1
|
Le Z, Ramos MC, Shou Y, Li RR, Cheng HS, Jang CJ, Liu L, Xue C, Li X, Liu H, Lim CT, Tan NS, White AD, Charles CJ, Chen Y, Liu Z, Tay A. Bioactive sucralfate-based microneedles promote wound healing through reprogramming macrophages and protecting endogenous growth factors. Biomaterials 2024; 311:122700. [PMID: 38996671 DOI: 10.1016/j.biomaterials.2024.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Impaired wound healing due to insufficient cell proliferation and angiogenesis is a significant physical and psychological burden to patients worldwide. Therapeutic delivery of exogenous growth factors (GFs) at high doses for wound repair is non-ideal as GFs have poor stability in proteolytic wound environments. Here, we present a two-stage strategy using bioactive sucralfate-based microneedle (SUC-MN) for delivering interleukin-4 (IL-4) to accelerate wound healing. In the first stage, SUC-MN synergistically enhanced the effect of IL-4 through more potent reprogramming of pro-regenerative M2-like macrophages via the JAK-STAT pathway to increase endogenous GF production. In the second stage, sucralfate binds to GFs and sterically disfavors protease degradation to increase bioavailability of GFs. The IL-4/SUC-MN technology accelerated wound healing by 56.6 % and 46.5 % in diabetic mice wounds and porcine wounds compared to their respective untreated controls. Overall, our findings highlight the innovative use of molecular simulations to identify bioactive ingredients and their incorporation into microneedles for promoting wound healing through multiple synergistic mechanisms.
Collapse
Affiliation(s)
- Zhicheng Le
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Mayk Caldas Ramos
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Renee R Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Clarisse Jm Jang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Ling Liu
- Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Chencheng Xue
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Andrew D White
- Department of Chemical Engineering, University of Rochester, 14627, USA
| | - Christopher John Charles
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, 119228, Singapore; Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijia Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore; Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore; NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore.
| |
Collapse
|
2
|
Cheung CV, Atube KJ, Colonna NA, Carter GJ, Marchena T, McCarthy S, Krusen KE, McCain RS, Frizzell N, Gower RM. A microparticle delivery system for extended release of all-trans retinoic acid and its impact on macrophage insulin-like growth factor 1 release and myotube formation. Int J Pharm 2024; 666:124821. [PMID: 39396656 DOI: 10.1016/j.ijpharm.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Muscle atrophy secondary to disuse, aging, or illness increases the risk of injury, prolonged recovery, and permanent disability. The recovery process involves macrophages and their secretions, such as insulin-like growth factor 1 (IGF-1), which direct muscle to regenerate and grow. Retinoic acid receptor (RAR) activation in macrophages increases IGF-1 expression and can be achieved with all-trans retinoic acid (ATRA). However, poor bioavailability limits its clinical application. Thus, we encapsulated ATRA into poly(lactide-co-glycolide) microparticles (ATRA-PLG) to maintain bioactivity and achieve extended release. ATRA-PLG induces IGF-1 release by RAW 264.7 macrophages, and conditioned media from these cells enhances C2C12 myotube formation through IGF-1. Additionally, ATRA released from ATRA-PLG enhances myotube formation in the absence of macrophages. Toward clinical translation, we envision that ATRA-PLG will be injected in the vicinity of debilitated muscle where it can be taken up by macrophages and induce IGF-1 release over a predetermined therapeutic window. Along these lines, we demonstrate that ATRA-PLG microparticles are readily taken up by bone marrow-derived macrophages and reside within the cytosol for at least 12 days with no toxicity. Interestingly, ATRA-PLG induced IGF-1 secretion by thioglycolate-elicited macrophages, but not bone marrow derived macrophages. We found that the RAR isoforms present in lysate differed between the macrophages studied, which could explain the different IGF-1 responses to ATRA. Given that ATRA-PLG enhances myotube formation directly (through ATRA) and indirectly (through macrophage IGF-1) this study supports the further testing of this promising pharmaceutical using rodent models of muscle regeneration and growth.
Collapse
Affiliation(s)
- Candice V Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Nicholas A Colonna
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Griffin J Carter
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Tristan Marchena
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Samantha McCarthy
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kelsey E Krusen
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - R Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA; Veterans Affairs Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
3
|
Herb M, Schatz V, Hadrian K, Hos D, Holoborodko B, Jantsch J, Brigo N. Macrophage variants in laboratory research: most are well done, but some are RAW. Front Cell Infect Microbiol 2024; 14:1457323. [PMID: 39445217 PMCID: PMC11496307 DOI: 10.3389/fcimb.2024.1457323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages play a pivotal role in the innate immune response. While their most characteristic function is phagocytosis, it is important not to solely characterize macrophages by this activity. Their crucial roles in body development, homeostasis, repair, and immune responses against pathogens necessitate a broader understanding. Macrophages exhibit remarkable plasticity, allowing them to modify their functional characteristics in response to the tissue microenvironment (tissue type, presence of pathogens or inflammation, and specific signals from neighboring cells) swiftly. While there is no single defined "macrophage" entity, there is a diverse array of macrophage types because macrophage ontogeny involves the differentiation of progenitor cells into tissue-resident macrophages, as well as the recruitment and differentiation of circulating monocytes in response to tissue-specific cues. In addition, macrophages continuously sense and respond to environmental cues and tissue conditions, adjusting their functional and metabolic states accordingly. Consequently, it is of paramount importance to comprehend the heterogeneous origins and functions of macrophages employed in in vitro studies, as each available in vitro macrophage model is associated with specific sets of strengths and limitations. This review centers its attention on a comprehensive comparison between immortalized mouse macrophage cell lines and primary mouse macrophages. It provides a detailed analysis of the strengths and weaknesses inherent in these in vitro models. Finally, it explores the subtle distinctions between diverse macrophage cell lines, offering insights into numerous factors beyond the model type that can profoundly influence macrophage function.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Valentin Schatz
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bohdan Holoborodko
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natascha Brigo
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Ni C, Liao W, Nie H, Ge R, Liu R, Zou X, Yuan Z, Yan F. Neural epidermal growth factor-like 1 protein (Nell-1) alleviates periodontal tissue destruction in periodontitis by regulating the ratio of M2/M1 macrophage phenotypes. Int Immunopharmacol 2024; 137:112522. [PMID: 38908089 DOI: 10.1016/j.intimp.2024.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Periodontitis is a common oral disease with high prevalence worldwide. Neural epidermal growth factor-like 1 protein (Nell-1) has recently been reported to have anti-inflammation effects and may be a drug candidate for osteoarthritis. However, its immunotherapeutic effects in periodontitis remain unknown. Therefore, this study aimed to investigate the effects of Nell-1 on periodontitis in terms of macrophage polarization and analyze its possible underlying mechanism. METHODS A rat ligation-induced experimental periodontitis model was established and locally injected with Nell-1 (n = 6/group). Periodontal tissue destruction and macrophage polarization in vivo were analyzed using micro-CT, histology analysis, and western blot. Enzyme-linked immunosorbent assay was used to evaluate serum inflammatory cytokines. Then, the RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS), Nell-1, and the c-Jun N-terminal kinases (JNK) inhibitor (SP600125). RT-PCR, western blot, and flow cytometry were performed to further analyze the effect of Nell-1 on macrophage polarization and the underlying mechanism in vitro. RESULTS Local treatment with Nell-1 significantly alleviated the destruction of alveolar bone and fibers in periodontitis, and upregulated the ratio of M2/M1 macrophages in periodontal tissues (P < 0.05). In vitro, Nell-1 at the concentrations of 200 and 500 ng/mL could significantly inhibit the expression of M1-related inflammatory factors in LPS-stimulated macrophages, and increase the expression of M2-related markers, regulating the macrophage phenotype switch into M2 (P < 0.05). The mRNA of JNK and relative protein level of phospho-JNK/JNK were also upregulated by Nell-1 (P < 0.05). Additionally, the JNK inhibitor (SP600125) could reverse the effect of Nell-1 on macrophage polarization (P < 0.05). CONCLUSIONS Nell-1 could modulate the ratio of M2/M1 macrophages possibly through the JNK/MAPK signaling pathway, subsequently attenuating the inflammation and destruction of periodontal tissues caused by periodontitis.
Collapse
Affiliation(s)
- Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Ruiyang Ge
- School of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Rong Liu
- School of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
5
|
Dal-Fabbro R, Yu M, Mei L, Sasaki H, Schwendeman A, Bottino MC. Synthetic high-density lipoprotein (sHDL): a bioinspired nanotherapeutics for managing periapical bone inflammation. Int J Oral Sci 2024; 16:50. [PMID: 38956025 PMCID: PMC11219839 DOI: 10.1038/s41368-024-00316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide-eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ling Mei
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Mu K, Kitts DD. Gallic acid mitigates intestinal inflammation and loss of tight junction protein expression using a 2D-Caco-2 and RAW 264.7 co-culture model. Arch Biochem Biophys 2024; 756:109978. [PMID: 38636693 DOI: 10.1016/j.abb.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
A 2D-intestinal epithelial Caco-2/RAW 264.7 macrophage co-culture model was developed to demonstrate the relative efficacy of different phenolic acids to mitigate changes in Caco-2 epithelial cell redox state initiated both directly by autoxidation products, H2O2, and indirectly through cell communication events originating from cytokine stimulated macrophage. An inducer cocktail (lipopolysaccharide + interferon gamma) was used to activate RAW 264.7 cells in the 2D- Caco-2/RAW co-culture and intracellular changes in Caco-2 cell redox signaling occurred in response to positive changes (p < 0.05) in inflammatory biomarkers derived in macrophage that included IL-6, TNF-α, nitric oxide and peroxynitrite, respectively. Phenolic acids varied in relative capacity to reduce NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in cocktail inflamed induced macrophage. This response in addition to the relative predisposition of gallic acid (GA) to undergo autoxidation to generate H2O2 activity (p < 0.05), culminated in downstream cell signaling in Caco-2 nuclear factor erythroid 2-related factor (Nrf2) activity (increase 26.9 %), altered monolayer integrity (increase 33.7 %), and release of interleukin 8 (IL-8) (decrease 80.5 %) (p < 0.05). It can be concluded that the co-culture model described herein was useful to assess the importance of communication between cytokine stimulated macrophage and intestinal cells. Moreover, the relative unique efficacy of GA, compared to other phenolic acids tested to protect against activated macrophage induced changes related to intestinal dysfunction were particularly relevant to epithelial redox signaling, intestinal permeability and regulation of tight junction proteins. This study concludes that phenolic acids are not equal in the capacity to protect against intestinal cell dysfunction despite some indication of biological activity.
