1
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
3
|
Cao S, Jiang J, Yin H, Wang L, Lu Q. Abnormal energy metabolism in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2024; 134:112149. [PMID: 38692019 DOI: 10.1016/j.intimp.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.
Collapse
Affiliation(s)
- Shumei Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Halfon M, Tankeu AT, Ribi C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int J Mol Sci 2024; 25:6162. [PMID: 38892349 PMCID: PMC11173067 DOI: 10.3390/ijms25116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Aurel T. Tankeu
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Camillo Ribi
- Division of Immunology and Allergy, Lausanne University Hospital, CH-1010 Lausanne, Switzerland;
| |
Collapse
|
5
|
Huang N, Winans T, Wyman B, Oaks Z, Faludi T, Choudhary G, Lai ZW, Lewis J, Beckford M, Duarte M, Krakko D, Patel A, Park J, Caza T, Sadeghzadeh M, Morel L, Haas M, Middleton F, Banki K, Perl A. Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation. Nat Commun 2024; 15:2598. [PMID: 38519468 PMCID: PMC10960037 DOI: 10.1038/s41467-024-46441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4AQ72L exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4+ and CD3+CD4-CD8- double-negative T cells over CD8+ T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice. Rab4A deletion in T cells and pharmacological mTOR blockade restrain CD98 expression, mitochondrial metabolism and lineage skewing and attenuate glomerulonephritis. This study identifies Rab4A-directed endosome traffic as a multilevel regulator of T cell lineage specification during lupus pathogenesis.
Collapse
Affiliation(s)
- Nick Huang
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Brandon Wyman
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zachary Oaks
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tamas Faludi
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Gourav Choudhary
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zhi-Wei Lai
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joshua Lewis
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Miguel Beckford
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Manuel Duarte
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Daniel Krakko
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Akshay Patel
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joy Park
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tiffany Caza
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Mahsa Sadeghzadeh
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
| |
Collapse
|
6
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
7
|
Abdukiyum M, Tang X, Zhao N, Cui Y, Zhang J, Alim T, Zheng Y, Li W, Huang M, Feng X, Yu H, Feng X. Reduced mitochondrial-encoded NADH dehydrogenase 6 gene expression drives inflammatory CD4 +T cells in patients with systemic lupus erythematosus. Free Radic Biol Med 2024; 213:79-89. [PMID: 38242247 DOI: 10.1016/j.freeradbiomed.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Abnormal mitochondrial function has been implicated in the progression of systemic lupus erythematosus (SLE), the prototypical autoimmune disease, yet the underlying cause remains unclear. In this study, mitochondrial-encoded NADH dehydrogenase 6 gene (MT-ND6) was identified as having increased m6A methylation and decreased expression in peripheral blood mononuclear cells of SLE patients by MeRIP-seq analysis. MT-ND6 expression was negatively correlated with SLE disease activity index score and 24-h urine protein level, and lower in patients with positive anti-Sm or anti-dsDNA antibodies. With the reduction of MT-ND6 levels, CD4+ T cells in SLE patients exhibited mitochondrial dysfunction, as evidenced by increased levels of reactive oxygen species (ROS) and mitochondrial ROS and insufficient ATP production. Accordingly, in vitro MT-ND6 silencing induced abnormalities in the above mitochondrial indicators in CD4+ T cells, and promoted the development of both transcription and inflammatory factors in these cells. In contrast, treatment with targeted mitochondrial antioxidants largely counteracted the silencing effect of MT-MD6. Thus, reduced MT-ND6 in SLE patients may lead to mitochondrial dysfunction through ROS overproduction, thereby promoting inflammatory CD4+ T cells.
