1
|
Shu Y, Zhao P, Li X, Shi X, Fu Q. Counter-intuitive discovery in the formulation of poorly water-soluble drugs: Amorphous small-molecule gels. Med Res Rev 2024; 44:2624-2639. [PMID: 38807483 DOI: 10.1002/med.22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Amorphous strategies have been extensively used in improving the dissolution of insoluble drugs for decades due to their high free energy. However, the formation of amorphous small-molecule gels (ASMGs) presents a counter-intuitive discovery that significantly limits their practical application. Recently, ASMGs have garnered attention because of their noncovalent structures, excellent biodegradability, and significant potential in various drug delivery systems in the pharmaceutical field. Hence, a comprehensive review is necessary to contribute to a better understanding of recent advances in ASMGs. This review aimed to introduce the main formation mechanisms, summarize possible influencing factors, generalize unique properties, outline elimination strategies, and discuss clinical application potential with preclinical cases of ASMGs. Moreover, few ASMGs are advanced to clinical stages. Intensive clinical research is needed for further development. We hope that this review can provide more efficient and rational guidance for exploring further clinical applications of ASMGs.
Collapse
Affiliation(s)
- Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Jacob KM, Hernández-Villamizar S, Hammer ND, Reguera G. Mucin-induced surface dispersal of Staphylococcus aureus and Staphylococcus epidermidis via quorum-sensing dependent and independent mechanisms. mBio 2024; 15:e0156224. [PMID: 38953351 PMCID: PMC11323471 DOI: 10.1128/mbio.01562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Nasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar [0.3% (wt/vol)] plate assays, we demonstrate the rapid surface dispersal of (peri)oral isolates of Staphylococcus aureus and Staphylococcus epidermidis and closely related laboratory strains in the presence of mucin glycoproteins. Mucin-induced dispersal was a stepwise process initiated by the passive spreading of the growing colonies followed by their rapid branching (dendrites) from the colony edge. Although most spreading strains used mucin as a growth substrate, dispersal was primarily dependent on the lubricating and hydrating properties of the mucins. Using S. aureus JE2 as a genetically tractable representative, we demonstrate that mucin-induced dendritic dispersal, but not colony spreading, is facilitated by the secretion of surfactant-active phenol-soluble modulins (PSMs) in a process regulated by the agr quorum-sensing system. Furthermore, the dendritic dispersal of S. aureus JE2 colonies was further stimulated in the presence of surfactant-active supernatants recovered from the most robust (peri)oral spreaders of S. aureus and S. epidermidis. These findings suggest complementary roles for lubricating mucins and staphylococcal PSMs in the active dispersal of potentially pathogenic strains from perioral to respiratory mucosae, where gel-forming, hydrating mucins abound. They also highlight the impact that interspecies interactions have on the co-dispersal of S. aureus with other perioral bacteria, heightening the risk of polymicrobial infections and the severity of the clinical outcomes. IMPORTANCE Despite lacking classical motility machinery, nasopharyngeal staphylococci spread rapidly in (peri)oral and respiratory mucosa and cause cross-infections. We describe laboratory conditions for the reproducible study of staphylococcal dispersal on mucosa-like surfaces and the identification of two dispersal stages (colony spreading and dendritic expansion) stimulated by mucin glycoproteins. The mucin type mattered as dispersal required the surfactant activity and hydration provided by some mucin glycoproteins. While colony spreading was a passive mode of dispersal lubricated by the mucins, the more rapid and invasive form of dendritic expansion of Staphylococcus aureus and Staphylococcus epidermidis required additional lubrication by surfactant-active peptides (phenol-soluble modulins) secreted at high cell densities through quorum sensing. These results highlight a hitherto unknown role for gel-forming mucins in the dispersal of staphylococcal strains associated with cross-infections and point at perioral regions as overlooked sources of carriage and infection by staphylococci.
Collapse
Affiliation(s)
- Kristin M. Jacob
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | | | - Neal D. Hammer
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Gemma Reguera
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Han J, Najafi S, Byun Y, Geonzon L, Oh SH, Park J, Koo JM, Kim J, Chung T, Han IK, Chae S, Cho DW, Jang J, Jeong U, Fredrickson GH, Choi SH, Mayumi K, Lee E, Shea JE, Kim YS. Bridge-rich and loop-less hydrogel networks through suppressed micellization of multiblock polyelectrolytes. Nat Commun 2024; 15:6553. [PMID: 39095421 PMCID: PMC11297175 DOI: 10.1038/s41467-024-50902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Most triblock copolymer-based physical hydrogels form three-dimensional networks through micellar packing, and formation of polymer loops represents a topological defect that diminishes hydrogel elasticity. This effect can be mitigated by maximizing the fraction of elastically effective bridges in the hydrogel network. Herein, we report hydrogels constructed by complexing oppositely charged multiblock copolymers designed with a sequence pattern that maximizes the entropic and enthalpic penalty of micellization. These copolymers self-assemble into branched and bridge-rich network units (netmers), instead of forming sparsely interlinked micelles. We find that the storage modulus of the netmer-based hydrogel is 11.5 times higher than that of the micelle-based hydrogel. Complementary coarse grained molecular dynamics simulations reveal that in the netmer-based hydrogels, the numbers of charge-complexed nodes and mechanically reinforcing bridges increase substantially relative to micelle-based hydrogels.
Collapse
Affiliation(s)
- Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Lester Geonzon
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Seung-Hwan Oh
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Jiwon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Koichi Mayumi
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA.
- Department of Physics, University of California, Santa Barbara, California, USA.
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
4
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Zheng Q, Peng Y, Liu HX, Cao HQ, Li FF. Mucin phenotype and microvessels in early gastic cancer: Magnifying endoscopy with narrow band imaging. Heliyon 2024; 10:e32293. [PMID: 38975191 PMCID: PMC11225763 DOI: 10.1016/j.heliyon.2024.e32293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Backgrounds In order to detect early gastric cancer (EGC), this research sought to assess the diagnostic utility of magnifying endoscopy (ME) as well as the significance of mucin phenotype and microvessel features. Methods 402 individuals with an EGC diagnosis underwent endoscopic submucosal dissection (ESD) at the Department of ME between 2012 and 2020. After adjusting for image distortion, high-magnification endoscopic pictures were taken and examined to find microvessels in the area of interest. The microvessel density was measured as counts per square millimeter (counts/mm2) after segmentation, and the vascular bed's size was computed as a percentage of the area of interest. To identify certain properties of the microvessels, such as end-points, crossing points, branching sites, and connection points, further processing was done using skeletonized pixels. Results According to the research, undifferentiated tumors often lacked the MS pattern and showed an oval and tubular microsurface (MS) pattern, but differentiated EGC tumors usually lacked the MS pattern and presented a corkscrew MV pattern. Submucosal invasion was shown to be more strongly associated with the destructive MS pattern in differentiated tumors as opposed to undifferentiated tumors. While lesions with a corkscrew MV pattern and an antrum or body MS pattern revealed greater MUC5AC expression, lesions with a loop MV pattern indicated higher MUC2 expression. Furthermore, CD10 expression was higher in lesions with a papillary pattern and an antrum or body MS pattern. Conclusion These results imply that evaluating mucin phenotype and microvessel features in conjunction with magnifying endoscopy (ME) may be a useful diagnostic strategy for early gastric cancer (EGC) detection. Nevertheless, further investigation is required to confirm these findings and identify the best course of action for EGC diagnosis.