Collapse
Affiliation(s)
- Kaiwen Mu
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, V6T-1Z4, B.C, Canada
| | - David D Kitts
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, V6T-1Z4, B.C, Canada.
| |
Collapse
|
7
|
Roy S, Roy S, Halder S, Jana K, Ukil A. Leishmania exploits host cAMP/EPAC/calcineurin signaling to induce an IL-33-mediated anti-inflammatory environment for the establishment of infection. J Biol Chem 2024; 300:107366. [PMID: 38750790 PMCID: PMC11208913 DOI: 10.1016/j.jbc.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 06/10/2024] Open
Abstract
Host anti-inflammatory responses are critical for the progression of visceral leishmaniasis, and the pleiotropic cytokine interleukin (IL)-33 was found to be upregulated in infection. Here, we documented that IL-33 induction is a consequence of elevated cAMP-mediated exchange protein activated by cAMP (EPAC)/calcineurin-dependent signaling and essential for the sustenance of infection. Leishmania donovani-infected macrophages showed upregulation of IL-33 and its neutralization resulted in decreased parasite survival and increased inflammatory responses. Infection-induced cAMP was involved in IL-33 production and of its downstream effectors PKA and EPAC, only the latter was responsible for elevated IL-33 level. EPAC initiated Rap-dependent phospholipase C activation, which triggered the release of intracellular calcium followed by calcium/calmodulin complex formation. Screening of calmodulin-dependent enzymes affirmed involvement of the phosphatase calcineurin in cAMP/EPAC/calcium/calmodulin signaling-induced IL-33 production and parasite survival. Activated calcineurin ensured nuclear localization of the transcription factors, nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha required for IL-33 transcription, and we further confirmed this by chromatin immunoprecipitation assay. Administering specific inhibitors of nuclear factor of activated T cell 1 and hypoxia-inducible factor 1 alpha in BALB/c mouse model of visceral leishmaniasis decreased liver and spleen parasite burden along with reduction in IL-33 level. Splenocyte supernatants of inhibitor-treated infected mice further documented an increase in tumor necrosis factor alpha and IL-12 level with simultaneous decrease of IL-10, thereby indicating an overall disease-escalating effect of IL-33. Thus, this study demonstrates that cAMP/EPAC/calcineurin signaling is crucial for the activation of IL-33 and in effect creates anti-inflammatory responses, essential for infection.
Collapse
Affiliation(s)
- Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India.
| |
Collapse
|
8
|
Ma N, Li R, You S, Zhang DJ. Fermentation enrichment, structural characterization and immunostimulatory effects of β-glucan from Quinoa. Int J Biol Macromol 2024; 267:131162. [PMID: 38574931 DOI: 10.1016/j.ijbiomac.2024.131162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
We developed an efficient mixed-strain co-fermentation method to increase the yield of quinoa β-glucan (Q+). Using a 1:1 mass ratio of highly active dry yeast and Streptococcus thermophilus, solid-to-liquid ratio of 1:12 (g/mL), inoculum size of 3.8 % (mass fraction), fermentation at 32 °C for 27 h, we achieved the highest β-glucan yield of (11.13 ± 0.80)%, representing remarkable 100.18 % increase in yield compared to quinoa β-glucan(Q-) extracted using hot water. The structure of Q+ and Q- were confirmed through Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. Q+ contained 41.66 % β-glucan, 3.93 % protein, 2.12 % uronic acid; Q- contained 37.21 % β-glucan, 11.49 % protein, and 1.73 % uronic acid. The average molecular weight of Q+(75.37 kDa) was lower than that of Q- (94.47 kDa). Both Q+ and Q- promote RAW264.7 cell proliferation without displaying toxicity. They stimulate RAW264.7 cells through the NF-κB and MAPK signaling pathways, primarily inducing NO and pro-inflammatory cytokines by upregulating CD40 expression. Notably, Q+ exhibited stronger immunostimulatory activity compared to Q-. In summary, the fermentation enrichment method yields higher content of quinoa β-glucan with increased purity and stronger immunostimulatory properties. Further study of its bioimmunological activity and structure-activity relationship may contribute to the development of new immunostimulants.
Collapse
Affiliation(s)
- Nan Ma
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Rong Li
- Natural product research center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea.
| | - Dong-Jie Zhang
- College of Food science, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China.
| |
Collapse
|
9
|
Belaid M, Javorovic J, Pastorin G, Vllasaliu D. Development of an in vitro co-culture model using Caco-2 and J774A.1 cells to mimic intestinal inflammation. Eur J Pharm Biopharm 2024; 197:114243. [PMID: 38432601 DOI: 10.1016/j.ejpb.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
In vitro models that mimic the pathophysiology in vivo are important tools to study mechanisms of disease and assess the pharmacology and toxicity of drugs. In this work, we report the development of a novel model of intestinal inflammation. This model is based on the co-culture of intestinal epithelial Caco-2 cells and murine J774A.1 macrophages. The model is shown to mimic the intestinal barrier in both healthy and inflamed state. In the healthy state, without external stimulation, Caco-2 and J774A.1 cells were co-cultured in one system without affecting the barrier integrity of intestinal epithelial cells and without inducing release of cytokines from macrophages. To mimic the inflamed intestine, Caco-2 cells were primed with an optimised cytokine cocktail (TNF-⍺, IFN-γ and IL-1β) and J774A.1 cells were pre-exposed to lipopolysaccharide (LPS) and IFN-γ for 24 h before combining the two cell lines into co-culture. In these conditions, a significant disruption of the epithelial barrier and an increase in pro-inflammatory cytokine (TNF-⍺ and IL-6) levels released from macrophages were detected. The data also show that inflammation in the co-culture model was temporary and reversible upon the removal of the inflammatory stimulus. This new in vitro model could be a valuable tool for investigating the safety and efficacy of drugs in the context of intestinal inflammation and provides advantages over other reported co-culture models of intestinal inflammation in terms of cost and simplicity.
Collapse
Affiliation(s)
- Mona Belaid
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, United Kingdom; Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jana Javorovic
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, United Kingdom
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Driton Vllasaliu
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
10
|
Zhang H, Mao Y, Nie Z, Li Q, Wang M, Cai C, Hao W, Shen X, Gu N, Shen W, Song H. Iron Oxide Nanoparticles Engineered Macrophage-Derived Exosomes for Targeted Pathological Angiogenesis Therapy. ACS NANO 2024; 18:7644-7655. [PMID: 38412252 PMCID: PMC10938920 DOI: 10.1021/acsnano.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Engineering exosomes with nanomaterials usually leads to the damage of exosomal membrane and bioactive molecules. Here, pathological angiogenesis targeting exosomes with magnetic imaging, ferroptosis inducing, and immunotherapeutic properties is fabricated using a simple coincubation method with macrophages being the bioreactor. Extremely small iron oxide nanoparticle (ESIONPs) incorporated exosomes (ESIONPs@EXO) are acquired by sorting the secreted exosomes from M1-polarized macrophages induced by ESIONPs. ESIONPs@EXO suppress pathological angiogenesis in vitro and in vivo without toxicity. Furthermore, ESIONPs@EXO target pathological angiogenesis and exhibit an excellent T1-weighted contrast property for magnetic resonance imaging. Mechanistically, ESIONPs@EXO induce ferroptosis and exhibit immunotherapeutic ability toward pathological angiogenesis. These findings demonstrate that a pure biological method engineered ESIONPs@EXO using macrophages shows potential for targeted pathological angiogenesis therapy.
Collapse
Affiliation(s)
- Haorui Zhang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Yu Mao
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Zheng Nie
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Qing Li
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Mengzhu Wang
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Chang Cai
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Weiju Hao
- University
of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Xi Shen
- Department
of Ophthalmology, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200020, P.R. China
| | - Ning Gu
- Nanjing
Key Laboratory for Cardiovascular Information and Health Engineering
Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital,
Medical School, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Shen
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Hongyuan Song
- Department
of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Blackman SA, Miles D, Suresh J, Calve S, Bryant SJ. Cell- and Serum-Derived Proteins Act as DAMPs to Activate RAW 264.7 Macrophage-like Cells on Silicone Implants. ACS Biomater Sci Eng 2024; 10:1418-1434. [PMID: 38319825 PMCID: PMC11316276 DOI: 10.1021/acsbiomaterials.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Protein adsorption after biomaterial implantation is the first stage of the foreign body response (FBR). However, the source(s) of the adsorbed proteins that lead to damaged associated molecular patterns (DAMPs) and induce inflammation have not been fully elucidated. This study examined the effects of different protein sources, cell-derived (from a NIH/3T3 fibroblast cell lysate) and serum-derived (from fetal bovine serum), which were compared to implant-derived proteins (after a 30 min subcutaneous implantation in mice) on activation of RAW 264.7 cells cultured in minimal (serum-free) medium. Both cell-derived and serum-derived protein sources when preadsorbed to either tissue culture polystyrene or medical-grade silicone induced RAW 264.7 cell activation. The combination led to an even higher expression of pro-inflammatory cytokine genes and proteins. Implant-derived proteins on silicone explants induced a rapid inflammatory response that then subsided more quickly and to a greater extent than the studies with in vitro cell-derived or serum-derived protein sources. Proteomic analysis of the implant-derived proteins identified proteins that included cell-derived and serum-derived, but also other proteinaceous sources (e.g., extracellular matrix), suggesting that the latter or nonproteinaceous sources may help to temper the inflammatory response in vivo. These findings indicate that both serum-derived and cell-derived proteins adsorbed to implants can act as DAMPs to drive inflammation in the FBR, but other protein sources may play an important role in controlling inflammation.
