1
|
Cheng Y, Liu X, Qu W, Wang X, Su H, Li W, Xu W. Amentoflavone alleviated cartilage injury and inflammatory response of knee osteoarthritis through PTGS2. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8903-8916. [PMID: 38856914 DOI: 10.1007/s00210-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The role of amentoflavone on cartilage injury in knee osteoarthritis (KOA) rats and the underlying mechanism were explored. KOA rat and IL-1β-stimulated chondrocyte models were constructed. MTT, colony formation, and ELISA were performed to determine the cytotoxicity, cell proliferation, and inflammatory factors. The role of PTGS2 in IL-1β-stimulated chondrocytes was also confirmed through transfecting PTGS2 overexpression and silencing plasmids. Further, we analyzed how amentoflavone regulated PTGS2 to improve IL-1β-stimulated chondrocytes in vitro. Additionally, we analyzed the expression of PTGS2 after amentoflavone treatment. In vivo, HE and Safranin-O staining were carried out, and the inflammatory response was detected by ELISA and HE staining. In addition, we also analyzed the regulatory effect of amentoflavone on PTGS2 and explored the mechanism effect of PTGS2 in vitro and in vivo. The results indicated that PTGS2 was the downstream molecule of amentoflavone, which was highly expressed in IL-1β-stimulated chondrocytes and KOA rats, and amentoflavone decreased PTGS2 expression. We also confirmed the potential role of amentoflavone on KOA, which was also characterized by the repair of cartilage injury, reduction of inflammatory infiltration, and improvement of functional disability. Consistent with in vivo results, in vitro experiments gave the same conclusions. Amentoflavone reduced PTGS2 expression in IL-1β-stimulated chondrocytes and inhibited inflammation of chondrocytes via PTGS2. Collectively, the results confirmed that this drug was the potential targeted drug for KOA, whose repair effect on cartilage injury was partly related to PTGS2.
Collapse
Affiliation(s)
- Yiheng Cheng
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Xiaofeng Liu
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wenqing Qu
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Xin Wang
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Hao Su
- Department of Traumatic Orthopaedics, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wenliang Li
- Department of Orthopaedics, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Wenqiang Xu
- Department of Hand and Foot Surgery, Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
3
|
Zhao Y, Ding W, Cai Y, Li Q, Zhang W, Bai Y, Zhang Y, Xu Q, Feng Z. The m 6A eraser FTO suppresses ferroptosis via mediating ACSL4 in LPS-induced macrophage inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167354. [PMID: 39004378 DOI: 10.1016/j.bbadis.2024.167354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.
Collapse
Affiliation(s)
- Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qimeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
4
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
5
|
Tan C, Peng K, Lim T, Liu J, Ye Y, Lim L, Gao P, Oblong JE, Lam T. The combination of allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate mitigates UVB-induced PGE 2 synthesis by keratinocytes. Int J Cosmet Sci 2024; 46:691-701. [PMID: 38433250 DOI: 10.1111/ics.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Erythema, characterized by the redness of the skin, is a common skin reaction triggered by various endogenous and exogenous factors. This response is often a result of the activation of underlying inflammatory mechanisms within the skin. The objective of this study is to investigate the potential benefits of applying a combination of skincare ingredients, namely allantoin, bisabolol, D-panthenol and dipotassium glycyrrhizinate (AB5D), in the modulation of inflammatory factors associated with erythema. Additionally, the study aims to elucidate the mechanisms by which these ingredients exert their combined actions to alleviate erythema-associated inflammation. METHODS Human epidermal keratinocytes were exposed to UVB and subsequently treated with AB5D. Transcriptomics profiling was performed to analyse the dose-response effect of AB5D treatment on keratinocytes. The quantitation of inflammatory mediators, including PGE2, IL-1α, IL-6, IL-8, IL-1RA and TNFα, was performed on cultured media. Additionally, the oxygen radical absorbance capacity (ORAC) assay was carried out to evaluate the total antioxidant capacity of both individual ingredients and the AB5D combination. To assess the in-vitro antioxidant effects of AB5D against UVB-induced oxidative stress in hTERT keratinocytes, real-time quantitation of mitochondrial superoxide was measured through live-cell imaging. RESULTS The application of AB5D to UVB-exposed keratinocytes downregulated gene sets associated with inflammatory responses, highlighting the anti-inflammatory properties of AB5D. Specifically, AB5D effectively reduced the production of PGE2, leading to the downregulation of inflammatory cytokines. Moreover, our findings indicate that AB5D exhibits antioxidative capabilities, functioning as both an antioxidant agent and a regulator of antioxidant enzyme expression to counteract the detrimental effects of cellular oxidative stress. CONCLUSION We demonstrated that AB5D can reduce UVB-induced PGE2, IL-1α, IL-6, IL-8, IL-1RA and TNFα as well as mitochondrial superoxide. These findings suggest that AB5D may alleviate erythema by modulating inflammation via PGE2 and through antioxidation mechanisms.
Collapse
Affiliation(s)
- Chelsea Tan
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Ke Peng
- Tian Zhu Kong Gang Development Zone, Beijing Innovation Center, Procter & Gamble, Beijing, China
| | - TianYong Lim
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Jiaxin Liu
- Procter & Gamble (Guangzhou), Guangzhou, China
| | - Yang Ye
- Tian Zhu Kong Gang Development Zone, Beijing Innovation Center, Procter & Gamble, Beijing, China
| | - Linda Lim
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| | - Pei Gao
- Procter & Gamble (Guangzhou), Guangzhou, China
| | | | - TzeHau Lam
- Singapore Innovation Center, Procter & Gamble, Singapore, Singapore
| |
Collapse
|
6
|
Faustino TG, da Rosa Filho RR, Francischini MCP, Brito MM, Angrimani DSR, Vannucchi CI. In Situ Uterine Artery Prostaglandin E 2 and Nitric Oxide in Open-Cervix Pyometra and Medically Treated Bitches. J Vet Pharmacol Ther 2024. [PMID: 39287059 DOI: 10.1111/jvp.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Uterine vascular alterations take place in pyometra bitches speculatively influenced by prostaglandin and nitric oxide pathways. However, no causative effect of nitric oxide on endometrial vascularization was proved elsewhere for medically treated pyometra bitches. This study aimed to identify the main in situ uterine artery vasodilation pathway in pyometra bitches medically treated with antigestagen solely or coupled with prostaglandin. Pyometra bitches were enrolled into groups: Ovariohysterectomy at diagnosis (Control-OHE; n = 7), Antigestagen (10 mg/kg aglepristone on Days 1, 2, and 8 after diagnosis; n = 5), and Antigestagen + luteolytic (aglepristone plus 1 μg/kg of cloprostenol from Days 1-7; n = 5). Treated bitches were ovariohysterectomized after 8 days of treatment. Uterine artery fragments from all bitches were collected for tissue nitric oxide and prostaglandin E2 assays. Control-OHE group had lower uterine artery concentration of nitric oxide compared to treated bitches (Antigestagen and Antigestagen + luteolytic groups). No significant difference was verified between the medical treated groups. Uterine artery concentration of prostaglandin E2 was not different between control and treated bitches, as well as between both treated groups. In conclusion, nitric oxide and prostaglandin E2 are not directly involved in vascular modulation of the uterine artery, albeit pyometra medical treatment influences nitric oxide concentration in the uterine artery.