Collapse
Affiliation(s)
- Qian Zheng
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Yan Peng
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Han Xiong Liu
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Hui Qiu Cao
- Department of Pathology, Chenzhou First People's Hospital, 423000, China
| | - Fang Fang Li
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| |
Collapse
|
6
|
Ueda Y, Mogami H, Chigusa Y, Kawamura Y, Inohaya A, Takakura M, Yasuda E, Matsuzaka Y, Shimada M, Ito S, Morita S, Mandai M, Kondoh E. Hyposecretion of cervical MUC5B is related to preterm birth in pregnant women after cervical excisional surgery. Am J Reprod Immunol 2024; 91:e13832. [PMID: 38462543 DOI: 10.1111/aji.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
PROBLEM Excisional surgery for cervical intraepithelial neoplasia is a risk factor for preterm birth in subsequent pregnancies. However, the underlying mechanisms of this association remain unclear. We previously showed that cervical MUC5B, a mucin protein, may be a barrier to ascending pathogens during pregnancy. We thus hypothesized that hyposecretion of cervical MUC5B is associated with preterm birth after cervical excisional surgery. METHOD OF STUDY This prospective nested case-control study (Study 1) included pregnant women who had previously undergone cervical excisional surgery across 11 hospitals. We used proteomics to compare cervicovaginal fluid at 18-22 weeks of gestation between the preterm and term birth groups. In another case-control analysis (Study 2), we compared MUC5B expression in nonpregnant uterine tissues between 15 women with a history of cervical excisional surgery and 26 women without a history of cervical surgery. RESULTS The abundance of MUC5B in cervicovaginal fluid was significantly decreased in the preterm birth group (fold change = 0.41, p = .035). Among the 480 quantified proteins, MUC5B had the second highest positive correlation with gestational age at delivery in the combined preterm and term groups. The cervicovaginal microbiome composition was not significantly different between the two groups. Cervical length was not correlated with gestational age at delivery (r = 0.18, p = .079). Histologically, the MUC5B-positive area in the nonpregnant cervix was significantly decreased in women with a history of cervical excisional surgery (0.85-fold, p = .048). The distribution of MUC5B-positive areas in the cervical tissues of 26 women without a history of cervical excisional surgery differed across individuals. CONCLUSIONS This study suggests that the primary mechanism by which cervical excisional surgery causes preterm birth is the hyposecretion of MUC5B due to loss of the cervical glands.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Leoncini G, Cari L, Ronchetti S, Donato F, Caruso L, Calafà C, Villanacci V. Mucin Expression Profiles in Ulcerative Colitis: New Insights on the Histological Mucosal Healing. Int J Mol Sci 2024; 25:1858. [PMID: 38339134 PMCID: PMC10855303 DOI: 10.3390/ijms25031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A structural weakness of the mucus barrier (MB) is thought to be a cause of ulcerative colitis (UC). This study aims to investigate the mucin (MUC) composition of MB in normal mucosa and UC. Ileocolonic biopsies were taken at disease onset and after treatment in 40 patients, including 20 with relapsing and 20 with remitting UC. Ileocolonic biopsies from 10 non-IBD patients were included as controls. Gut-specific MUC1, MUC2, MUC4, MUC5B, MUC12, MUC13, MUC15, and MUC17 were evaluated immunohistochemically. The promoters of mucin genes were also examined. Normal mucosa showed MUC2, MUC5B, and MUC13 in terminal ileum and colon, MUC17 in ileum, and MUC1, MUC4, MUC12, and MUC15 in colon. Membranous, cytoplasmic and vacuolar expressions were highlighted. Overall, the mucin expression was abnormal in UC. Derangements in MUC1, MUC4, and MUC5B were detected both at onset and after treatment. MUC2 and MUC13 were unaffected. Sequence analysis revealed glucocorticoid-responsive elements in the MUC1 promoter, retinoic-acid-responsive elements in the MUC4 promoter, and butyrate-responsive elements in the MUC5B promoter. In conclusion, MUCs exhibited distinct expression patterns in the gut. Their expression was disrupted in UC, regardless of the treatment protocols. Abnormal MUC1, MUC4, and MUC5B expression marked the barrier dysfunction in UC.
Collapse
Affiliation(s)
- Giuseppe Leoncini
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Luigi Cari
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Laura Caruso
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | - Cristina Calafà
- Pathology Unit, Department of Pathology and Laboratory Medicine, Desenzano del Garda Hospital, ASST del Garda, 25015 Brescia, Italy
| | | |
Collapse
|
8
|
Nivet C, Custovic I, Avoscan L, Bikker FJ, Bonnotte A, Bourillot E, Briand L, Brignot H, Heydel JM, Herrmann N, Lelièvre M, Lesniewska E, Neiers F, Piétrement O, Schwartz M, Belloir C, Canon F. Development of New Models of Oral Mucosa to Investigate the Impact of the Structure of Transmembrane Mucin-1 on the Mucosal Pellicle Formation and Its Physicochemical Properties. Biomedicines 2024; 12:139. [PMID: 38255244 PMCID: PMC10812975 DOI: 10.3390/biomedicines12010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.
Collapse
Affiliation(s)
- Clément Nivet
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Irma Custovic
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Laure Avoscan
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands;
| | - Aline Bonnotte
- Agroécologie, UMR1347 INRAE, ERL CNRS 6300, DimaCell Platform, Center of Microscopy INRAE, University of Bourgogne, 21000 Dijon, France; (L.A.); (A.B.)
| | - Eric Bourillot
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Loïc Briand
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Hélène Brignot
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Jean-Marie Heydel
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Noémie Herrmann
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Mélanie Lelièvre
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Eric Lesniewska
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Fabrice Neiers
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Olivier Piétrement
- Institut Carnot de Bourgogne (ICB), UMR CNRS 6303, University of Bourgogne, 21000 Dijon, France; (I.C.); (E.B.); (E.L.); (O.P.)
| | - Mathieu Schwartz
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Christine Belloir
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| | - Francis Canon
- Center for Taste and Feeding Behaviour (CSGA), UMR1324 INRAE, Institut Agro Dijon, Université de Bourgogne, UMR6265 CNRS, 21000 Dijon, France; (C.N.); (L.B.); (H.B.); (J.-M.H.); (N.H.); (M.L.); (F.N.); (M.S.); (C.B.)
| |
Collapse
|
9
|
Stankovits G, Ábrahám Á, Kiss É, Varga Z, Misra A, Szilágyi A, Gyarmati B. The interaction between mucin and poly(amino acid)s with controlled cationic group content in bulk phase and in thin layers. Int J Biol Macromol 2023; 253:126826. [PMID: 37699458 DOI: 10.1016/j.ijbiomac.2023.126826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
The type and concentration of charged groups in polymers have a key role in mucoadhesive interactions. A series of cationic poly(amino acid)s with different charge densities was designed to unravel the correlation between chemical structure and mucin-polymer interactions. Colloidal interactions between the mucin protein and synthetic polyaspartamides were tested by dynamic light scattering, zeta potential measurements and turbidimetric titration as a function of polymer-to-mucin mass ratio. The mucoadhesive interactions displayed a strongly non-linear change with polymer composition. The attractive interactions between mucin and the polyaspartamides with at least 50 % cationic groups caused increased light scattering of dispersions due to the aggregation of mucin particles upon their charge reversal. Interactions were further analysed in a thin mucin layer to model life-like situations using a quartz crystal microbalance (QCM) in flow mode. Results pointed out that the fully cationic polyaspartamide is not necessarily superior to derivatives with lower cationic group content. The maximum of adsorbed mass of polymers on mucin was experienced at medium cationic group contents. This emphasizes the relevance of cationic polyaspartamides as mucoadhesive excipients due to their multiple functionalities and the possibility of fine-tuning their interactions with mucin via straightforward chemical steps.