Collapse
Affiliation(s)
- Samuel A. Blackman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Dalton Miles
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science and Engineering Program, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80300-0613, USA
| |
Collapse
|
12
|
Khandibharad S, Singh S. Single-cell ATAC sequencing identifies sleepy macrophages during reciprocity of cytokines in L. major infection. Microbiol Spectr 2024; 12:e0347823. [PMID: 38299832 PMCID: PMC10913457 DOI: 10.1128/spectrum.03478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
13
|
Liao W, Ni C, Ge R, Li Y, Jiang S, Yang W, Yan F. Nel-like Molecule Type 1 Combined with Gold Nanoparticles Modulates Macrophage Polarization, Osteoclastogenesis, and Oral Microbiota in Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8442-8458. [PMID: 38335323 DOI: 10.1021/acsami.3c17862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The disruption of host-microbe homeostasis and uncontrolled inflammatory response have been considered as vital causes for developing periodontitis, subsequently leading to an imbalance between the bone and immune system and the collapse of bone homeostasis. Consequently, strategies to modulate the immune response and bone metabolization have become a promising approach to prevent and treat periodontitis. In this study, we investigated the cooperative effects of Nel-like molecule type 1 (Nell-1) and gold nanoparticles (AuNPs) on macrophage polarization, osteoclast differentiation, and the corresponding functions in an experimental model of periodontitis in rats. Nell-1-combined AuNPs in in vitro studies were found to reduce the production of inflammatory factors (TNF-α, p < 0.0001; IL-6, p = 0.0012), modulate the ratio of M2/M1 macrophages by inducing macrophage polarization into the M2 phenotype, and inhibit cell fusion, maturation, and activity of osteoclasts. Furthermore, the local application of Nell-1-combined AuNPs in in vivo studies resulted in alleviation of damages to the periodontal and bone tissues, modulation of macrophage polarization and the activity of osteoclasts, and alteration of the periodontal microbiota, in which the relative abundance of the probiotic Bifidobacterium increased (p < 0.05). These findings reveal that Nell-1-combined AuNPs could be a promising drug candidate for the prevention and treatment of periodontitis. However, Nell-1-combined AuNPs did not show organ toxicity or impair the integrity of intestinal epithelium but alter the gut microbiota, leading to the dysbiosis of gut microbiota. The adverse impact of changes in gut microbiota needs to be further investigated. Nonetheless, this study provides a novel perspective and direction for the biological safety assessment of biomaterials in oral clinical applications.
Collapse
Affiliation(s)
- Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Ruiyang Ge
- Department of Periodontology, Hospital of Stomatology, Zunyi Medical University, Zunyi 563099, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-Level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; Shenzhen Clinical Research Center for Oral Diseases, Shenzhen 5180036, Guangdong, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
15
|
Jiang Y, Fang H, Lin S, Chen Y, Fu Y, Tu Y, Li Q, Hui Z. Imperatorin inhibits LPS-induced bone marrow-derived macrophages activation by decreased NF-κB p65 phosphorylation. Immunopharmacol Immunotoxicol 2023; 45:581-588. [PMID: 36995149 DOI: 10.1080/08923973.2023.2196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Imperatorin (IMP) is a secondary metabolite of plants and is the most abundant in Angelica dahurica. Previous studies showed that IMP exhibited anti-inflammatory activity in RAW264.7 cell line. Here, we aim to investigate the roles and mechanisms of IMP in bone marrow-derived macrophages (BMDMs), in view of the difference between primary macrophages and cell lines. METHODS BMDMs were stimulated with LPS for the inflammation model. Flow cytometry was performed with BMDMs treated with different doses of IMP (0-20mg/L) within staining Annexin V-APC for 5 min. The cytokines and inflammatory mediators were detected by RT-PCR or ELISA. RNA-seq was performed in IMP-treated BMDMs or control, stimulated with LPS for 6h. Western blotting is carried out to determine the phosphorylation of p65, ERK1/2, JNK1, p38, and Akt. RESULTS Our results showed that IMP inhibited IL-12p40, IL-6, TNF-α and IL-1β in LPS-stimulated BMDMs. RNA-seq analysis suggested that IMP inhibits Toll-like receptor signaling pathway (KEGG), TNF signaling pathway (KEGG), NF-κB signaling pathway (KEGG), Inflammatory Response (GO). In addition, IMP inhibited myd88, tpl2, cxcl1, ptgs2(COX-2) expression in mRNA level. Finally, we found decreased phosphorylation of NF-κB p65 in IMP-treated BMDMs, after stimulated with LPS. CONCLUSION IMP inhibits IL-12p40, IL-6, TNF-α, and IL-1β expression in LPS-stimulated BMDMs. IMP inhibits macrophage activation, which maybe resulted in decreased phosphorylation of NF-κB p65. Furthermore, IMP may protect against the progress of inflammatory-related diseases.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hui Fang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Siqi Lin
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yunyun Chen
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuanzheng Fu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Yifan Tu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
| | - Qiang Li
- The Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoyuan Hui
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, China
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| |
Collapse
|
16
|
Ye K, Zhang X, Shangguan L, Liu X, Nie X, Qiao Y. Manganese-Implanted Titanium Modulates the Crosstalk between Bone Marrow Mesenchymal Stem Cells and Macrophages to Improve Osteogenesis. J Funct Biomater 2023; 14:456. [PMID: 37754870 PMCID: PMC10531852 DOI: 10.3390/jfb14090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient in various physiological processes, but its functions in bone metabolism remain undefined. This is partly due to the interplay between immune and bone cells because Mn plays a central role in the immune system. In this study, we utilized the plasma immersion ion implantation and deposition (PIII&D) technique to introduce Mn onto the titanium surface. The results demonstrated that Mn-implanted surfaces stimulated the shift of macrophages toward the M1 phenotype and had minimal effects on the osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs) under mono-culture conditions. However, they promoted the M2 polarization of macrophages and improved the osteogenic activities of mBMSCs under co-culture conditions, indicating the importance of the crosstalk between mBMSCs and macrophages mediated by Mn in osteogenic activities. This study provides a positive incentive for the application of Mn in the field of osteoimmunology.
Collapse
Affiliation(s)
- Kuicai Ye
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| | - Li Shangguan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- School of Materials Science, Shanghai University, Shanghai 200444, China
| | - Xingdan Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshuang Nie
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (K.Y.)
| |
Collapse
|
17
|
Stanca L, Geicu OI, Serban AI, Dinischiotu A. Interplay of Oxidative Stress, Inflammation, and Autophagy in RAW 264.7 Murine Macrophage Cell Line Challenged with Si/SiO 2 Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5083. [PMID: 37512357 PMCID: PMC10385521 DOI: 10.3390/ma16145083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Quantum dots (QDs) with photostable fluorescence are recommended for imaging applications; however, their effect on living cells is incompletely understood. We aimed to elucidate the RAW 264.7 murine macrophage cell line's response to the Si/SiO2 QDs challenge. Cells were exposed to 5 and 15 μg/mL Si/SiO2 QDs for 6 h, 12 h, and 24 h. Cell metabolic activity and viability were assessed by MTT, live/dead, and dye-exclusion assays. Oxidative stress and membrane integrity were assessed by anion superoxide, malondialdehyde, and lactate dehydrogenase activity evaluations. Antioxidative enzyme activities were analyzed by kinetic spectrophotometric methods. Cytokines were analyzed with an antibody-based magnetic bead assay, PGE2 was assessed by ELISA, and Nrf-2, Bcl-2, Beclin 1, and the HSPs were analyzed by western blot. Autophagy levels were highlighted by fluorescence microscopy. The average IC50 dose for 6, 12, and 24 h was 16.1 ± 0.7 μg/mL. Although glutathione S-transferase and catalase were still upregulated after 24 h, superoxide dismutase was inhibited, which together allowed the gradual increase of malondialdehyde, anion superoxide, nitric oxide, and the loss of membrane integrity. G-CSF, IL-6, TNF-α, MIP-1β, MCP-1, Nrf-2, PGE2, and RANTES levels, as well as autophagy processes, were increased at all time intervals, as opposed to caspase 1 activity, COX-2, HSP60, and HSP70, which were only upregulated at the 6-h exposure interval. These results underscore that Si/SiO2 QDs possess significant immunotoxic effects on the RAW 264.7 macrophage cell line and stress the importance of developing effective strategies to mitigate their adverse impact.