Collapse
Affiliation(s)
- Thaís Gomes Faustino
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Maíra Morales Brito
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Daniel Souza Ramos Angrimani
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Camila Infantosi Vannucchi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Zhu L, Zhang H, Xiao X, Sun S, Tong Y, Zhuang S, Sheng Z, Fan Y, Ma W, Liu Y, Qing S, Zhang W. Shuanghuanglian volatile oil exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118795. [PMID: 39278293 DOI: 10.1016/j.jep.2024.118795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has a rich history spanning 2000 years. Shuanghuanglian, a traditional Chinese herbal formula composed of three botanicals, is primarily used to treat colds, respiratory infections (including bacterial pneumonia), and pharyngitis. Previous research has found that the volatile oil of Shuanghuanglian is crucial for its efficacy. However, there is a lack of studies investigating its mechanisms. AIM OF THE STUDY This study aims to explore the antibacterial and anti-inflammatory mechanisms of Shuanghuanglian volatile oil and its potential to enhance the antibacterial effects when used in conjunction with antibiotics. METHODS Determination of the GC-MS fingerprint of SVO using Gas Chromatography-Mass Spectrometry (GC-MS), The antibacterial effects of SVO on multidrug-resistant Klebsiella pneumoniae (MDR-KP) were assessed by detecting MIC, checkerboard method assay, time-kill curves, resistance growth curves, transcriptome sequencing analysis, scanning electron microscopy(SEM), purification, and quantitative analysis of extracellular polysaccharides(EPS). In vivo part, an MDR-KP induced mouse pneumonia model was established to evaluate the mitigating effects of SVO on mouse pneumonia, using comprehensive network pharmacology and bioinformatics to identify genes related to bacterial pneumonia and potential targets of SVO. Validation was performed through molecular docking, qPCR, and ELISA tests. RESULTS SVO modulates the expression of MDR-KP mRNA for wecB, wecC, murA, murD, murE, murF, inhibiting the synthesis of O-antigen polysaccharides and peptidoglycans, thereby compromising bacterial cell wall integrity and affecting the synthesis of biofilms. These actions not only exhibit antibacterial effects but also enhance antibacterial activity, restoring the sensitivity of CEF to MDR-KP. SVO suppresses the biological activity of PTGS2, reducing the production of Prostaglandin E2 (PGE2), thereby exerting antipyretic and anti-inflammatory effects, providing new insights for the development of natural non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS Our research indicates that SVO exerts antipyretic, anti-inflammatory, and antibacterial synergistic effects through multiple pathways.
Collapse
Affiliation(s)
- Leixin Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Hanwen Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Xinglan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Shaoqiang Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Yinchao Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Shen Zhuang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China.
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
8
|
Mohammad ZB, Yudin SCY, Goldberg BJ, Serra KL, Klegeris A. Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication. Rev Neurosci 2024:revneuro-2024-0081. [PMID: 39240134 DOI: 10.1515/revneuro-2024-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
Collapse
Affiliation(s)
- Zainab B Mohammad
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Samantha C Y Yudin
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Benjamin J Goldberg
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Kursti L Serra
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
9
|
Chan HTL, Chan KM, Abhreet-Kaur, Sam SW, Chan SW. A Review of the Pharmacological Effects of Solanum muricatum Fruit (Pepino Melon). Foods 2024; 13:2740. [PMID: 39272505 PMCID: PMC11394486 DOI: 10.3390/foods13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Solanaceae, commonly known as nightshade, is a diverse family of flowering plants comprising around 90 genera and an estimated 3000-4000 species. Solanaceae spp. and its various fruits, including pepino (Solanum muricatum), commonly known as pepino melon, are widely recognized by the public for their nutritional value and pharmacological effects. Pepino melon, in particular, is often enjoyed as a fresh dessert or salad due to its juicy flesh. Given its beneficial properties, the potential of pepino melon to be developed as a functional food has been extensively studied. This review aims to provide a comprehensive summary of the reported pharmacological effects of the active compounds found in pepino plant and melon. Among these compounds, polyphenols, notably quercetin, and vitamin C have demonstrated notable antioxidant properties such as scavenging free radicals, effectively protecting against free-radical damage. Moreover, these active ingredients provide pepino with anti-inflammatory properties by inhibiting the expression of proinflammatory cytokines and enzymes, thereby reducing nitric oxide production. Additionally, they have shown promise in selectively targeting cancer cells, exhibiting anti-cancer properties. Furthermore, the active compounds such as quercetin in pepino have been associated with anti-diabetic effects, improving insulin sensitivity and inhibiting insulin resistance. Overall, this review highlights the diverse and significant pharmacological effects of the active compounds found in pepino melon, emphasizing its potential as a valuable functional food.
Collapse
Affiliation(s)
- Hei-Tung Lydia Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Ka-Man Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Abhreet-Kaur
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Sze-Wing Sam
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| | - Shun-Wan Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Yi Y, Nie J, Liu X, Guo SW. Progressively Diminished Prostaglandin E2 Signaling in Concordance with Increasing Fibrosis in Ectopic Endometrium. Reprod Sci 2024:10.1007/s43032-024-01658-w. [PMID: 39174854 DOI: 10.1007/s43032-024-01658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/13/2024] [Indexed: 08/24/2024]
Abstract
The prostaglandin E2 (PGE2) signaling has traditionally been viewed to play a pivotal role in endometriosis, linking inflammation and hyperestrogenism. We have previously reported that asectopic endometrium becomes more fibrotic, the expression of both COX-2 and PGE2 receptors (EP2 and EP4) are reduced. This study further investigatedwhether the expression levels of genes involved in the biosynthesis and metabolism of PGE2in ectopic endometrium diminish in concordance with increasing lesional fibrosis. We performed immunohistochemistry analyses of COX-2, mPGES-1, mPGES-2, cPGES, 15-PGDH, EP2 and EP4 and Masson trichrome staining for ovarian endometrioma (OE), adenomyosis (AD), and deep endometriosis (DE) tissue samples and control endometrial tissue samples (CT). Gene and protein expression analyses were performed by real-time RT-PCR and Western blotting, respectively. We found that as the extent of lesional fibrosis increased, immunoexpression of COX-2, mPGES-1/2, cPGES, EP2 and EP4 in OE lesions was increased but no change in these genes/proteins in DE lesions as compared with CT. Immunoexpression of COX-2 was found to be reduced while that of 15-PGDH was found to be elevated in DE lesions. In AD lesions, only EP2 and COX-2 were overexpressed. Thus, our data indicate that when the extent of lesional fibrosis is high, the PGE2 signaling pathway is depressed, manifesting as reduced COX-2 expression and elevated expression of 15-PGDH. They underscore the fact that not all ectopic endometria are the same and equal, and highlight the importance of the extracellular matrix in shaping the lesional behavior and response to drug treatment.
Collapse
Affiliation(s)
- Yunhua Yi
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jichan Nie
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Dept. of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
- Research Institute, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
11
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Bhat V, Sheehan VA. Can we use biomarkers to identify those at risk of acute pain from sickle cell disease? Expert Rev Hematol 2024; 17:411-418. [PMID: 38949576 DOI: 10.1080/17474086.2024.2372322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Acute pain episodes, also known as vaso-occlusive crises (VOC), are a major symptom of sickle cell disease (SCD) and lead to frequent hospitalizations. The diagnosis of VOC can be challenging, particularly in adults with SCD, 50% of whom have chronic pain. Several potential biomarkers have been proposed for identifying individuals with VOC, including elevation above the baseline of various vascular growth factors, cytokines, and other markers of inflammation. However, none have been validated to date. AREAS COVERED We summarize prospective biomarkers for the diagnosis of acute pain in SCD, and how they may be involved in the pathophysiology of a VOC. Previous and current strategies for biomarker discovery, including the use of omics techniques, are discussed. EXPERT OPINION Implementing a multi-omics-based approach will facilitate the discovery of objective and validated biomarkers for acute pain.
Collapse
Affiliation(s)
- Varsha Bhat
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Stevenson TJ. Defining the brain control of physiological stability. Horm Behav 2024; 164:105607. [PMID: 39059231 DOI: 10.1016/j.yhbeh.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The last few decades have seen major advances in neurobiology and uncovered novel genetic and cellular substrates involved in the control of physiological set points. In this Review, I discuss the limitations in the definition of homeostatic set points established by Walter B Canon and highlight evidence that two other physiological systems, namely rheostasis and allostasis provide distinct inputs to independently modify set-point levels. Using data collected over the past decade, the hypothalamic and genetic basis of regulated changes in set-point values by rheostatic mechanisms are described. Then, the role of higher-order brain regions, such as hippocampal circuits, for experience-dependent, allostatic induced changes in set-points are outlined. I propose that these systems provide a hierarchical organization of physiological stability that exists to maintain set-point values. The hierarchical organization of physiology has direct implications for basic and medical research, and clinical practice.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
14
|
Mdingi VS, Gens L, Mys K, Varga P, Zeiter S, Marais LC, Richards RG, Moriarty FT, Chittò M. Short-Term Celecoxib Promotes Bone Formation without Compromising Cefazolin Efficacy in an Early Orthopaedic Device-Related Infection: Evidence from a Rat Model. Antibiotics (Basel) 2024; 13:715. [PMID: 39200015 PMCID: PMC11350844 DOI: 10.3390/antibiotics13080715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are crucial components of multimodal analgesia for musculoskeletal injuries, targeting cyclooxygenase (COX) enzymes (COX-1 and/or COX-2 isoenzymes). Concerns exist regarding their potential interference with bone healing and orthopaedic device-related infections (ODRI), where data are limited. This study aimed to investigate whether the COX-selectivity of NSAIDs interfered with antibiotic efficacy and bone changes in the setting of an ODRI. In vitro testing demonstrated that combining celecoxib (a COX-2 inhibitor) with cefazolin significantly enhanced antibacterial efficacy compared to cefazolin alone (p < 0.0001). In vivo experiments were performed using Staphylococcus epidermidis in the rat proximal tibia of an ODRI model. Long and short durations of celecoxib treatment in combination with antibiotics were compared to a control group receiving an antibiotic only. The long celecoxib treatment group showed impaired infection clearance, while the short celecoxib treatment showed increased bone formation (day 6, p < 0.0001), lower bone resorption (day 6, p < 0.0001), and lower osteolysis (day 6, BV/TV: p < 0.0001; BIC: p = 0.0005) compared to the control group, without impairing antibiotic efficacy (p > 0.9999). Given the use of NSAIDs as part of multimodal analgesia, and considering these findings, short-term use of COX-2 selective NSAIDs like celecoxib not only aids pain management but also promotes favorable bone changes during ODRI.
