1
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
2
|
Martins N, Pradhan A, Pascoal C, Cássio F. Can acclimation of freshwater rotifers to silver nanoparticles or 5-fluorouracil influence their multi- and transgenerational effects? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176326. [PMID: 39299306 DOI: 10.1016/j.scitotenv.2024.176326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Emerging chemical contaminants (ECCs) are among the major environmental threats in present century. A variety of ECCs is released into aquatic environments with little knowledge about their long-term impacts to organisms. We examined the role of acclimation of the freshwater rotifer Brachionus calyciflorus to silver nanoparticles (Ag-NPs) and 5-fluorouracil (5-FU) for determining their ability to deal with these ECCs individually and in mixtures along multiple generations. Additionally, transgenerational effects were also assessed during the recovery phase. Rotifers acclimated at EC10 of Ag-NPs along generations showed a higher ability to deal with higher concentrations of these nanoparticles or 5-FU along generations. Rotifers acclimated to EC10 of 5-FU showed varied responses, as their population growth rates were affected at the initial generations once exposed to higher concentration (EC50) of the same or a new contaminant; however, the rotifers acquired resistance in later generations. The exposure of generational Ag-NP-acclimated rotifers to the mixture of Ag-NPs and 5-FU at EC50 led to a shift from no effects to negative effects along successive generations, suggesting a decrease in resistance, which remained even in the post-exposure recovery phase. Similar transgenerational adverse effects were also observed for the generational Ag-NP-acclimated rotifers released from 5-FU. Rotifers acclimated to 5-FU showed a decrease in population growth rate at the first generation of recovery phase, possibly shifting their optimal environmental conditions when released from contaminants. Overall, our results suggest that rotifers had a high level of plasticity to ECC exposure in freshwaters; however, acclimation can be generic or contaminant dependent.
Collapse
Affiliation(s)
- Nuno Martins
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute for Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute for Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute for Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute for Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Azzolin VF, Azzolin VF, da Silva Maia R, Mastella MH, Sasso JS, Barbisan F, Bitencourt GR, de Azevedo Mello P, Ribeiro EMA, Ribeiro EE, Nunomura RDCS, Manica da Cruz IB. Safety and efficacy indicators of guarana and Brazil nut extract carried in nanoparticles of coenzyme Q10: Evidence from human blood cells and red earthworm experimental model. Food Chem Toxicol 2024; 191:114828. [PMID: 38914193 DOI: 10.1016/j.fct.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
This study characterized a nanosupplement based on coenzyme Q10 containing guarana (Paullinia cupana) and Brazil nuts oil (Bertholetia excelsa) (G-Nut). Determined cytotoxic and oxi-immunomodulatory effects on human peripheral blood mononuclear cells (PBMCs) and its effect on mortality of red Californian earthworms (Eisenia fetida) and on the immune efficiency of its coelomocytes immune by in vitro exposure to yeast dead microorganism. The cytotoxic and immunomodulatory effects of G-Nut and the GN-Free extract (0.25-3 mg/mL) were determined in PBMC cultures. Apoptotic, oxidative, and inflammatory markers were determined using biochemical, immunological, and molecular protocols. The effects of G-Nut and GN-Free extracts on mortality and immune efficiency were investigated in earthworms. G-Nut and GN-Free did not induce cytotoxic events in PBMCs, triggering the decrease in apoptotic (caspases 3 and 8) gene expression, lipid and protein oxidation levels, or pro-inflammatory cytokine levels. G-Nut and GN-Free did not trigger earthworm mortality and improved coelomocyte immune efficiency by increasing Eisenia neutrophil extracellular DNA traps and brown body formation when exposed to dead yeasts. The G-Nut nanoformulation is safe and can be used as a new form of food supplement by oral or transdermal delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Barbisan
- Biogenomics Laboratory - Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Shi Y, Fan J, Li N, Lv Y, Yu S, Zhang Y, Ye Y, Wu R, Shen H, Li LS. Tailored different sizes of quantum dot nanobeads for sensitive and quantitative detection based on the competition fluorescence-linked immunosorbent assay platform. Talanta 2024; 276:126296. [PMID: 38795648 DOI: 10.1016/j.talanta.2024.126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Highly stable and multicolor photoluminescent (PL) quantum dots (QDs) have attracted widespread attention as ideal probe materials in the field of in vitro diagnostics (IVD), especially the fluorescence-linked immunosorbent assay (FLISA), due to their advantages of high-throughput, high stability, and high sensitivity. However, the size of QDs as fluorescent probes have significant effects on antigen-antibody performance. Therefore, it is critical to design suitable QDs for obtain excellent quantitative detection-based biosensors. In this paper, we prepared different sizes of aqueous QDs (30 nm, 116 nm, 219 nm, and 320 nm) as fluorescent probes to optimize the competitive FLISA platform. The SARS-CoV-2 neutralizing antibody (NTAB) assay was used as an example, and it was found that the size of the QDs has a significant impact on the antigen-antibody binding efficiency and detection sensitivity in competitive FLISA platform. The results showed that these QD nanobeads (QBs, ∼219 nm) could be used as a labeled probe for competitive FLISA, with half-maximal inhibitory concentration (IC50) of 1.34 ng/mL and limit of detection (LOD) of 0.21 pg/mL for NTAB detection. More importantly, the results showed good specificity and accuracy, and the QB219 probe was able to efficiently bind NTAB without interference from other substances in the serum. Given the above advantages, the nanoprobe material (∼200 nm) offers considerable potential as a competitive FLISA platform in the field of IVD.
Collapse
Affiliation(s)
- Yangchao Shi
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Jinjin Fan
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ning Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Shenping Yu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yuning Zhang
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yingli Ye
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
6
|
Zhou J, Mujahid Ali M, Yu W, Cheng X, Gao Y, Hu L. Oriented docking of the template for improved imprinting efficiency toward peptide with modifications. Anal Chim Acta 2024; 1301:342450. [PMID: 38553121 DOI: 10.1016/j.aca.2024.342450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 μmol/g) and high affinity (Kd = 127.63 ± 9.66 μM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.
Collapse
Affiliation(s)
- Juntao Zhou
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China.