Collapse
Affiliation(s)
- Loredana Stanca
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Ovidiu Ionut Geicu
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Andreea Iren Serban
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
18
|
Cheng HM, Xing M, Zhou YP, Zhang W, Liu Z, Li L, Zheng Z, Ma Y, Li P, Liu X, Li P, Xu X. HSP90β promotes osteoclastogenesis by dual-activation of cholesterol synthesis and NF-κB signaling. Cell Death Differ 2023; 30:673-686. [PMID: 36198833 PMCID: PMC9984383 DOI: 10.1038/s41418-022-01071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein 90β (Hsp90β, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90β in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90β exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90β. Hsp90β binds to Ikkβ and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90β increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90β alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90β is a promising druggable target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Mingming Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Weitao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zeyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lan Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510000, China.
| |
Collapse
|
19
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
20
|
Abstract
In light of the demonstrated antagonism of Wnt5A signaling toward the growth of several bacterial pathogens, it was important to study the influence of Wnt5A on gut-resident bacteria and its outcome. Here, we demonstrate that in contrast to inhibiting the survival of the established gut pathogen Salmonella enterica, Wnt5A clearly promotes the survival of the common gut commensals Enterococcus faecalis and Lactobacillus rhamnosus within macrophages through a self-perpetuating Wnt5A-actin axis. A Wnt5A-actin axis furthermore regulates the subsistence of the natural bacterial population of the Peyer's patches, as is evident from the diminution in the countable bacterial CFU therein through the application of Wnt5A signaling and actin assembly inhibitors. Wnt5A dependency of the gut-resident bacterial population is also manifested in the notable difference between the bacterial diversities associated with the feces and Peyer's patches of Wnt5A heterozygous mice, which lack a functional copy of the Wnt5A gene, and their wild-type counterparts. Alterations in the gut commensal bacterial population resulting from either the lack of a copy of the Wnt5A gene or inhibitor-mediated attenuation of Wnt5A signaling are linked with significant differences in cell surface major histocompatibility complex (MHC) II levels and regulatory versus activated CD4 T cells associated with the Peyer's patches. Taken together, our findings reveal the significance of steady state Wnt5A signaling in shaping the gut commensal bacterial population and the T cell repertoire linked to it, thus unveiling a crucial control device for the maintenance of gut bacterial diversity and T cell homeostasis. IMPORTANCE Gut commensal bacterial diversity and T cell homeostasis are crucial entities of the host innate immune network, yet the molecular details of host-directed signaling pathways that sustain the steady state of gut bacterial colonization and T cell activation remain unclear. Here, we describe the protective role of a Wnt5A-actin axis in the survival of several gut bacterial commensals and its necessity in shaping gut bacterial colonization and the associated T cell repertoire. This study opens up new avenues of investigation into the role of the Wnt5A-actin axis in protection of the gut from dysbiosis-related inflammatory disorders.
Collapse
|
21
|
Sapach AY, Sindeeva OA, Nesterchuk MV, Tsitrina AA, Mayorova OA, Prikhozhdenko ES, Verkhovskii RA, Mikaelyan AS, Kotelevtsev YV, Sukhorukov GB. Macrophage In Vitro and In Vivo Tracking via Anchored Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51579-51592. [PMID: 36367877 DOI: 10.1021/acsami.2c12004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 μm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 μg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 μm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.
Collapse
Affiliation(s)
- Anastasiia Yu Sapach
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Sechenov First State Medical University, Moscow 119991, Russia
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
| | | | - Alexandra A Tsitrina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | - Arsen S Mikaelyan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143005, Russia
- Siberian State Medical University, Tomsk 634050, Russia
- Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
22
|
Lee H, Krishnan M, Kim M, Yoon YK, Kim Y. Rhamnetin, a Natural Flavonoid, Ameliorates Organ Damage in a Mouse Model of Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis. Int J Mol Sci 2022; 23:12895. [PMID: 36361685 PMCID: PMC9656386 DOI: 10.3390/ijms232112895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
In sepsis, the persistence of uncontrolled inflammatory response of infected host cells eventually leads to severe lung and organ failure and, ultimately, death. Carbapenem-resistant Acinetobacter baumannii (CRAB), causative bacteria of sepsis and lung failure in acute cases, belongs to a group of critical pathogens that cannot be eradicated using the currently available antibiotics. This underlines the necessity of developing new modes of therapeutics that can control sepsis at the initial stages. In this study, we investigated the anti-inflammatory activities in vitro and in vivo and the antiseptic effects of rhamnetin, a naturally occurring flavonoid. We found that among its isoforms, the potency of rhamnetin was less explored but rhamnetin possessed superior anti-inflammatory activity with least cytotoxicity. Rhamnetin showed significant anti-inflammatory effects in lipopolysaccharide-, CRAB-, and Escherichia coli (E. coli)-stimulated mouse macrophages by inhibiting the release of interleukin-6 and nitric oxide. In a mouse model of sepsis infected with clinically isolated CRAB or E. coli, rhamnetin significantly reduced the bacterial burden in the organs. In addition, normalized pro-inflammatory cytokine levels in lung lysates and histological analysis of lung tissue indicated alleviation of lung damage. This study implies that a potent natural product such as rhamnetin could be a future therapeutic for treating carbapenem-resistant gram-negative sepsis.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
23
|
Single-cell assessment of the modulation of macrophage activation by ex vivo intervertebral discs using impedance cytometry. Biosens Bioelectron 2022; 210:114346. [PMID: 35569268 PMCID: PMC9623412 DOI: 10.1016/j.bios.2022.114346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Measurement of macrophage activation and its modulation for immune regulation is of great interest to arrest inflammatory responses associated with degeneration of intervertebral discs that cause chronic back pain, and with transplants that face immune rejection. Due to the phenotypic plasticity of macrophages that serve multiple immune functions, the net disease outcome is determined by a balance of subpopulations with competing functions, highlighting the need for single-cell methods to quantify heterogeneity in their activation phenotypes. However, since macrophage activation can follow several signaling pathways, cytometry after fluorescent staining of markers with antibodies does not often provide dose-dependent information on activation dynamics. We present high throughput single-cell impedance cytometry for multiparametric measurement of biophysical changes to individual macrophages for quantifying activation in a dose and duration dependent manner, without relying on a particular signaling pathway. Impedance phase metrics measured at two frequencies and the electrical diameter from impedance magnitude at lower frequencies are used in tandem to benchmark macrophage activation by degenerated discs against that from lipopolysaccharide stimulation at varying dose and duration levels, so that reversal of the activation state by curcumin can be ascertained. This label-free single-cell measurement method can form the basis for platforms to screen therapies for inflammation, thereby addressing the chronic problem of back pain.
Collapse
|
24
|
Anti-inflammatory Mechanism of Action of Benzoylmesaconine in Lipopolysaccharide-Stimulated RAW264.7 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7008907. [PMID: 35873638 PMCID: PMC9300273 DOI: 10.1155/2022/7008907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Abstract
Background Benzoylmesaconine (BMA), the most abundant monoester alkaloid in Aconitum plants, has some biological activities and is a potential therapeutic agent for inflammation-related diseases. However, the potential anti-inflammatory mechanisms of BMA have not been clarified. Purpose This study aimed to investigate the underlying molecular mechanisms of the anti-inflammatory action of this compound using lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Methods The release of pro-inflammatory cytokines and mediators were detected by nitric oxide (NO) assays, reactive oxygen species (ROS) assays, and enzyme-linked immunosorbent assays (ELISA) in LPS-activated RAW264.7 macrophage cells. Quantitative real-time PCR was used to measure the gene expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cell viability was determined using a cell counting kit-8 (CCK-8) assay. The expression of iNOS, COX-2, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB)-related proteins were detected by western blot, and nuclear translocation of p65 was observed by immunofluorescence. Results BMA significantly decreased the production of IL-1β, IL-6, TNF-α, PGE2, NO, and ROS and inhibited the protein and mRNA levels of COX-2 and iNOS in LPS-activated RAW264.7 macrophages. Moreover, LPS-induced phosphorylation of IκBα, JNK, p38, and ERK; degradation of IκBα; and nuclear translocation of p65 were significantly suppressed by BMA treatment. Conclusion These findings demonstrate that the anti-inflammatory effect of BMA was through the suppression of the NF-κB and MAPK signaling pathways and that it may be a therapeutic agent targeting specific signal transduction events required for inflammation-related diseases.
Collapse
|
25
|
Dey S, Boucher D, Pitchford J, Lagos D. Mathematical modelling of activation-induced heterogeneity in TNF, IL6, NOS2, and IL1β expression reveals cell state transitions underpinning macrophage responses to LPS. Wellcome Open Res 2022; 7:29. [PMID: 36072059 PMCID: PMC9411976 DOI: 10.12688/wellcomeopenres.17557.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Despite extensive work on macrophage heterogeneity, the mechanisms driving activation induced heterogeneity (AIH) in macrophages remain poorly understood. Here, we aimed to develop mathematical models to explore theoretical cellular states underpinning the empirically observed responses of macrophages following lipopolysaccharide (LPS) challenge. Methods: We obtained empirical data following primary and secondary responses to LPS in two
in vitro cellular models (bone marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and single-cell protein measurements for four key inflammatory mediators: TNF, IL-6, pro-IL-1β, and NOS2, and used mathematical modelling to understand heterogeneity. Results: For these four factors, we showed that macrophage community AIH is dependent on LPS dose and that altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-responsiveness to LPS. These empirical data can be explained by a mathematical three-state model including negative, positive, and non-responsive states (NRS), but they are also compatible with a four-state model that includes distinct reversibly NRS and non-responsive permanently states (NRPS). Our mathematical model, termed NoRM (Non-Responsive Macrophage) model identifies similarities and differences between BMDM and RAW 264.7 cell responses. In both cell types, transition rates between states in the NoRM model are distinct for each of the tested proteins and, crucially, macrophage hypo-responsiveness is underpinned by changes in transition rates to and from NRS. Conclusions: Overall, we provide a mathematical model for studying macrophage ecology and community dynamics that can be used to elucidate the role of phenotypically negative macrophage populations in AIH and, primary and secondary responses to LPS.