Collapse
Affiliation(s)
- Gergely Stankovits
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Ágnes Ábrahám
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary; MTA-TTK Lendület "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Krt. 2., H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
| | - Anil Misra
- Pharmidex Pharmaceutical Services, Office 3.05, 1 King Street, London EC2V 8AU, United Kingdom
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
10
|
NAGAO I, TSUJI K, GOTO-KOSHINO Y, TSUBOI M, CHAMBERS JK, UCHIDA K, KAMBAYASHI S, TOMIYASU H, BABA K, OKUDA M. MUC5AC and MUC5B expression in canine gallbladder mucocele epithelial cells. J Vet Med Sci 2023; 85:1269-1276. [PMID: 37899236 PMCID: PMC10788179 DOI: 10.1292/jvms.23-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023] Open
Abstract
Gallbladder mucocele (GBM) is one of the most common gallbladder diseases in dogs. Its pathogenesis has not yet been clarified, but excessive accumulation of a secretory gel-forming mucin, MUC5AC in the gallbladder has been reported. This study aimed to ascertain if MUC5AC overproduction resulted in mucus accumulation in the gallbladder during GBM development. Eleven dogs undergoing cholecystectomy who were pathologically diagnosed with GBM were included, and the expression level of mucins, particularly MUC5AC and MUC5B, in their gallbladder epithelial cells was compared with those in normal gallbladder epithelial cells. On reverse transcription-quantitative polymerase chain reaction screening, there was a significant difference (P<0.05) in the mRNA expression level of MUC1, but not of other mucins including MUC5AC and MUC5B, between mucocele and normal gallbladder epithelial cells. Protein expression levels were also evaluated for MUC5AC and MUC5B using immunohistochemistry. There was little immunoreactivity for MUC5AC, whereas MUC5B showed definitive staining in gallbladder epithelial cells. There was no difference in MUC5AC and MUC5B protein expression levels between mucocele and normal gallbladder epithelial cells. These data suggest that excessive production of mucin, especially MUC5AC and MUC5B, does not occur in canine GBM, and that abnormal mucus excretion, rather than excessive mucus production, may be the cause of GBM development.
Collapse
Affiliation(s)
- Itsuma NAGAO
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanako TSUJI
- Laboratory of Veterinary Internal Medicine, Joint Faculty of
Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuko GOTO-KOSHINO
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya TSUBOI
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K. CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi KAMBAYASHI
- Laboratory of Veterinary Internal Medicine, Joint Faculty of
Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hirotaka TOMIYASU
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji BABA
- Laboratory of Veterinary Internal Medicine, Joint Faculty of
Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaru OKUDA
- Laboratory of Veterinary Internal Medicine, Joint Faculty of
Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
11
|
Kavishvar D, Ramachandran A. The yielding behaviour of human mucus. Adv Colloid Interface Sci 2023; 322:103049. [PMID: 38039907 DOI: 10.1016/j.cis.2023.103049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Mucus is a viscoelastic material with non-linear rheological properties such as a yield stress of the order of a few hundreds of millipascals to a few tens of pascals, due to a complex network of mucins in water along with non-mucin proteins, DNA and cell debris. In this review, we discuss the origin of the yield stress in human mucus, the changes in the rheology of mucus with the occurrence of diseases, and possible clinical applications in disease detection as well as cure. We delve into the domain of mucus rheology, examining both macro- and microrheology. Macrorheology involves investigations conducted at larger length scales (∼ a few hundreds of μm or higher) using traditional rheometers, which probe properties on a bulk scale. It is significant in elucidating various mucosal functions within the human body. This includes rejecting unwanted irritants out of lungs through mucociliary and cough clearance, protecting the stomach wall from the acidic environment as well as biological entities, safeguarding cervical canal from infections and providing a swimming medium for sperms. Additionally, we explore microrheology, which encompasses studies performed at length scales ranging from a few tens of nm to a μm. These microscale studies find various applications, including the context of drug delivery. Finally, we employ scaling analysis to elucidate a few examples in lung, cervical, and gastric mucus, including settling of irritants in lung mucus, yielding of lung mucus in cough clearance and cilial beating, spreading of exogenous surfactants over yielding mucus, swimming of Helicobacter pylori through gastric mucus, and lining of protective mucus in the stomach. The scaling analyses employed on the applications mentioned above provide us with a deeper understanding of the link between the rheology and the physiology of mucus.
Collapse
Affiliation(s)
- Durgesh Kavishvar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Wilson C, Lewis KA, Fitzkee NC, Hough LE, Whitten ST. ParSe 2.0: A web tool to identify drivers of protein phase separation at the proteome level. Protein Sci 2023; 32:e4756. [PMID: 37574757 PMCID: PMC10464302 DOI: 10.1002/pro.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
We have developed an algorithm, ParSe, which accurately identifies from the primary sequence those protein regions likely to exhibit physiological phase separation behavior. Originally, ParSe was designed to test the hypothesis that, for flexible proteins, phase separation potential is correlated to hydrodynamic size. While our results were consistent with that idea, we also found that many different descriptors could successfully differentiate between three classes of protein regions: folded, intrinsically disordered, and phase-separating intrinsically disordered. Consequently, numerous combinations of amino acid property scales can be used to make robust predictions of protein phase separation. Built from that finding, ParSe 2.0 uses an optimal set of property scales to predict domain-level organization and compute a sequence-based prediction of phase separation potential. The algorithm is fast enough to scan the whole of the human proteome in minutes on a single computer and is equally or more accurate than other published predictors in identifying proteins and regions within proteins that drive phase separation. Here, we describe a web application for ParSe 2.0 that may be accessed through a browser by visiting https://stevewhitten.github.io/Parse_v2_FASTA to quickly identify phase-separating proteins within large sequence sets, or by visiting https://stevewhitten.github.io/Parse_v2_web to evaluate individual protein sequences.
Collapse
Affiliation(s)
- Colorado Wilson
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
- Present address:
Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular BiophysicsUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Karen A. Lewis
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| | - Nicholas C. Fitzkee
- Department of ChemistryMississippi State UniversityMississippi StateMississippiUSA
| | - Loren E. Hough
- Department of PhysicsUniversity of Colorado BoulderBoulderColoradoUSA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Steven T. Whitten
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTexasUSA
| |
Collapse
|
13
|
Matsuzawa M, Ando T, Fukase S, Kimura M, Kume Y, Ide T, Izawa K, Kaitani A, Hara M, Nakamura E, Kamei A, Matsuda A, Nakano N, Maeda K, Tada N, Ogawa H, Okumura K, Murakami A, Ebihara N, Kitaura J. The protective role of conjunctival goblet cell mucin sialylation. Nat Commun 2023; 14:1417. [PMID: 36932081 PMCID: PMC10023771 DOI: 10.1038/s41467-023-37101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Gel-forming mucins secreted by conjunctival goblet cells have been implicated in the clearance of allergens, pathogens, and debris. However, their roles remain incompletely understood. Here we show that human and mouse conjunctival goblet cell mucins have Alcian blue-detectable sialic acids, but not sulfates in the steady state. Interestingly, Balb/c mouse strain lacks this sialylation due to a point mutation in a sialyltransferase gene, St6galnac1, which is responsible for sialyl-Tn synthesis. Introduction of intact St6galnac1 to Balb/c restores the sialylation of conjunctival goblet cell mucus. Sialylated mucus efficiently captures and encapsulates the allergen particles in an impenetrable layer, leading to the protection of mice from the development of allergic conjunctivitis. Expression of ST6GALNAC1 and sialyl-Tn is upregulated in humans under conditions with chronic stimuli. These results indicate that the sialylated glycans on the ocular mucins play an essential role in maintaining the conjunctival mucosa by protecting from the incoming foreign bodies such as allergen particles.
