1
|
Meziani A, Ferroukhi O, Peulon-Agasse V, Cardinael P. Ionic liquid coating for stir bar sorptive extraction and its application for extraction and nontargeted screening analysis via TD-GC-Orbitrap-HRMS of pollutants in river water. J Chromatogr A 2024; 1742:465623. [PMID: 39778282 DOI: 10.1016/j.chroma.2024.465623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization. The extraction efficiency of the IL-coated stir bar was evaluated on a mixture of 11 compounds presenting a wide range of polarities (log Ko/w values between 0.65 and 7.21) using thermodesorption gas chromatography coupled with Orbitrap high-resolution mass spectrometry (TD-GC-Orbitrap-HRMS). The results showed that extraction yields were increased for the IL-stir bar. In contrast, the commercial polydimethylsiloxane (PDMS) stir bar resulted in decreased yields with salt addition, particularly for compounds with log Ko/w > 4. SBSE of contaminants was performed on natural waters collected from France, followed by nontargeted analysis using TD-GC-Orbitrap-HRMS. The results revealed the detection of over 1,000 compounds, with 334 compounds annotated after deconvolution. The IL-stir bar with the addition of NaCl specifically extracted five times more compounds (167 compounds) than did the commercial PDMS stir bar (29 compounds) and more than 10 times more with the addition of NaCl with the PDMS stir bar (15 compounds). Various pollutants, including pesticides, personal care products, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), were identified. The annotations of the identified compounds were classified according to a level of confidence based on comparisons of retention indices, match library spectra and high-resolution mass filters.
Collapse
Affiliation(s)
- Amel Meziani
- Univ Rouen Normandie, FR3038, SMS, UR 3233, F-76000 Rouen, France; Laboratoire de Chromatographie, Faculté de Chimie, USTHB, BP 32 EL-Alia, Alger, 16111 Algeria
| | - Ouassila Ferroukhi
- Laboratoire de Chromatographie, Faculté de Chimie, USTHB, BP 32 EL-Alia, Alger, 16111 Algeria
| | | | - Pascal Cardinael
- Univ Rouen Normandie, FR3038, SMS, UR 3233, F-76000 Rouen, France.
| |
Collapse
|
2
|
Li X, Zhang G, Zuhra Z, Wang S. User-Friendly and Responsive Electrochemical Detection Approach for Triclosan by Nano-Metal-Organic Framework. Molecules 2024; 29:3298. [PMID: 39064877 PMCID: PMC11279189 DOI: 10.3390/molecules29143298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a significant challenge to public health, and is worsened by the widespread misuse of antimicrobial agents such as triclosan (TCS) in personal care and household products. Leveraging the electrochemical reactivity of TCS's phenolic hydroxyl group, this study investigates the electrochemical behavior of TCS on a Cu-based nano-metal-organic framework (Cu-BTC) surface. The synthesis of Cu-BTC via a room temperature solvent method, with triethylamine as a regulator, ensures uniform nanoparticle formation. The electrochemical properties of Cu-BTC and the signal enhancement mechanism are comprehensively examined. Utilizing the signal amplification effect of Cu-BTC, an electrochemical sensor for TCS detection is developed and optimized using response surface methodology. The resulting method offers a simple, rapid, and highly sensitive detection of TCS, with a linear range of 25-10,000 nM and a detection limit of 25 nM. This research highlights the potential of Cu-BTC as a promising material for electrochemical sensing applications, contributing to advancements in environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gaocheng Zhang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Zareen Zuhra
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Shengxiang Wang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
3
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
6
|
Hsieh CZ, Chung WH, Ding WH. Experimental design approaches to optimize ultrasound-assisted simultaneous-silylation dispersive liquid-liquid microextraction for the rapid determination of parabens in water samples. RSC Adv 2021; 11:23607-23615. [PMID: 35479786 PMCID: PMC9036600 DOI: 10.1039/d1ra04195a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples. The method involved the use of a combination of a novel ultrasound-assisted simultaneous-silylation within dispersive liquid–liquid microextraction (UASS-DLLME) with detection by gas chromatography-tandem mass spectrometry (GC-MS/MS). To overcome the challenges related to the different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box–Behnken design were utilized to screen and optimize parameters that have significant influences on the efficiency of silylation and extraction. The method was then validated and shown to provide low limits of quantitation (LOQs; 1–5 ng L−1), high precision (3–11%), and satisfactory mean spiked recoveries (accuracy; 79–101%). Upon analyzing samples of surface water obtained from the field, we found that, in total, there was a relatively high concentration of the target parabens ranging from 200 to 1389 ng L−1. The sources of the elevated levels of these parabens may be from the release of untreated municipal wastewater in this region, and also due to the widespread application of parabens in personal care and food products. This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples.![]()
Collapse
Affiliation(s)
- Chi-Zhong Hsieh
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| | - Wu-Hsun Chung
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905.,Department of Chemical Engineering, Army Academy ROC Chung-Li 320 Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| |
Collapse
|
7
|
Magnetic paper-based sorptive phase for enhanced mass transference in stir membrane environmental samplers. Talanta 2021; 228:122217. [DOI: 10.1016/j.talanta.2021.122217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
|
8
|
Gopi PK, Ravikumar CH, Chen SM, Chen TW, Ali MA, Al-Hemaid FMA, El-Shikh MS, Alnakhli AK. Tailoring of bismuth vanadate impregnated on molybdenum/graphene oxide sheets for sensitive detection of environmental pollutants 2, 4, 6 trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111934. [PMID: 33472109 DOI: 10.1016/j.ecoenv.2021.111934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