Collapse
Affiliation(s)
- Shoumit Dey
- Hull York Medical School, University of York, York, UK
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Dave Boucher
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Jon Pitchford
- Department of Biology, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
26
|
Chulrik W, Jansakun C, Chaichompoo W, Tedasen A, Yotmanee P, Sattayakhom A, Chunglok W, Suksamrarn A, Chunglok W. Oxocrebanine from Stephania pierrei exerts macrophage anti-inflammatory effects by downregulating the NF-κB, MAPK, and PI3K/Akt signalling pathways. Inflammopharmacology 2022; 30:1369-1382. [PMID: 35831735 DOI: 10.1007/s10787-022-01021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/17/2023]
Abstract
Plant-derived medicinal compounds are increasingly being used to treat acute and chronic inflammatory diseases, which are generally caused by aberrant inflammatory responses. Stephania pierrei Diels, also known as Sabu-lueat in Thai, is a traditional medicinal plant that is used as a remedy for several inflammatory disorders. Since aporphine alkaloids isolated from S. pierrei tubers exhibit diverse pharmacological characteristics, we aimed to determine the anti-inflammatory effects of crude extracts and alkaloids isolated from S. pierrei tubers against lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Notably, the n-hexane extract strongly suppressed nitric oxide (NO) while exhibiting reduced cytotoxicity. Among the five alkaloids isolated from the n-hexane extract, the aporphine alkaloid oxocrebanine exerted considerable anti-inflammatory effects by inhibiting NO secretion. Oxocrebanine also significantly suppressed prostaglandin E2, tumour necrosis factor-α, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase (COX)-2 protein expression by inactivating the nuclear factor κB, c-Jun NH2-terminal kinase, extracellular signal-regulated kinase 1/2, and phosphatidylinositol 3-kinase/Akt inflammatory signalling pathways. Molecular docking analysis further revealed that oxocrebanine has a higher affinity for toll-like receptor 4/myeloid differentiation primary response 88 signalling targets and the COX-2 protein than native ligands. Thus, our findings highlight the potential anti-inflammatory effects of oxocrebanine and suggest that certain alkaloids of S. pierrei could be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wanatsanan Chulrik
- Health Sciences (International Program), College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chutima Jansakun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aman Tedasen
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apsorn Sattayakhom
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Wilanee Chunglok
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand. .,Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
27
|
Joshi A, Soni A, Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease. IN VITRO MODELS 2022. [PMID: 37519330 PMCID: PMC9036838 DOI: 10.1007/s44164-022-00017-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal condition. Ulcerative colitis and Crohn’s disease are types of inflammatory bowel disease. Over many decades, the disease has been a topic of study, with experts still trying to figure out its cause and pathology. Researchers have established many in vivo animal models, in vitro cell lines, and ex vivo systems to understand its cause ultimately and adequately identify a therapy. However, in vivo animal models cannot be regarded as good models for studying IBD since they cannot completely simulate the disease. Furthermore, because species differences are a crucial subject of concern, in vitro cell lines and ex vivo systems can be employed to recreate the condition properly. In vitro models serve as the starting point for biological and medical research. Ex vivo and in vitro models for replicating gut physiology have been developed. This review aims to present a clear understanding of several in vitro and ex vivo models of IBD and provide insights into their benefits and limits and their value in understanding intestinal physiology.
Collapse
Affiliation(s)
- Abhishek Joshi
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Arun Soni
- Department of Pharmacology, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| | - Sanjeev Acharya
- Department of Pharmacognosy, SSR College of Pharmacy, Union Territory of Dadra 396230 Sayli, Silvassa, India
| |
Collapse
|
28
|
Li J, Shu X, Xu J, Su SM, Chan UI, Mo L, Liu J, Zhang X, Adhav R, Chen Q, Wang Y, An T, Zhang X, Lyu X, Li X, Lei JH, Miao K, Sun H, Xing F, Zhang A, Deng C, Xu X. S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy. Nat Commun 2022; 13:1481. [PMID: 35304461 PMCID: PMC8933470 DOI: 10.1038/s41467-022-29151-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint blockade (ICB) is a powerful approach for cancer therapy although good responses are only observed in a fraction of cancer patients. Breast cancers caused by deficiency of breast cancer-associated gene 1 (BRCA1) do not have an improved response to the treatment. To investigate this, here we analyze BRCA1 mutant mammary tissues and tumors derived from both BRCA1 mutant mouse models and human xenograft models to identify intrinsic determinants governing tumor progression and ICB responses. We show that BRCA1 deficiency activates S100A9-CXCL12 signaling for cancer progression and triggers the expansion and accumulation of myeloid-derived suppressor cells (MDSCs), creating a tumor-permissive microenvironment and rendering cancers insensitive to ICB. These oncogenic actions can be effectively suppressed by the combinatory treatment of inhibitors for S100A9-CXCL12 signaling with αPD-1 antibody. This study provides a selective strategy for effective immunotherapy in patients with elevated S100A9 and/or CXCL12 protein levels.
Collapse
Affiliation(s)
- Jianjie Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaodong Shu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jun Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sek Man Su
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lihua Mo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianlin Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ragini Adhav
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yuqing Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Tingting An
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xu Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Fuqiang Xing
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Aiping Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
29
|
Nakkala JR, Duan Y, Ding J, Muhammad W, Zhang D, Mao Z, Ouyang H, Gao C. Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory effects on macrophage polarization. Acta Biomater 2022; 141:24-38. [PMID: 34958971 DOI: 10.1016/j.actbio.2021.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023]
Abstract
Immunomodulation is an important phenomenon in the normal mammalian host response toward an injury, and plays a critical role in tissue regeneration and regenerative medicine. Different phenotypes of macrophages show an array of activation states compassing pro-inflammatory to pro-alleviating cells, which are the critical players to modulate immune response and tissue regeneration. In this study, macrophage membranes of different phenotypes (macrophages (M0), classically activated macrophages (M1) and alternatively activated macrophages (M2)) were coated onto poly-ε-caprolactone (PCL) nanofibers to acquire exterior surface proteins and similar functions of the natural membranes. In vitro results unveiled that these nanofibers, especially the M2-PCL nanofibers, can suppress the activities of inflammatory markers such as TNF-α and IL-1β, and stimulate anti-inflammatory markers such as Arg-1, IL-10 and TGF-β. In a C57BL/6 mouse model, the macrophage membrane-coated nanofibers, especially the M2-PCL nanofibers, displayed minimal cellular infiltration and low collagen deposition, increased anti-inflammatory CD206 and decreased inflammatory CD86 levels. The M2-PCL nanofibers most effectively neutralized inflammatory chemokines, regulated the expression of inflammation-associated genes as well as anti-inflammatory genes, and showed strong immunomodulatory effects than the PCL, M0-PCL and M1-PCL nanofibers. STATEMENT OF SIGNIFICANCE: Different types of macrophage membrane-functionalized PCL nanofibers were successfully prepared and well characterized. They inherited the surface proteins imitating the source macrophages, and played an important role in limiting cellular infiltration and collagen deposition. These different macrophages and their membrane-coated nanofibers (M0-PCL, M1-PCL and M2-PCL) behaved like their respective source cells. The M2 mimicking M2-PCL nanofibers effectively polarized macrophages to M2 phenotype and decreased the expression of inflammation-associated chemokines and promoted the anti-inflammation in vitro and in vivo, which is critical for tissue regeneration. The mice implanted with the bio-mimicking M2-PCL nanofibers effectively inhibited toll like receptors signaling induced NF-kB and IRF-5 and their target genes such as Edn-1, IL-6, iNOS, TNF-α, etc. compared to the PCL, and M0-PCL and M1-PCL macrophage membrane-coated nanofibers.
Collapse
Affiliation(s)
- Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Dey S, Boucher D, Pitchford J, Lagos D. Mathematical modelling of activation-induced heterogeneity in TNF, IL6, NOS2, and IL1β expression reveals cell state transitions underpinning macrophage responses to LPS. Wellcome Open Res 2022; 7:29. [DOI: 10.12688/wellcomeopenres.17557.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Despite extensive work on macrophage heterogeneity, the mechanisms driving activation induced heterogeneity (AIH) in macrophages remain poorly understood. Here, we aimed to develop mathematical models to explore theoretical cellular states underpinning the empirically observed responses of macrophages following lipopolysaccharide (LPS) challenge. Methods: We obtained empirical data following primary and secondary responses to LPS in two in vitro cellular models (bone marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and single-cell protein measurements for four key inflammatory mediators: TNF, IL-6, pro-IL-1β, and NOS2, and used mathematical modelling to understand heterogeneity. Results: For these four factors, we showed that macrophage community AIH is dependent on LPS dose and that altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-responsiveness to LPS. These empirical data can be explained by a mathematical three-state model including negative, positive, and non-responsive states (NRS), but they are also compatible with a four-state model that includes distinct reversibly NRS and non-responsive permanently states (NRPS). Our mathematical model, termed NoRM (Non-Responsive Macrophage) model identifies similarities and differences between BMDM and RAW 264.7 cell responses. In both cell types, transition rates between states in the NoRM model are distinct for each of the tested proteins and, crucially, macrophage hypo-responsiveness is underpinned by changes in transition rates to and from NRS. Conclusions: Overall, we provide a mathematical model for studying macrophage ecology and community dynamics that can be used to elucidate the role of phenotypically negative macrophage populations in AIH and, primary and secondary responses to LPS.