Collapse
Affiliation(s)
- Miheraiy Abdukiyum
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nan Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiyuan Cui
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tohtihan Alim
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuxue Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
8
|
Zhao H, Wen Z, Xiong S. Activated Lymphocyte-Derived DNA Drives Glucose Metabolic Adaptation for Inducing Macrophage Inflammatory Response in Systemic Lupus Erythematosus. Cells 2023; 12:2093. [PMID: 37626904 PMCID: PMC10453374 DOI: 10.3390/cells12162093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Activated lymphocyte-derived DNA (ALD-DNA) has been reported to drive the polarization of macrophages toward M2b, producing inflammatory cytokines and inducing inflammation, correspondingly playing an essential role in the development of systemic lupus erythematosus (SLE). Recently, accumulating evidence has pinpointed metabolic adaptation as the crucial cell-intrinsic determinant for inflammatory response, in which glucose metabolism is the key event. However, whether and how glucose metabolism was involved in ALD-DNA-induced macrophage inflammatory response and SLE development remains unclear. Herein, we performed glucose metabolomic analyses of ALD-DNA-stimulated macrophages and uncovered increased glycolysis and diminished pentose phosphate pathway (PPP), as well as enhanced glycogenesis. In ALD-DNA-stimulated macrophages, increased glycolysis resulted in higher lactate production, whereas diminished PPP efficiently led to lower levels of nicotinamide adenine dinucleotide phosphate (NADPH) with higher levels of reactive oxygen species (ROS). While blockade of lactate generation exerted no significant effect on macrophage inflammation in response to ALD-DNA, scavenging ROS fundamentally inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Further, cyclic adenosine monophosphate (cAMP), a master for regulating glycogen metabolism, was downregulated by ALD-DNA in macrophages, which subsequently imbalanced glycogen metabolism toward glycogenesis but not glycogenolysis. Administration of cAMP effectively restored glycogenolysis and enhanced PPP, which correspondingly reduced ROS levels and inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Finally, blocking glucose metabolism using 2-deoxy-D-glucose (2-DG) efficiently restricted macrophage inflammatory response and alleviated ALD-DNA-induced lupus disease. Together, our findings demonstrate that ALD-DNA drives the adaptation of glucose metabolism for inducing macrophage inflammatory response in SLE, which might further our understanding of disease pathogenesis and provide clues for interventive explorations.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Gong M, Choi SC, Park YP, Zou X, Elshikha AS, Gerriets VA, Rathmell JC, Mohamazadeh M, Morel L. Transcriptional and metabolic programs promote the expansion of follicular helper T cells in lupus-prone mice. iScience 2023; 26:106774. [PMID: 37216123 PMCID: PMC10197114 DOI: 10.1016/j.isci.2023.106774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The expansion of follicular helper T (Tfh) cells, which is tightly associated with the development of lupus, is reversed by the inhibition of either glycolysis or glutaminolysis in mice. Here we analyzed the gene expression and metabolome of Tfh cells and naive CD4+ T (Tn) cells in the B6.Sle1.Sle2.Sle3 (triple congenic, TC) mouse model of lupus and its congenic B6 control. Lupus genetic susceptibility in TC mice drives a gene expression signature starting in Tn cells and expanding in Tfh cells with enhanced signaling and effector programs. Metabolically, TC Tn and Tfh cells showed multiple defective mitochondrial functions. TC Tfh cells also showed specific anabolic programs including enhanced glutamate metabolism, malate-aspartate shuttle, and ammonia recycling, as well as altered dynamics of amino acid content and their transporters. Thus, our study has revealed specific metabolic programs that can be targeted to specifically limit the expansion of pathogenic Tfh cells in lupus.
Collapse
Affiliation(s)
- Minghao Gong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xueyang Zou
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Valerie A. Gerriets
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansour Mohamazadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
11
|
Wilkinson MGL, Moulding D, McDonnell TCR, Orford M, Wincup C, Ting JYJ, Otto GW, Restuadi R, Kelberman D, Papadopoulou C, Castellano S, Eaton S, Deakin CT, Rosser EC, Wedderburn LR. Role of CD14+ monocyte-derived oxidised mitochondrial DNA in the inflammatory interferon type 1 signature in juvenile dermatomyositis. Ann Rheum Dis 2023; 82:658-669. [PMID: 36564154 PMCID: PMC10176342 DOI: 10.1136/ard-2022-223469] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases.
Collapse
Affiliation(s)
- Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Dale Moulding
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Thomas C R McDonnell
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Michael Orford
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chris Wincup
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Joanna Y J Ting
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Georg W Otto
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Restuadi Restuadi
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Daniel Kelberman
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Experimental and Personalised Medicine, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charalampia Papadopoulou
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Rheumatology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Sergi Castellano
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Eaton
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire T Deakin
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL UCLH and GOSH, UCL, London, UK
- NIHR Biomedical Research Centre, Great Ormond Street Hospital, London, UK
| |
Collapse
|
12
|
Blanco LP, Kaplan MJ. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol 2023; 21:e3002084. [PMID: 37098006 PMCID: PMC10128981 DOI: 10.1371/journal.pbio.3002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Systemic autoimmune diseases are characteristically associated with aberrant autoreactive innate and adaptive immune responses that lead to tissue damage and increased morbidity and mortality. Autoimmunity has been linked to alterations in the metabolic functions of immune cells (immunometabolism) and, more specifically, to mitochondrial dysfunction. Much has been written about immunometabolism in autoimmunity in general, so this Essay focuses on recent research into the role of mitochondrial dysfunction in the dysregulation of innate and adaptive immunity that is characteristic of systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Enhancing the understanding of mitochondrial dysregulation in autoimmunity will hopefully contribute to accelerating the development of immunomodulatory treatments for these challenging diseases.