Collapse
Affiliation(s)
- Vuyisa Siphelele Mdingi
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
- Department of Orthopaedic Surgery, School of Clinical Medicine, University of KwaZulu Natal, Durban 4041, South Africa
| | - Lena Gens
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
| | - Karen Mys
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
| | - Peter Varga
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
| | - Stephan Zeiter
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
| | - Leonard Charles Marais
- Department of Orthopaedic Surgery, School of Clinical Medicine, University of KwaZulu Natal, Durban 4041, South Africa
| | | | | | - Marco Chittò
- AO Research Institute Davos, 7270 Davos, Switzerland; (V.S.M.)
| |
Collapse
|
15
|
Han QJ, Zhu YP, Sun J, Ding XY, Wang X, Zhang QZ. PTGES2 and RNASET2 identified as novel potential biomarkers and therapeutic targets for basal cell carcinoma: insights from proteome-wide mendelian randomization, colocalization, and MR-PheWAS analyses. Front Pharmacol 2024; 15:1418560. [PMID: 39035989 PMCID: PMC11257982 DOI: 10.3389/fphar.2024.1418560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Basal cell carcinoma (BCC) is the most common skin cancer, lacking reliable biomarkers or therapeutic targets for effective treatment. Genome-wide association studies (GWAS) can aid in identifying drug targets, repurposing existing drugs, predicting clinical trial side effects, and reclassifying patients in clinical utility. Hence, the present study investigates the association between plasma proteins and skin cancer to identify effective biomarkers and therapeutic targets for BCC. Methods Proteome-wide mendelian randomization was performed using inverse-variance-weight and Wald Ratio methods, leveraging 1 Mb cis protein quantitative trait loci (cis-pQTLs) in the UK Biobank Pharma Proteomics Project (UKB-PPP) and the deCODE Health Study, to determine the causal relationship between plasma proteins and skin cancer and its subtypes in the FinnGen R10 study and the SAIGE database of Lee lab. Significant association with skin cancer and its subtypes was defined as a false discovery rate (FDR) < 0.05. pQTL to GWAS colocalization analysis was executed using a Bayesian model to evaluate five exclusive hypotheses. Strong colocalization evidence was defined as a posterior probability for shared causal variants (PP.H4) of ≥0.85. Mendelian randomization-Phenome-wide association studies (MR-PheWAS) were used to evaluate potential biomarkers and therapeutic targets for skin cancer and its subtypes within a phenome-wide human disease category. Results PTGES2, RNASET2, SF3B4, STX8, ENO2, and HS3ST3B1 (besides RNASET2, five other plasma proteins were previously unknown in expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL)) were significantly associated with BCC after FDR correction in the UKB-PPP and deCODE studies. Reverse MR showed no association between BCC and these proteins. PTGES2 and RNASET2 exhibited strong evidence of colocalization with BCC based on a posterior probability PP.H4 >0.92. Furthermore, MR-PheWAS analysis showed that BCC was the most significant phenotype associated with PTGES2 and RNASET2 among 2,408 phenotypes in the FinnGen R10 study. Therefore, PTGES2 and RNASET2 are highlighted as effective biomarkers and therapeutic targets for BCC within the phenome-wide human disease category. Conclusion The study identifies PTGES2 and RNASET2 plasma proteins as novel, reliable biomarkers and therapeutic targets for BCC, suggesting more effective clinical application strategies for patients.
Collapse
Affiliation(s)
- Qiu-Ju Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Yi-Pan Zhu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Jing Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xin-Yu Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Xiuyu Wang
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
16
|
Le B, Hong VTK, Yang SH. Anti-Inflammatory Effects of Hydroethanolic Extract from Ehretia asperula on Lipopolysaccharide-Stimulated RAW264.7 Macrophages. J Microbiol Biotechnol 2024; 34:1340-1347. [PMID: 38783718 PMCID: PMC11239405 DOI: 10.4014/jmb.2403.03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Ehretia asperula is a medicinal plant of the Ehretiaceae family used to treat inflammatory disorders, but the underlying mechanisms are not fully elucidated. The anti-inflammatory potential was determined based on enzyme cyclooxygenase-2 (COX-2) inhibition, which showed that the 95% ethanol extract (95ECH) was most effective with a half-maximal inhibitory concentration (IC50) value of 34.09 μg/mL. The effects of 95ECH on phagocytosis, NO production, gene, and protein expression of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) and inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathways in lipopolysaccharide (LPS)-induced RAW264.7 cells were examined using the neutral red uptake and Griess assays, reverse-transcriptase polymerase chain reactions (RTPCR), and enzyme-linked immunosorbent assays (ELISA). The results showed that 95ECH suppressed phagocytosis and the NO production in activated macrophage cells (p < 0.01). Conversely, 95ECH regulated the expression levels of mRNAs for cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) as well as the corresponding proteins. In addition, PGE2 production was inhibited in a dose-dependent manner by 95ECH, and the expression of iNOS and COX-2 mRNAs was decreased in activated macrophage cells, as expected. Therefore, 95ECH from E. asperula leaves contains potentially valuable compounds for use in inflammation management.
Collapse
Affiliation(s)
- Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Vo Thi Kim Hong
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| |
Collapse
|
17
|
Xu H, Tian F, Liu Y, Liu R, Li H, Gao X, Ju C, Lu B, Wu W, Wang Z, Zhu L, Hao D, Jia S. Magnesium malate-modified calcium phosphate bone cement promotes the repair of vertebral bone defects in minipigs via regulating CGRP. J Nanobiotechnology 2024; 22:368. [PMID: 38918787 PMCID: PMC11197294 DOI: 10.1186/s12951-024-02595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.
Collapse
Affiliation(s)
- Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Fang Tian
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Weidong Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
18
|
Zhou X, He Y, Quan H, Yang J, Li S, Jiang Y, Li J, Yuan X. Exposure to nicotine regulates prostaglandin E2 secretion and autophagy of granulosa cells to retard follicular maturation in mammals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116358. [PMID: 38653025 DOI: 10.1016/j.ecoenv.2024.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinghao Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
19
|
Suzuki K, Morishita K, Adachi T, Suekane A, Nakatsutsumi K, Teeratakulpisarn P, Kojima M, Coimbra R, Otomo Y. Prostaglandin E-major urinary metabolites as a new biomarker for acute mesenteric ischemia. J Trauma Acute Care Surg 2024; 96:909-914. [PMID: 38315046 DOI: 10.1097/ta.0000000000004267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND Acute mesenteric ischemia (AMI) is an emergent vascular disease caused by cessation of the blood supply to the small intestine. Despite advances in the diagnosis, intervention, and surgical procedures, AMI remains a life-threatening condition. Prostaglandin E2 major urinary metabolite (PGE-MUM), the urinary metabolite of prostaglandin E2, is known to be stable in urine and has been suggested to be a valuable biomarker for intestinal mucosal inflammation, such as ulcerative colitis. We therefore investigated whether or not PGE-MUM levels reflect the degree of ischemia in an intestinal ischemia-reperfusion model. METHODS Male rats were used to establish a superior mesenteric artery occlusion (SMAO) group, in which the superior mesenteric artery was clamped, and a sham group. The clamping times in the SMAO group were either 30 minutes or 60 minutes, and reperfusion times were either 3 hours or 6 hours, after which PGE-MUM values were measured. RESULTS The histological injury score of the SMAO (30-minute ischemia and 6-hour reperfusion group, 1.8 ± 0.4; 60-minute ischemia and 6-hour reperfusion group, 4.7 ± 0.5) and were significantly greater than that of the sham group (0.4 ± 0.7, p < 0.05). The PGE-MUM levels in the SMAO group (30-minutes ischemia and 6-hour reperfusion group, 483 ± 256; 60-minutes ischemia and 6-hour reperfusion group, 889 ± 402 ng/mL) were significantly higher than in the sham group (30-minute and 6-hour observation group, 51 ± 20; 60-minute and 6-hour observation group, 73 ± 32 ng/mL; p < 0.05). Furthermore, the PGE-MUM value was corrected by the concentration of urinary creatinine (Cr). The PGE-MUM/urinary Cr levels in the SMAO group were also significantly higher than in the sham group ( p < 0.05). CONCLUSION We found that intestinal ischemia-reperfusion increased urinary PGE-MUM levels depending on the ischemic time. This suggests the potential utility of PGE-MUM as a noninvasive marker of intestinal ischemia.