Collapse
Affiliation(s)
- Moe Matsuzawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, 279-0021, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Saaya Fukase
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, 279-0021, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Meiko Kimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, 279-0021, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yasuharu Kume
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, 279-0021, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Norihiro Tada
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu, Chiba, 279-0021, Japan
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| |
Collapse
|
14
|
Faruque MRJ, Cukkemane N, Fu C, Nazmi K, Laine ML, Bikker FJ. Identification and Characterization of MUC5B Binding Peptides by Phage Display. Arch Oral Biol 2023; 147:105624. [PMID: 36701953 DOI: 10.1016/j.archoralbio.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES MUC5B plays a multifactorial role in oral health. As a consequence, decreased MUC5B output leads to impaired salivary functions and xerostomia. Synthetic combinatorial technologies have been used to develop functional peptide libraries by phage display e.g. for therapeutic purposes. In this light, our primary aim was to identify peptide sequences with specific selectivity for salivary MUC5B in vitro using phage display. Our secondary aims were to analyze their effect on salivary spinnbarkeit in situ and their effect on acid-induced demineralization in vitro. METHODS MUC5B binding phages were selected by phage display. Peptide affinity to MUC5B was evaluated using MUC5B coated hydroxyapatite (HA) granules. The MUC5B binding peptides (MBPs) were then examined for their effects on salivary spinnbarkeit and protective effect on acid-induced demineralization in vitro. A competitive ELISA was performed to identify the binding epitope on MUC5B using F2, a MUC5B specific antibody. RESULTS MBP-12 and MBP-14 displayed the highest affinity to MUC5B. MBP-12 mildly stabilized the spinnbarkeit of serous saliva after overnight incubation and of mucous saliva at all timepoints tested. The addition of MBP-12 to a pellicle of unstimulated saliva on HA discs showed no additive protective effect against acid-induced demineralization. Epitope characterization suggested sulfo-Lewisa SO3-3Gal_1-3GlcNAc (galactose residue) as MBP-12 binding site on MUC5B. CONCLUSIONS The use of phage display in generating MBPs was successful. Characterization of the MBPs revealed a mild effect on spinnbarkeit in case of mucous saliva. Possibly, combinatorial peptide libraries might contribute to the development of novel formulations to treat xerostomia.
Collapse
Affiliation(s)
- Mouri R J Faruque
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands.
| | - Nivedita Cukkemane
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
16
|
Baumlin N, Silswal N, Dennis JS, Niloy AJ, Kim MD, Salathe M. Nebulized Menthol Impairs Mucociliary Clearance via TRPM8 and MUC5AC/MUC5B in Primary Airway Epithelial Cells. Int J Mol Sci 2023; 24:1694. [PMID: 36675209 PMCID: PMC9865048 DOI: 10.3390/ijms24021694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Han J, Lee J, Kim S, Lee A, Park HG, Kim YS. Mucus-inspired organogel as an efficient absorbent and retention agent for volatile organic compounds. NANOSCALE 2022; 15:101-108. [PMID: 36448562 DOI: 10.1039/d2nr05522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nasal mucus plays a key role in the sense of smell by absorbing and transporting chemicals to olfactory receptors. Inspired by the physical properties of mucus that enable it to transport molecules despite its high viscosity, we developed a polymeric organogel with similar viscosity and analyzed its general performance. Through qualitative and quantitative analysis, we confirmed that the matrix viscosity mainly affects the absorption and retention of volatile organic compounds (VOCs) and not their diffusion inside the matrix. Additionally, the vapor pressure of VOCs influences the absorption and retention efficiencies of the matrix. Finally, a detailed understanding of the properties of mucus along with the use of sol-gel transition enabled us to create an efficient VOC absorbent and retention agent.
Collapse
Affiliation(s)
- Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Jemin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Seonghyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Anna Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Hyung Gyu Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
18
|
Jory M, Donnarumma D, Blanc C, Bellouma K, Fort A, Vachier I, Casanellas L, Bourdin A, Massiera G. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales. Interface Focus 2022; 12:20220028. [PMID: 36330325 PMCID: PMC9560788 DOI: 10.1098/rsfs.2022.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 10/16/2023] Open
Abstract
Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.
Collapse
Affiliation(s)
- Myriam Jory
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Dario Donnarumma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Christophe Blanc
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Karim Bellouma
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Aurélie Fort
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Isabelle Vachier
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
- Médecine Biologie Méditerranée, Montpellier, France
| | - Laura Casanellas
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| | - Arnaud Bourdin
- Inserm U1046, Université de Montpellier, Respiratory Disease, CHU Montpellier, 34295 Montpellier, France
| | - Gladys Massiera
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS UMR 5221, 34095 Montpellier, France
| |
Collapse
|
19
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Ueda Y, Mogami H, Kawamura Y, Takakura M, Inohaya A, Yasuda E, Matsuzaka Y, Chigusa Y, Ito S, Mandai M, Kondoh E. Cervical MUC5B and MUC5AC are Barriers to Ascending Pathogens During Pregnancy. J Clin Endocrinol Metab 2022; 107:3010-3021. [PMID: 36112402 DOI: 10.1210/clinem/dgac545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/15/2022]
Abstract
CONTEXT Cervical excision is a risk factor for preterm birth. This suggests that the cervix plays an essential role in the maintenance of pregnancy. OBJECTIVE We investigated the role of the cervix through proteomic analysis of cervicovaginal fluid (CVF) from pregnant women after trachelectomy surgery, the natural model of a lack of cervix. METHODS The proteome compositions of CVF in pregnant women after trachelectomy were compared with those in control pregnant women by liquid chromatography-tandem mass spectrometry and label-free relative quantification. MUC5B/AC expression in the human and murine cervices was analyzed by immunohistochemistry. Regulation of MUC5B/AC expression by sex steroids was assessed in primary human cervical epithelial cells. In a pregnant mouse model of ascending infection, Escherichia coli or phosphate-buffered saline was inoculated into the vagina at 16.5 dpc, and the cervices were collected at 17.5 dpc. RESULTS The expression of MUC5B/5AC in cervicovaginal fluid was decreased in pregnant women after trachelectomy concomitant with the anatomical loss of cervical glands. Post-trachelectomy women delivered at term when MUC5B/AC abundance was greater than the mean normalized abundance of the control. MUC5B levels in the cervix were increased during pregnancy in both humans and mice. MUC5B mRNA was increased by addition of estradiol in human cervical epithelial cells, whereas MUC5AC was not. In a pregnant mouse model of ascending infection, E. coli was trapped in the MUC5B/AC-expressing mucin of the cervix, and neutrophils were colocalized there. CONCLUSION Endocervical MUC5B and MUC5AC may be barriers to ascending pathogens during pregnancy.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
21
|
Ruiz-Pulido G, Quintanar-Guerrero D, Serrano-Mora LE, Medina DI. Triborheological Analysis of Reconstituted Gastrointestinal Mucus/Chitosan:TPP Nanoparticles System to Study Mucoadhesion Phenomenon under Different pH Conditions. Polymers (Basel) 2022; 14:4978. [PMID: 36433107 PMCID: PMC9696252 DOI: 10.3390/polym14224978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de México, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
22
|
Nudelman R, Alhmoud H, Delalat B, Kaur I, Vitkin A, Bourgeois L, Goldfarb I, Cifuentes-Rius A, Voelcker NH, Richter S. From nanoparticles to crystals: one-pot programmable biosynthesis of photothermal gold structures and their use for biomedical applications. J Nanobiotechnology 2022; 20:482. [PMID: 36384747 PMCID: PMC9670439 DOI: 10.1186/s12951-022-01680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Inspired by nature, green chemistry uses various biomolecules, such as proteins, as reducing agents to synthesize metallic nanostructures. This methodology provides an alternative route to conventional harsh synthetic processes, which include polluting chemicals. Tuning the resulting nanostructure properties, such as their size and shape, is challenging as the exact mechanism involved in their formation is still not well understood. This work reports a well-controlled method to program gold nanostructures' shape, size, and aggregation state using only one protein type, mucin, as a reduction and capping material in a one-pot bio-assisted reaction. Using mucin as a gold reduction template while varying its tertiary structure via the pH of the synthesis, we demonstrate that spherical, coral-shaped, and hexagonal gold crystals can be obtained and that the size can be tuned over three orders of magnitude. This is achieved by leveraging the protein's intrinsic reducing properties and pH-induced conformational changes. The systematic study of the reaction kinetics and growth steps developed here provides an understanding of the mechanism behind this phenomenon. We further show that the prepared gold nanostructures exhibit tunable photothermal properties that can be optimized for various hyperthermia-induced antibacterial applications.
