehr S, Trujillo JD, Gaudreault NN, Dittmar W, Morozov I, Balasuriya UBR, Cordon-Cardo C, García-Sastre A, Richt JA. ACE2 and TMPRSS2 distribution in the respiratory tract of different animal species and its correlation with SARS-CoV-2 tissue tropism. Microbiol Spectr 2024; 12:e0327023. [PMID: 38230954 PMCID: PMC10846196 DOI: 10.1128/spectrum.03270-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
A wide range of animal species show variable susceptibility to SARS-CoV-2; however, host factors associated with varied susceptibility remain to be defined. Here, we examined whether susceptibility to SARS-CoV-2 and virus tropism in different animal species are dependent on the expression and distribution of the virus receptor angiotensin-converting enzyme 2 (ACE2) and the host cell factor transmembrane serine protease 2 (TMPRSS2). We cataloged the upper and lower respiratory tract of multiple animal species and humans in a tissue-specific manner and quantitatively evaluated the distribution and abundance of ACE2 and TMPRSS2 mRNA in situ. Our results show that: (i) ACE2 and TMPRSS2 mRNA are abundant in the conduction portion of the respiratory tract, (ii) ACE2 mRNA occurs at a lower abundance compared to TMPRSS2 mRNA, (iii) co-expression of ACE2-TMPRSS2 mRNAs is highest in those species with the highest susceptibility to SARS-CoV-2 infection (i.e., cats, Syrian hamsters, and white-tailed deer), and (iv) expression of ACE2 and TMPRSS2 mRNA was not altered following SARS-CoV-2 infection. Our results demonstrate that while specific regions of the respiratory tract are enriched in ACE2 and TMPRSS2 mRNAs in different animal species, this is only a partial determinant of susceptibility to SARS-CoV-2 infection.IMPORTANCESARS-CoV-2 infects a wide array of domestic and wild animals, raising concerns regarding its evolutionary dynamics in animals and potential for spillback transmission of emerging variants to humans. Hence, SARS-CoV-2 infection in animals has significant public health relevance. Host factors determining animal susceptibility to SARS-CoV-2 are vastly unknown, and their characterization is critical to further understand susceptibility and viral dynamics in animal populations and anticipate potential spillback transmission. Here, we quantitatively assessed the distribution and abundance of the two most important host factors, angiotensin-converting enzyme 2 and transmembrane serine protease 2, in the respiratory tract of various animal species and humans. Our results demonstrate that while specific regions of the respiratory tract are enriched in these two host factors, they are only partial determinants of susceptibility. Detailed analysis of additional host factors is critical for our understanding of the underlying mechanisms governing viral susceptibility and reservoir hosts.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sudeh Izadmehr
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
29
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir N, Graichen L, Moldenhauer AS, Dopfer-Jablonka A, Stankov MV, Simon-Loriere E, Schulz SR, Jäck HM, Čičin-Šain L, Behrens GMN, Drosten C, Hoffmann M, Pöhlmann S. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024; 187:596-608.e17. [PMID: 38194966 PMCID: PMC11317634 DOI: 10.1016/j.cell.2023.12.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Najat Bdeir
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, 75015 Paris, France; National Reference Center for Viruses of respiratory Infections, Institut Pasteur, 75015 Paris, France
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
30
|
Choi A, Kots ED, Singleton DT, Weinstein H, Whittaker GR. Analysis of the molecular determinants for furin cleavage of the spike protein S1/S2 site in defined strains of the prototype coronavirus murine hepatitis virus (MHV). Virus Res 2024; 340:199283. [PMID: 38043726 PMCID: PMC10755501 DOI: 10.1016/j.virusres.2023.199283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
We analyzed the spike protein S1/S2 cleavage of selected strains of a prototype coronavirus, mouse hepatitis virus (MHV) by the cellular protease furin, in order to understand the structural requirements underlying the sequence selectivity of the scissile segment. The probability of cleavage of selected MHV strains was first evaluated from furin cleavage scores predicted by the ProP computer software, and then cleavage was measured experimentally with a fluorogenic peptide cleavage assay consisting of S1/S2 peptide mimics and purified furin. We found that in vitro cleavability varied across MHV strains in line with predicted results-but with the notable exception of MHV-A59, which was not cleaved despite a high score predicted for its sequence. Using the known X-Ray structure of furin in complex with a substrate-like inhibitor as an initial structural reference, we carried out molecular dynamics (MD) simulations to learn the modes of binding of the peptides in the furin active site, and the suitability of the complex for initiation of the enzymatic cleavage. We identified the 3D structural requirements of the furin active site configuration that enable bound peptides to undergo cleavage, and the way in which the various strains tested experimentally are fulfilling these requirements. We find that despite some flexibility in the organization of the peptide bound to the active site of the enzyme, the presence of a histidine at P2 of MHV-A59 fails to properly orient the sidechain of His194 of the furin catalytic triad and therefore produces a distortion that renders the peptide/complex structural configuration in the active site incompatible with requirements for cleavage initiation. The Ser/Thr in P1 of MHV-2 and MHV-S has a similar effect of distorting the conformation of the furin active site residues produced by the elimination of the canonical salt-bridge formed by arginine in P1 position. This work informs a study of coronavirus infection and pathogenesis with respect to the function of the viral spike protein, and suggests an important process of viral adaptation and evolution within the spike S1/S2 structural loop.