Collapse
Affiliation(s)
- Luz P Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Zhao L, Hu X, Xiao F, Zhang X, Zhao L, Wang M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:929520. [PMID: 35958572 PMCID: PMC9358979 DOI: 10.3389/fimmu.2022.929520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid autoantibodies, increase type I interferon (IFN-α) levels, and immune cell hyperactivation are hallmarks of systemic lupus erythematosus (SLE). Notably, immune cell activation requires high level of cellular energy that is predominately generated by the mitochondria. Mitochondrial reactive oxygen species (mROS), the byproduct of mitochondrial energy generation, serves as an essential mediator to control the activation and differentiation of cells and regulate the antigenicity of oxidized nucleoids within the mitochondria. Recently, clinical trials on normalization of mitochondrial redox imbalance by mROS scavengers and those investigating the recovery of defective mitophagy have provided novel insights into SLE prophylaxis and therapy. However, the precise mechanism underlying the role of oxidative stress-related mitochondrial molecules in skewing the cell fate at the molecular level remains unclear. This review outlines distinctive mitochondrial functions and pathways that are involved in immune responses and systematically delineates how mitochondrial dysfunction contributes to SLE pathogenesis. In addition, we provide a comprehensive overview of damaged mitochondrial function and impaired metabolic pathways in adaptive and innate immune cells and lupus-induced organ tissues. Furthermore, we summarize the potential of current mitochondria-targeting drugs for SLE treatment. Developing novel therapeutic approaches to regulate mitochondrial oxidative stress is a promising endeavor in the search for effective treatments for systemic autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| |
Collapse
|
14
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
15
|
Bose M, Jefferies C. Sex bias in systemic lupus erythematosus: a molecular insight. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00004. [PMID: 35966636 PMCID: PMC9358995 DOI: 10.1097/in9.0000000000000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acknowledging sex differences in immune response is particularly important when we consider the differences between men and women in the incidence of disease. For example, over 80% of autoimmune disease occurs in women, whereas men have a higher incidence of solid tumors compared to women. In general women have stronger innate and adaptive immune responses than men, explaining their ability to clear viral and bacterial infections faster, but also contributing to their increased susceptibility to autoimmune disease. The autoimmune disease systemic lupus erythematosus (SLE) is the archetypical sexually dimorphic disease, with 90% of patients being women. Various mechanisms have been suggested to account for the female prevalence of SLE, including sex hormones, X-linked genes, and epigenetic regulation of gene expression. Here, we will discuss how these mechanisms contribute to pathobiology of SLE and how type I interferons work with them to augment sex specific disease pathogenesis in SLE.