Collapse
|
23
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
24
|
Lacroix G, Gouyer V, Rocher M, Gottrand F, Desseyn JL. A porous cervical mucus plug leads to preterm birth induced by experimental vaginal infection in mice. iScience 2022; 25:104526. [PMID: 35754724 PMCID: PMC9218384 DOI: 10.1016/j.isci.2022.104526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
During gestation, the cervical mucus plug (CMP) acts to seal the cervical canal. Pilot studies in humans have suggested that a porous CMP may increase the risk of uterine infection and preterm birth. We examined the gel-forming content of the mouse vagina and the CMP. We experimentally infected pregnant mice by intravaginal administration of pathogens related to preterm birth in humans. We found that the epithelium in both the vagina and cervical canal of pregnant mice produced the two gel-forming mucins Muc5b and Muc5ac. The CMP was porous in Muc5b-deficient mice for which intravaginal administration of Escherichia coli O 55 led to the activation of an inflammatory response in the uterus and 100% preterm births. The pathogen was found in the mucus plug and uterus. This study shows that Muc5b is essential for the in vivo barrier function and the prevention of uterine infections during gestation. Muc5b and Muc5ac are the main gel-forming mucins of the mouse vagina and cervical canal During pregnancy, a cervical mucus plug (CMP) is formed and seals the cervical canal Muc5b-deficient CMP is highly porous Inflammation following vaginal infection causes preterm birth in Muc5b-deficient mice
Collapse
Affiliation(s)
- Guillaume Lacroix
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Valérie Gouyer
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Mylène Rocher
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Jean-Luc Desseyn
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| |
Collapse
|
25
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
26
|
Yang X, Yang J, Ye Z, Zhang G, Nie W, Cheng H, Peng M, Zhang K, Liu J, Zhang Z, Shi J. Physiologically Inspired Mucin Coated Escherichia coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS NANO 2022; 16:4041-4058. [PMID: 35230097 DOI: 10.1021/acsnano.1c09681] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery of probiotics to the microbiota is a promising method to prevent and treat diseases. However, oral probiotics will suffer from gastrointestinal insults, especially the pathological microenvironment of inflammatory diseases such as reactive oxygen species (ROS) and the exhausted mucus layer, which can limit their survival and colonization in the intestinal tract. Inspired by the fact that probiotics colonized and grew in the mucus layer under physiological conditions, we developed a strategy for a super probiotic (EcN@TA-Ca2+@Mucin) coated with tannic acid and mucin via layer-by-layer technology. We demonstrated that mucin endows probiotics with superior resistance to the harsh environment of the gastrointestinal tract and with strong adhesiveness to the intestine through its interaction with mucus, which enhanced colonization and growth of probiotics in the mucus layer without removing the coating. Moreover, EcN@TA-Ca2+@Mucin can distinctly down-regulate inflammation with ROS scavenging and reduce the side effects of bacterial translocation in inflammatory bowel diseases, increasing the abundance and diversity of the gut microflora. We envision that it is a powerful platform to improve the colonization of probiotics by regulating the pathological microenvironment, which is expected to provide an important perspective for applying the intestinal colonization of probiotics to treat a variety of diseases.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Zihan Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guizhen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| |
Collapse
|
27
|
Balázs A, Millar-Büchner P, Mülleder M, Farztdinov V, Szyrwiel L, Addante A, Kuppe A, Rubil T, Drescher M, Seidel K, Stricker S, Eils R, Lehmann I, Sawitzki B, Röhmel J, Ralser M, Mall MA. Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Front Immunol 2022; 13:822437. [PMID: 35296085 PMCID: PMC8918506 DOI: 10.3389/fimmu.2022.822437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| | - Pamela Millar-Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Lukasz Szyrwiel
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Center for Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lehmann
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| |
Collapse
|
28
|
Argüeso P. Human ocular mucins: The endowed guardians of sight. Adv Drug Deliv Rev 2022; 180:114074. [PMID: 34875287 PMCID: PMC8724396 DOI: 10.1016/j.addr.2021.114074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Mucins are an ancient group of glycoproteins that provide viscoelastic, lubricating and hydration properties to fluids bathing wet surfaced epithelia. They are involved in the protection of underlying tissues by forming a barrier with selective permeability properties. The expression, processing and spatial distribution of mucins are often determined by organ-specific requirements that in the eye involve protecting against environmental insult while allowing the passage of light. The human ocular surface epithelia have evolved to produce an extremely thin and watery tear film containing a distinct soluble mucin product secreted by goblet cells outside the visual axis. The adaptation to the ocular environment is notably evidenced by the significant contribution of transmembrane mucins to the tear film, where they can occupy up to one-quarter of its total thickness. This article reviews the tissue-specific properties of human ocular mucins, methods of isolation and detection, and current approaches to model mucin systems recapitulating the human ocular surface mucosa. This knowledge forms the fundamental basis to develop applications with a promising biological and clinical impact.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
29
|
Sonntag T, Rapp M, Didier P, Lebeau L, Pons F, Casset A. Mucus-producing epithelial models for investigating the activity of gene delivery systems in the lung. Int J Pharm 2021; 614:121423. [PMID: 34958896 DOI: 10.1016/j.ijpharm.2021.121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Inhaled transfection particles have to penetrate the mucus layer lining the airways to successfully deliver their therapeutic nucleic acid payload to target cells in the underlying epithelium. However, the in vitro models used for evaluating gene carrier efficiency often disregard this viscous defensive barrier. In this study, the two mucus-secreting cell lines NCI-H292 and Calu-3 were selected to develop a series of epithelial models displaying gradual mucus production. In NCI-H292 models, a gradual increase in the MUC5AC mucin was obtained after cell exposure to inducers. In Calu-3 models, MUC5AC production increased as a function of culture duration (3, 7, 14 days) at the air-liquid interface (ALI). Six DOPC-derived cationic lipids were designed and their pDNA delivery activity was evaluated to validate these cellular models. The strongest impairment of the lipid delivery activity was observed in the Calu-3 14-d ALI model. The MUC5AC production in this model was the greatest and the mucus layer was 20 µm thick. The mucus exhibited a solid viscoelastic behaviour, and represented a major hindrance to lipoplex diffusion. The Calu-3 14-d ALI model will be highly useful for accurate evaluation of gene carriers intended for airway administration and characterization of their interactions with the mucus.
Collapse
Affiliation(s)
- Thomas Sonntag
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Mickael Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Anne Casset
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
30
|
Enhanced microscopic dynamics in mucus gels under a mechanical load in the linear viscoelastic regime. Proc Natl Acad Sci U S A 2021; 118:2103995118. [PMID: 34728565 DOI: 10.1073/pnas.2103995118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mucus is a biological gel covering the surface of several tissues and ensuring key biological functions, including as a protective barrier against dehydration, pathogen penetration, or gastric acids. Mucus biological functioning requires a finely tuned balance between solid-like and fluid-like mechanical response, ensured by reversible bonds between mucins, the glycoproteins that form the gel. In living organisms, mucus is subject to various kinds of mechanical stresses, e.g., due to osmosis, bacterial penetration, coughing, and gastric peristalsis. However, our knowledge of the effects of stress on mucus is still rudimentary and mostly limited to macroscopic rheological measurements, with no insight into the relevant microscopic mechanisms. Here, we run mechanical tests simultaneously to measurements of the microscopic dynamics of pig gastric mucus. Strikingly, we find that a modest shear stress, within the macroscopic rheological linear regime, dramatically enhances mucus reorganization at the microscopic level, as signaled by a transient acceleration of the microscopic dynamics, by up to 2 orders of magnitude. We rationalize these findings by proposing a simple, yet general, model for the dynamics of physical gels under strain and validate its assumptions through numerical simulations of spring networks. These results shed light on the rearrangement dynamics of mucus at the microscopic scale, with potential implications in phenomena ranging from mucus clearance to bacterial and drug penetration.