Collapse
Affiliation(s)
- Annette Choi
- Departments of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Ekaterina D Kots
- Department of Physiology & Biophysics, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Harel Weinstein
- Department of Physiology & Biophysics, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Gary R Whittaker
- Departments of Microbiology & Immunology, Cornell University, Ithaca, NY, USA; Public & Ecosystem Health, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
y Castro TR, Piccoli BC, Vieira AA, Casarin BC, Tessele LF, Salvato RS, Gregianini TS, Martins LG, Resende PC, Pereira EC, Moreira FRR, de Jesus JG, Seerig AP, Lobato MAO, de Campos MMA, Goularte JS, da Silva MS, Demoliner M, Filippi M, Pereira VMAG, Schwarzbold AV, Spilki FR, Trindade PA. Introduction, Dispersal, and Predominance of SARS-CoV-2 Delta Variant in Rio Grande do Sul, Brazil: A Retrospective Analysis. Microorganisms 2023; 11:2938. [PMID: 38138081 PMCID: PMC10745878 DOI: 10.3390/microorganisms11122938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Mutations in the SARS-CoV-2 genome can alter the virus' fitness, leading to the emergence of variants of concern (VOC). In Brazil, the Gamma variant dominated the pandemic in the first half of 2021, and from June onwards, the first cases of Delta infection were documented. Here, we investigate the introduction and dispersal of the Delta variant in the RS state by sequencing 1077 SARS-CoV-2-positive samples from June to October 2021. Of these samples, 34.7% were identified as Gamma and 65.3% as Delta. Notably, 99.2% of Delta sequences were clustered within the 21J lineage, forming a significant Brazilian clade. The estimated clock rate was 5.97 × 10-4 substitutions per site per year. The Delta variant was first reported on 17 June in the Vinhedos Basalto microregion and rapidly spread, accounting for over 70% of cases within nine weeks. Despite this, the number of cases and deaths remained stable, possibly due to vaccination, prior infections, and the continued mandatory mask use. In conclusion, our study provides insights into the Delta variant circulating in the RS state, highlighting the importance of genomic surveillance for monitoring viral evolution, even when the impact of new variants may be less severe in a given region.