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yujun Gao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Miya N, Machogo-Phao LFE, Ntsendwana B. Exploring Copper Oxide and Copper Sulfide for Non-Enzymatic Glucose Sensors: Current Progress and Future Directions. MICROMACHINES 2023; 14:1849. [PMID: 37893284 PMCID: PMC10609065 DOI: 10.3390/mi14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic electrochemical glucose sensors presently account for the bulk of glucose sensors on the market. However, their disadvantages are that they are expensive and dependent on environmental conditions, hence affecting their performance and sensitivity. To meet the increasing demand, non-enzymatic glucose sensors based on chemically modified electrodes for the direct electrocatalytic oxidation of glucose are a good alternative to the costly enzymatic-based sensors currently on the market, and the research thereof continues to grow. Nanotechnology-based biosensors have been explored for their electronic and mechanical properties, resulting in enhanced biological signaling through the direct oxidation of glucose. Copper oxide and copper sulfide exhibit attractive attributes for sensor applications, due to their non-toxic nature, abundance, and unique properties. Thus, in this review, copper oxide and copper sulfide-based materials are evaluated based on their chemical structure, morphology, and fast electron mobility as suitable electrode materials for non-enzymatic glucose sensors. The review highlights the present challenges of non-enzymatic glucose sensors that have limited their deployment into the market.
Collapse
Affiliation(s)
| | - Lerato F. Eugeni Machogo-Phao
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (N.M.); (B.N.)
| | | |
Collapse
|
8
|
MOHAPATRA PRIYADARSHINI, CHANDRASEKARAN NATARAJAN. OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2023:145-154. [DOI: 10.22159/ijap.2023v15i5.48624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective: This work aims to choose suitable essential oil formulations to improve the bioavailability and long-term aqueous stability of mefloquine in drug delivery systems.
Methods: Oil phases of pomegranate oil, black cumin seed oil, and garlic oil. To choose the proper oil and surfactant for creating pseudo-ternary phase diagrams, cremophore EL, tween®20 and tween®80 (surfactants), and brij 35 (co-surfactants) were used in a variety of concentrations and combinations (Smix). Mefloquine was estimated to be soluble in a variety of oils, surfactants, and co-surfactants. Drug solubility, drug release research, thermodynamic stability, mean hydrodynamic size and zeta potential.
Results: Garlic with smix of cremophore EL and brij 35, Pomegranate with Tween 2.0, and Black cumin seed oil with Tween 80 showed the highest solubilization and emulsification capabilities and were further investigated using ternary phase diagrams. When combined with the co-surfactants under investigation, cremophore EL demonstrated a greater self-emulsification zone than tween® 80 and tween 20. Garlic oil, cremophore EL, and brij 35 nanoemulsion showed smaller size, greater zeta potential, less emulsification time, high transmittance, and better drug solubility than microemulsion formulations on especially those made with tween®20 and tween 80. Mefloquine loaded garlic oil nanoemulsion showed considerably low release in body fluid (32.48%) and a good release in intestinal fluid (82.78%) by 12 h in a drug release study.
Conclusion: Garlic oil as the oil phase and a mixture of cremophore EL and brij 35 as the surfactant phase are ideal surfactants and co-surfactant for mefloquine loaded garlic oil nanoemulsion with greater drug release in release kinetics investigation.
Collapse
|
9
|
New Ionic Liquid Microemulsion-Mediated Synthesis of Silver Nanoparticles for Skin Bacterial Infection Treatments. Antibiotics (Basel) 2023; 12:antibiotics12020247. [PMID: 36830157 PMCID: PMC9952689 DOI: 10.3390/antibiotics12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
This work reports a new approach for the synthesis of extremely small monodispersed silver nanoparticles (AgNPs) (2.9-1.5) by reduction of silver nitrate in a new series of benzyl alkyl imidazolium ionic liquids (BAIILs)-based microemulsions (3a-f) as media and stabilizing agents. Interestingly, AgNPs isolated from the IILMEs bearing the bulkiest substituents (tert-butyl and n-butyl) (3f) displayed almost no nanoparticle agglomeration. In an in vitro antibacterial test against ESKAPE pathogens, all AgNPs-BAIILs had potent antibiotic activity, as reflected by antibacterial efficiency indices. Furthermore, when compared to other nanoparticles, these were the most effective in preventing biofilm formation by the tested bacterial strains. Moreover, the MTT assay was used to determine the cytotoxicity of novel AgNPs-BAIILs on healthy human skin fibroblast (HSF) cell lines. The MTT assay revealed that novel AgNPs-BAIILs showed no significant toxic effects on the healthy cells. Thus, the novel AgNPs-BAIILs microemulsions could be used as safe antibiotics for skin bacterial infection treatments. AgNPs isolated from BAIIL (3c) was found to be the most effective antibiotic of the nanoparticles examined.
Collapse
|
10
|
Ghosh S, Mondol S, Lahiri D, Nag M, Sarkar T, Pati S, Pandit S, Alarfaj AA, Mohd Amin MF, Edinur HA, Ahmad Mohd Zain MR, Ray RR. Biogenic silver nanoparticles (AgNPs) from Tinosporacordifolia leaves: An effective antibiofilm agent against Staphylococcus aureus ATCC 23235. Front Chem 2023; 11:1118454. [PMID: 36959877 PMCID: PMC10028272 DOI: 10.3389/fchem.2023.1118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 μg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
| | - Somdutta Mondol
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills innovation and Academic network (SIAN) Institute-ABC, Balasore, Odisha, India
- NatNov Private Limited, Greater Noida, Odisha, India
| | - Soumya Pandit
- Department of Life Science, Sharda University, Noida, India
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamad Faiz Mohd Amin
- Environmental Technology Division, School of Industrial Technology, UniversitiSains Malaysia, Penang, Malaysia
| | - Hisham Atan Edinur
- Renewable Biomass Transformation Cluster, School of Industrial Technology, UniversitiSains Malaysia, Penang, Malaysia
| | - Muhammad Rajaei Ahmad Mohd Zain
- School of Health Sciences, UniversitiSains Malaysia, Health Campus, Kelantan, Malaysia
- *Correspondence: Muhammad Rajaei Ahmad Mohd Zain, ; Rina Rani Ray,
| | - Rina Rani Ray
- Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, Kolkata, West Bengal, India
- *Correspondence: Muhammad Rajaei Ahmad Mohd Zain, ; Rina Rani Ray,
| |
Collapse
|
11
|
Structure-property relationship of thermoplastic polyurethane cationomers carrying quaternary ammonium groups. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abo-Elmagd RA, Hamouda RA, Hussein MH. Phycotoxicity and catalytic reduction activity of green synthesized Oscillatoria gelatin-capped silver nanoparticles. Sci Rep 2022; 12:20378. [PMID: 36437282 PMCID: PMC9701754 DOI: 10.1038/s41598-022-22976-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Over the last decade, an extensive range of consumer products containing manufactured silver nanoparticles (AgNPs) have been progressively used. The unfitting usage and discharge of these materials can enable passage of AgNPs into the aquatic ecosystem causing prospective toxicological consequence. The present study shed new lights on the phycotoxicity of small (8.47-17.66 nm) and stable Oscillatoria reduced gelatin-capped silver nanoparticles (OG-AgNPs) fabricated using a completely green synthetic technique. In this work, estimating of the possible toxic effects of OG-AgNPs on two freshwater microalgae Chlorella vulgaris and Chlorella minutissima was carried. This study found that, the growth of cells and photosynthetic pigment inhibitory effects of OG-AgNPs exhibit a significant increase with increasing time and concentration compared to control. Based on the IC50 value C. vulgaris (3.705 μg/mL) was found to be more sensitive to OG-AgNPs than C. minutissima (5.8 μg/mL). This study revealed that OG-AgNPs exhibit potent phycotoxic effect against Chlorella species. Finally, the negative effect of OG-AgNPs on aquatic algae and these modifications might have severe effects on structure and function of aquatic ecosystems. Besides, the biosynthesized OG-AgNPs showed a catalytic activity in the reduction of hydrogen peroxide, one of the reactive oxygen species that represent a major threat to biological systems. This method pretends an auspicious non-skill dependent technique with a good sensitivity for determination of H2O2 concentration, particularly at trace ppm level for applying in numerous domains such as medical and industrial processes.