Collapse
|
31
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
32
|
Lin YL, Li Y. The Biological Synthesis and the Function of Mucin 2 in Pseudomyxoma Peritonei. Cancer Manag Res 2021; 13:7909-7917. [PMID: 34703312 PMCID: PMC8527350 DOI: 10.2147/cmar.s324982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Excessive mucus secretion is the most prominent feature of pseudomyxoma peritonei (PMP), which often leads to significant increase in abdominal circumference, intractable abdominal pain, progressive intestinal obstruction, abdominal organ adhesions, and cachexia. Excessive mucus secretion is also the main cause of death. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is the recommended treatment for PMP. However, recurrence is frequently observed even after CRS and HIPEC, presenting similar clinical manifestations. Mucin 2 (MUC2) is the main type of mucin in PMP and plays a key role in the progressive sclerosis of mucus. To comprehensively demonstrate the biosynthetic process and molecular features of MUC2 and to provide new directions for the development of PMP mucolytic strategies, this review systematically summarizes the molecular biology of MUC2, including MUC2 gene structure, transcription, translation, post-translational modification, tertiary structure, and factors regulating mucus viscoelasticity. The results show that MUC2 is a highly glycosylated protein, with glycan accounts for 80% to 90% of the dry weight. The assembly pattern of MUC2 is highly complicated, presenting a bead-like filament. Salt concentration, pH, mucin concentration and trefoil factor family may contribute to the increase in mucus viscoelasticity and sclerosis, which could be used to develop drugs to soften or even dissolve mucus in the future.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University (Beijing Technical Training Base of Tumor Deep Hyperthermia and Whole-Body Hyperthermia), Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University (Beijing Technical Training Base of Tumor Deep Hyperthermia and Whole-Body Hyperthermia), Department of Oncology, Capital Medical University, Beijing, 100038, People's Republic of China
| |
Collapse
|
33
|
Zhou L, Liu H, Zhang R, Yin J, Huo C, WangMo K, Hua S, Ye L. MUC5B regulates the airway inflammation induced by atmospheric PM 2.5 in rats and A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112448. [PMID: 34174739 DOI: 10.1016/j.ecoenv.2021.112448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric PM2.5 can induce airway inflammation and mucin secretion. MUC5B is required for airway defense. However, the research on the role of MUC5B in airway inflammation induced by atmospheric PM2.5 remains limited. This study was designed to explore the role of MUC5B in airway inflammation induced by atmospheric PM2.5. In vivo, Wistar rats were exposed to 0, 1.5, 7.5, 37.5 mg/ kg PM2.5 saline suspension via intratracheal instillation. HE staining and AB-PAS staining were used to observe the airway inflammation and goblet cell hyperplasia. In vitro, normal A549 cells and MUC5B-knockdown A549 cells were exposed to 0, 100, 200 and 400 μg/mL PM2.5 for 6 h, 12 h, 24 h and 48 h. ELISA was used to measure the levels of TNF-α and IL-1β in serum and bronchoalveolar lavage fluid of rats and in cell culture. Real time-PCR and ELISA were used to quantify the mRNA and protein levels of MUC5B in trachea and lung of rats and in A549 cells. PM2.5 could cause the infiltration of inflammatory cells and increase the mucus secretions and goblet cell metaplasia. MUC5B is related to rats' airway inflammation induced by PM2.5. A549 cells exposed to PM2.5 in higher concentration and longer time, the protein level of MUC5B was significantly increased, while the levels of IL-1β, TNF-α and MUC5B mRNA were significantly decreased. Compared with normal A549 cells, the levels of IL-1β and TNF-α were significantly higher in Muc5b-knockdown cells. Atmospheric PM2.5 can induce airway inflammation and mucin secretion. MUC5B played a critical role in controlling the inflammatory response induced by PM2.5.
Collapse
Affiliation(s)
- Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China; Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, China
| | - Hongbo Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China; Department of Disease Control and Management, Fuling District Center for Disease Control and Prevention of Chongqing, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Kelsang WangMo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, China.
| |
Collapse
|
34
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
35
|
Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B 2021; 11:2416-2448. [PMID: 34522593 PMCID: PMC8424290 DOI: 10.1016/j.apsb.2021.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Proteins and peptides (PPs) have gradually become more attractive therapeutic molecules than small molecular drugs due to their high selectivity and efficacy, but fewer side effects. Owing to the poor stability and limited permeability through gastrointestinal (GI) tract and epithelia, the therapeutic PPs are usually administered by parenteral route. Given the big demand for oral administration in clinical use, a variety of researches focused on developing new technologies to overcome GI barriers of PPs, such as enteric coating, enzyme inhibitors, permeation enhancers, nanoparticles, as well as intestinal microdevices. Some new technologies have been developed under clinical trials and even on the market. This review summarizes the history, the physiological barriers and the overcoming approaches, current clinical and preclinical technologies, and future prospects of oral delivery of PPs.