In the present work, we reported a one pot simple colloidal-gel synthesis of molybdenum bismuth vanadate (MoBiVO4). The charge transfer property of MoBiVO4 was improved by developing a composite with graphene oxide (GO) through sonochemical technique. The optical and morphological analysis revealed that successful formation of GO-MoBiVO4 composite without any other filth. As prepared composite was used to modify the superficial surface of glassy carbon electrode (GO-MoBiVO4/GCE) and applied for the selective detection of environmental pollutant 2, 4, 6 trichrlorophenol (TCP). The electron channeling capability of GO with molybdenum bismuth vanadate possessed a superior electrochemical response in cyclic voltammetry (CV), whereas bare GCE and other modified electrodes provided an inferior response with lower current response. The differential pulse voltammetry (DPV) response of TCP at GO-MoBiVO4/GCE outcomes with low level detection of 0.4 nM and higher sensitivity of 2.49 μA μM-1 cm-2 with wider linear response 0.199-17.83 μM. Furthermore, the proposed sensor applied in practicability analysis and the results indicates GO-MoBiVO4/GCE prominent towards electrochemical detection of TCP.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Chandan Hunsur Ravikumar
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkhuntien-Chaitalay Road, Thakam, Bangkok 10150, Thailand; Centre for Nano and Materials Sciences, Jain global campus, Jain University, Jakkasandra post, Ramanagaram 52110, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - A K Alnakhli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Werner J, Rębiś T, Frankowski R, Grześkowiak T, Zgoła-Grześkowiak A. Development of Poly(3,4-Ethylenedioxythiophene) (PEDOT) Electropolymerized Sorbent-Based Solid-Phase Microextraction (SPME) for the Determination of Parabens in Lake Waters by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1870232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | | |
Collapse
|
10
|
Li Y, Chen L, Li H, Peng F, Zhou X, Yang Z. Occurrence, distribution, and health risk assessment of 20 personal care products in indoor and outdoor swimming pools. CHEMOSPHERE 2020; 254:126872. [PMID: 32957284 DOI: 10.1016/j.chemosphere.2020.126872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The distribution of 20 personal care products (PCPs), including seven preservatives, six UV filters, five anticorrosion agents, and two antimicrobials, were determined in 40 swimming pools using solid phase extraction followed by liquid chromatography-tandem mass spectrometry. Among 14 targets detected, 1H-benzotriazole and triclocarban were observed in all samples. The detected concentrations of preservatives, UV filters, anticorrosion agents, and antimicrobials were in the ranges of not detected (nd)-179 ng L-1, nd-289 ng L-1, nd-58.4 ng L-1, and nd-56.9 ng L-1, respectively. The presence of preservatives, UV filters and antimicrobials in pool waters might be mainly brought in by human activities while anticorrosion agents were mainly from the source water. Furthermore, the concentrations of methylparaben, ethylparaben, 1H-benzotriazole, 5-methyl-1H-benzotriazole, 5-chloro-1H-benzotriazole, and 5,6-dimethyl-1H-benzotriazole in indoor pools were found higher than those in outdoor pools. The longer opening time and weaker light intensity for indoor pools might cause the difference. The redundancy analysis showed significantly negative correlations between the concentrations of parabens and the contents of residual chlorine in the pool waters. A higher chlorine residue may promote the decomposition of parabens. Health risk assessment showed that skin penetration would be the main approach for the intake of PCPs by swimmers while swimming. Compared with the non-athletic swimmers, the athletic swimmers might be more sensitive, but the health risks for both groups of swimmers could be negligible.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Leilei Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Fangyuan Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Xinyi Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Center for Environment and Water Resources, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
11
|
Magro C, Zagalo P, Pereira-da-Silva J, Pires Mateus E, Branco Ribeiro A, Ribeiro P, Raposo M. Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. NANOMATERIALS 2020; 10:nano10040640. [PMID: 32235407 PMCID: PMC7221897 DOI: 10.3390/nano10040640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Triclosan (TCS) is a bacteriostatic used in household items that promotes antimicrobial resistance and endocrine disruption effects both to humans and biota, raising health concerns. In this sense, new devices for its continuous monitoring in complex matrices are needed. In this work, sensors, based on polyelectrolyte layer-by-layer (LbL) films prepared onto gold interdigitated electrodes (IDE), were studied. An electronic tongue array, composed of (polyethyleneimine (PEI)/polysodium 4-styrenesulfonate (PSS))5 and (poly(allylamine hydrochloride/graphene oxide)5 LbL films together with gold IDE without coating were used to detect TCS concentrations (10−15–10−5 M). Electrical impedance spectroscopy was used as means of transduction and the obtained data was analyzed by principal component analysis (PCA). The electronic tongue was tested in deionized water, mineral water and wastewater matrices showing its ability to (1) distinguish between TCS doped and non-doped solutions and (2) sort out the TCS range of concentrations. Regarding film stability, strong polyelectrolytes, as (PEI/PSS)n, presented more firmness and no significant desorption when immersed in wastewater. Finally, the PCA data of gold IDE and (PEI/PSS)5 sensors, for the mineral water and wastewater matrices, respectively, showed the ability to distinguish both matrices. A sensitivity value of 0.19 ± 0.02 per decade to TCS concentration and a resolution of 0.13 pM were found through the PCA second principal component.