Collapse
Affiliation(s)
- Keisuke Suzuki
- From the Department of Acute Critical Care and Disaster Medicine, Graduate School of Medical and Dental Sciences (K.S., K.M., T.A.), Department of Acute Critical Care and Disaster Medicine (A.S., K.N.), Tokyo Medical and Dental University Hospital of Medicine, Tokyo; Department of Acute Critical Care Medicine (K.S.), Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaraki; Emergency and Critical Care Center (M.K.), Tokyo Women's Medical University Medical Center East, Tokyo, Japan; Trauma Unit, Department of Surgery, Faculty of Medicine (P.T.), Khon Kaen University, Khon Kaen, Thailand; Comparative Effectiveness and Clinical Outcomes Research Center-CECORC (R.C.), Riverside University Health System Medical Center, Moreno Valley, California; and National Hospital Organization Disaster Medical Center (Y.O.), Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cock IE. Terminalia ferdinandiana Exell. extracts reduce pro-inflammatory cytokine and PGE 2 secretion, decrease COX-2 expression and down-regulate cytosolic NF-κB levels. Inflammopharmacology 2024; 32:1839-1853. [PMID: 38581641 PMCID: PMC11136772 DOI: 10.1007/s10787-024-01462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1β, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ian E Cock
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan Campus, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
21
|
Li Z, Yuan J, Dai Y, Xia Y. Integration of serum pharmacochemistry and metabolomics to reveal the underlying mechanism of shaoyao-gancao-fuzi decoction to ameliorate rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117910. [PMID: 38373664 DOI: 10.1016/j.jep.2024.117910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, Shaoyao-Gancao-Fuzi decoction (SGFD) has been a reliable traditional Chinese medicine for treating rheumatoid arthritis (RA). Despite its long history of use, the specific active components and underlying mechanisms of its therapeutic effects have yet to be fully understood. AIM OF THE STUDY The aim of this study was to investigate the active ingredients and therapeutic effects of SGFD on RA, and to further understand its underlying mechanism. MATERIALS AND METHODS The chemical constituents in SGFD extract and in rat serum after oral administration of SGFD were identified and evaluated using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS) together with various data-processing methods, respectively. The efficacy of SGFD was assessed by using an adjuvant-induced arthritis (AIA) rat model and lipopolysaccharide-stimulated RAW 264.7 cell. Subsequently, cell metabolomic was conducted to clarify the potential biomarkers and pathways. ELISA, RT-qPCR, and WB were used to verify the anti-arthritis mechanism of SGFD. RESULTS A total of 65 chemical constituents were identified in SGFD. 17 active components were distinguished in rat serum samples, of which 13 may be the main active ingredients for SGFD treatment of RA. The remarkable efficacy of SGFD in reducing the symptoms of RA is evident through its ability to alleviate the redness and swelling of the affected paws, as well as reduce the infiltration of inflammatory cells. Cell experiments revealed that rat serum of SGFD reduced IL-1β, IL-6, and TNF-α secretion in RAW 264.7 cells. 27 potential biomarkers were identified through cell metabolomics analysis. The arachidonic acid (AA) metabolism signaling pathway was activated in RA, which could be reversed by rat serum of SGFD. SGFD effectively inhibited the expression and transformation of AA by downregulating the expression of key enzymes, including phospholipase A and cyclooxygenase. CONCLUSION SGFD may ameliorate RA symptoms by regulating the AA-PGH2-PGE2/PGF2α pathway. The main active components include songorine, fuziline, neoline, albiflorin, paeoniflorin, liquiritin, benzoylmesaconine, isoformononetin, liquiritigenin, isoliquiritigenin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid.
Collapse
Affiliation(s)
- Ze Li
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Jing Yuan
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yue Dai
- Department of Pharmacology of Chinses Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
22
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
23
|
Baldacchino F, Spagnoletta A, Lamaj F, Vitale ML, Verrastro V. Validation of Diets with Tomato Pomace in Complete Cycle Breeding of Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). INSECTS 2024; 15:287. [PMID: 38667417 PMCID: PMC11050266 DOI: 10.3390/insects15040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
By-product-based diets have the potential to improve the environmental and economic sustainability of Tenebrio molitor (Linnaeus, 1758) production. However, evaluations of the efficacy of new diets are generally focused on larval performance, while the effect on adults is poorly understood. This aim of this study was to evaluate diets enriched with tomato pomace over a complete breeding cycle. The results showed that when used as an oviposition substrate, all the tested diets, including tomato pomace (T), outperformed the control bran-yeast diet (WY, 95:5 ratio), possibly due to the presence of cholesterol and linoleic acid. The adults fed with the bran-tomato pomace-brewer's spent grain diet (WTB, 50:27:23 ratio), the bran-tomato pomace-yeast diet (WTY, 50:41:9 ratio), and the bran-tomato pomace diet (WT, 50:50 ratio) produced significantly more larvae than those fed with the WY diet. The WTB diet (despite being yeast-free) performed similarly to the WY control diet during the subsequent larval growth phase, making it suitable for the entire production cycle. In conclusion, the results show that tomato pomace can be used a valid by-product in the formulation of efficient diets for the breeding of T. molitor and also provide an alternative to expensive yeast.
Collapse
Affiliation(s)
- Ferdinando Baldacchino
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Anna Spagnoletta
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Flutura Lamaj
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Maria Luisa Vitale
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Vincenzo Verrastro
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| |
Collapse
|
24
|
Li PL, Chen DF, Li XT, Hao RC, Zhao ZD, Li ZL, Yin BF, Tang J, Luo YW, Wu CT, Nie JJ, Zhu H. Microgel-based carriers enhance skeletal stem cell reprogramming towards immunomodulatory phenotype in osteoarthritic therapy. Bioact Mater 2024; 34:204-220. [PMID: 38235309 PMCID: PMC10792171 DOI: 10.1016/j.bioactmat.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Skeletal stem cells (SSC) have gained attentions as candidates for the treatment of osteoarthritis due to their osteochondrogenic capacity. However, the immunomodulatory properties of SSC, especially under delivery operations, have been largely ignored. In the study, we found that Pdpn+ and Grem1+ SSC subpopulations owned immunoregulatory potential, and the single-cell RNA sequencing (scRNA-seq) data suggested that the mechanical activation of microgel carriers on SSC induced the generation of Pdpn+Grem1+Ptgs2+ SSC subpopulation, which was potent at suppressing macrophage inflammation. The microgel carriers promoted the YAP nuclear translocation, and the activated YAP protein was necessary for the increased expression of Ptgs2 and PGE2 in microgels-delivered SSC, which further suppressed the expression of TNF-ɑ, IL-1β and promoted the expression of IL-10 in macrophages. SSC delivered with microgels yielded better preventive effects on articular lesions and macrophage activation in osteoarthritic rats than SSC without microgels. Chemically blocking the YAP and Ptgs2 in microgels-delivered SSC partially abolished the enhanced protection on articular tissues and suppression on osteoarthritic macrophages. Moreover, microgel carriers significantly prolonged SSC retention time in vivo without increasing SSC implanting into osteoarthritic joints. Together, our study demonstrated that microgel carriers enhanced SSC reprogramming towards immunomodulatory phenotype to regulate macrophage phenotype transformation for effectively osteoarthritic therapy by promoting YAP protein translocation into nucleus. The study not only complement and perfect the immunological mechanisms of SSC-based therapy at the single-cell level, but also provide new insight for microgel carriers in stem cell-based therapy.