Collapse
Affiliation(s)
- Thaís Regina y Castro
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna C. Piccoli
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Andressa A. Vieira
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna C. Casarin
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Luíza F. Tessele
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Richard S. Salvato
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Tatiana S. Gregianini
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Leticia G. Martins
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul (CEVS/SES-RS), Porto Alegre 90610-000, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Elisa C. Pereira
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Filipe R. R. Moreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jaqueline G. de Jesus
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05508-220, Brazil
| | - Ana Paula Seerig
- Vigilância em Saúde, Secretaria Municipal da Saúde de Santa Maria, Santa Maria 97060-001, Brazil
| | - Marcos Antonio O. Lobato
- Departamento de Saúde Coletiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Marli M. A. de Campos
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Juliana S. Goularte
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Mariana S. da Silva
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Micheli Filippi
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | | | - Alexandre V. Schwarzbold
- Departamento de Clínica Médica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Fernando R. Spilki
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93510-235, Brazil
| | - Priscila A. Trindade
- Laboratório de Biologia Molecular e Bioinformática Aplicadas a Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
33
|
Dadonaite B, Brown J, McMahon TE, Farrell AG, Asarnow D, Stewart C, Logue J, Murrell B, Chu HY, Veesler D, Bloom JD. Full-spike deep mutational scanning helps predict the evolutionary success of SARS-CoV-2 clades. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566961. [PMID: 38014024 PMCID: PMC10680755 DOI: 10.1101/2023.11.13.566961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how >9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry, or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456, and 473-however, the antigenic impacts of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Teagan E McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Y. Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| |
Collapse
|
34
|
Jiju P, Matalliotakis M, Lane S, Wong W, Hedrich CM, Pain CE. Demographic, clinical and laboratory differences between paediatric acute COVID-19 and PIMS-TS-results from a single centre study in the UK. Front Pediatr 2023; 11:1219654. [PMID: 38027272 PMCID: PMC10667694 DOI: 10.3389/fped.2023.1219654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background Paediatric symptomatic SARS-CoV-2 infections associate with two presentations, acute COVID-19 and paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS). Phenotypic comparisons, and reports on predictive markers for disease courses are sparse and preliminary. Methods A chart review of COVID-19 and PIMS-TS patients (≤19 years) admitted to Alder Hey Children's NHS Foundation Trust, a tertiary centre in the North-West of England, was performed (02/2020-09/2022). Results A total of 161 symptomatic COVID-19 and 50 PIMS-TS patients were included. Peaks in admissions of patients with PIMS-TS occurred approximately 4 weeks after those for acute COVID-19. The incidence of in-patients with PIMS-TS reduced over time, and there were no admissions after February 2022. When compared to acute COVID-19, PIMS-TS patients were older (median: 10.3 years vs. 2.03 years; p < 0.001). There were no differences in gender distribution, but minority ethnicities were over-represented among PIMS-TS patients. Regional ethnic distribution was reflected among acute COVID-19 patients (66% vs. 84.5% White Caucasian, p = 0.01). Pre-existing comorbidities were more common among acute COVID-19 patients (54.7% vs. 8%, p < 0.001). PIMS-TS patients more commonly presented with abdominal symptoms (92% vs. 50.3%), neurological symptoms (28% vs. 10.6%) and skin rashes (72% vs. 16.8%), (p ≤ 0.01) when compared with acute COVID-19, where respiratory symptoms were more common (51.6% vs. 32%, p = 0.016). PIMS-TS more frequently required intensive care admission (64% vs. 16.8%), and inotropic support (64% vs. 9.3%) (all p < 0.05). More deaths occurred among acute COVID-19 patients [0 vs. 7 (4.4%)], with 5/7 (71%) in the context of pre-existing comorbidities. When compared to acute COVID-19, PIMS-TS patients exhibited more lymphopenia and thrombocytopenia, a more pronounced acute phase reaction, and more hyponatraemia (p < 0.05). Partial least square discriminant analysis of routine laboratory parameters allowed (incomplete) separation of patients at diagnosis, and variable importance projection (VIP) scoring revealed elevated CRP and low platelets as the most discriminatory parameters. Conclusion Admissions for PIMS-TS reduced with increasing seroconversion rates in the region. Young age and pre-existing comorbidities associate with hospital admission for acute COVID-19. While PIMS-TS may present more acutely with increased need for intensive care, acute COVID-19 had an increased risk of mortality in this cohort.