Collapse
|
31
|
Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu J, Jing X, Du Q, Hui X, Ding B, Guo Z, Hong A, Liu X, Wang Y, Ji Q, Beyaert R, Yang Y, Li Q, Cao Y. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut 2022; 71:129-147. [PMID: 33568427 DOI: 10.1136/gutjnl-2020-322744] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy and lacks effective treatment. We aimed to understand molecular mechanisms of the intertwined interactions between tumour stromal components in metastasis and to provide a new paradigm for PDAC therapy. DESIGN Two unselected cohorts of 154 and 20 patients with PDAC were subjected to correlation between interleukin (IL)-33 and CXCL3 levels and survivals. Unbiased expression profiling, and genetic and pharmacological gain-of-function and loss-of-function approaches were employed to identify molecular signalling in tumour-associated macrophages (TAMs) and myofibroblastic cancer-associated fibroblasts (myoCAFs). The role of the IL-33-ST2-CXCL3-CXCR2 axis in PDAC metastasis was evaluated in three clinically relevant mouse PDAC models. RESULTS IL-33 was specifically elevated in human PDACs and positively correlated with tumour inflammation in human patients with PDAC. CXCL3 was highly upregulated in IL-33-stimulated macrophages that were the primary source of CXCL3. CXCL3 was correlated with poor survival in human patients with PDAC. Mechanistically, activation of the IL-33-ST2-MYC pathway attributed to high CXCL3 production. The highest level of CXCL3 was found in PDAC relative to other cancer types and its receptor CXCR2 was almost exclusively expressed in CAFs. Activation of CXCR2 by CXCL3 induced a CAF-to-myoCAF transition and α-smooth muscle actin (α-SMA) was uniquely upregulated by the CXCL3-CXCR2 signalling. Type III collagen was identified as the CXCL3-CXCR2-targeted adhesive molecule responsible for myoCAF-driven PDAC metastasis. CONCLUSIONS Our work provides novel mechanistic insights into understanding PDAC metastasis by the TAM-CAF interaction and targeting each of these signalling components would provide an attractive and new paradigm for treating pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Qiqiao Du
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoli Hui
- Department of Geriatric-Endocrinology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Ding
- Department of Respiratory Disease, The Fourth Hospital of Jinan, Jinan, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Xuan Liu
- Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Boodhoo K, de Swardt D, Smith C, van de Vyver M. Ex vivo tolerization and M2 polarization of macrophages dampens both pro- and anti-inflammatory cytokine production in response to diabetic wound fluid stimulation. Biochimie 2021; 196:143-152. [PMID: 34954283 DOI: 10.1016/j.biochi.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
Abstract
Monocytes/macrophages play a prominent role in cutaneous wound healing. Persistent inflammation in diabetic wounds is associated with the inability of monocytic cells to switch from a phagocytic M1 (classically activated) to an anti-inflammatory, pro-regenerative M2 (alternatively activated) phenotype and as consequence, the proliferative phase of healing does not commence. A targeted cell therapy approach could potentially restore the pathological wound microenvironment through paracrine signalling to enable healing. This study investigated whether in vitro pre-treatment of monocytic (J774.1 A) cells - using a combination of endotoxin-induced immune tolerance (Pam3CSK4) and M2 polarization (IL-4) - could make these cells impervious to the pathological wound microenvironment and enhance the release of anti-inflammatory cytokines/growth factors. The effect of Pam3CSK4-induced tolerance and IL-4-associated polarization was assessed independently and in combination, on the expression of intracellular (flow cytometry) and secreted (ELISA) cytokines (TNF-ɑ, IL-6, IL-10, TGF-β) with and without re-stimulation to define the optimal pre-treatment conditions. Successive pre-treatment approach consisting of endotoxin tolerance followed by IL-4 priming, dampened TNF-ɑ release and induced intracellular TGF-β production upon re-stimulation. To mimic a chronic wound microenvironment, the J774A.1 monocytes were differentiated into macrophages using GM-CSF prior to pre-treatment (optimal condition) and subsequently exposed to diabetic wound fluid. The data demonstrated that in the presence of wound fluid, the successive pre-treatment, promoted M2 polarization (CD206) of monocytic cells and significantly dampened the intracellular production of both pro-inflammatory (TNF-ɑ, IL-6) and anti-inflammatory (IL-10, TGF-β) cytokines.
Collapse
Affiliation(s)
- K Boodhoo
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - D de Swardt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; Central Analytical Facility, Stellenbosch University, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
34
|
Cao RA, Palanisamy S, Ma N, Talapphet N, Zhang J, Wang C, You S. Extraction, structural characterization, and immunostimulatory activity of soluble non-starch polysaccharides of finger millet. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater 2021; 6:4321-4332. [PMID: 33997509 PMCID: PMC8105599 DOI: 10.1016/j.bioactmat.2021.04.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023] Open
Abstract
There are extensive studies on the applications of extracellular vesicles (EVs) produced in cell culture for therapeutic drug development. However, large quantities of EVs are needed for in vivo applications, which requires high production costs and time. Thus, the development of new EV sources is essential to facilitate their use. Accordingly, plant-derived exosome-like nanovesicles are an emerging alternative for culture-derived EVs. Until now, however, few studies have explored their biological functions and uses. Therefore, it is necessary to elucidate biological activities of plant-derived exosome-like nanovesicles and harness vesicles for biomedical applications. Herein, cabbage and red cabbage were used as nanovesicle sources owing to their easy cultivation. First, an efficient method for nanovesicle isolation from cabbage (Cabex) and red cabbage (Rabex) was developed. Furthermore, isolated nanovesicles were characterized, and their biological functions were assessed. Both Cabex and Rabex promoted mammalian cell proliferation and, interestingly, suppressed inflammation in immune cells and apoptosis in human keratinocytes and fibroblasts. Finally, therapeutic drugs were encapsulated in Cabex or Rabex and successfully delivered to human cells, demonstrating the potential of these vesicles as alternative drug delivery vehicles. Overall, the current results provide strong evidence for the wide application of Cabex and Rabex as novel therapeutic biomaterials.
Collapse
Affiliation(s)
- Jae Young You
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| |
Collapse
|
36
|
Cao RA, Ma N, Palanisamy S, Talapphet N, Zhang J, Wang C, You S. Structural Elucidation and Immunostimulatory Activities of Quinoa Non-starch Polysaccharide Before and After Deproteinization. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:2291-2303. [PMID: 34849108 PMCID: PMC8620320 DOI: 10.1007/s10924-021-02335-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Non-starch polysaccharides derived from natural resources play a significant role in the field of food science and human health due to their extensive distribution in nature and less toxicity. In this order, the immunostimulatory activity of a non-starch polysaccharide (CQNP) from Chenopodium quinoa was examined before and after deproteination in murine macrophage RAW 264.7 cells. The chemical composition of CQNP and deproteinated-CQNP (D-CQNP) were spectrometrically analysed that revealed the presence of carbohydrate (22.7 ± 0.8% and 39.5 ± 0.8%), protein (41.4 ± 0.5% and 20.8 ± 0.5%) and uronic acid (8.7 ± 0.3% and 6.7 ± 0.2%). The monosaccharide composition results exposed that CQNP possesses a high amount of arabinose (34.5 ± 0.3) followed by galactose (26.5 ± 0.2), glucose (21.9 ± 0.3), rhamnose (7.0 ± 0.1), mannose (6.0 ± 0.1) and xylose (4.2 ± 0.2). However, after deproteination, a difference was found in the order of the monosaccharide components, with galactose (41.1 ± 0.5) as a major unit followed by arabinose (34.7 ± 0.5), rhamnose (10.9 ± 0.2), glucose (6.6 ± 0.2), mannose (3.4 ± 0.2) and xylose (3.2 ± 0.2). Further, D-CQNP potentially stimulate the RAW 264.7 cells through the production of nitric oxide (NO), upregulating inducible nitric oxide synthase (iNOS) and various pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α). Moreover, stimulation of RAW 264.7 cells by D-CQNP takes place along the NF-κB and the MAPKs signaling pathways through the expression of cluster of differentiation 40 (CD40). This results demonstrate that RAW 264.7 cells are effectively stimulated after removal of the protein content in C. quinoa non-starch polysaccharides, which could be useful for develop a new immunostimulant agent.
Collapse
Affiliation(s)
- Rong-An Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Nan Ma
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
| | - Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
| | - JiaMiao Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - ChangYuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702 Republic of Korea
| |
Collapse
|
37
|
Anti-Oxidative Effect of Weak Alkaline Reduced Water in RAW 264.7 Murine Macrophage Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9112062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive oxidative stress (OS) is a common cause of various diseases such as cancer, diabetes, and obesity; thus, an anti-oxidative solution is essential for the improvement of human health. Increasing evidence suggests that alkaline reduced water (ARW), especially between pH 9.5–10.0, has antioxidant capacity; however, relatively few studies have reported the effect of weak ARW at pH 8.5 on OS, especially in vitro. This study was conducted to evaluate the anti-oxidative efficacy of weak ARW with negative oxidation-reduction potential (ORP) and relatively high hydrogen (H2) concentration, as compared to tap water (TW) and ARW at pH 9.5. RAW 264.7 murine macrophage cells, stimulated by hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) to induce OS, were used as a control (Con) and then treated with TW and ARW at pH 8.5 (ARW_8.5) and pH 9.5 (ARW_9.5) at different concentrations (0.1%, 1%, and 10% v/v). Results showed that cell viability was significantly restored after treatment with both ARW_8.5 and ARW_9.5 compared to Con/H2O2 and Con/LPS, while TW treatment did not induce significant changes. Levels of reactive oxygen species (ROS), nitric oxide (NO), Ca2+, catalase, and glutathione peroxide (GPx) showed significant differences in a concentration-dependent manner in ARW_8.5 and ARW_9.5 groups compared to Con/H2O2 and Con/LPS groups. Likewise, the expression of p-p38, p-JNK, and p-ERK was also significantly reduced in the ARW-treated groups, but not in the TW group. In conclusion, ARW_8.5 exhibited anti-oxidative effects through the regulation of the MAPK signaling pathway in RAW 264.7 murine macrophage cells, indicating the health-promoting potential of weak ARW through daily intake.