Collapse
Affiliation(s)
- Cátia Magro
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (E.P.M.); (A.B.R.)
- Correspondence: (C.M.); (M.R.)
| | - Paulo Zagalo
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (P.Z.); (J.P.-d.-S.); (P.R.)
| | - João Pereira-da-Silva
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (P.Z.); (J.P.-d.-S.); (P.R.)
| | - Eduardo Pires Mateus
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (E.P.M.); (A.B.R.)
| | - Alexandra Branco Ribeiro
- CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (E.P.M.); (A.B.R.)
| | - Paulo Ribeiro
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (P.Z.); (J.P.-d.-S.); (P.R.)
| | - Maria Raposo
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (P.Z.); (J.P.-d.-S.); (P.R.)
- Correspondence: (C.M.); (M.R.)
| |
Collapse
|
12
|
Rodinkov OV, Bugaichenko AS, Moskvin LN. Static Headspace Analysis and Its Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482001013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107671] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Kadmi Y, Favier L, Yehya T, Soutrel I, Simion AI, Vial C, Wolbert D. Controlling contamination for determination of ultra-trace levels of priority pollutants chlorophenols in environmental water matrices. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Guerra P, Teslic S, Shah A, Albert A, Gewurtz SB, Smyth SA. Occurrence and removal of triclosan in Canadian wastewater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31873-31886. [PMID: 31489545 DOI: 10.1007/s11356-019-06338-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/26/2019] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent used in many personal care and cleaning products. It has been detected in most environmental compartments and the main entry pathway is wastewater effluents and biosolids. TCS was analyzed in 300 samples of raw influent, final effluent, and biosolids from 13 wastewater treatment plants (WWTPs) across Canada representing five types of typical wastewater treatment systems. TCS was almost always detected in influent (median 1480 ng/L), effluent (median 107 ng/L), and biosolids (median 8000 ng/g dry weight) samples. Removals of TCS from lagoons as well as secondary and advanced treatment facilities were significantly higher than primary treatment facilities (p < 0.001). TCS removal was strongly correlated with organic nitrogen removal. TCS removals at most lagoons and plants that use biological treatment were higher during summer compared with winter. However, no seasonal or temperature effects were observed at the two primary facilities, likely due to the absence of biological activity. Aerobically digested solids contained the lowest levels (median 555 ng/g) while anaerobically digested primary solids contained the highest levels of TCS (median 22,700 ng/g). The results of this large comprehensive study demonstrate that TCS is consistently present in wastewater and biosolids at relatively high concentrations and that removal from wastewater and levels in biosolids are strongly influenced by the wastewater and solids treatment types.
Collapse
Affiliation(s)
- Paula Guerra
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
- Contract Pharmaceuticals Limited, 2145 Meadowpine Blvd, Mississauga, ON, L5N 6R8, Canada
| | - Steven Teslic
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - Ariba Shah
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
- Queen's University, 1-149 Brock St., Kingston, ON, K7L 1S2, Canada
| | - Amber Albert
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
- Columbia University, 232W 116th St. Unit 809, New York, NY, 10026, USA
| | - Sarah B Gewurtz
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada
| | - Shirley Anne Smyth
- Environment and Climate Change Canada, Science and Technology Branch, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada.