Collapse
Affiliation(s)
- Prince Jiju
- Department of Paediatric Medicine, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Michail Matalliotakis
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Steven Lane
- Department of Biostatistics, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Waison Wong
- Department of Paediatric Infectious Diseases and Immunology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Christian M. Hedrich
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Clare E. Pain
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
36
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhaddou M, Crossland NA, Barrall EA, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena I, Aslam S, Saqi A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Ak B, Marin A, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. Cell Host Microbe 2023; 31:1668-1684.e12. [PMID: 37738983 PMCID: PMC10750313 DOI: 10.1016/j.chom.2023.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90024, USA; Institute for Quantitative and Computational Biosciences (OCBio), University of California, Los Angeles, Los Angeles, CA 90024, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tolga Çağatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Flores
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fahmida Alam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Magdalena Rutkowska
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manisha R Ummadi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - R Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Baran Ak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorena Zuliani-Alvarez
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Cao J, Gu H, Zhang X, Yun H, Li J, Si CY, Zhang J, Wang H. Intranasal inoculation of female BALB/c mice with replication-deficient human adenovirus type 5 expressing SARS-CoV-2 nucleocapsid protein aggravates lung pathology upon re-encountering the antigen. Virus Res 2023; 335:199201. [PMID: 37595663 PMCID: PMC10470087 DOI: 10.1016/j.virusres.2023.199201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Preclinical studies indicate that SARS-CoV-2 nucleocapsid (N)-based vaccines, along with other viral protein(s), confer protection in various animal models against infection by SARS-CoV-2 ancestral virus and variants of concern. However, the optimal vaccination procedure and the role of N-specific host adaptive immune responses remain elusive. Here, we report that intranasal inoculation with replication-deficient human adenovirus type 5 expressing SARS-CoV-2 N protein (Ad5-N) conferred no protection in the lung of female BALB/c mice upon re-encountering the antigen, either by 10-fold Ad5-N re-exposure or sublethal infection of mouse-adapted SARS-CoV-2. By contrast, this procedure led to aggravated lung pathology with more necroptotic CD3+ T cells and Ly6G+ granulocytes, which was associated with the accumulation of IFN-γ-expressing antigen-experienced CD4+ and CD8+ T cells. These findings pre-caution the clinical application of this vaccination procedure. Furthermore, our data suggest that excessive host adaptive immune responses against N protein contributes to COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Junxia Cao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hongjing Gu
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hongfang Yun
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiarong Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; University of South China, Hengyang Medical School, Hengyang 421001, China
| | - Chuan-Yimu Si
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; University of South China, Hengyang Medical School, Hengyang 421001, China; Anhui Medical University, Hefei 230032, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Hui Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
38
|
Lu Y, Wang W, Liu H, Li Y, Yan G, Franzo G, Dai J, He WT. Mutation and codon bias analysis of the spike protein of Omicron, the recent variant of SARS-CoV-2. Int J Biol Macromol 2023; 250:126080. [PMID: 37536405 DOI: 10.1016/j.ijbiomac.2023.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is a heavily mutated virus and designated as a variant of concern. To investigate the codon usage pattern of this new variant, we performed mutation and codon bias analysis for Omicron as well as for its sub-lineages BA.1 and BA.2 and compared them with the original SARS-CoV-2 and the Delta variant sequences obtained in this study. Our results indicate that the sub-lineage BA.1 and BA.2 have up to 23 sites of difference on the spike protein, which have minimal impact on function. The Omicron variant and its sub-lineages have similar codon usage patterns and A/U ending codons appear to be preferred over G/C ending codons. The Omicron has a lower degree of codon usage bias in spite of evidence that natural selection, mutation pressure and dinucleotide abundance shape the codon usage bias of Omicron, with natural selection being more significant on BA.2 than the other sub-lineages of Omicron. The codon usage pattern of Omicron variant that we explored provides valid information for a clearer understanding of Omicron and its sub-lineages, which could find application in vaccine development and optimization.
Collapse
Affiliation(s)
- Yunbiao Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Weixiu Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Hao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Yue Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Ge Yan
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, Legnaro 35020, PD, Italy
| | - Jianjun Dai
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China.
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China.
| |
Collapse
|
39
|
Afrin SZ, Sathi FA, Nooruzzaman M, Parvin R. Molecular insights into the SARS-CoV-2 Omicron variant from Bangladesh suggest diverse and continuous evolution. Virology 2023; 587:109882. [PMID: 37757731 DOI: 10.1016/j.virol.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
The study analyzed the molecular dynamics of the circulating SARS-CoV-2 Omicron variant from its identification in November 2021 to January 2023. The SARS-CoV-2 sequences from Bangladesh revealed three distinct waves of the Omicron variant. More than 50 sub-lineages of Omicron variant were introduced into the country, with the majority belonging to the major lineages of BA.1-like (24.91%), BA.2-like (43.35%), BA.5-like (5.76%), XBB (10.47%), and "Others and Unassigned" (18.64%). Furthermore, the relative frequencies over time revealed that Omicron lineages existed for a short period of time before being replaced by other sub-lineages. Many potential mutations were found in the receptor binding domain of the Spike protein including G339D/H, S371 L/F, K417 N, T478K, E484A, Q493R, Q498R, and N501Y. In conclusion, the SARS-CoV-2 Omicron variant from Bangladesh showed diverse genetic features and continuous evolution. Therefore, the choice of vaccine and monitoring of hospitalized patients is important alongside genetic characterization of the circulating SARS-CoV-2.