Collapse
|
38
|
Chiu YC, Chu PW, Lin HC, Chen SK. Accumulation of cholesterol suppresses oxidative phosphorylation and altered responses to inflammatory stimuli of macrophages. Biochem Biophys Rep 2021; 28:101166. [PMID: 34786493 PMCID: PMC8579117 DOI: 10.1016/j.bbrep.2021.101166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Hypercholesterolemia induces intracellular accumulation of cholesterol in macrophages and other immune cells, causing immunological dysfunctions. On cellular levels, cholesterol enrichment might lead to mitochondrial metabolic reprogramming and change macrophage functions. Additionally, as cholesterol is permeable to the plasma membrane and might integrate into the membranous organelles, such as endoplasmic reticulum or mitochondria, cholesterol enrichment might change the functions or properties of these organelles, and ultimately alters the cellular functions. In this study, we investigate the mitochondrial alterations and intracellular oxidative stress induced by accumulation of cholesterol in the macrophages, and the possible immunological impacts caused by these alterations. Macrophage cells RAW264.7 were treated with cholesterol to induce intracellular accumulation of cholesterol, which further triggered the reduced production of reactive oxygen/nitrogen species, as well as decrease of oxidative phosphorylation. Basal respiration rate, ATP production and non-mitochondrial oxygen consumption are all suppressed. In contrast, glycolysis remained unaltered in this cholesterol-enriched condition. Previous studies demonstrated that metabolic profiles are associated with macrophage polarization. We further verified whether this metabolic reprogramming influences the macrophage responses to pro-inflammatory or anti-inflammatory stimuli. Our results showed the changes of transcriptional regulations in both pro-inflammatory and anti-inflammatory genes, but not specific toward M1 or M2 polarization. Collectively, the accumulation of cholesterol induced mitochondrial metabolic reprogramming and suppressed the production of oxidative stress, and induced the alterations of macrophage functions. Cholesterol loaded macrophages exhibited decreased oxidative phosphorylation and become more glycolytic. Accumulation of cholesterol in macrophages suppressed the generation of ROS/RNS. Accumulation of cholesterol altered macrophage responses to pro-inflammatory or anti-inflammatory stimuli.
Collapse
Affiliation(s)
- Yi-Chou Chiu
- Division of General Surgery, Surgical Department, Cheng-Hsin General Hospital, Taipei City, Taiwan
| | - Pei-Wen Chu
- Institute of Neuroscience, National ChengChi University, Taipei City, Taiwan
| | - Hua-Ching Lin
- Division of Colorectal Surgery, Surgical Department, Cheng-Hsin General Hospital, Taipei City, Taiwan
- Department of Healthcare Information and Management, Ming Chuan University, Taoyuan County, Taiwan
| | - Shau-Kwaun Chen
- Institute of Neuroscience, National ChengChi University, Taipei City, Taiwan
- Corresponding author. Institute of Neuroscience, National ChengChi University, No. 64, Sec. 2, Zhinan Rd., Wenshan Dist., Taipei City, 11605, Taiwan, ROC.
| |
Collapse
|
39
|
Felgus-Lavefve L, Howard L, Adams SH, Baum JI. The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative Stress. Adv Nutr 2021; 13:1279-1309. [PMID: 34791023 PMCID: PMC9340979 DOI: 10.1093/advances/nmab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Blueberries have been extensively studied for the health benefits associated with their high phenolic content. The positive impact of blueberry consumption on human health is associated in part with modulation of proinflammatory molecular pathways and oxidative stress. Here, we review in vitro studies examining the anti-inflammatory and antioxidant effects of blueberry phytochemicals, discuss the results in terms of relevance to disease and health, and consider how different blueberry components modulate cellular mechanisms. The dampening effects of blueberry-derived molecules on inflammation and oxidative stress in cell models have been demonstrated through downregulation of the NF-κB pathway and reduction of reactive oxygen species (ROS) and lipid peroxidation. The modulatory effects of blueberry phytochemicals on the mitogen-activated protein kinase (MAPK) pathway and antioxidant system are not as well described, with inconsistent observations reported on immune cells and between models of endothelial, dermal, and ocular inflammation. Although anthocyanins are often reported as being the main bioactive compound in blueberries, no individual phytochemical has emerged as the primary compound when different fractions are compared; rather, an effect of whole blueberry extracts or synergy between different phenolic and nonphenolic extracts seems apparent. The major molecular mechanisms of blueberry phytochemicals are increasingly defined in cell models, but their relevance in more complex human systems needs further investigation using well-controlled clinical trials, in which systemic exposures to blueberry-associated molecules are measured concurrently with physiologic indices of inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA,Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, CA, USA
| | | |
Collapse
|
40
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
41
|
Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 2021; 133:58-73. [PMID: 33882355 DOI: 10.1016/j.actbio.2021.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, recent research has highlighted the complex interactions between cell physiologic systems and material properties, particularly physical cues. From the cells known to interact with implanted biomaterials, the response of the immune system has been a critical target of study recently. Here, we review studies characterizing the response of innate immune cells to various material cues, particularly of those at the surface of implanted materials.The innate immune system consists of cell types with various roles in inflammation. Neutrophils and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, natural killer cells, and innate lymphoid cells may also serve an immunomodulatory role in the biomaterial context. This review highlights recent advances in our understanding of the role of innate immunity in the response to implantable biomaterials as well as key mechanobiological findings in innate immune cells underpinning these advances. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in the understanding of the role of innate immunity in the response to implantable biomaterials, especially in neutrophils and macrophages, as well as key mechanobiological findings in innate immune cells underpinning these advances. Here we discuss how physicochemical properties of biomaterials control innate immune cell behavior.
Collapse
|
42
|
Zhou C, Gao J, Ji H, Li W, Xing X, Liu D, Guo Q, Zhou L, Jing F. Benzoylaconine Modulates LPS-Induced Responses Through Inhibition of Toll-Like Receptor-Mediated NF-κB and MAPK Signaling in RAW264.7 Cells. Inflammation 2021; 44:2018-2032. [PMID: 34272638 DOI: 10.1007/s10753-021-01478-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that benzoylaconine (BAC), a representative monoester alkaloid, has a potential anti-inflammatory effect. This study investigated the underlying molecular mechanisms using the mode of LPS-activated RAW264.7 macrophage cells. Our findings showed that BAC significantly suppressed the release of pro-inflammatory cytokines and mediators, including IL-6, TNF-α, IL-1β, ROS, NO, and PGE2. BAC treatment also effectively downregulated the elevated protein levels of iNOS and COX-2 induced by LPS in a dose-dependent manner. In this study, we found that BAC inhibited LPS-induced NF-κB activation by reducing the phosphorylation and degradation of IκBα by western blotting and blocking the nuclear translocation of p65 using an immunofluorescence assay. The elevated protein levels of JNK, p38, and ERK phosphorylation after LPS stimulation were restored effectively by BAC treatment. The protein expression of Toll-like receptor 4 (TLR4) and LPS-induced phosphorylation of TAK1, which is a crucial upstream regulatory factor of TLR-induced MAPK and NF-κB signaling, were inhibited by BAC in activated RAW264.7 macrophages. Moreover, BAC decreased the levels of TAK1 phosphorylation and pro-inflammatory cytokines and mediators associated with MAPK and NF-κB activation, similar to TLR4 inhibitor TAK-242. These findings demonstrated that BAC exhibited an anti-inflammatory effect by the inhibition of TLR-induced MAPK and NF-κB pathways, indicating that it could potentially be used for treating inflammatory diseases.
Collapse
Affiliation(s)
- Changkai Zhou
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Jing Gao
- Department of Pharmacy, The Third People's Hospital of Qingdao, No.29 Yongping Road, Qingdao, Shandong Province, People's Republic of China
| | - Hongyan Ji
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Wenjing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Xiaomin Xing
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Donghua Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Lihua Zhou
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China
| | - Fanbo Jing
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
43
|
An W, Defaus S, Andreu D, Rivera-Gil P. In Vivo Sustained Release of Peptide Vaccine Mediated by Dendritic Mesoporous Silica Nanocarriers. Front Immunol 2021; 12:684612. [PMID: 34220835 PMCID: PMC8244784 DOI: 10.3389/fimmu.2021.684612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mesoporous silica nanoparticles have drawn increasing attention as promising candidates in vaccine delivery. Previous studies evaluating silica-based vaccine delivery systems concentrated largely on macromolecular antigens, such as inactivated whole viruses. In this study, we synthesized dendritic mesoporous silica nanoparticles (DMSNs), and we evaluated their effectiveness as delivery platforms for peptide-based subunit vaccines. We encapsulated and tested in vivo an earlier reported foot-and-mouth disease virus (FMDV) peptide vaccine (B2T). The B2T@DMSNs formulation contained the peptide vaccine and the DMSNs without further need of other compounds neither adjuvants nor emulsions. We measured in vitro a sustained release up to 930 h. B2T@DMSNs-57 and B2T@DMSNs-156 released 23.7% (135 µg) and 22.8% (132 µg) of the total B2T. The formation of a corona of serum proteins around the DMSNs increased the B2T release up to 61% (348 µg/mg) and 80% (464 µg/mg) for B2T@DMSNs-57 and B2T@DMSNs-156. In vitro results point out to a longer sustained release, assisted by the formation of a protein corona around DMSNs, compared to the reference formulation (i.e., B2T emulsified in Montanide). We further confirmed in vivo immunogenicity of B2T@DMSNs in a particle size-dependent manner. Since B2T@DMSNs elicited specific immune responses in mice with high IgG production like the reference B2T@Montanide™, self-adjuvant properties of the DMSNs could be ascribed. Our results display DMSNs as efficacious nanocarriers for peptide-based vaccine administration.
Collapse
Affiliation(s)
- Weiteng An
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sira Defaus
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
44
|
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, Peterson BR, Tascedda F, Caraci F. Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines 2021; 9:biomedicines9050477. [PMID: 33926064 PMCID: PMC8146816 DOI: 10.3390/biomedicines9050477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimer’s disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Correspondence: ; Tel.: +39-095-7384265
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Annamaria Fidilio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.M.); (C.G.F.); (G.S.); (C.B.); (F.D.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Blake R. Peterson
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.B.); (N.B.); (F.T.)