| |
Collapse
|
16
|
Žnideršič L, Mlakar A, Prosen H. Development of a SPME-GC-MS/MS method for the determination of some contaminants from food contact material in beverages. Food Chem Toxicol 2019; 134:110829. [PMID: 31542431 DOI: 10.1016/j.fct.2019.110829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
Abstract
The development and validation of a simple, low-cost, and sensitive method for the determination of nine compounds expected in beverages and vinegar as a result of migration from food contact material (parabens, phenolic antioxidants, sulfonamide plasticizer, and flame retardant) is presented. The analytes were preconcentrated using solid-phase microextraction and analyzed by gas chromatography - tandem mass spectrometry. The method required no derivatization procedure and an affordable chemical was used as internal standard. The LODs were in the range of 0.005-0.2 μg/L, the relative standard deviations 0.8-5.4%, and the mean recoveries 98-109%. Different alcoholic beverages and vinegars were analyzed. A crown cap migration study using several food simulants was conducted for 6 months. Moreover, migration from a home brewing plastic fermenter in a time span of 4 weeks was studied. Analyte concentrations up to 2220.99 μg/L were detected in real samples and up to 4.75 μg/L in migration experiments.
Collapse
Affiliation(s)
- Luka Žnideršič
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Anita Mlakar
- Krka, d.d., Novo Mesto, Šmarješka Cesta 6, 8501, Novo Mesto, Slovenia
| | - Helena Prosen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Novel MIPs-Parabens based SPE Stationary Phases Characterization and Application. Molecules 2019; 24:molecules24183334. [PMID: 31540217 PMCID: PMC6767171 DOI: 10.3390/molecules24183334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/04/2022] Open
Abstract
In this work, the synthesis, characterization, and application of novel parabens imprinted polymers as highly selective solid-phase extraction (SPE) sorbents have been reported. The imprinted polymers were created using sol–gel molecular imprinting process. All the seven parabens were considered herein in order to check the phase selectivity. By means of a validated HPLC-photodiode array detector (PDA) method all seven parabens were resolved in a single chromatographic run of 25 min. These SPE sorbents, in-house packed in SPE empty cartridges, were first characterized in terms of extraction capability, breakthrough volume, retention volume, hold-up volume, number of theoretical plates, and retention factor. Finally, the device was applied to a real urine sample to check the method feasibility on a very complex matrix. The new paraben imprinted SPE sorbents, not yet present in the literature, potentially encourage the development of novel molecularly imprinted polymers (MIPs) to enhance the extraction efficiency, and consequently the overall analytical performances, when the trace quantification is required.
Collapse
|
18
|
Tartaglia A, Kabir A, Ulusoy S, Sperandio E, Piccolantonio S, Ulusoy HI, Furton KG, Locatelli M. FPSE-HPLC-PDA analysis of seven paraben residues in human whole blood, plasma, and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121707. [DOI: 10.1016/j.jchromb.2019.06.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
|
19
|
Synthesized carbon nanodots for simultaneous extraction of personal care products and organophosphorus pesticides in wastewater samples prior to LC-MS/MS determination. Anal Bioanal Chem 2019; 411:6173-6187. [DOI: 10.1007/s00216-019-02009-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
|
20
|
High performance liquid chromatographic determination of triclosan, triclocarban and methyl-triclosan in wastewater using mini-bar micro-solid phase extraction. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Determination of fifteen phenols in wastewater from petroleum refinery samples using a dispersive liquid—liquid microextraction and liquid chromatography with a photodiode array detector. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Santos LHMLM, Freixa A, Insa S, Acuña V, Sanchís J, Farré M, Sabater S, Barceló D, Rodríguez-Mozaz S. Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms. ENVIRONMENTAL RESEARCH 2019; 169:377-386. [PMID: 30529139 DOI: 10.1016/j.envres.2018.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 05/06/2023]
Abstract
A huge variety of organic microcontaminants are presently detected in freshwater ecosystems, but there is still a lack of knowledge about their interactions, either with living organisms or with other contaminants. Actually, carbon nanomaterials like fullerenes (C60) can act as carriers of organic microcontaminants, but their relevance in processes like bioaccumulation and biotransformation of organic microcontaminants by organisms is unknown. In this study, mesocosm experiments were used to assess the bioaccumulation and biotransformation of three organic microcontaminants (venlafaxine, diuron and triclosan) in river biofilms, and to understand how much the concomitant presence of C60 at environmental relevant concentrations could impact these processes. Results indicated that venlafaxine exhibited the highest bioaccumulation (13% of the initial concentration of venlafaxine in water), while biotransformation was more evident for triclosan (5% of the initial concentration of triclosan in water). Furthermore, biotransformation products such as methyl-triclosan were also present in the biofilm, with levels up to 42% of the concentration of accumulated triclosan. The presence of C60 did not involve relevant changes in the bioaccumulation and biotransformation of microcontaminants in biofilms, which showed similar patterns. Nevertheless, the study shows that a detailed evaluation of the partition of the organic microcontaminants and their transformation products in freshwater systems are important to better understand the impact of the co-existence of others microcontaminants, like carbon nanomaterials, in their possible routes of bioaccumulation and biotransformation.