Collapse
Affiliation(s)
| | - Fardousi Akter Sathi
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
40
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A, Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing. Microbiol Spectr 2023; 11:e0077623. [PMID: 37676044 PMCID: PMC10580996 DOI: 10.1128/spectrum.00776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 09/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erika A. Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tesia Bobrowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anastija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
42
|
Andrade-Molina DA, Morey-León GA, Muñoz-Mawyin KE, Cruz-Fatuly FF, Fernández-Cadena JC, Cárdenas P. First sequenced cases of Omicron BA.2 sublineage in Ecuador. Virus Res 2023; 334:199169. [PMID: 37406934 PMCID: PMC10410591 DOI: 10.1016/j.virusres.2023.199169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The largest wave of infection with SARS-CoV-2 virus in Ecuador was observed in mid-December 2021 and early January 2022, driven by B.1.1.529/BA (Omicron) variant. During the second half of March, an increase in the number of daily cases was observed and coincided with the emergence of the BA.2 variant, which we describe in the present study. The first sequenced five cases of SARS-CoV-2 21L/BA.2 in Ecuador were identified using variant specific genotyping by qPCR and confirmed by whole genome sequencing (WGS). The first sequenced Ecuadorian BA.2 isolate was obtained from a person with international travel history who became symptomatic 3 days after travelling, whereas in the other cases no travel history was recorded.
Collapse
Affiliation(s)
- D A Andrade-Molina
- Omics Sciences Laboratory, Faculty of Health Sciences, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - G A Morey-León
- Faculty of Health Sciences, Universidad de Guayaquil, Guayaquil, Ecuador
| | - K E Muñoz-Mawyin
- Omics Sciences Laboratory, Faculty of Health Sciences, Universidad Espíritu Santo, Samborondón, Ecuador
| | - F F Cruz-Fatuly
- Omics Sciences Laboratory, Faculty of Health Sciences, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - P Cárdenas
- Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
43
|
Shuai H, Chan JFW, Hu B, Chai Y, Yoon C, Liu H, Liu Y, Shi J, Zhu T, Hu JC, Hu YF, Hou Y, Huang X, Yuen TTT, Wang Y, Zhang J, Xia Y, Chen LL, Cai JP, Zhang AJ, Yuan S, Zhou J, Zhang BZ, Huang JD, Yuen KY, To KKW, Chu H. The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5. EBioMedicine 2023; 95:104753. [PMID: 37579626 PMCID: PMC10448076 DOI: 10.1016/j.ebiom.2023.104753] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Among the Omicron sublineages that have emerged, BA.1, BA.2, BA.5, and their related sublineages have resulted in the largest number of infections. While recent studies demonstrated that all Omicron sublineages robustly escape neutralizing antibody response, it remains unclear on whether these Omicron sublineages share any pattern of evolutionary trajectory on their replication efficiency and intrinsic pathogenicity along the respiratory tract. METHODS We compared the virological features, replication capacity of dominant Omicron sublineages BA.1, BA.2 and BA.5 in the human nasal epithelium, and characterized their pathogenicity in K18-hACE2, A129, young C57BL/6, and aged C57BL/6 mice. FINDINGS We found that BA.5 replicated most robustly, followed by BA.2 and BA.1, in the differentiated human nasal epithelium. Consistently, BA.5 infection resulted in higher viral gene copies, infectious viral titres and more abundant viral antigen expression in the nasal turbinates of the infected K18-hACE2 transgenic mice. In contrast, the Omicron sublineages are continuously attenuated in lungs of infected K18-hACE2 and C57BL/6 mice, leading to decreased pathogenicity. Nevertheless, lung manifestations remain severe in Omicron sublineages-infected A129 and aged C57BL/6 mice. INTERPRETATION Our results suggested that the Omicron sublineages might be gaining intrinsic replication fitness in the upper respiratory tract, therefore highlighting the importance of global surveillance of the emergence of hyper-transmissive Omicron sublineages. On the contrary, replication and intrinsic pathogenicity of Omicron is suggested to be further attenuated in the lower respiratory tract. Effective vaccination and other precautions should be in place to prevent severe infections in the immunocompromised populations at risk. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jinjin Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Xia
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lin-Lei Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
44
|
Wagh K, Shen X, Theiler J, Girard B, Marshall JC, Montefiori DC, Korber B. Mutational basis of serum cross-neutralization profiles elicited by infection or vaccination with SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553144. [PMID: 37645950 PMCID: PMC10461964 DOI: 10.1101/2023.08.13.553144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth. HIGHLIGHTS Modeled SARS-CoV-2 cross-neutralization using mutations at key sitesIdentified resistance mutations and quantified relative impactAccurately predicted holdout variant and convalescent/vaccine sera neutralizationShowed that the third dose of mRNA-1273 vaccination overcomes resistance mutations.