Collapse
Affiliation(s)
- Pei-Lin Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Road Xinjiekou 31, Beijing, 100035, PR China
| | - Xiao-Tong Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Rui-Cong Hao
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Zhi-Dong Zhao
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, PR China
| | - Zhi-Ling Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Bo-Feng Yin
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jie Tang
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yu-Wen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Road Xinjiekou 31, Beijing, 100035, PR China
| | - Chu-Tse Wu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Road Xinjiekou 31, Beijing, 100035, PR China
| | - Heng Zhu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, PR China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| |
Collapse
|
25
|
Fang S, Zhang B, Xiang W, Zheng L, Wang X, Li S, Zhang T, Feng D, Gong Y, Wu J, Yuan J, Wu Y, Zhu Y, Liu E, Ni Z. Natural products in osteoarthritis treatment: bridging basic research to clinical applications. Chin Med 2024; 19:25. [PMID: 38360724 PMCID: PMC10870578 DOI: 10.1186/s13020-024-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Collapse
Affiliation(s)
- Shunzheng Fang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Rehabilitation Center, Key Specialty of Neck and Low Back Pain Rehabilitation, Strategic Support Force Xingcheng Special Duty Sanatorium, Liaoning, 125100, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Fourth Hospital of Wuhan, Wuhan, 430000, Hubei, China
| | - Xiaodong Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jinhui Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jing Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yizhen Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Enli Liu
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|
26
|
Wu Z, Liang Y, Khan A, He J. Is occupational noise associated with arthritis? Cross-sectional evidence from US population. BMC Public Health 2024; 24:371. [PMID: 38317177 PMCID: PMC10840213 DOI: 10.1186/s12889-024-17897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The impact of occupational noise exposure on various diseases, including ear and cardiovascular diseases, has been studied extensively. Nevertheless, the connection between osteoarthritis (OA) and rheumatoid arthritis (RA) and occupational noise exposure remains largely unexplored in real-world scenarios. This study assessed the association between occupational noise exposure and the prevalence of two types of arthritis. METHODS This study used database data from 2005 to 2012 and 2015-March 2020 from the prepandemic National Health and Nutrition Examination Survey (NHANES) related to occupational noise exposure and arthritis. Multivariate logistic regression analysis was used to estimate the association between occupational noise exposure and RA/OA, adjusting for age, gender, race, education level, marital status, the ratio of family income to poverty, trouble sleeping, smoking status, alcohol consumption, diabetes, hypertension, body mass index (BMI), metabolic equivalents (METs), and thyroid disease. RESULTS This study included 11,053 participants. Multivariate logistic regression analysis demonstrated that previous exposure to occupational noise was positively associated with self-reported RA (OR = 1.43, 95% CI = 1.18-1.73) and OA (OR = 1.25, 95% CI = 1.07-1.46). Compared to individuals without a history of occupational noise exposure, those with an exposure duration of 1 year or greater exhibited higher odds of prevalent RA, though there was no apparent exposure response relationship for noise exposure durations longer than 1 year. The results of our subgroup analyses showed a significant interaction between age and occupational noise exposure on the odds of self-reported prevalent OA. CONCLUSIONS Our findings suggest an association between occupational noise exposure and the prevalence of RA and OA. Nevertheless, further clinical and basic research is warranted to better explore their associations.
Collapse
Affiliation(s)
- Zhounan Wu
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuhang Liang
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ammna Khan
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China
| | - Jinshen He
- Department of Orthopaedic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
27
|
Yamaguchi M, Mtali YS, Sonokawa H, Takashima K, Fukushima Y, Kouwaki T, Oshiumi H. HPV vaccines induce trained immunity and modulate pro-inflammatory cytokine expression in response to secondary Toll-like receptor stimulations. Microbiol Immunol 2024; 68:65-74. [PMID: 38105559 DOI: 10.1111/1348-0421.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Cervical cancer is caused mostly by human papillomavirus (HPV), and several HPV vaccines have been developed to prevent its onset. Vaccines include antigens as well as adjuvants, with adjuvants playing an important role in activating the innate immune responses necessary for inducing adaptive immunological responses. Recent research has shown the presence of trained immunity inside the innate immune system. However, trained immunity conferred by HPV vaccinations is not well understood. In this work, we explored the innate immune responses and trained immunity caused by two HPV vaccines, Cervarix and Gardasil. Cervarix includes monophosphoryl lipid A and an aluminum adjuvant, and it significantly increased the expression of IL-6 and IFN-β mRNAs in RAW264.7 cells. On the contrary, Gardasil, which only includes an aluminum adjuvant, exhibited little cytokine expression but increased the expression of TLRs. Furthermore, Cervarix significantly increased IL-1β secretion from mouse macrophages, while Gardasil only mildly induced IL-1β secretion. Interestingly, initial stimulation with Gardasil enhanced the expression of IL-6 and TNF-α mRNAs upon secondary stimulation with TLR ligands, indicating that Gardasil induced trained immunity in macrophages. Moreover, Gardasil injection into mice resulted in enhanced TNF-α production in sera following secondary TLR stimulation. Our findings suggest that HPV vaccinations have the ability to induce trained immunity that modulate TLR ligand responses.
Collapse
Affiliation(s)
- Mako Yamaguchi
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Yohana S Mtali
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Ken Takashima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
28
|
Zhu L, Ye C, Chen S, Fang Y, Zhang Y, Zhang T. Rhodanine Derivatives Containing 5-Aryloxypyrazole Moiety as Anti-inflammatory and Anticancer Agents. Chem Biodivers 2024; 21:e202301844. [PMID: 38185756 DOI: 10.1002/cbdv.202301844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
In this study, a series of rhodanine derivatives containing 5-aryloxypyrazole moiety were identified as potential agents with anti-inflammatory and anticancer properties. Most of the synthesized compounds demonstrated anti-inflammatory and anticancer activity. Notably, compound 7 g (94.1 %) exhibited significant anti-inflammatory activity compared with the reference drugs celecoxib (52.5 %) and hydrocortisone (79.4 %). Compound 7 g, at various concentrations, effectively inhibited nitric oxide (NO) production in a dose-dependent manner. Western blot results showed that compound 7 g could prevents LPS-induced expression of inflammatory mediators in macrophages. Enzyme-linked immunosorbent assay (ELISA) assay suggested that 7 g is a promising compound capable of blocking the downstream signaling of COX-2. In summary, these findings indicate that compound 7 g could be a promising candidate for further investigation.
Collapse
Affiliation(s)
- Lin Zhu
- Jilin Medical University, Jilin, Jilin, 132013, PR China
| | - Chao Ye
- Jilin Medical University, Jilin, Jilin, 132013, PR China
| | - Shuang Chen
- Jilin Medical University, Jilin, Jilin, 132013, PR China
| | - Yuqi Fang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - Tianyi Zhang
- Jilin Medical University, Jilin, Jilin, 132013, PR China
| |
Collapse
|
29
|
Watabe T, Yamahira S, Takakura K, Thumkeo D, Narumiya S, Matsuda M, Terai K. Calcium transients trigger switch-like discharge of prostaglandin E 2 in an extracellular signal-regulated kinase-dependent manner. eLife 2024; 12:RP86727. [PMID: 38276879 PMCID: PMC10945702 DOI: 10.7554/elife.86727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors, we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The extracellular signal-regulated kinase (ERK) activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shinya Yamahira
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanako Takakura
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
- Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyotoJapan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
30
|
Cheng M, Chen X, Han M, Luo X, Yu Y, Lv Y, Han Y, Cao L, Zhang J, Wang M, Jin Y. miR-155-5p improves oocyte maturation in porcine cumulus cells through connexin 43-mediated regulation of MPF activity. Theriogenology 2024; 214:124-133. [PMID: 37866301 DOI: 10.1016/j.theriogenology.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
In this study, we aimed to investigate the effect of the expression of miR-155-5p and its target genes on oocyte maturation. We analyzed the expression of miR-155-5p and its target genes in cumulus cells and oocytes using quantitative real-time reverse-transcription polymerase chain reaction. Using carboxyfluorescein, porcine cumulus cells were transfected with mimics and inhibitors of ssc-miR-155-5p to induce in vitro maturation, and subsequently, cumulus expansion, oocyte maturation, and cleavage rate were measured. We found that miR-155-5p expression in cumulus cells at the metaphase II stage was significantly higher than that at the germinal vesicle (GV) stage, whereas Cx43 expression was significantly lower than that at the GV stage (P < 0.05). Compared with those in the negative control group, the cumulus diffusion area of cumulus oocyte complexes; oocyte maturation rate; cleavage rate; HAS2, PTGS2, CD44, PTX3, and TNFAIP6 expression in cumulus cells; and GDF9, BMP15, CyclinB1, and CDK1 expression in oocytes were significantly increased in the miR-155-5p mimics group (P < 0.05), whereas the mRNA and protein expression of CX43 were significantly decreased (P < 0.05). Compared with that in the negative control group, the protein expression of CyclinB1 and p-CDK1 (Thr14, Tyr15) in the miR-155-5p mimics group was significantly increased (P < 0.05). These results suggest that miR-155-5p regulates maturation promoting factor activity by targeting Cx43, which improves the in vitro maturation and cleavage rate of porcine oocytes.