Collapse
Affiliation(s)
- Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Josep Sanchís
- Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071 Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Department of Environmental Chemistry, IDAEA, CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
23
|
Vicario A, Solari M, Felici E, Aragón L, Bertolino F, Gomez MR. Molecular imprinting on surface of silica particles for the selective extraction of benzylparaben in flow system applied to cosmetics and water samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit Rev Anal Chem 2018; 49:160-186. [DOI: 10.1080/10408347.2018.1496010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. T. García-Córcoles
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - R. Rodríguez-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - B. de Alarcón-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - M. Çipa
- Department of Chemistry, University of Tirana, Tirana, Albania
| | | | - J.-M. Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - A. Zafra-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Mistry S, Wenthold PG. Mass spectrometric detection of the Gibbs reaction for phenol analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:947-953. [PMID: 29974598 DOI: 10.1002/jms.4261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
This paper describes a new method for detecting phenols, by reaction with Gibbs reagent to form indophenols, followed by mass spectrometric detection. Unlike the standard Gibbs reaction, which uses a colorometric approach, the use of mass spectrometry allows for simultaneous detection of differently substituted phenols. The procedure is demonstrated to work for a large variety of phenols without para-substitution. With para-substituted phenols, Gibbs products are still often observed, but the specific product depends on the substituent. For para groups with high electronegativity, such as methoxy or halogens, the reaction proceeds by displacement of the substituent. For groups with lower electronegativity, such as amino or alkyl groups, Gibbs products are observed that retain the substituent, indicating that the reaction occurs at the ortho or meta position. In mixtures of phenols, the relative intensities of the Gibbs products are proportional to the relative concentrations, and concentrations as low as 1 μmol/L can be detected. The method is applied to the qualitative analysis of commercial liquid smoke, and it is found that hickory and mesquite flavors have significantly different phenolic composition.
Collapse
Affiliation(s)
- Sabyasachy Mistry
- The Department of Chemistry and Biochemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Paul G Wenthold
- The Department of Chemistry and Biochemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Wang X, Wang M, Wang X, Du L, Chu F, Ding W, Gu H, Wang H. A novel naphthalene carboxylic acid-based ionic liquid mixed disperser combined with ultrasonic-enhanced in-situ metathesis reaction for preconcentration of triclosan and methyltriclosan in milk and eggs. ULTRASONICS SONOCHEMISTRY 2018; 47:57-67. [PMID: 29908607 DOI: 10.1016/j.ultsonch.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 05/06/2023]
Abstract
A microextraction method was developed based on utilization of a novel ionic liquid (IL) [C4MIM][NCA] as disperser and conventional ILs as extractor (IL-IL-DLLME). This method was integrated with an in-situ metathesis reaction to achieve high extraction efficiency by eliminating the loss of analytes in the discarded disperser after microextraction. Ultrasonic energy was compared to traditional mechanical shaking to accelerate the in-situ metathesis reaction. A 3-min ultrasonic treatment provided similar extraction efficiency as a 120-min mechanical shaking. Due to their strong acidity and lower solubility than traditional hydrophilic ILs, utilization of [C4MIM][NCA] in the IL-IL-DLLME procedure increased extraction recoveries (ERs) for triclosan (TCS) and methyltriclosan (MTCS) by 10-12% and also avoided an extra pH adjustment step. A series of operational parameters were optimized using single-factor screening and central composite design as follows: 65 µL extraction solvent, 150 µL [C4MIM][BF4] and [C4MIM][NCA] (132/18, v/v, μL) as dispersive solvent, 0.16 g NH4PF6 and 3.3 min ultrasonic time. Under optimized conditions with a fortification of 100 µg kg-1, ERs were 92.6-93.4% for TCS and 92.7-94.2% for MTCS in bovine milk and chicken egg samples. LODs for TCS and MTCS were 0.16-0.24 µg kg-1 and the enrichment factors were 21.8-23.1. Inter- and intra-day precisions had relative standard deviations of 3.3-5.4% for the optimized method. Overall, this newly developed IL-IL-DLLME method was effective for detecting trace levels of TCS and MTCS in real-world, animal-based foods. Prominent advantages of the new method include high precision and accuracy, high extraction efficiency, simple analytical operations, and no use of organic solvents making the procedure environmentally benign.
Collapse
Affiliation(s)
- Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mei Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuran Wang
- School of Materials Science & Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Liyang Du
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fangyu Chu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Weinan Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haidong Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
27
|
Pokryshkin SA, Kosyakov DS, Kozhevnikov AY, Lakhmanov DE, Ul’yanovskii NV. Highly Sensitive Determination of Chlorophenols in Sea Water by Gas Chromatography−Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818100088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Magnetic carbon nanotube composite for the preconcentration of parabens from water and urine samples using dispersive solid phase extraction. J Chromatogr A 2018; 1564:102-109. [DOI: 10.1016/j.chroma.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022]
|
29
|
Mashile GP, Mpupa A, Nomngongo PN. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in Environmental Water Samples. Molecules 2018; 23:molecules23061450. [PMID: 29904011 PMCID: PMC6100510 DOI: 10.3390/molecules23061450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227–256 mg g−1. Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L−1. The limits of detection and quantification ranged from 6–15 ng L−1 and 20–50 ng L−1, respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.