Collapse
Affiliation(s)
- Rasha A Abo-Elmagd
- Botany department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ragaa A Hamouda
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah, 21959, Saudi Arabia.
| | - Mervat H Hussein
- Botany department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Sensitive and Rapid Detection of Glutamic Acid in Colloidal Solution by Surfactant Mediated Silver Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Lu Z, Yin L, Li W, Jiang HS. Low Concentrations of Silver Nanoparticles Inhibit Spore Germination and Disturb Gender Differentiation of Ceratopteris thalictroides (L.) Brongn. NANOMATERIALS 2022; 12:nano12101730. [PMID: 35630950 PMCID: PMC9143685 DOI: 10.3390/nano12101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
Because of their excellent antibacterial properties, silver nanoparticles (AgNPs) are widely used in all walks of life, which has caused them to be discharged into aquatic environments with possible negative effects on aquatic plants. In the present study, we used an aquatic fern, Ceratopteris thalictroides, as a model to investigate the effects of AgNPs on its spore germination, gametophytes, sex differentiation, and growth. The results demonstrated that AgNPs significantly inhibited spore germination of C. thalictroides at a AgNP concentration higher than 0.02 mg/L. Additionally, we found sex-dependent effects of AgNPs on the development and growth of the gametophyte of C. thalictroides. The proportion of hermaphrodites in the gametophytes and the area of gametophytes significantly decreased under AgNP treatment, while no significant effect was observed in the male gametophytes. Using the AgNP filtrate (without nanoparticles) and AgNPs plus cysteine (Ag+ chelator), we found that the release of Ag+ from nanoparticles was not the cause of the toxicity of AgNPs on C. thalictroides. The EC50 of AgNPs on spore germination was 0.0492 mg/L, thus indicating an ecological risk of AgNPs on this species even at concentrations lower than the Ag element concentration of the WHO guidelines for drinking-water quality.
Collapse
Affiliation(s)
- Zhenwei Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China;
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Life Sciences, Hainan University, Haikou 570228, China;
- One Health Institute, Hainan University, Haikou 570228, China
- Correspondence: (L.Y.); (H.-S.J.); Tel.: +86-898-6616-0721 (L.Y.); +86-27-8770-0855 (H.-S.J.)
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Hong-Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
- Correspondence: (L.Y.); (H.-S.J.); Tel.: +86-898-6616-0721 (L.Y.); +86-27-8770-0855 (H.-S.J.)
| |
Collapse
|
15
|
Farooqi ZH, Begum R, Naseem K, Wu W, Irfan A. Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2020.1807797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Khalida Naseem
- Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Zhou Q, Chen J, Lu Z, Tian Q, Shao J. In Situ Synthesis of Silver Nanoparticles on Flame-Retardant Cotton Textiles Treated with Biological Phytic Acid and Antibacterial Activity. MATERIALS 2022; 15:ma15072537. [PMID: 35407868 PMCID: PMC9000066 DOI: 10.3390/ma15072537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
Fabrics were flame-retardant finished using phytic acid, a cost-effective, ecologically acceptable, and easily available flame-retardant finishing chemical. Then, on the surface of the completed fabric, silver nanoparticles (Ag NPs) were grown in situ to minimize Ag NPs aggregation and heterogeneous post-finishing and to increase washing durability. Thus, flame-retardant and antibacterial qualities were added to textiles. The as-prepared textiles were evaluated for their combustion performance, thermal performance, and antibacterial capabilities. At the same time, their microstructures were studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The findings indicated that flame-retardant textiles had an excellent launderability (limiting oxygen index = 31% after 20 washing cycles). Meanwhile, Ag NPs-loaded flame-retardant textiles demonstrated self-extinguishing properties, with a limiting oxygen index (LOI) of 27%. Bacteriostatic widths of flame-retardant antibacterial textiles against Escherichia coli and Staphylococcus aureus were 5.28 and 4.32 mm, respectively, indicating that Ag NPs-loaded flame-retardant fabrics have certain flame-retardant and antibacterial capabilities. SEM and TEM analysis indicated that nanoparticles were uniformly dispersed over Ag NPs-loaded flame-retardant textiles and were around 20 nm in size. When compared to flame-retardant textiles, Ag NPs-loaded flame-retardant fabrics showed varied binding energy of P and N on the surface and Ag ion emergence. Thermogravimetric analysis at various heating rates revealed that the main pyrolysis temperature range of flame-retardant fabrics decreased, while the main pyrolysis temperature range of Ag NPs-loaded flame-retardant fabrics increased; the heating rate influenced the pyrolysis range but not the fabric mass loss. In situ reduction synthesis of Ag NPs-loaded flame-retardant textiles may successfully reduce agglomeration and heterogeneous dispersion of nano-materials during post-finishing.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Jiayi Chen
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Zhenqian Lu
- Yancheng Institute of Technology, College of Textiles and Clothing, Yancheng 224051, China; (J.C.); (Z.L.)