Collapse
Affiliation(s)
- Mimi Cheng
- Yanbian University, Jilin, Yanji, 133000, China
| | - Xuan Chen
- Yanbian University, Jilin, Yanji, 133000, China
| | - Mingzi Han
- Animal Disease Prevention and Control Center of Yanbian Korean Autonomous Prefecture, Jilin, Yanji, 133000, China
| | - Xiaotong Luo
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Jilin, Gongzhuling, 136100, China
| | - Yanqiu Lv
- Yanbian University, Jilin, Yanji, 133000, China
| | - Yue Han
- Yanbian University, Jilin, Yanji, 133000, China
| | - Lipeng Cao
- Yanbian University, Jilin, Yanji, 133000, China
| | | | | | - Yi Jin
- Yanbian University, Jilin, Yanji, 133000, China.
| |
Collapse
|
31
|
Mohammadi F, Rahimi K, Ahmadi A, Hooshmandi Z, Amini S, Mohammadi A. Anti-inflammatory effects of Mentha pulegium L. extract on human peripheral blood mononuclear cells are mediated by TLR-4 and NF-κB suppression. Heliyon 2024; 10:e24040. [PMID: 38234883 PMCID: PMC10792569 DOI: 10.1016/j.heliyon.2024.e24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
There is great interest in evaluating the anti-inflammatory properties of new herbal products. Thus, the effects of Mentha pulegium L. extract on gene and protein expressions of pro-inflammatory mediators and transcription factors were determined. The hydro-ethanolic extract of Mentha pulegium L. was obtained and optimal non-cytotoxic concentrations of the extract were determined by MTT assay. Then, three different concentrations of Mentha pulegium L. (10, 30, and 90 μg/mL) were used to pre-treat the lipopolysaccharide (LPS)-stimulated and non-stimulated peripheral blood mononuclear cells (PBMCs) of 10 healthy individuals. Finally, the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, Toll-like receptor-4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, activator protein-1 (AP-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) gene expressions and TNF-α, IL-1β, IL-6, TLR-4, prostaglandin E2 (PGE2), and COX-2 protein levels were measured. MTT results showed that there is no significant difference in cell viability among 10, 20, 40, and 80 μg/mL concentrations of Mentha pulegium L. extract at 24, 48, and 72 h (P > 0.05). The IC50 values were 236.1, 147.0, and 118.0 μg/mL after 24, 48, and 72 h respectively. TNF-α, IL-1β, IL-6, TLR-4, iNOS, and NF-κB p65 mRNA levels in the pre-treated LPS-stimulated PBMCs were concentration-dependently reduced (P < 0.01 for TNF-α, TLR-4, and NF-κB p65; P < 0.05 for IL-1β, IL-6, and iNOS). Also, the protein levels of pro-inflammatory mediators decreased and these differences were significant for TNF-α, IL-1β, and TLR-4 (P < 0.001, P < 0.01, and P < 0.001, respectively). Mentha pulegium L. extract decreased the expression and biosynthesis of pro-inflammatory mediators. These effects are mainly mediated by TLR-4 and NF-κB suppression. Thus, Mentha pulegium L. could be useful in treating or ameliorating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Firouz Mohammadi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Hooshmandi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
32
|
Ma H, Huang H, Li C, Li S, Gan J, Lian C, Ling Y. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors. NPJ Syst Biol Appl 2024; 10:5. [PMID: 38218856 PMCID: PMC10787738 DOI: 10.1038/s41540-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.
Collapse
Affiliation(s)
- Huina Ma
- Department of Health, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Hehua Huang
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chenyu Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Shasha Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Juefang Gan
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chunrong Lian
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Yanwu Ling
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China.
| |
Collapse
|
33
|
Wu WB, Lee IT, Lin YJ, Wang SY, Hsiao LD, Yang CM. Silica Nanoparticles Shed Light on Intriguing Cellular Pathways in Human Tracheal Smooth Muscle Cells: Revealing COX-2/PGE 2 Production through the EGFR/Pyk2 Signaling Axis. Biomedicines 2024; 12:107. [PMID: 38255212 PMCID: PMC10813532 DOI: 10.3390/biomedicines12010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of manufactured silica nanoparticles (SiNPs) has become widespread in everyday life, household products, and various industrial applications. While the harmful effects of crystalline silica on the lungs, known as silicosis or chronic pulmonary diseases, are well understood, the impact of SiNPs on the airway is not fully explored. This study aimed to investigate the potential effects of SiNPs on human tracheal smooth muscle cells (HTSMCs). Our findings revealed that SiNPs induced the expression of cyclooxygenase-2 (COX-2) mRNA/protein and the production of prostaglandin E2 (PGE2) without causing cytotoxicity. This induction was transcription-dependent, as confirmed by cell viability assays and COX-2 luciferase reporter assays. Further analysis, including Western blot with pharmacological inhibitors and siRNA interference, showed the involvement of receptor tyrosine kinase (RTK) EGF receptor (EGFR), non-RTK Pyk2, protein kinase Cα (PKCα), and p42/p44 MAPK in the induction process. Notably, EGFR activation initiated cellular signaling that led to NF-κB p65 phosphorylation and translocation into the cell nucleus, where it bound and stimulated COX-2 gene transcription. The resulting COX-2 protein triggered PGE2 production and secretion into the extracellular space. Our study demonstrated that SiNPs mediate COX-2 up-regulation and PGE2 secretion in HTSMCs through the sequential activation of the EGFR/Pyk2/PKCα/p42/p44MAPKs-dependent NF-κB signaling pathway. Since PGE2 can have both physiological bronchodilatory and anti-inflammatory effects, as well as pathological pro-inflammatory effects, the increased PGE2 production in the airway might act as a protective compensatory mechanism and/or a contributing factor during airway exposure to SiNPs.
Collapse
Affiliation(s)
- Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 406040, Taiwan;
| | - Ssu-Ying Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (S.-Y.W.); (L.-D.H.)
| |
Collapse
|
34
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
35
|
Yacoub AS, Ashin ZF, Awad K, Guntur S, Wilson M, Daniel M, Aswath P, Brotto M, Varanasi V. Market Needs and Methodologies Associated with Patient Lipidomic Diagnoses and Analyses. Methods Mol Biol 2024; 2816:53-67. [PMID: 38977588 DOI: 10.1007/978-1-0716-3902-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This chapter conducts an in-depth exploration of the impact of musculoskeletal (MSK) disorders and injuries, with a specific emphasis on their consequences within the older population demographic. It underscores the escalating demand for innovative interventions in MSK tissue engineering. The chapter also highlights the fundamental role played by lipid signaling mediators (LSMs) in tissue regeneration, with relevance to bone and muscle recovery. Remarkably, Prostaglandin E2 (PGE2) emerges as a central orchestrator in these regenerative processes. Furthermore, the chapter investigates the complex interplay between bone and muscle tissues, explaining the important influence exerted by LSMs on their growth and differentiation. The targeted modulation of LSM pathways holds substantial promise as a beneficial way for addressing muscle disorders. In addition to these conceptual understandings, the chapter provides a comprehensive overview of methodologies employed in the identification of LSMs, with a specific focus on the Liquid Chromatography-Mass Spectrometry (LC-MS). Furthermore, it introduces a detailed LC MS/MS-based protocol tailored for the detection of PGE2, serving as an invaluable resource for researchers immersed in this dynamic field of study.