Collapse
Affiliation(s)
- Geaneth Pertunia Mashile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
30
|
Chen X, Zhuang J, Bester K. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment. Appl Microbiol Biotechnol 2018; 102:5403-5417. [PMID: 29732474 DOI: 10.1007/s00253-018-9029-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/27/2022]
Abstract
Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.
Collapse
Affiliation(s)
- Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
31
|
García-Valverde MT, Rosende M, Lucena R, Cárdenas S, Miró M. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode. Anal Chem 2018; 90:4783-4791. [DOI: 10.1021/acs.analchem.8b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Teresa García-Valverde
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - María Rosende
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, España
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
32
|
A simple and highly selective molecular imprinting polymer-based methodology for propylparaben monitoring in personal care products and industrial waste waters. J Pharm Biomed Anal 2018; 149:225-233. [DOI: 10.1016/j.jpba.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/23/2022]
|
33
|
Lu J, Mao H, Li H, Wang Q, Yang Z. Occurrence of and human exposure to parabens, benzophenones, benzotriazoles, triclosan and triclocarban in outdoor swimming pool water in Changsha, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1064-1069. [PMID: 28709372 DOI: 10.1016/j.scitotenv.2017.06.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
The entry of personal care products (PCPs) into the environment has, in turn, caused negative influences to human health. Public swimming pools are places that have attracted increasing concerns. In this article, 35 outdoor swimming pools in Changsha City (China) were examined in view of the occurrence of 22 target PCPs contaminants, which fall into four categories: preservatives, UV filters, anticorrosion agents, and antimicrobials. Out of them, 16 compounds were detected in the collected samples. The preservatives was the most dominant category, with methyl paraben being the top compound (a.v. 0.85μg/L) followed by p-hydroxybenzoic acid (a.v. 0.13μg/L) and 1H-benzotriazole (a.v. 0.14μg/L). The correlations among 22 PCPs and their four categories were evaluated using the nonparametric Spearman correlations analysis. In the source tracing investigation, the level of PCPs in swimming pools was determined to be primarily associated with the consumption of these products while weakly related to the filling waters. The quantitative risk assessment revealed that the PCPs concentrations were at a safe level.
Collapse
Affiliation(s)
- Jing Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Huiyue Mao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Qiang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
34
|
Czarczyńska-Goślińska B, Zgoła-Grześkowiak A, Jeszka-Skowron M, Frankowski R, Grześkowiak T. Detection of bisphenol A, cumylphenol and parabens in surface waters of Greater Poland Voivodeship. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:50-60. [PMID: 28854378 DOI: 10.1016/j.jenvman.2017.08.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 05/17/2023]
Abstract
Amounts of bisphenol A (BPA), 4-cumylphenol (CP) and 5 parabens - methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP) and benzylparaben (BzP) in Greater Poland Voivodeship's surface waters are reported. The water samples were collected from selected 15 locations in 2015-2016 at seven different time points: in March, June, August, and October 2015 and March, June, and September 2016. MP was found in every tested sample with typical concentration at several dozen nanograms per liter and the highest level almost 1600 ng L-1 in a sample collected from the Warta River in October 2015. The other four parabens were determined at considerably lower concentrations than MP at levels not exceeding 100 ng L-1 with PP found at the highest and BzP at the lowest levels. BPA was determined at similar concentration level to parabens - between 5 ng L-1 and 95 ng L-1 and CP was found only in a limited number of samples. Noticeable seasonal changes of paraben concentrations were found showing that for these compounds the pollutant release factor dominates both the biodegradation factor and the water volume factor. These seasonal changes were not observed for BPA and CP. Out of all determined parabens only MP was found at considerably higher concentrations than BPA. However, MP's endocrine properties are much lower than those of BPA posing a lower environmental impact potential than BPA. Influence of other (more endocrine disrupting) parabens is also relatively weak in comparison to BPA due to their considerably lower concentrations in the environment.
Collapse
Affiliation(s)
- Beata Czarczyńska-Goślińska
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Magdalena Jeszka-Skowron
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
35
|
Ahmadi F, Sparham C, Pawliszyn J. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:663-673. [PMID: 28715771 DOI: 10.1016/j.envpol.2017.06.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log KDOC) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (Kd), organic-carbon normalized partition coefficients (Log KOC), and DOC distribution coefficients (Log KDOC) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg-1, respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log KOW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment.