| | - Qiang Tian
- Zibo Dayang Flame Retardant Products Co., Ltd., Zibo 255000, China;
| | - Jianzhong Shao
- School of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Correspondence: ; Tel.: +86-13770047378
| |
Collapse
|
17
|
Sánchez M JF, Sánchez MD, Falcone RD, Ritacco HA. Production of Pd nanoparticles in microemulsions. Effect of reaction rates on the particle size. Phys Chem Chem Phys 2022; 24:1692-1701. [PMID: 34982075 DOI: 10.1039/d1cp05049d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the synthesis of metallic nanoparticles in microemulsions, we hypothesized that the particle size is controlled by the reaction rate and not by the microemulsion size. Thus, the changes observed in the particle sizes as reaction conditions, such as concentrations, temperatures, the type of surfactant used, etc., are varied which should not be correlated directly to the modification of these conditions but indirectly to the changes they produce in the reaction rates. In this work, the microemulsions were formulated with benzene and water as continuous and dispersed phases, respectively, using n-dodecyltrimethylammonium bromide (DTAB) and n-octanol as the surfactant and cosurfactant. Using time-resolved UV-vis spectroscopy, we measured the reaction rates in the production of palladium (Pd) nanoparticles inside the microemulsions at different reactant concentrations and temperatures, keeping all the other parameters constant. The measured reaction rates were then correlated with the particle sizes measured by transmission electron microscopy (TEM). We found that the nanoparticle size increases linearly as the reaction rate increases, independently of the actual reactant concentration or temperature. We proposed a simple model for the observed kinetics where the reaction rate is controlled mainly by the diffusion of the reducing agent. With this model, we predicted that the particle size should depend indirectly, via the reaction kinetics, on the micelle radius, the water volume and the total microemulsion volume. Some of these predictions were indeed observed and reported in the literature.
Collapse
Affiliation(s)
- Jhon F Sánchez M
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| | - Miguel D Sánchez
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC). Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Agencia Postal No. 3, X5804BYA Río Cuarto, Argentina
| | - Hernán A Ritacco
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| |
Collapse
|
18
|
Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118506. [PMID: 34793904 DOI: 10.1016/j.envpol.2021.118506] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage.
Collapse
Affiliation(s)
- Kevin Yonathan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; South Australian Research and Development Institute, Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
19
|
Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. PLANTS (BASEL, SWITZERLAND) 2021; 11:109. [PMID: 35009112 PMCID: PMC8747355 DOI: 10.3390/plants11010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 2002002, UP, India
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| |
Collapse
|
20
|
Lin HJ, Wang CC, Kou HS, Cheng CW, Wu SM. Stable Luminescent Poly(Allylaminehydrochloride)-Templated Copper Nanoclusters for Selectively Turn-Off Sensing of Deferasirox in β-Thalassemia Plasma. Pharmaceuticals (Basel) 2021; 14:1314. [PMID: 34959714 PMCID: PMC8706525 DOI: 10.3390/ph14121314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023] Open
Abstract
Highly stable and facile one-pot copper nanoclusters (Cu NCs) coated with poly(allylamine hydrochloride) (PAH) have been synthesized for selectively sensing deferasirox (DFX) in β-thalassemia plasma. DFX is an important drug used for treating iron overloading in β-thalassemia, but needs to be monitored due to certain toxicity. In this study, the PAH-Cu NCs showed highly stable fluorescence with emission wavelengths at 450 nm. The DFX specifically interacted with the copper nanocluster to turn off the fluorescence of the PAH-Cu NCs, and could be selectively quantified through the fluorescence quenching effect. The linear range of DFX in plasma analyzed by PAH-Cu NCs was 1.0-100.0 µg/mL (r = 0.985). The relative standard deviation (RSD) and relative error (RE) were lower than 6.51% and 7.57%, respectively, showing excellent reproducibility of PAH-Cu NCs for sensing DFX in plasma. This method was also successfully applied for an analysis of three clinical plasma samples from β-thalassemia patients taking DFX. The data presented high similarity with that obtained through a capillary electrophoresis method. According to the results, the PAH-Cu NCs could be used as a tool for clinically sensing DFX in human plasma for clinical surveys.
Collapse
Affiliation(s)
- Hung-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Cheng-Wei Cheng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.L.); (H.-S.K.); (C.-W.C.)
| | - Shou-Mei Wu
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Taiwan Food and Drug Administration, Ministry of Health and Welfare, Taipei 11561, Taiwan
| |
Collapse
|
21
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
22
|
He N, Li C, Zhao X, Li Y, Zhang X, Qiao Y. The lamellar
MOFs
@polymer networks hybrids fabricated in reversed microemulsion for efficient
CO
2
capture. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Naipu He
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| | - Chao Li
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| | - Xiaozhu Zhao
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| | - Yuhong Li
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| | - Xuehui Zhang
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| | - Yaoyu Qiao
- School of Chemistry and Chemical Engineering Research Institute, Lanzhou Jiaotong University Lanzhou China
| |
Collapse
|
23
|
Ali F, Hamza M, Iqbal M, Basha B, Alwadai N, Nazir A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To date, the noble metal-based nanoparticles have been used in every field of life. The Au and Ag nanoparticles (NPs) have been fabricated employing different techniques to tune the properties. In this study, the methodologies developed and adopted for the fabrication of Au and Ag have been discussed, which include physical, chemical and biological routes. The Au and Ag characteristics (morphology, size, shape) along with advantages and disadvantages are discussed. The Au and Ag NPs catalytic and biomedical applications are discussed. For the Ag and Au NPs characterization, SEM (scanning electron microscope), TEM (transmission electron microscope), FTIR (Fourier transform infra-red spectroscopy), XRD (X-rays diffraction) and DLS (dynamic light scattering) techniques are employed. The properties of Au and Ag NPs found dependent to synthesis approach, i.e., the size, shape and morphologies, which showed a promising Catalytic, drug delivery and antimicrobial agent applications. The review is a comprehensive study for the comparison of Au and Ag NPs synthesis, properties and applications in different fields.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Muhammad Hamza
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Beriham Basha
- Department of Physics , College of Science, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Norah Alwadai
- Department of Physics , College of Science, Princess Nourah bint Abdulrahman University (PNU) , Riyadh 11671 , Saudi Arabia
| | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|
24
|
Kale AR, Barai DP, Bhanvase BA, Sonawane SH. An Ultrasound-Assisted Minireactor System for Continuous Production of TiO2 Nanoparticles in a Water-in-Oil Emulsion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akshay R. Kale
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Divya P. Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Bharat A. Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, Telangana 506004, India
| |
Collapse
|
25
|
Ihtisham M, Noori A, Yadav S, Sarraf M, Kumari P, Brestic M, Imran M, Jiang F, Yan X, Rastogi A. Silver Nanoparticle's Toxicological Effects and Phytoremediation. NANOMATERIALS 2021; 11:nano11092164. [PMID: 34578480 PMCID: PMC8465113 DOI: 10.3390/nano11092164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The advancement in nanotechnology has brought numerous benefits for humans in diverse areas including industry, medicine, and agriculture. The demand in the application of nanomaterials can result in the release of these anthropogenic materials into soil and water that can potentially harm the environment by affecting water and soil properties (e.g., soil texture, pH, organic matter, and water content), plants, animals, and subsequently human health. The properties of nanoparticles including their size, surface area, and reactivity affect their fate in the environment and can potentially result in their toxicological effects in the ecosystem and on living organisms. There is extensive research on the application of nano-based materials and the consequences of their release into the environment. However, there is little information about environmentally friendly approaches for removing nanomaterials from the environment. This article provides insight into the application of silver nanoparticles (AgNPs), as one of the most commonly used nanomaterials, their toxicological effects, their impacts on plants and microorganisms, and briefly reviews the possibility of remediation of these metabolites using phytotechnology approaches. This article provides invaluable information to better understand the fate of nanomaterials in the environment and strategies in removing them from the environment.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Azam Noori
- Department of Biology, Merrimack College, North Andover, MA 01845, USA;
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | - Pragati Kumari
- Scientist Hostel-S-02, Chauras Campus, Garhwal, Srinagar 246174, Uttarakhand, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
| | - Xiaojun Yan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (M.I.); (F.J.)