Collapse
Affiliation(s)
- Ahmed S Yacoub
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Zeinab Fotouhi Ashin
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Kamal Awad
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Sindhu Guntur
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Michael Wilson
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Merina Daniel
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Pranesh Aswath
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Marco Brotto
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Venu Varanasi
- Bone Muscle Research Center, The University of Texas at Arlington, Arlington, TX, USA.
- Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
36
|
Biasini L, Zamperin G, Pascoli F, Abbadi M, Buratin A, Marsella A, Panzarin V, Toffan A. Transcriptome Profiling of Oncorhynchus mykiss Infected with Low or Highly Pathogenic Viral Hemorrhagic Septicemia Virus (VHSV). Microorganisms 2023; 12:57. [PMID: 38257883 PMCID: PMC10821180 DOI: 10.3390/microorganisms12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain.
Collapse
|
37
|
Kaiser-Graf D, Schulz A, Mangelsen E, Rothe M, Bolbrinker J, Kreutz R. Tissue lipidomic profiling supports a mechanistic role of the prostaglandin E2 pathway for albuminuria development in glomerular hyperfiltration. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1271042. [PMID: 38205443 PMCID: PMC10777844 DOI: 10.3389/fnetp.2023.1271042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
Background: Glomerular hyperfiltration (GH) is an important mechanism in the development of albuminuria in hypertension. The Munich Wistar Frömter (MWF) rat is a non-diabetic model of chronic kidney disease (CKD) with GH due to inherited low nephron number resulting in spontaneous albuminuria and podocyte injury. In MWF rats, we identified prostaglandin (PG) E2 (PGE2) signaling as a potential causative mechanism of albuminuria in GH. Method: For evaluation of the renal PGE2 metabolic pathway, time-course lipidomic analysis of PGE2 and its downstream metabolites 15-keto-PGE2 and 13-14-dihydro-15-keto-PGE2 was conducted in urine, plasma and kidney tissues of MWF rats and albuminuria-resistant spontaneously hypertensive rats (SHR) by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Results: Lipidomic analysis revealed no dysregulation of plasma PGs over the time course of albuminuria development, while glomerular levels of PGE2 and 15-keto-PGE2 were significantly elevated in MWF compared to albuminuria-resistant SHR. Overall, averaged PGE2 levels in glomeruli were up to ×150 higher than the corresponding 15-keto-PGE2 levels. Glomerular metabolic ratios of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) were significantly lower, while metabolic ratios of prostaglandin reductases (PTGRs) were significantly higher in MWF rats with manifested albuminuria compared to SHR, respectively. Conclusion: Our data reveal glomerular dysregulation of the PGE2 metabolism in the development of albuminuria in GH, resulting at least partly from reduced PGE2 degradation. This study provides first insights into dynamic changes of the PGE2 pathway that support a role of glomerular PGE2 metabolism and signaling for early albuminuria manifestation in GH.
Collapse
Affiliation(s)
- Debora Kaiser-Graf
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Angela Schulz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Mangelsen
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | - Juliane Bolbrinker
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Watabe T, Yamahira S, Matsuda M, Terai K. Visual quantification of prostaglandin E 2 discharge from a single cell. Cell Struct Funct 2023; 48:241-249. [PMID: 37813623 PMCID: PMC11496778 DOI: 10.1247/csf.23047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
Collapse
Affiliation(s)
- Tetsuya Watabe
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shinya Yamahira
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8315, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| |
Collapse
|
39
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
40
|
Sahu A, Pradhan D, Veer B, Kumar S, Singh R, Raza K, Rizvi MA, Jain AK, Verma S. In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors. Daru 2023; 31:119-133. [PMID: 37454036 PMCID: PMC10624798 DOI: 10.1007/s40199-023-00467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cyclooxygenase enzyme is frequently overexpressed in various types of cancer and found to play a crucial role in poor prognosis in cancer patients. In current research, we have reported the new COX-2 inhibitors for cancer treatment using computer-aided drug design and experimental validation. METHODS A total of 12,795 compounds from the different databases were used to screen against the COX-2 enzyme. It perceived three new compounds with better binding affinity to the enzyme. Afterwards, physicochemical properties and in silico bioactivity were assessed for efficacy, safety, and structural features required for binding. The molecules were synthesized and confirmed by spectroscopic techniques. Later on, molecules were evaluated for their anti-cancer activity using MCF-7, MDA-MB-231 and SiHa cancer cell lines. RESULTS Compound ZINC5921547 and ZINC48442590 (4a, and 4b) reduced the MCF-7, MDA-MB-231, and SiHa cells proliferation potently than parent compounds. The PG-E2 estimation shown, both compounds act through the COX-2 PGE2 axis. Compound 4a and 4b block the cell cycle at G1-S phase and induce cancer cell death. CONCLUSIONS We concluded that compounds 4a and 4b effectively promotes cancer cell death via COX-2 PGE2 axis, and further in vivo studies can be evaluated for development in both compounds as anticancer agents. The compilation of this information will help us to generate better outcome through robust computational methods. The high-quality experimental results may pave the way for identifying effective drug candidates for cancer treatment.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- Indian Biological Data Center, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Babita Veer
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Sumit Kumar
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Saurabh Verma
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
41
|
Yan S, Lyu L, Wang X, Wen H, Li Y, Li J, Yao Y, Zuo C, Xie S, Wang Z, Qi X. Pro-inflammatory cytokine IL1β1 participates in promoting parturition related pathways in the ovoviviparous teleost black rockfish (Sebastes schlegelii). Biol Reprod 2023; 109:693-704. [PMID: 37593921 DOI: 10.1093/biolre/ioad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Along with the evolution process, the reproductive strategies evolved including oviparity, viviparity and ovoviviparity, to fit the residential environment maximize the survival rate of the off spring. In mammals, the key to the initiation of parturition is the inflammatory response at the maternal-fetal interface. As a pro-inflammatory cytokine, interleukin 1 beta (IL1β) plays an important role in the process of human parturition. While less is known about IL1β1 in teleost parturition, identification of the functions of IL1β1 in inducing the parturition, black rockfish, an ovoviviparity teleost, which provides over 60% nutrition supply for over 50 000 embryos though a placenta like structure during pregnant, was employed as the research model. In the present study, based on the gene cloning, we detected the expression pattern of both Il1b1 and its receptor perinatal period, as well as the localization to the ovary by in situ hybridization. The different expression genes in transcriptomic data of perinatal primary ovarian cells treated with the recombinant IL1β1 (rIL1β1) obtained by prokaryotic expression system were analyzed. Differentially expressed genes, functional enrichment and pathway analysis mainly included immune response, signal transduction and cell death. In summary, our research provides novel insights into the potential role of IL1β1 in the parturition of ovoviviparity teleost.
Collapse
Affiliation(s)
- Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Zhijun Wang
- Weihai Taifeng Seawater Seedling Co., LTD, Weihai, PR China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
42
|
Wang Y, Dong Y, Duan X, Luan Y, Li Q, Pang Y, Sun F, Gou M. A complete prostaglandin pathway from synthesis to inactivation in the oral gland of the jawless vertebrate lamprey, Lethenteron camtschaticum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104903. [PMID: 37541459 DOI: 10.1016/j.dci.2023.104903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yonghui Dong
- Metabolite Medicine Division, BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
43
|
Chen S, Wu Y, Gao Y, Wu C, Wang Y, Hou C, Ren M, Zhang S, Zhu Q, Zhang J, Yao Y, Huang M, Qi YB, Liu XS, Horng T, Wang H, Ye D, Zhu Z, Zhao S, Fan G. Allosterically inhibited PFKL via prostaglandin E2 withholds glucose metabolism and ovarian cancer invasiveness. Cell Rep 2023; 42:113246. [PMID: 37831605 DOI: 10.1016/j.celrep.2023.113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Metastasis is the leading cause of high ovarian-cancer-related mortality worldwide. Three major processes constitute the whole metastatic cascade: invasion, intravasation, and extravasation. Tumor cells often reprogram their metabolism to gain advantages in proliferation and survival. However, whether and how those metabolic alterations contribute to the invasiveness of tumor cells has yet to be fully understood. Here we performed a genome-wide CRISPR-Cas9 screening to identify genes participating in tumor cell dissemination and revealed that PTGES3 acts as an invasion suppressor in ovarian cancer. Mechanistically, PTGES3 binds to phosphofructokinase, liver type (PFKL) and generates a local source of prostaglandin E2 (PGE2) to allosterically inhibit the enzymatic activity of PFKL. Repressed PFKL leads to downgraded glycolysis and the subsequent TCA cycle for glucose metabolism. However, ovarian cancer suppresses the expression of PTGES3 and disrupts the PTGES3-PGE2-PFKL inhibitory axis, leading to hyperactivation of glucose oxidation, eventually facilitating ovarian cancer cell motility and invasiveness.