Collapse
Affiliation(s)
- Fardin Ahmadi
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Chris Sparham
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
36
|
Hou X, Wang L, Guo Y. Recent Developments in Solid-phase Microextraction Coatings for Environmental and Biological Analysis. CHEM LETT 2017. [DOI: 10.1246/cl.170366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Tang C, Tan J. Determination of Chlorophenols in Sewage Sludge and Soil by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with Ultrasonic-Assisted and Solid-Phase Extraction. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1327537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Wang GH, Lei YQ. Fabrication of Metal-Organic Framework MOF-177 Coatings on Stainless Steel Fibers for Head-Space Solid-Phase Microextraction of Phenols. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:270-275. [PMID: 28500355 DOI: 10.1007/s00128-017-2101-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Direct head-space solid-phase microextraction (HS-SPME) of phenols in water is usually difficult due to its polarity and solubility in aqueous matrix. Herein we report the fabrication of metal-organic framework MOF-177 coated stainless steel fiber for the HS-SPME of phenols (2-methylolphenol, 4-methylolphenol, 2,4-dimethylolphenol, 2,4-dichlorphenol, and 3-methyl-4-chlorophenol) in environmental water samples prior to the gas chromatography-mass spectrometry detection. Several parameters affecting the extraction efficiency were optimized in the experiment, including extraction temperature and time, the pH value and salt addition. The results indicated that the coated fiber gave low detection limits (0.015-0.043 μg L-1) and good repeatability with the RSD ranging from 2.8% to 5.5% for phenols. The recoveries are between 84.5%-98.6% with the spiked level of 10 μg L-1 for the real water samples. The established method may afford a kind of potential enrichment material and a reference method for the analysis of methylphenols in water samples.
Collapse
Affiliation(s)
- Guan-Hua Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, 510070, People's Republic of China.
| | - Yong-Qian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
39
|
Carter RAA, Joll CA. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review. J Environ Sci (China) 2017; 58:19-50. [PMID: 28774608 DOI: 10.1016/j.jes.2017.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed.
Collapse
Affiliation(s)
- Rhys A A Carter
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
40
|
Recycling polymer residues to synthesize magnetic nanocomposites for dispersive micro-solid phase extraction. Talanta 2017; 170:451-456. [DOI: 10.1016/j.talanta.2017.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
|
41
|
A simple and fast Double-Flow microfluidic device based liquid-phase microextraction (DF-µLPME) for the determination of parabens in water samples. Talanta 2017; 165:496-501. [DOI: 10.1016/j.talanta.2016.12.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 11/23/2022]
|
42
|
Scott PD, Coleman HM, Colville A, Lim R, Matthews B, McDonald JA, Miranda A, Neale PA, Nugegoda D, Tremblay LA, Leusch FDL. Assessing the potential for trace organic contaminants commonly found in Australian rivers to induce vitellogenin in the native rainbowfish (Melanotaenia fluviatilis) and the introduced mosquitofish (Gambusia holbrooki). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:105-120. [PMID: 28208107 DOI: 10.1016/j.aquatox.2017.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
In Australia, trace organic contaminants (TrOCs) and endocrine active compounds (EACs) have been detected in rivers impacted by sewage effluent, urban stormwater, agricultural and industrial inputs. It is unclear whether these chemicals are at concentrations that can elicit endocrine disruption in Australian fish species. In this study, native rainbowfish (Melanotaenia fluviatilis) and introduced invasive (but prevalent) mosquitofish (Gambusia holbrooki) were exposed to the individual compounds atrazine, estrone, bisphenol A, propylparaben and pyrimethanil, and mixtures of compounds including hormones and personal care products, industrial compounds, and pesticides at environmentally relevant concentrations. Vitellogenin (Vtg) protein and liver Vtg mRNA induction were used to assess the estrogenic potential of these compounds. Vtg expression was significantly affected in both species exposed to estrone at concentrations that leave little margin for safety (p<0.001). Propylparaben caused a small but statistically significant 3× increase in Vtg protein levels (p=0.035) in rainbowfish but at a concentration 40× higher than that measured in the environment, therefore propylparaben poses a low risk of inducing endocrine disruption in fish. Mixtures of pesticides and a mixture of hormones, pharmaceuticals, industrial compounds and pesticides induced a small but statistically significant increase in plasma Vtg in rainbowfish, but did not affect mosquitofish Vtg protein or mRNA expression. These results suggest that estrogenic activity represents a low risk to fish in most Australian rivers monitored to-date except for some species of fish at the most polluted sites.