- Correspondence: (X.Y.); (A.R.)
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
- Correspondence: (X.Y.); (A.R.)
| |
Collapse
|
26
|
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 2021; 50:8102-8146. [PMID: 34047311 DOI: 10.1039/d0cs00260g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique because of its signal linearly propotional to the tracer mass, ability to generate positive contrast, low tissue background, unlimited tissue penetration depth, and lack of ionizing radiation. The sensitivity and resolution of MPI are highly dependent on the properties of magnetic nanoparticles (MNPs), and extensive research efforts have been focused on the design and synthesis of tracers. This review examines parameters that dictate the performance of MNPs, including size, shape, composition, surface property, crystallinity, the surrounding environment, and aggregation state to provide guidance for engineering MPI tracers with better performance. Finally, we discuss applications of MPI imaging and its challenges and perspectives in clinical translation.
Collapse
Affiliation(s)
- Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Joanna Wang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | - Jiacheng Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| |
Collapse
|
27
|
Bai J, Xie LY, Yang L, Wang RQ, Chen X, Hu S. Reversed lipid micellar hollow-fiber liquid-phase microextraction of rotigotine in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122583. [PMID: 34224964 DOI: 10.1016/j.jchromb.2021.122583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
A hollow fiber liquid phase microextraction (HF-LPME) based on a reversed lipid micelle as the extraction phase was proposed and combined with high performance liquid chromatography (HPLC) for the determination of rotigotine in biological matrix. In the proposed procedure, pieces of hollow fibers were fastened on a magnetic stir bar using a thread to provide better precision. Rotigotine was extracted from 5 mL of diluted plasma sample phase with pH 6 into reversed lipid micelle (5 mmol/L of dipalmitoyl phosphatidyl choline in n-octanol/water) impregnated in both the wall pores and the lumen of the hollow fiber. After the extraction at 900 rpm and room temperature for 30 min, the acceptor phase of reversed lipid micelle was collected for HPLC analysis. Various parameters affecting the extraction efficiency, such as type of surfactant and organic solvent, surfactant concentration, sample phase pH, salt amount, extraction time, stirring rate, and dilution factor of the plasma sample, were investigated and optimized. Furthermore, the formed reversed lipid micelle was characterized by fluorescence method. Under the optimal conditions, the linear range of rotigotine was between 2 ng/mL and 100 ng/mL with determination coefficient (r2) ≥ 0.9913. It is shown from results of method validation that the satisfactory accuracy (the relative errors between -8.5% and 3.3%), precision (the relative standard deviations from 3.8% to 8.9%), stability and matrix effect were obtained. The enrichment factor (EF) of the reversed lipid micelle-based HF-LPME for rotigotine reached 126. And the feasibility of the proposed method was confirmed by the application to the pharmacokinetic study of rotigotine in rat plasma.
Collapse
Affiliation(s)
- Jie Bai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Li-Yuan Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Li Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Run-Qin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
28
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
29
|
d’Amora M, Raffa V, De Angelis F, Tantussi F. Toxicological Profile of Plasmonic Nanoparticles in Zebrafish Model. Int J Mol Sci 2021; 22:ijms22126372. [PMID: 34198694 PMCID: PMC8232250 DOI: 10.3390/ijms22126372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Plasmonic nanoparticles are increasingly employed in several fields, thanks to their unique, promising properties. In particular, these particles exhibit a surface plasmon resonance combined with outstanding absorption and scattering properties. They are also easy to synthesize and functionalize, making them ideal for nanotechnology applications. However, the physicochemical properties of these nanoparticles can make them potentially toxic, even if their bulk metallic forms are almost inert. In this review, we aim to provide a more comprehensive understanding of the potential adverse effects of plasmonic nanoparticles in zebrafish (Danio rerio) during both development and adulthood, focusing our attention on the most common materials used, i.e., gold and silver.
Collapse
Affiliation(s)
- Marta d’Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
- Correspondence:
| | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy;
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
| | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (F.D.A.); (F.T.)
| |
Collapse
|
30
|
Rajapantulu A, Bandyopadhyaya R. Formation of Gold Nanoparticles in Water-in-Oil Microemulsions: Experiment, Mechanism, and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6623-6631. [PMID: 34032432 DOI: 10.1021/acs.langmuir.1c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembled water-in-oil (W/O) microemulsions have been reported as a suitable route for synthesis of size-controlled nanoparticles. However, the mechanism of formation of nanoparticles in microemulsions is still not completely understood. In this work, gold nanoparticles (GNPs) were synthesized via the W/O microemulsion route. As the molar ratio of water and dioctyl sodium sulphosuccinate (AOT) (R) increased from 2.5 to 5.0 to 7.5, the corresponding water drop diameter increased from 2.7 to 5.0 to 7.3 nm. In parallel, the mean hydrodynamic diameter of GNPs increased from 6.5 to 11.3 to 15.6 nm for corresponding R values of 2.5, 5.0, and 7.5. Therefore, although there is a monotonically increasing trend of the mean diameter of GNPs with the initial drop diameter, for all values of R, the mean diameter of GNPs was significantly higher than the initial drop diameter. Consequently, previously known simulation vastly underpredicts the experimental GNP diameter. However, only on redefining the particle-particle coagulation event (during coalescence of microemulsion drops containing particles) does the current kinetic Monte Carlo (kMC) simulation agree well with the experimental results. In addition, we also find that the coagulation efficiency of solid nanoparticles (βp) increases with R, and βp is lesser than the coalescence efficiency of liquid drops (βd) over the range of R values concerned. Hence, a combined simulation and experimental study enumerates the dynamics of size evolution of nanoparticles and the events involved in their formation in a W/O microemulsion system.