Collapse
|
45
|
Popovic M, Pantović Pavlović M, Pavlović M. Ghosts of the past: Elemental composition, biosynthesis reactions and thermodynamic properties of Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2. MICROBIAL RISK ANALYSIS 2023; 24:100263. [PMID: 37234934 PMCID: PMC10199755 DOI: 10.1016/j.mran.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
From the perspectives of molecular biology, genetics and biothermodynamics, SARS-CoV-2 is the among the best characterized viruses. Research on SARS-CoV-2 has shed a new light onto driving forces and molecular mechanisms of viral evolution. This paper reports results on empirical formulas, biosynthesis reactions and thermodynamic properties of biosynthesis (multiplication) for the Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2. Thermodynamic analysis has shown that the physical driving forces for evolution of SARS-CoV-2 are Gibbs energy of biosynthesis and Gibbs energy of binding. The driving forces have led SARS-CoV-2 through the evolution process from the original Hu-1 to the newest variants in accordance with the expectations of the evolution theory.
Collapse
Affiliation(s)
- Marko Popovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marijana Pantović Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
- University of Belgrade, Centre of Excellence in Chemistry and Environmental Engineering - ICTM, Belgrade, Serbia
| | - Miroslav Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
- University of Belgrade, Centre of Excellence in Chemistry and Environmental Engineering - ICTM, Belgrade, Serbia
| |
Collapse
|
46
|
Mondol SM, Hasib M, Limon MBH, Alam ASMRU. Insights into Omicron's Low Fusogenicity through In Silico Molecular Studies on Spike-Furin Interactions. Bioinform Biol Insights 2023; 17:11779322231189371. [PMID: 37529484 PMCID: PMC10387760 DOI: 10.1177/11779322231189371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant and its subvariants have a unique set of mutations. Two of those mutations (N679 K and P681 H) reside close to the S1 /S2 furin cleavage site (FCS; 685-686). When these mutations reside together, they exert less-efficient membrane fusion than wild type and most other variants of concern such as the Delta variant. Here, we in silico targeted these mutations to find out which of the amino acids and interactions change plays the key role in fusion. To comprehend the epistatic effect of N679 K and P681 H mutations on the spike protein, we in silico constructed three types of spike protein sequences by changing the respective amino acids on 679 and 681 positions (P681 H, N679 K, K679 N-H681 P variants). We then analyzed the binding affinity of furin and spike (Furin-Wild, Furin-Omicron, Furin-P681 H, Furin-N679 K, and Furin-K679 N/H681 P) complexes. Omicron and P681 H variants showed a similar higher binding energy trend compared to the wild type and N679 K. The variation in hydrogen, hydrophobic, and salt bridge bonds between spike protein and furin provided an explanation for the observed low fusogenicity of Omicron. The fate of the epistasis in furin binding and possible cleavage depends on the efficient interaction between FCS in spike and furin catalytic triad, and in addition, the loss of the hydrogen bond between Arg 681 (spike) and Asn 295 (furin) along with inhibitor-like ineffective higher affinity plays an important role in the enzymatic activity.
Collapse
Affiliation(s)
| | - Md Hasib
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh
| | | | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
47
|
Chen HC. A systematic review of the barcoding strategy that contributes to COVID-19 diagnostics at a population level. Front Mol Biosci 2023; 10:1141534. [PMID: 37496777 PMCID: PMC10366608 DOI: 10.3389/fmolb.2023.1141534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
The outbreak of SARS-CoV-2 has made us more alert to the importance of viral diagnostics at a population level to rapidly control the spread of the disease. The critical question would be how to scale up testing capacity and perform a diagnostic test in a high-throughput manner with robust results and affordable costs. Here, the latest 26 articles using barcoding technology for COVID-19 diagnostics and biologically-relevant studies are reviewed. Barcodes are molecular tags, that allow proceeding an array of samples at once. To date, barcoding technology followed by high-throughput sequencing has been made for molecular diagnostics for SARS-CoV-2 infections because it can synchronously analyze up to tens of thousands of clinical samples within a short diagnostic time. Essentially, this technology can also be used together with different biotechnologies, allowing for investigation with resolution of single molecules. In this Mini-Review, I first explain the general principle of the barcoding strategy and then put forward recent studies using this technology to accomplish COVID-19 diagnostics and basic research. In the meantime, I provide the viewpoint to improve the current COVID-19 diagnostic strategy with potential solutions. Finally, and importantly, two practical ideas about how barcodes can be further applied in studying SARS-CoV-2 to accelerate our understanding of this virus are proposed.