Collapse
Key Words
- ASBT, apical sodium-dependent bile acid transporter
- BSA, bovine serum albumin
- CAGR, compound annual growth
- CD, Crohn's disease
- COPD, chronic obstructive pulmonary disease
- CPP, cell penetrating peptide
- CaP, calcium phosphate
- Clinical
- DCs, dendritic cells
- DDVAP, desmopressin acetate
- DTPA, diethylene triamine pentaacetic acid
- EDTA, ethylene diamine tetraacetic acid
- EPD, empirical phase diagrams
- EPR, electron paramagnetic resonance
- Enzyme inhibitor
- FA, folic acid
- FDA, U.S. Food and Drug Administration
- FcRn, Fc receptor
- GALT, gut-associated lymphoid tissue
- GI, gastrointestinal
- GIPET, gastrointestinal permeation enhancement technology
- GLP-1, glucagon-like peptide 1
- GRAS, generally recognized as safe
- HBsAg, hepatitis B surface antigen
- HPMCP, hydroxypropyl methylcellulose phthalate
- IBD, inflammatory bowel disease
- ILs, ionic liquids
- LBNs, lipid-based nanoparticles
- LMWP, low molecular weight protamine
- MCT-1, monocarborxylate transporter 1
- MSNs, mesoporous silica nanoparticles
- NAC, N-acetyl-l-cysteine
- NLCs, nanostructured lipid carriers
- Oral delivery
- PAA, polyacrylic acid
- PBPK, physiologically based pharmacokinetics
- PCA, principal component analysis
- PCL, polycarprolacton
- PGA, poly-γ-glutamic acid
- PLA, poly(latic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PPs, proteins and peptides
- PVA, poly vinyl alcohol
- Peptides
- Permeation enhancer
- Proteins
- RGD, Arg-Gly-Asp
- RTILs, room temperature ionic liquids
- SAR, structure–activity relationship
- SDC, sodium deoxycholate
- SGC, sodium glycocholate
- SGF, simulated gastric fluids
- SIF, simulated intestinal fluids
- SLNs, solid lipid nanoparticles
- SNAC, sodium N-[8-(2-hydroxybenzoyl)amino]caprylate
- SNEDDS, self-nanoemulsifying drug delivery systems
- STC, sodium taurocholate
- Stability
- TAT, trans-activating transcriptional peptide
- TMC, N-trimethyl chitosan
- Tf, transferrin
- TfR, transferrin receptors
- UC, ulcerative colitis
- UEA1, ulex europaeus agglutinin 1
- VB12, vitamin B12
- WGA, wheat germ agglutinin
- pHPMA, N-(2-hydroxypropyl)methacrylamide
- pI, isoelectric point
- sCT, salmon calcitonin
- sc, subcutaneous
Collapse
Affiliation(s)
- Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Pijush Kumar Paul
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Department of Pharmacy, Gono Bishwabidyalay (University), Mirzanagar Savar, Dhaka 1344, Bangladesh
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianping Qi
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
36
|
Razghandi K, Janßen N, Le MLV, Stach T. The filter-house of the larvacean Oikopleura dioica. A complex extracellular architecture: From fiber production to rudimentary state to inflated house. J Morphol 2021; 282:1259-1273. [PMID: 34041785 DOI: 10.1002/jmor.21382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 11/06/2022]
Abstract
While cellulose is the most abundant macromolecule in the biosphere, most animals are unable to produce cellulose with the exception of tunicates. Some tunicates have evolved the ability to secrete a complex house containing cellulosic fibers, yet little is known about the early stages of the house building process. Here, we investigate the rudimentary house of Oikopleura dioica for the first time using complementary light and electron microscopic techniques. In addition, we digitally modeled the arrangement of chambers, nets, and filters of the functional, expanded house in three dimensions based on life-video-imaging. Combining 3D-reconstructions based on serial histological semithin-sections, confocal laser scanning microscopy, transmission electron microscopy, scanning electron microscopy (SEM), and focused ion beam (FIB)-SEM, we were able to elucidate the arrangement of structural components, including cellulosic fibers, of the rudimentary house with a focus on the food concentration filter. We developed a model for the arrangement of folded structures in the house rudiment and show it is a precisely preformed structure with identifiable components intricately correlated with specific cells. Moreover, we demonstrate that structural details of the apical surfaces of Nasse cells provide the exact locations and shapes to produce the fibers of the house and interact among each other, with Giant Fol cells, and with the fibers to arrange them in the precise positions necessary for expansion of the house rudiment into the functional state. The presented data and hypotheses advance our knowledge about the interrelation of structure and function on different biological levels and prompt investigations into this astonishing biological object.
Collapse
Affiliation(s)
- Khashayar Razghandi
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Cluster of Excellence "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany
| | - Nils Janßen
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mai-Lee Van Le
- Institut für Biologie, AG Vergleichende Zoologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Stach
- Institut für Biologie, AG Vergleichende Elektronenmikroskopie, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Li J, Zhang L, Wu T, Li Y, Zhou X, Ruan Z. Indole-3-propionic Acid Improved the Intestinal Barrier by Enhancing Epithelial Barrier and Mucus Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1487-1495. [PMID: 33356219 DOI: 10.1021/acs.jafc.0c05205] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Destruction in intestinal barrier is concomitant with the intestinal diseases. There is growing evidence that tryptophan-derived intestinal bacterial metabolites play a critical role in maintaining the balance of intestinal mucosa. In this study, the Caco-2/HT29 coculture model was used to evaluate the effect of indole-3-propionic acid (IPA) on the intestinal barrier and explore its underlying mechanism. We found that IPA increased transepithelial electrical resistance and decreased paracellular permeability which was consistent with the increase in tight junction proteins (claudin-1, occludin, and ZO-1). Furthermore, IPA strengthened the mucus barrier by increasing mucins (MUC2 and MUC4) and goblet cell secretion products (TFF3 and RELMβ). Additionally, IPA weakened the expression of LPS-induced inflammatory factors. These discoveries provide new views for understanding the improvement of intestinal barrier by gut microbial metabolites of aromatic amino acids.
Collapse
Affiliation(s)
- Jiaojiao Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Tao Wu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Yafei Li
- University Campus Hospital and Jiangxi Academy of Medical Science, Nanchang University, Nanchang 330006, China
| | - Xiaojun Zhou
- School of Public Health, Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
38
|
Wang BX, Wheeler KM, Cady KC, Lehoux S, Cummings RD, Laub MT, Ribbeck K. Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa. Curr Biol 2021; 31:90-102.e7. [DOI: 10.1016/j.cub.2020.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
|
39
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
40
|
Ruiz-Pulido G, Medina DI. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Eur J Pharm Biopharm 2020; 159:123-136. [PMID: 33387633 DOI: 10.1016/j.ejpb.2020.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
This review discusses the physicochemical and mechanical properties of porcine gastrointestinal mucus from a rheological point of view. Considering mucus as a viscoelastic gel that functions as a biological barrier by limiting particles passage, lubricating the gastrointestinal tract, and protecting the stomach from gastric acids. The viscoelastic and protective properties of mucus are mainly produced by its mucin network, which is stabilized through electrostatic, hydrophobic and hydrogen bonding interactions. Otherwise, mucus rheology is determined by its polyanionic nature at physiological pH. At neutral pH, mucus presents a viscous behavior produced by chains crosslinking. While, at acidic pH, mucus exhibits an elastic behavior related with the extended conformation that produces mucus gelation at the stomach. Additionally, rheology studies the degree of adhesion between a polymer-mucus mixture through rheological synergism, and how it varies at different pH conditions. Finally, mucoadhesion phenomenon is exemplified with chitosan (cationic) and poly (lactic-co-glycolic) acid (anionic) polymers.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico 52926, Mexico.
| |
Collapse
|
41
|
Observations of, and Insights into, Cystic Fibrosis Mucus Heterogeneity in the Pre-Modulator Era: Sputum Characteristics, DNA and Glycoprotein Content, and Solubilization Time. JOURNAL OF RESPIRATION 2020. [DOI: 10.3390/jor1010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
Airway obstruction with chronic inflammation and infection are major contributors to the lung damage and mortality of cystic fibrosis (CF). A better understanding of the congested milieu of CF airways will aid in improving therapeutic strategies. This article retrospectively reports our observations, and discusses insights gained in the handling and analysis of CF sputa. CF and non-CF mucus samples were surveyed for morphological features by electron microscopy and analyzed for the macromolecular dry weight (MDW), total protein, lipid, carbohydrate, and DNA. Mucus character was investigated with chemical solubilization time as a comparative tool. CF mucus appeared distinctly thick, viscous, and heterogeneous, with neutrophils as the dominant immune cell. CF sputum DNA content varied markedly for and between individuals (~1–10% MDW), as did solubilization times (~1–20 h). CF Sputum DNA up to 7.1% MDW correlated positively with solubilization time, whereas DNA >7.1% MDW correlated negatively. 3D analysis of CF sputa DNA, GP, and solubilization times revealed a dynamic and predictive relationship. Reflecting on the heterogeneous content and character of CF mucus, and the possible interplay in space and time in the respiratory tract of polymeric DNA and mucous glycoproteins, we highlight it’s potential to affect infection-related airway pathologies and the success of therapeutic interventions.
Collapse
|
42
|
Shastri MD, Chong WC, Vemuri R, Martoni CJ, Adhikari S, Bhullar H, Kunde D, Tristram SG, Eri RD. Streptococcus Thermophilus UASt-09 Upregulates Goblet Cell Activity in Colonic Epithelial Cells to a Greater Degree than other Probiotic Strains. Microorganisms 2020; 8:E1758. [PMID: 33182355 PMCID: PMC7695341 DOI: 10.3390/microorganisms8111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Probiotics have been widely used in maintaining gastrointestinal health, despite their actual mechanism remaining obscure. There are several hypotheses behind the beneficial effects of probiotics including the regulation of intestinal barrier function and improvement in immune responses in the gastrointestinal system. Multiple probiotics have been introduced in the market as effective dietary supplements in improving gastrointestinal integrity, but there are no or few studies that demonstrate their underlying mechanism. In the current study, we investigated and compared the efficacy of four probiotics (based on different bacterial species) in refining gastrointestinal health by improving mucus biosynthesis and intestinal immune response under in-vitro conditions. By analyzing the gene expression of mucus biosynthesis and intestinal immune response markers, we found that probiotic Streptococcus thermophilus UASt-09 showed promising potential in refining mucosal barrier and gastrointestinal health in human colonic epithelial cells, as compared to other commercial probiotics.