Collapse
Affiliation(s)
- Anil Rajapantulu
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
31
|
Salazar-Bryam AM, Yoshimura I, Santos LP, Moura CC, Santos CC, Silva VL, Lovaglio RB, Costa Marques RF, Jafelicci Junior M, Contiero J. Silver nanoparticles stabilized by ramnolipids: Effect of pH. Colloids Surf B Biointerfaces 2021; 205:111883. [PMID: 34102528 DOI: 10.1016/j.colsurfb.2021.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Rhamnolipids are glycolipid biosurfactants that have remarkable physicochemical characteristics, such as the capacity for self-assembly, which makes these biomolecules a promising option for application in nanobiotechnology. Rhamnolipids produced from a low-cost carbon source (glycerol) were used to stabilize silver nanoparticles. Silver nanoparticles (AgNPs) have been the subject of studies due to their physical chemical as well as biological properties, which corroborate their catalytic and antimicrobial activity. We compared nanoparticles obtained with three different pH values during synthesis (5, 7 and 9) in the presence of rhamnolipids. Dynamic light scattering showed that larger particles were formed at pH 5 (78-190 nm) compared to pH 7 (6.5-43 nm) and 9 (5.6-28.1 nm). Moreover, nanoparticle stability (analyzed based on the zeta potential) was enhanced with the increase in pH from 5 to 9 (-29.86 ± 1.04, -37.83 ± 0.90 and -40.33 ± 0.57 mV, respectively). Field emission gun scanning electron microscopy confirmed the round morphology of the silver nanoparticles. The LSPR spectra of AgNP for the pHs studied are conserved. In conclusion, different pH values in the presence of rhamnolipids used in the synthesis of silver nanoparticles directly affect nanoparticle size and stability.
Collapse
Affiliation(s)
| | - Ingrid Yoshimura
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Larissa Provasi Santos
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Cinthia Cristine Moura
- São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, São Paulo, Brazil
| | - Caio Carvalho Santos
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Vinicius Luiz Silva
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | | | | | | | - Jonas Contiero
- São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, São Paulo, Brazil; São Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
32
|
Silica Based Nanomaterial for Drug Delivery. NANOMATERIALS: EVOLUTION AND ADVANCEMENT TOWARDS THERAPEUTIC DRUG DELIVERY (PART II) 2021:57-89. [DOI: 10.2174/9781681088235121010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
33
|
Visentin C, Trentin AWDS, Braun AB, Thomé A. Nano scale zero valent iron production methods applied to contaminated sites remediation: An overview of production and environmental aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124614. [PMID: 33246810 DOI: 10.1016/j.jhazmat.2020.124614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The nano scale zero valent iron (nZVI) is the most used material in the remediation process. The inclusion of sustainability in the remediation process has also been gaining prominence. Sustainable remediation seeks to consider the environmental, economic and social impacts of remediation. Thus, this article aims to: (i) identify and describe nZVI production methods and (ii) evaluate their environmental aspects. Thus, this research was carried out in two stages. The first consisted of systematic bibliographical research to identify and describe nZVI production methods. In the second stage, an environmental analysis of the methods was performed considering the methodology of life cycle inventory assessment. Based on the inventory analysis, a classification of environmental aspects was performed, which included criteria, icons and a color scale. Nine nZVI production methods were identified, which comprised different technologies and processes. All methods had negative environmental aspects, such as high energy consumption, waste, wastewater generation and atmospheric emissions. In the classification of methods with regard to environmental aspects, the milling method had the best score, and the ultrasonic wave method the worst. Overall, this study contributes significantly to the detailed knowledge of nZVI synthesis methods in relation to production processes and their environmental aspects.
Collapse
Affiliation(s)
- Caroline Visentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Adan William da Silva Trentin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Adeli Beatriz Braun
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| | - Antônio Thomé
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, São José Neighborhood, BR 285, 99052-900 Passo Fundo, RS, Brazil.
| |
Collapse
|
34
|
Yadav N, Ganguli AK. Mechanistic understanding of growth of nanorods in microemulsions. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
36
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Das A, Yadav N, Manchala S, Bungla M, Ganguli AK. Mechanistic Investigations of Growth of Anisotropic Nanostructures in Reverse Micelles. ACS OMEGA 2021; 6:1007-1029. [PMID: 33490761 PMCID: PMC7818115 DOI: 10.1021/acsomega.0c04033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Tailoring the characteristics of anisotropic nanostructures like size, morphology, aspect ratio, and size dispersity is of extreme importance due to the unique and tunable properties including catalytic, optical, photocatalytic, magnetic, photochemical, electrochemical, photoelectrochemical, and several other physical properties. The reverse microemulsion (RM) method offers a useful soft-template and low-temperature procedure that, by variation of experimental conditions and nature of reagents, has proved to be extremely versatile in synthesis of nanostructures with tailored properties. Although many reports of synthesis of nanostructures by the RM method exist in the literature, most of the research studies carried out still follow the "hit and trial" method where the synthesis conditions, reagents, and other factors are varied and the resulting characteristics of the obtained nanostructures are justified on the basis of existing physical chemistry principles. Mechanistic investigations are scarce to generate a set of empirical rules that would aid in preplanning the RM-based synthesis of nanostructures with desired characteristics as well as make the process viable on an industrial scale. A consolidation of such research data available in the literature is essential for providing future directions in the field. In this perspective, we analyze the literature reports that have investigated the mechanistic aspects of growth of anisotropic nanostructures using the RM method and distil the essence of the present understanding at the nanoscale timescale using techniques like FCS and ultrafast spectroscopy in addition to routine techniques like DLS, fluorescence, TEM, etc.