Collapse
|
48
|
Kandel S, Hartzell SL, Ingold AK, Turner GA, Kennedy JL, Ussery DW. Genomic Surveillance of SARS-CoV-2 Using Long-Range PCR Primers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548464. [PMID: 37502853 PMCID: PMC10369864 DOI: 10.1101/2023.07.10.548464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance of the COVID-19 pandemic. Several primer schemes have been developed to sequence the ~30,000 nucleotide SARS-CoV-2 genome that use a multiplex PCR approach to amplify cDNA copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively) tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). This study uses seven long-range PCR primers with an amplicon size of ~4500 bp to tile across the complete SARS-CoV-2 genome. One of these regions includes the full-length S-gene by using a set of flanking primers. Using a small set of long-range primers to sequence SARS-CoV-2 genomes reduces the possibility of amplicon dropout and coverage bias.
Collapse
Affiliation(s)
- Sangam Kandel
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 782), Little Rock, AR 72205, USA
| | - Susanna L. Hartzell
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Ashton K. Ingold
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Grace A. Turner
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Joshua L. Kennedy
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 782), Little Rock, AR 72205, USA
| |
Collapse
|
49
|
Vu MN, Alvarado RE, Morris DR, Lokugamage KG, Zhou Y, Morgan AL, Estes LK, McLeland AM, Schindewolf C, Plante JA, Ahearn YP, Meyers WM, Murray JT, Crocquet-Valdes PA, Weaver SC, Walker DH, Russell WK, Routh AL, Plante KS, Menachery V. Loss-of-function mutation in Omicron variants reduces spike protein expression and attenuates SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.536926. [PMID: 37131784 PMCID: PMC10153209 DOI: 10.1101/2023.04.17.536926] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
SARS-CoV-2 Omicron variants emerged in 2022 with >30 novel amino acid mutations in the spike protein alone. While most studies focus on receptor binding domain changes, mutations in the C-terminus of S1 (CTS1), adjacent to the furin cleavage site, have largely been ignored. In this study, we examined three Omicron mutations in CTS1: H655Y, N679K, and P681H. Generating a SARS-CoV-2 triple mutant (YKH), we found that the mutant increased spike processing, consistent with prior reports for H655Y and P681H individually. Next, we generated a single N679K mutant, finding reduced viral replication in vitro and less disease in vivo. Mechanistically, the N679K mutant had reduced spike protein in purified virions compared to wild-type; spike protein decreases were further exacerbated in infected cell lysates. Importantly, exogenous spike expression also revealed that N679K reduced overall spike protein yield independent of infection. Although a loss-of-function mutation, transmission competition demonstrated that N679K had a replication advantage in the upper airway over wild-type SARS-CoV-2 in hamsters, potentially impacting transmissibility. Together, the data show that N679K reduces overall spike protein levels during Omicron infection, which has important implications for infection, immunity, and transmission.
Collapse
Affiliation(s)
- Michelle N. Vu
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - R. Elias Alvarado
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Dorothea R. Morris
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Kumari G. Lokugamage
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yiyang Zhou
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Angelica L. Morgan
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Leah K. Estes
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alyssa M. McLeland
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Craig Schindewolf
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jessica A. Plante
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Yani P. Ahearn
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - William M. Meyers
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jordan T. Murray
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Scott C. Weaver
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| | - David H. Walker
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| | - William K. Russell
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew L. Routh
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kenneth S. Plante
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
| | - Vineet Menachery
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
50
|
Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, Überla K, Thomas M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023; 15:1500. [PMID: 37515187 PMCID: PMC10384293 DOI: 10.3390/v15071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.
Collapse
Affiliation(s)
- Nina Reuter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|