Collapse
Affiliation(s)
- Madhur D. Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton 3800, Australia;
| | - Ravichandra Vemuri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | - Santosh Adhikari
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Harinder Bhullar
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Dale Kunde
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Stephen G. Tristram
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| | - Rajaraman D. Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7250, Australia; (R.V.); (S.A.); (H.B.); (D.K.); (S.G.T.)
| |
Collapse
|
43
|
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Front Microbiol 2020; 11:591568. [PMID: 33224127 PMCID: PMC7674204 DOI: 10.3389/fmicb.2020.591568] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
O-linked glycosylation is a post-translational modification found mainly in eukaryotic cells, which covalently attaches oligosaccharides to secreted proteins in certain threonine or serine residues. Most of O-glycans have N-acetylgalactosamine (GalNAc) as a common core. Several glycoproteins, such as mucins (MUCs), immunoglobulins, and caseins are examples of O-glycosylated structures. These glycans are further elongated with other monosaccharides and sulfate groups. Some of them could be found in dairy foods, while others are produced endogenously, in both cases interacting with the gut microbiota. Interestingly, certain gut microbes can access, release, and consume O-linked glycans as a carbon source. Among these, Akkermansia muciniphila, Bifidobacterium bifidum, and Bacteroides thetaiotaomicron are prominent O-linked glycan utilizers. Their consumption strategies include specialized α-fucosidases and α-sialidases, in addition to endo-α-N-acetylgalactosaminidases that release galacto-N-biose (GNB) from peptides backbones. O-linked glycan utilization by certain gut microbes represents an important niche that allows them to predominate and modulate host responses such as inflammation. Here, we focus on the distinct molecular mechanisms of consumption of O-linked GalNAc glycans by prominent gut microbes, especially from mucin and casein glycomacropeptide (GMP), highlighting the potential of these structures as emerging prebiotics.
Collapse
Affiliation(s)
| | | | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal Mucus Barrier. Int J Mol Sci 2020; 21:ijms21218266. [PMID: 33158227 PMCID: PMC7663572 DOI: 10.3390/ijms21218266] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm births are a global health priority that affects 15 million babies every year worldwide. There are no effective prognostic and therapeutic strategies relating to preterm delivery, but uterine infections appear to be a major cause. The vaginal epithelium is covered by the cervicovaginal mucus, which is essential to health because of its direct involvement in reproduction and functions as a selective barrier by sheltering the beneficial lactobacilli while helping to clear pathogens. During pregnancy, the cervical canal is sealed with a cervical mucus plug that prevents the vaginal flora from ascending toward the uterine compartment, which protects the fetus from pathogens. Abnormalities of the cervical mucus plug and bacterial vaginosis are associated with a higher risk of preterm delivery. This review addresses the current understanding of the cervicovaginal mucus and the cervical mucus plug and their interactions with the microbial communities in both the physiological state and bacterial vaginosis, with a focus on gel-forming mucins. We also review the current state of knowledge of gel-forming mucins contained in mouse cervicovaginal mucus and the mouse models used to study bacterial vaginosis.
Collapse
|
45
|
Clinically adaptable polymer enables simultaneous spatial analysis of colonic tissues and biofilms. NPJ Biofilms Microbiomes 2020; 6:33. [PMID: 32973205 PMCID: PMC7518420 DOI: 10.1038/s41522-020-00143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially resolved fashion would enable studies into these complex interactions in native tissue environments, potentially in clinical specimens. While techniques to preserve each of the microbial and host cell compartments have been used to examine tissues and microbes separately, we endeavored to develop approaches to simultaneously analyze both compartments. Herein, we established an original method for mucus preservation using Poloxamer 407 (also known as Pluronic F-127), a thermoreversible polymer with mucus-adhesive characteristics. We demonstrate that this approach can preserve spatially-defined compartments of the mucus bi-layer in the colon and the bacterial communities within, compared with their marked absence when tissues were processed with traditional formalin-fixed paraffin-embedded (FFPE) pipelines. Additionally, antigens for antibody staining of host cells were preserved and signal intensity for 16S rRNA fluorescence in situ hybridization (FISH) was enhanced in poloxamer-fixed samples. This in turn enabled us to integrate multimodal analysis using a modified multiplex immunofluorescence (MxIF) protocol. Importantly, we have formulated Poloxamer 407 to polymerize and cross-link at room temperature for use in clinical workflows. These results suggest that the fixative formulation of Poloxamer 407 can be integrated into biospecimen collection pipelines for simultaneous analysis of microbes and host cells.
Collapse
|
46
|
He J, Cai S, Feng H, Cai B, Lin L, Mai Y, Fan Y, Zhu A, Huang H, Shi J, Li D, Wei Y, Li Y, Zhao Y, Pan Y, Liu H, Mo X, He X, Cao S, Hu F, Zhao J, Wang J, Zhong N, Chen X, Deng X, Chen J. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein Cell 2020; 11:680-687. [PMID: 32671793 PMCID: PMC7363016 DOI: 10.1007/s13238-020-00752-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jiangping He
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuijiang Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Huijian Feng
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Baomei Cai
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lihui Lin
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanbang Mai
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yinqiang Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Huang Huang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Junjie Shi
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dingxin Li
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Yingying Zhao
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuejun Pan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - He Liu
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoneng Mo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Shangtao Cao
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - FengYu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Wang
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinwen Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China.
| | - Jiekai Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Centre of Cell Lineage and Atlas (CCLA), Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, 510530, China.
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
47
|
Wheelock CE, Strandvik B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102156. [PMID: 32750662 DOI: 10.1016/j.plefa.2020.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis (CF) is a recessively inherited fatal disease that is the subject of extensive research and ongoing development of therapeutics targeting the defective protein, cystic fibrosis transmembrane conductance regulator (CFTR). Despite progress, the link between CFTR and clinical symptoms is incomplete. The severe CF phenotypes are associated with a deficiency of linoleic acid, which is the precursor of arachidonic acid. The release of arachidonic acid from membranes via phospholipase A2 is the rate-limiting step for eicosanoid synthesis and is increased in CF, which contributes to the observed inflammation. A potential deficiency of docosahexaenoic acid may lead to decreased levels of specialized pro-resolving mediators. This pathophysiology may contribute to an early and sterile inflammation, mucus production, and to bacterial colonization, which further increases inflammation and potentiates the clinical symptoms. Advances in lipid technology will assist in elucidating the role of lipid metabolism in CF, and stimulate therapeutic modulations of inflammation.
Collapse
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Strandvik
- Dept of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
49
|
Fasquelle F, Carpentier R, Demouveaux B, Desseyn JL, Betbeder D. Importance of the Phospholipid Core for Mucin Hydrogel Penetration and Mucosal Cell Uptake of Maltodextrin Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:5741-5749. [DOI: 10.1021/acsabm.0c00521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- François Fasquelle
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| | - Rodolphe Carpentier
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Bastien Demouveaux
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Jean-Luc Desseyn
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Didier Betbeder
- University of Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France
- Vaxinano, 59000 Lille, France
| |
Collapse
|
50
|
Bazán Henostroza MA, Curo Melo KJ, Nishitani Yukuyama M, Löbenberg R, Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124755] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|