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
45
|
Sun J, Wang J, Hu W, Wang Y, Chou T, Zhang Q, Zhang B, Yu Z, Yang Y, Ren L, Wang H. Camouflaged Gold Nanodendrites Enable Synergistic Photodynamic Therapy and NIR Biowindow II Photothermal Therapy and Multimodal Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10778-10795. [PMID: 33646767 DOI: 10.1021/acsami.1c01238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Gold nanodendrite (AuND)-based nanotheranostic agents with versatile capabilities were fabricated by optimizing the geometrical configurations (dendrite length and density) of AuND to achieve localized surface plasmon resonance (LSPR) in near-infrared biowindow II (NIR-II), and then subsequently functionalizing with a mitochondria-targeting compound (triphenylphosphonium, TPP), loading with an NIR-photosensitizer (indocyanine green, ICG) and coating with the macrophage cell membrane (MCM) to trap ICG within AuND and selectively interact with MDA-MB-231 cells. The novel AuND-TPP-ICG@MCM system enabled the integration of multimodal fluorescence/photoacoustic/surface-enhanced Raman imaging with synergistic therapies of NIR-II photothermal therapy and NIR-I photodynamic therapy for cancer treatment. Enhanced hyperthermia and elevated production of reactive oxygen species within the tumors via MCM coating and mitochondria targeting afforded a synergistic efficacy for tumor eradication with limited side effects. The demonstrated biocompatibility, multi-imaging capability, and high therapeutic efficiency under NIR laser irradiation indicate the potentials of this multifunctional nanotheranostic platform for clinical utility in cancer therapy.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Qiang Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Zhengqian Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
46
|
Balan I, Aurelian L, Schleicher R, Boero G, O'Buckley T, Morrow AL. Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl Psychiatry 2021; 11:145. [PMID: 33637705 PMCID: PMC7909379 DOI: 10.1038/s41398-021-01266-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
We have shown that endogenous neurosteroids, including pregnenolone and 3α,5α-THP inhibit toll-like receptor 4 (TLR4) signal activation in mouse macrophages and the brain of alcohol-preferring (P) rat, which exhibits innate TLR4 signal activation. The current studies were designed to examine whether other activated TLR signals are similarly inhibited by 3α,5α-THP. We report that 3α,5α-THP inhibits selective agonist-mediated activation of TLR2 and TLR7, but not TLR3 signaling in the RAW246.7 macrophage cell line. The TLR4 and TLR7 signals are innately activated in the amygdala and NAc from P rat brains and inhibited by 3α,5α-THP. The TLR2 and TLR3 signals are not activated in P rat brain and they are not affected by 3α,5α-THP. Co-immunoprecipitation studies indicate that 3α,5α-THP inhibits the binding of MyD88 with TLR4 or TLR7 in P rat brain, but the levels of TLR4 co-precipitating with TRIF are not altered by 3α,5α-THP treatment. Collectively, the data indicate that 3α,5α-THP inhibits MyD88- but not TRIF-dependent TLR signal activation and the production of pro-inflammatory mediators through its ability to block TLR-MyD88 binding. These results have applicability to many conditions involving pro-inflammatory TLR activation of cytokines, chemokines, and interferons and support the use of 3α,5α-THP as a therapeutic for inflammatory disease.
Collapse
Affiliation(s)
- Irina Balan
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laure Aurelian
- Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Riana Schleicher
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Todd O'Buckley
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
47
|
Reyes AWB, Huy TXN, Vu SH, Kang CK, Min W, Lee HJ, Lee JH, Kim S. Formyl peptide receptor 2 (FPR2) antagonism is a potential target for the prevention of Brucella abortus 544 infection. Immunobiology 2021; 226:152073. [PMID: 33657463 DOI: 10.1016/j.imbio.2021.152073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Here, we explore the potential role of formyl peptide receptor 2 (FPR2) during Brucella abortus infection. FPR2 manipulation affected B. abortus internalization but not its growth within macrophages. During the activation of FPR2 induced by its agonist AGP-8694, a high level of Brucella uptake was accompanied by an increase in ERK phosphorylation, while intracellular survival at 24 h postincubation was observed to be associated with slightly reduced nitrite accumulation but augmented superoxide anion production. Attenuated secretion of IL-6 and IL-10 were observed 48 h postincubation in the bone marrow-derived macrophages (BMDMs) treated with the FPR2 antagonist WRW4. An opposite pattern of bacterial uptake was observed upon treatment with the FPR2 antagonist, but no significant changes in the activation of MAPKs or the production of nitrite or superoxide anion were observed. Interestingly, AGP-8694 treatment of mice did not lead to differences in spleen or liver weight but slightly enhanced bacterial proliferation was observed in the spleen. Although the weights of the spleen or liver did not differ, WRW4 treatment led to reduced bacterial proliferation in the spleen. Furthermore, FPR2 antagonist treatment was associated with high serum levels of the proinflammatory cytokines IL-12, TNF-α, IFN-γ and MCP-1, while the production of TNF-α was inhibited in AGP-8694-treated mice. IL-6 and IL-10 levels were slightly increased in AGP-8694-treated mice at 24 h postinfection. Our findings demonstrated the contribution of FPR2 via manipulating this receptor using its reported agonist AGP-8694 and antagonist WRW4 in both in vitro and in vivo systems. Although activation of the receptor did not consistently induced Brucella infection, FPR2 inhibition may be a promising strategy to treat brucellosis in animals which encourages further investigation.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernard Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
48
|
Xu X, Lu Y, Zhou L, He M, Zhuo J, Zhong Q, Luo K, Lin J. Tuning osteoporotic macrophage responses to favour regeneration by Cu-bearing titanium alloy in Porphyromonas gingivalis lipopolysaccharide-induced microenvironments. Regen Biomater 2021; 8:rbaa045. [PMID: 33732491 PMCID: PMC7947590 DOI: 10.1093/rb/rbaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/22/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
Guided bone regeneration in inflammatory microenvironments of osteoporotic patients with large alveolar bone defects remains a great challenge. Macrophages are necessary for alveolar bone regeneration via their polarization and paracrine actions. Our previous studies showed that Cu-bearing Ti6Al4V alloys are capable of regulating macrophage responses. When considering the complexity of oral microenvironments, the influences of Cu-bearing Ti6Al4V alloys on osteoporotic macrophages in infectious microenvironments are worthy of further investigations. In this study, we fabricated Ti6Al4V-Cu alloy by selective laser melting technology and used Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) to imitate oral pathogenic bacterial infections. Then, we evaluated the impacts of Ti6Al4V-Cu on osteoporotic macrophages in infectious microenvironments. Our results indicated that Ti6Al4V-Cu not only inhibited the P.g-LPS-induced M1 polarization and pro-inflammatory cytokine production of osteoporotic macrophages but also shifted polarization towards the pro-regenerative M2 phenotype and remarkably promoted anti-inflammatory cytokine release. In addition, Ti6Al4V-Cu effectively promoted the activity of COMMD1 to potentially repress NF-κB-mediated transcription. It is concluded that the Cu-bearing Ti6Al4V alloy results in ameliorated osteoporotic macrophage responses to create a favourable microenvironment under infectious conditions, which holds promise to develop a GBR-barrier membrane for alveolar bone regeneration of osteoporosis patients.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 1000049, China
| | - Ling Zhou
- Department of Stomatology, Fujian Provincial Governmental Hospital & Fujian Health College Affiliated Hospital, Fuzhou 350003, China
| | - Mengjiao He
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 1000049, China
| |
Collapse
|
49
|
Negrescu AM, Necula MG, Gebaur A, Golgovici F, Nica C, Curti F, Iovu H, Costache M, Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int J Mol Sci 2021; 22:ijms22020909. [PMID: 33477539 PMCID: PMC7831122 DOI: 10.3390/ijms22020909] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Madalina-Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Adi Gebaur
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Florentina Golgovici
- Department of General Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Filis Curti
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Horia Iovu
- Advance Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 17, 011061 Bucharest, Romania; (A.G.); (F.C.); (H.I.)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (M.-G.N.); (C.N.); (M.C.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
50
|
Kolb AD, Dai J, Keller ET, Bussard KM. 'Educated' Osteoblasts Reduce Osteoclastogenesis in a Bone-Tumor Mimetic Microenvironment. Cancers (Basel) 2021; 13:cancers13020263. [PMID: 33445695 PMCID: PMC7828118 DOI: 10.3390/cancers13020263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) metastases to bone disrupt the balance between osteoblasts and osteoclasts, leading to excessive bone resorption. We identified a novel subpopulation of osteoblasts with tumor-inhibitory properties, called educated osteoblasts (EOs). Here we sought to examine the effect of EOs on osteoclastogenesis during tumor progression. We hypothesized that EOs affect osteoclast development in the bone-tumor niche, leading to suppressed pre-osteoclast fusion and bone resorption. Conditioned media (CM) was analyzed for protein expression of osteoclast factors receptor activator of nuclear factor kappa-β ligand (RANKL), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα) via ELISA. EOs were co-cultured with pre-osteoclasts on a bone mimetic matrix to assess osteoclast resorption. Pre-osteoclasts were tri-cultured with EOs plus metastatic BC cells and assessed for tartrate-resistance acid phosphatase (TRAP)-positive, multinucleated (≥3 nuclei), mature osteoclasts. Tumor-bearing murine tibias were stained for TRAP to determine osteoclast number in-vivo. EO CM expressed reduced amounts of soluble TNFα and OPG compared to naïve osteoblast CM. Osteoclasts formed in the presence of EOs were smaller and less in number. Upon co-culture on a mimetic bone matrix, a 50% reduction in the number of TRAP-positive osteoclasts formed in the presence of EOs was observed. The tibia of mice inoculated with BC cells had less osteoclasts per bone surface in bones with increased numbers of EO cells. These data suggest EOs reduce osteoclastogenesis and bone resorption. The data imply EOs provide a protective effect against bone resorption in bone metastatic BC.
Collapse
Affiliation(s)
- Alexus D. Kolb
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Jinlu Dai
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (J.D.); (E.T.K.)
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; (J.D.); (E.T.K.)
| | - Karen M. Bussard
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|