Collapse
Affiliation(s)
- Shengmiao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yang Gao
- Interdisciplinary Research Center on Biology and Chemistry and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuetong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Miao Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuyuan Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qi Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingchuan B Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tiffany Horng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry and Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
44
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
45
|
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int J Mol Sci 2023; 24:14293. [PMID: 37762594 PMCID: PMC10531845 DOI: 10.3390/ijms241814293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Collapse
Affiliation(s)
| | - Junle Qu
- Center for Biomedical Optics and Photonics and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
46
|
Kleine S, Hampton CE, Smith C, Bussieres G, Mulon PY, Seddighi R, Cox S, Smith J. Pharmacokinetics of a single oral dose of grapiprant in juvenile pigs (Sus scrofa domestica). J Vet Pharmacol Ther 2023; 46:269-275. [PMID: 37493273 DOI: 10.1111/jvp.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
Both pet and research pigs can suffer from some degree of pain from surgery, injuries, or osteoarthritis (OA). Despite this, there is a paucity of data on safe and effective analgesia agents in pigs. Grapiprant is an EP4 antagonist that blocks the action of the pro-inflammatory prostanoid, PGE2 . It has shown efficacy in attenuating pain associated with ovariohysterectomy and OA in dogs. However, there are no data regarding grapiprant in pigs. Therefore, the pharmacokinetic profile of orally administered grapiprant to juvenile pigs (Sus scrofa domestica) was evaluated in this study. Seven juvenile pigs received 12 mg/kg grapiprant orally. Blood was collected from an indwelling jugular catheter using the push-pull method at set timepoints up to 48 hours. Sample analysis was performed with high-performance liquid chromatography. Mean grapiprant plasma concentration was 164.3 ± 104.7 ng/mL which occurred at 0.8 ± 0.3 h. This study demonstrated that grapiprant concentrations consistent with analgesia in dogs were reached at this dosage in pigs. Further studies are needed to evaluate the efficacy of grapiprant in pigs.
Collapse
Affiliation(s)
- Stephanie Kleine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Chiara E Hampton
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Christopher Smith
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Genevieve Bussieres
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Pierre-Yves Mulon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Reza Seddighi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Sherry Cox
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Joe Smith
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
47
|
Di Conza G, Ho PC, Cubillos-Ruiz JR, Huang SCC. Control of immune cell function by the unfolded protein response. Nat Rev Immunol 2023; 23:546-562. [PMID: 36755160 DOI: 10.1038/s41577-023-00838-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
48
|
Sheng W, Wang Q, Qin H, Cao S, Wei Y, Weng J, Yu F, Zeng H. Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2023; 24:13137. [PMID: 37685944 PMCID: PMC10487662 DOI: 10.3390/ijms241713137] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARβ/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.
Collapse
Affiliation(s)
- Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
49
|
Mo D, Deng C, Chen B, Ding X, Deng Q, Guo H, Chen G, Ye C, Guo C. The severity of NEC is ameliorated by prostaglandin E2 through regulating intestinal microcirculation. Sci Rep 2023; 13:13395. [PMID: 37591866 PMCID: PMC10435505 DOI: 10.1038/s41598-023-39251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Prostaglandin E2 (PGE2) is implicated in intestinal inflammation and intestinal blood flow regulation with a paradoxical effect on the pathogenesis of necrotizing enterocolitis (NEC), which is not yet well understood. In the current study, we found that PGE2, EP4, and COX-2 varied at different distances from the most damaged area in the terminal ileum obtained from human infants with NEC. PGE2 administration alleviated the phenotype of experimental NEC and the intestinal microvascular features in experimental NEC, but this phenomenon was inhibited by eNOS depletion, suggesting that PGE2 promoted intestinal microcirculatory perfusion through eNOS. Furthermore, PGE2 administration increased the VEGF content in MIMECs under TNFα stress and promoted MIMEC proliferation. This response to PGE2 was involved in eNOS phosphorylation and nitric oxide (NO) production and was blocked by the EP4 antagonist in vitro, suggesting that targeting the PGE2-EP4-eNOS axis might be a potential clinical and therapeutic strategy for NEC treatment. The study is reported in accordance with ARRIVE guidelines ( https://arriveguidelines.org ).
Collapse
Affiliation(s)
- Dandan Mo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Rd, Chongqing, 402160, People's Republic of China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Rd, Chongqing, 402160, People's Republic of China
| | - Bailin Chen
- Department of General Surgery, Children's Hospital of Chongqing Medical University, 20 Jinyu Ave., Chongqing, 400014, People's Republic of China
| | - Xionghui Ding
- Department of Burn, Children's Hospital of Chongqing Medical University, 20 Jinyu Ave., Chongqing, 400014, People's Republic of China
| | - Qin Deng
- Department of Nutrition, Children's Hospital of Chongqing Medical University, 20 Jinyu Ave., Chongqing, 400014, People's Republic of China
| | - Hongjie Guo
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, 20 Jinyu Ave., Chongqing, 400014, People's Republic of China
| | - Gongli Chen
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, 120 Longshan Rd., Chongqing, 401147, People's Republic of China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, 120 Longshan Rd., Chongqing, 401147, People's Republic of China
| | - Cuilian Ye
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Ave., Chongqing, 400054, People's Republic of China.
| | - Chunbao Guo
- Department of Pediatric Surgery, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, 120 Longshan Rd., Chongqing, 401147, People's Republic of China.
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, 120 Longshan Rd., Chongqing, 401147, People's Republic of China.
| |
Collapse
|
50
|
Stanca L, Geicu OI, Serban AI, Dinischiotu A. Interplay of Oxidative Stress, Inflammation, and Autophagy in RAW 264.7 Murine Macrophage Cell Line Challenged with Si/SiO 2 Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5083. [PMID: 37512357 PMCID: PMC10385521 DOI: 10.3390/ma16145083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Quantum dots (QDs) with photostable fluorescence are recommended for imaging applications; however, their effect on living cells is incompletely understood. We aimed to elucidate the RAW 264.7 murine macrophage cell line's response to the Si/SiO2 QDs challenge. Cells were exposed to 5 and 15 μg/mL Si/SiO2 QDs for 6 h, 12 h, and 24 h. Cell metabolic activity and viability were assessed by MTT, live/dead, and dye-exclusion assays. Oxidative stress and membrane integrity were assessed by anion superoxide, malondialdehyde, and lactate dehydrogenase activity evaluations. Antioxidative enzyme activities were analyzed by kinetic spectrophotometric methods. Cytokines were analyzed with an antibody-based magnetic bead assay, PGE2 was assessed by ELISA, and Nrf-2, Bcl-2, Beclin 1, and the HSPs were analyzed by western blot. Autophagy levels were highlighted by fluorescence microscopy. The average IC50 dose for 6, 12, and 24 h was 16.1 ± 0.7 μg/mL. Although glutathione S-transferase and catalase were still upregulated after 24 h, superoxide dismutase was inhibited, which together allowed the gradual increase of malondialdehyde, anion superoxide, nitric oxide, and the loss of membrane integrity. G-CSF, IL-6, TNF-α, MIP-1β, MCP-1, Nrf-2, PGE2, and RANTES levels, as well as autophagy processes, were increased at all time intervals, as opposed to caspase 1 activity, COX-2, HSP60, and HSP70, which were only upregulated at the 6-h exposure interval. These results underscore that Si/SiO2 QDs possess significant immunotoxic effects on the RAW 264.7 macrophage cell line and stress the importance of developing effective strategies to mitigate their adverse impact.
Collapse
Affiliation(s)
- Loredana Stanca
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Ovidiu Ionut Geicu
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Andreea Iren Serban
- Preclinical Sciences Department, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|