Collapse
Affiliation(s)
- Philip D Scott
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - Heather M Coleman
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007, Australia
| | - Richard Lim
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007, Australia
| | - Benjamin Matthews
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - James A McDonald
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales, 2052, Australia
| | - Ana Miranda
- School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - Dayanthi Nugegoda
- School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax St. East, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New Zealand
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia.
| |
Collapse
|
43
|
Wu T, Li T, Liu Z, Guo Y, Dong C. Electrochemical sensor for sensitive detection of triclosan based on graphene/palladium nanoparticles hybrids. Talanta 2017; 164:556-562. [DOI: 10.1016/j.talanta.2016.12.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
|
44
|
Vila M, Celeiro M, Lamas JP, Garcia-Jares C, Dagnac T, Llompart M. Simultaneous in-vial acetylation solid-phase microextraction followed by gas chromatography tandem mass spectrometry for the analysis of multiclass organic UV filters in water. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:45-55. [PMID: 27421980 DOI: 10.1016/j.jhazmat.2016.06.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
UV filters are a class of emerging contaminants that are widely used in personal care products (PCPs) and that can be detected at low concentrations in the aquatic environment (ngL-1). Sensitive modern analytical methods are then mandatory to accurately analyze them. A methodology based on solid-phase-microextraction (SPME), considered as a 'Green Chemistry' technique, followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of 14 UV filters of different chemical nature in environmental and recreational waters. In-vial low-cost derivatization was carried out to improve chromatographic performance of phenolic compounds. The extraction parameters (fiber coating, extraction mode, and salt addition) were optimized by means of experimental designs in order to achieve reliable conditions. Finally, the SPME-GC-MS/MS method was validated in terms of linearity, accuracy and precision with LODs in the low ngL-1 level. Its application to the analysis of 28 different samples including sea, river, spa, swimming pool, and aquapark waters, enabled the detection of 11 target UV filters at concentration levels up to 540μgL-1, highlighting the presence of OCR in all analyzed samples and of 2EHMC (proposed to be considered as priority pollutant) in 79% of them.
Collapse
Affiliation(s)
- Marlene Vila
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Celeiro
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - J Pablo Lamas
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carmen Garcia-Jares
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Galician Institute for Food Quality, Agronomic and Agrarian Research Centre (INGACAL-CIAM), Unit of Organic Contaminants, E-15080 A Coruña, Spain
| | - Maria Llompart
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
45
|
Chammui Y. Rapid Analysis of some Endocrine Disruptor Chemicals Leaching from Baby Milk Feeding Bottles Using SPME and SDME Techniques. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0825-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Montaseri H, Forbes PB. A review of monitoring methods for triclosan and its occurrence in aquatic environments. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Yang H, Hu Y, Cheng H. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19266-19280. [PMID: 27364487 DOI: 10.1007/s11356-016-7128-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanan Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
48
|
Lores M, Llompart M, Alvarez-Rivera G, Guerra E, Vila M, Celeiro M, Lamas JP, Garcia-Jares C. Positive lists of cosmetic ingredients: Analytical methodology for regulatory and safety controls - A review. Anal Chim Acta 2016; 915:1-26. [PMID: 26995636 DOI: 10.1016/j.aca.2016.02.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Cosmetic products placed on the market and their ingredients, must be safe under reasonable conditions of use, in accordance to the current legislation. Therefore, regulated and allowed chemical substances must meet the regulatory criteria to be used as ingredients in cosmetics and personal care products, and adequate analytical methodology is needed to evaluate the degree of compliance. This article reviews the most recent methods (2005-2015) used for the extraction and the analytical determination of the ingredients included in the positive lists of the European Regulation of Cosmetic Products (EC 1223/2009): comprising colorants, preservatives and UV filters. It summarizes the analytical properties of the most relevant analytical methods along with the possibilities of fulfilment of the current regulatory issues. The cosmetic legislation is frequently being updated; consequently, the analytical methodology must be constantly revised and improved to meet safety requirements. The article highlights the most important advances in analytical methodology for cosmetics control, both in relation to the sample pretreatment and extraction and the different instrumental approaches developed to solve this challenge. Cosmetics are complex samples, and most of them require a sample pretreatment before analysis. In the last times, the research conducted covering this aspect, tended to the use of green extraction and microextraction techniques. Analytical methods were generally based on liquid chromatography with UV detection, and gas and liquid chromatographic techniques hyphenated with single or tandem mass spectrometry; but some interesting proposals based on electrophoresis have also been reported, together with some electroanalytical approaches. Regarding the number of ingredients considered for analytical control, single analyte methods have been proposed, although the most useful ones in the real life cosmetic analysis are the multianalyte approaches.
Collapse
Affiliation(s)
- Marta Lores
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain.
| | - Maria Llompart
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - Gerardo Alvarez-Rivera
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - Eugenia Guerra
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - Marlene Vila
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - Maria Celeiro
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - J Pablo Lamas
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| | - Carmen Garcia-Jares
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analitica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Campus VIDA. Santiago de Compostela, E-15782, Spain
| |
Collapse
|
49
|
Feng J, Sun M, Bu Y, Luo C. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta 2016; 148:313-20. [DOI: 10.1016/j.talanta.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
50
|
Zgoła-Grześkowiak A, Jeszka-Skowron M, Czarczyńska-Goślińska B, Grześkowiak T. Determination of Parabens in Polish River and Lake Water as a Function of Season. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1120739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|