Collapse
Affiliation(s)
- Anirban Das
- Department
of Chemistry, Biochemistry and Forensic Sciences, Amity School of
Applied Sciences, Amity University Haryana, Gurugram, Haryana 122413, India
| | - Nitin Yadav
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Saikumar Manchala
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Manisha Bungla
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Ashok K. Ganguli
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
38
|
Chang H, Rho WY, Son BS, Kim J, Lee SH, Jeong DH, Jun BH. Plasmonic Nanoparticles: Basics to Applications (I). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:133-159. [PMID: 33782871 DOI: 10.1007/978-981-33-6158-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review presents the main characteristics of metal nanoparticles (NPs), especially consisting of noble metal such as Au and Ag, and brief information on their synthesis methods. The physical and chemical properties of the metal NPs are described, with a particular focus on the optically variable properties (surface plasmon resonance based properties) and surface-enhanced Raman scattering of plasmonic materials. In addition, this chapter covers ways to achieve advances by utilizing their properties in the biological studies and medical fields (such as imaging, diagnostics, and therapeutics). These descriptions will help researchers new to nanomaterials for biomedical diagnosis to understand easily the related knowledge and also will help researchers involved in the biomedical field to learn about the latest research trends.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
39
|
Martins N, Pradhan A, Pascoal C, Cássio F. Effects of metal nanoparticles on freshwater rotifers may persist across generations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105652. [PMID: 33075614 DOI: 10.1016/j.aquatox.2020.105652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Nanotechnology has become one of the fastest growing industries in the current century because nanomaterials (NMs) are present in an ever-expanding range of consumer products increasing the chance of their release into natural environments. In this study, the impacts of two metal nanoparticles (Ag-NPs and CuO-NPs) and their equivalent ionic forms (Ag+ and Cu2+) were assessed on the lentic freshwater rotifer Brachionus calyciflorus and on its ability to adapt and recover through generations. In our study, Ag-NPs and CuO-NPs inhibited the rotifer population growth rate and caused mortality at low concentrations (< 100 μg L-1). Ag-NPs and CuO-NPs decreased in the medium when organisms were present (48 h exposure: 51.1 % and 66.9 %, respectively), similarly Ag+ and Cu2+ also decreased from medium in presence of the organisms (48 h: 35.2 % and 47.3 %, respectively); although the metal concentrations removed from the medium were higher for nanoparticles than metal ions, metal ions showed higher effects then their respective nanoparticle forms. Rotifer populations exposed for 4 generations to the toxicants were able to recover the population growth rate, but some rotifers showed developmental delay and inability to reproduce even after the removal of the toxicants. Intracellular accumulation of reactive oxygen species as well as plasma membrane damage were found in the rotifers at concentrations corresponding to EC10 (Ag-NPs = 1.7 μg L-1, Ag+ = 4.5 μg L-1, CuO-NPs = 46.9 μg L-1, Cu2+ = 35 μg L-1) of the population growth rate. Our results showed, for the first time, that effects of metal nanoparticles and metal ions on rotifer populations may persist along several generations. This should be taken into account when assessing risks of metal nanoparticles in freshwaters.
Collapse
Affiliation(s)
- Nuno Martins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
40
|
Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci 2020; 15:819-839. [PMID: 33817269 PMCID: PMC7747521 DOI: 10.1515/biol-2020-0094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology is a rapidly growing field due to its unique functionality and a wide range of applications. Nanomedicine explores the possibilities of applying the knowledge and tools of nanotechnology for the prevention, treatment, diagnosis and control of disease. In this regard, silver nanoparticles with diameters ranging from 1 to 100 nm are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production. The current paper reviews various types of physical, chemical and biological methods used in the production of silver nanoparticles. It also describes approaches employing silver nanoparticles as antimicrobial and antibiofilm agents, as antitumour agents, in dentistry and dental implants, as promoters of bone healing, in cardiovascular implants and as promoters of wound healing. The paper also explores the mechanism of action, synthesis methods and morphological characterisation of silver nanoparticles to examine their role in medical treatments and disease management.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
41
|
Hassanshahi N, Hu G, Li J. Application of Ionic Liquids for Chemical Demulsification: A Review. Molecules 2020; 25:E4915. [PMID: 33114253 PMCID: PMC7660632 DOI: 10.3390/molecules25214915] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/17/2023] Open
Abstract
In recent years, ionic liquids have received increasing interests as an effective demulsifier due to their characteristics of non-flammability, thermal stability, recyclability, and low vapor pressure. In this study, emulsion formation and types, chemical demulsification system, the application of ionic liquids as a chemical demulsifier, and key factors affecting their performance were comprehensively reviewed. Future challenges and opportunities of ionic liquids application for chemical demulsification were also discussed. The review indicted that the demulsification performance was affected by the type, molecular weight, and concentration of ionic liquids. Moreover, other factors, including the salinity of aqueous phase, temperature, and oil types, could affect the demulsification process. It can be concluded that ionic liquids can be used as a suitable substitute for commercial demulsifiers, but future efforts should be required to develop non-toxic and less expensive ionic liquids with low viscosity, and the demulsification efficiency could be improved through the application of ionic liquids with other methods such as organic solvents.
Collapse
Affiliation(s)
- Nahid Hassanshahi
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Guangji Hu
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Jianbing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| |
Collapse
|
42
|
Popovetskiy PS, Kolodin AN. Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Yu Y, Khan MA, Chen Z. In Situ and Real-Time Monitoring of Nanoparticle Formation in Microemulsion by Means of Dielectric Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11110-11116. [PMID: 32878445 DOI: 10.1021/acs.langmuir.0c02128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dielectric spectroscopy was employed, for the first time, to monitor the formation process of silica nanoparticles in a nonionic surfactant-based microemulsion in situ and in real time. Two dominant relaxations were observed in the frequency range of 1 MHz-3 GHz during this process. The relaxation at the lower frequency range was confirmed to be mainly ascribed to interfacial polarization, whose relaxation parameters, together with the electrical property of the synthesis system, were used to characterize the evolution of this dynamic formation process. Four evolution stages are distinctively revealed, including an induction stage, a nucleation dominant stage, an early particle growth stage, and a late growth stage. The dynamic features at each evolution stages were discussed in terms of the dielectric characteristics of the system. It is strongly suggested that dielectric spectroscopy is an effective tool for the in situ mechanistic study of nanoparticle formation in microemulsion.
Collapse
Affiliation(s)
- Yanqiang Yu
- Department of Applied Chemistry, School of Natural Science, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Muhammad A Khan
- Department of Applied Chemistry, School of Natural Science, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zhen Chen
- Department of Applied Chemistry, School of Natural Science, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
44
|
Ijaz M, Zafar M, Iqbal T. Green synthesis of silver nanoparticles by using various extracts: a review. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1808680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohsin Ijaz
- Department of Physics, University of Otago, Dunedin, New Zealand
| | - Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
45
|
Abbas HS, Krishnan A. Magnetic Nanosystems as a Therapeutic Tool to Combat Pathogenic Fungi. Adv Pharm Bull 2020; 10:512-523. [PMID: 33072531 PMCID: PMC7539303 DOI: 10.34172/apb.2020.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
The overuse of antibiotics is the main reason for the expansion of multidrug-resistant microorganisms, especially, pathogenic fungi, such as Candida albicans and others. Nanotechnology provides an excellent therapeutic tool for pathogenic fungi. Several reports focused on metal oxide nanoparticles, especially, iron oxide nanoparticles due to their extensive applications such as targeted drug delivery. Using biological entities for iron oxide nanoparticle synthesis attracted many concerns for being eco-friendly, and inexpensive. The fusion of biologically active substances reduced and stabilized nanoparticles. Recently, the advancement and challenges for surface engineered magnetic nanoparticles are reviewed for improving their properties and compatibility. Other metals on the surface nanoparticles can enhance their biological and antimicrobial activities against pathogenic fungi. Furthermore, conjugation of antifungal drugs to magnetic nanoparticulate increases their antifungal effect, antibiofilm properties, and reduces their undesirable effects. In this review, we discuss different routes for the synthesis of iron oxide nanoparticles, surface coating manipulation, their applications as antimicrobials, and their mode of action.
Collapse
Affiliation(s)
- Heba Salah Abbas
- National Organization for Drug Control and Research, Cairo, Egypt.,Scientist Under Scheme of Asian Research Training Fellowship for Developing Country (RTF-DCS), FICCI, NewDelhi, India.,Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620024. Tamilnadu, India
| | - Akilandeswari Krishnan
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620024. Tamilnadu, India
| |
Collapse
|
46
|
Lam-Maldonado M, Melo-Banda J, Macias-Ferrer D, Schacht P, Mata-Padilla J, de la Torre AR, Meraz Melo M, Domínguez J. NiFe nanocatalysts for the hydrocracking heavy crude oil. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Transition metal nanocatalysts by modified inverse microemulsion for the heavy crude oil upgrading at reservoir. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Zhou Y. Controllable design, synthesis and characterization of nanostructured rare earth metal oxides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rare earth metal oxide nanomaterials have drawn much attention in recent decades due to their unique properties and promising applications in catalysis, chemical and biological sensing, separation, and optical devices. Because of the strong structure–property correlation, controllable synthesis of nanomaterials with desired properties has long been the most important topic in nanoscience and nanotechnology and still maintains a grand challenge. A variety of methods, involving chemical, physical, and hybrid method, have been developed to precisely control nanomaterials, including size, shape, dimensionality, crystal structure, composition, and homogeneity. These nanostructural parameters play essential roles in determining the final properties of functional nanomaterials. Full understanding of nanomaterial properties through characterization is vital in elucidating the fundamental principles in synthesis and applications. It allows researchers to discover the correlations between the reaction parameters and nanomaterial properties, offers valuable insights in improving synthetic routes, and provokes new design strategies for nanostructures. In application systems, it extrapolates the structure–activity relationship and reaction mechanism and helps to establish quality model for similar reaction processes. The purpose of this chapter is to provide a comprehensive overview and a practical guide of rare earth oxide nanomaterial design and characterization, with special focus on the well-established synthetic methods and the conventional and advanced analytical techniques. This chapter addresses each synthetic method with its advantages and certain disadvantages, and specifically provides synthetic strategies, typical procedures and features of resulting nanomaterials for the widely-used chemical methods, such as hydrothermal, solvothermal, sol–gel, co-precipitation, thermal decomposition, etc. For the nanomaterial characterization, a practical guide for each technique is addressed, including working principle, applications, materials requirements, experimental design and data analysis. In particular, electron and force microscopy are illuminated for their powerful functions in determining size, shape, and crystal structure, while X-ray based techniques are discussed for crystalline, electronic, and atomic structural determination for oxide nanomaterials. Additionally, the advanced characterization methodologies of synchrotron-based techniques and in situ methods are included. These non-traditional methods become more and more popular because of their capabilities of offering unusual nanostructural information, short experiment time, and in-depth problem solution.
Graphical Abstract:
Collapse
|
49
|
Holade Y, Tuleushova N, Tingry S, Servat K, Napporn TW, Guesmi H, Cornu D, Kokoh KB. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02446h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent developments in biomass-derivative fuelled electrochemical converters for electricity or hydrogen production together with chemical electrosynthesis have been reviewed.
Collapse
Affiliation(s)
- Yaovi Holade
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Nazym Tuleushova
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Sophie Tingry
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - Karine Servat
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Teko W. Napporn
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier
- ICGM – UMR 5253
- Univ. Montpellier
- ENSCM
- CNRS
| | - David Cornu
- Institut Européen des Membranes
- IEM – UMR 5635
- Univ. Montpellier
- ENSCM
- CNRS
| | - K. Boniface Kokoh
- Université de Poitiers
- IC2MP UMR-CNRS 7285
- 86073 Poitiers Cedex 9
- France
| |
Collapse
|
50
|
Freire RM, Rojas-Nunez J, Elias-Arriaga AL, Fujisawa K, Troncoso L, Denardin JC, Baltazar SE. Natural arrangement of AgCu bimetallic nanostructures through oleylamine reduction. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00940g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of AgCu bimetallic NPs as a catalyst is highly desired. To accomplish this, the morphology of nanostructures is a key factor.
Collapse
Affiliation(s)
- R. M. Freire
- Institute of Applied Chemical Sciences
- Universidad Autónoma de Chile
- Santiago 8910060
- Chile
| | - J. Rojas-Nunez
- Departamento de Física and CEDENNA
- Universidad de Santiago de Chile
- USACH
- Santiago
- Chile
| | - A. L. Elias-Arriaga
- Department of Physics and Center for 2-Dimensional and Layered Materials
- The Pennsylvania State University
- University Park
- USA
| | - K. Fujisawa
- Department of Physics and Center for 2-Dimensional and Layered Materials
- The Pennsylvania State University
- University Park
- USA
| | - L. Troncoso
- Instituto de Materiales y Procesos Termomecánicos
- Universidad Austral de Chile
- Valdivia
- Chile
| | - J. C. Denardin
- Departamento de Física and CEDENNA
- Universidad de Santiago de Chile
- USACH
- Santiago
- Chile
| | - S. E. Baltazar
- Departamento de Física and CEDENNA
- Universidad de Santiago de Chile
- USACH
- Santiago
- Chile
| |
Collapse
|