Collapse
Affiliation(s)
- Moumita Bose
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Triozzi PL, Stirling ER, Song Q, Westwood B, Kooshki M, Forbes ME, Holbrook BC, Cook KL, Alexander-Miller MA, Miller LD, Zhang W, Soto-Pantoja DR. Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti-PD-1 Immune Checkpoint Blockade. Clin Cancer Res 2022; 28:1192-1202. [PMID: 35284940 DOI: 10.1158/1078-0432.ccr-21-3114] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/13/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy with checkpoint inhibitors is improving the outcomes of several cancers. However, only a subset of patients respond. Therefore, predictive biomarkers are critically needed to guide treatment decisions and develop approaches to the treatment of therapeutic resistance. EXPERIMENTAL DESIGN We compared bioenergetics of circulating immune cells and metabolomic profiles of plasma obtained at baseline from patients with melanoma treated with anti-PD-1 therapy. We also performed single-cell RNA sequencing (scRNAseq) to correlate transcriptional changes associated with metabolic changes observed in peripheral blood mononuclear cells (PBMC) and patient plasma. RESULTS Pretreatment PBMC from responders had a higher reserve respiratory capacity and higher basal glycolytic activity compared with nonresponders. Metabolomic analysis revealed that responder and nonresponder patient samples cluster differently, suggesting differences in metabolic signatures at baseline. Differential levels of specific lipid, amino acid, and glycolytic pathway metabolites were observed by response. Further, scRNAseq analysis revealed upregulation of T-cell genes regulating glycolysis. Our analysis showed that SLC2A14 (Glut-14; a glucose transporter) was the most significant gene upregulated in responder patients' T-cell population. Flow cytometry analysis confirmed significantly elevated cell surface expression of the Glut-14 in CD3+, CD8+, and CD4+ circulating populations in responder patients. Moreover, LDHC was also upregulated in the responder population. CONCLUSIONS Our results suggest a glycolytic signature characterizes checkpoint inhibitor responders; consistently, both ECAR and lactate-to-pyruvate ratio were significantly associated with overall survival. Together, these findings support the use of blood bioenergetics and metabolomics as predictive biomarkers of patient response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Pierre L Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elizabeth R Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mitra Kooshki
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - M Elizabeth Forbes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Beth C Holbrook
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Martha A Alexander-Miller
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
17
|
Robinson GA, Wilkinson MGL, Wincup C. The Role of Immunometabolism in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2022; 12:806560. [PMID: 35154082 PMCID: PMC8826250 DOI: 10.3389/fimmu.2021.806560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder in which pathogenic abnormalities within both the innate and adaptive immune response have been described. In order to activated, proliferate and maintain this immunological response a drastic upregulation in energy metabolism is required. Recently, a greater understanding of these changes in cellular bioenergetics have provided new insight into the links between immune response and the pathogenesis of a number of diseases, ranging from cancer to diabetes and multiple sclerosis. In this review, we highlight the latest understanding of the role of immunometabolism in SLE with particular focus on the role of abnormal mitochondrial function, lipid metabolism, and mTOR signaling in the immunological phenomenon observed in the SLE. We also consider what implications this has for future therapeutic options in the management of the disease in future.
Collapse
Affiliation(s)
- George Anthony Robinson
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| | - Meredyth G Ll Wilkinson
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom.,Department of Rheumatology, University College London Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research and Teaching Department, University College London, London, United Kingdom
| | - Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH) and Great Ormond Street Hospital (GOSH), University College London, London, United Kingdom
| |
Collapse
|
18
|
Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022; 11:179. [PMID: 35011741 PMCID: PMC8750774 DOI: 10.3390/cells11010179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Collapse
Affiliation(s)
- Elizabeth R. Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
| | - Steven M. Bronson
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jessica D. Mackert
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L. Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Hematology and Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - David R. Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Di Sarno L, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, Gen-Covid Multicenter Study, Chiariello M, Renieri A, Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy 2021; 18:1662-1672. [PMID: 34964709 PMCID: PMC9298458 DOI: 10.1080/15548627.2021.1995152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
Collapse
Affiliation(s)
- Susanna Croci
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- DIISM-SAILAB, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperatore
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Montagnani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Beligni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ticiana D J Farias
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miriam Lucia Carriero
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sigrid Aslaksen
- Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Mario Chiariello
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J Formos Med Assoc 2021; 120:1667-1675. [PMID: 33836940 DOI: 10.1016/j.jfma.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous, systemic autoimmune disease involving a wide array of aberrant innate and adaptive immune responses. The immune microenvironment of SLE promotes the metabolic reprogramming of immune cells, leading to immune dyshomeostasis and triggering autoimmune inflammation. Different immune subsets switch from a resting state to a highly metabolic active state by alternating the redox-sensitive signaling pathway and the involved metabolic intermediates to amplify the inflammatory response, which is critical in SLE pathogenesis. In this review, we discuss abnormal metabolic changes in glucose metabolism, tricarboxylic acid cycle, and lipid and amino acid metabolism as well as mitochondrial dysfunction in immune cells in SLE. We also review studies focused on the potential targets for key molecules of metabolic pathways in SLE, such as hypoxia-inducible factor-1α, mammalian target of rapamycin, and AMP-activated protein kinase. We highlight the therapeutic rationale for targeting these pathways in treating SLE and summarize their recent clinical applications in SLE.
Collapse
|
21
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
22
|
Zuo Z, Jing K, Wu H, Wang S, Ye L, Li Z, Yang C, Pan Q, Liu WJ, Liu HF. Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Front Physiol 2020; 11:935. [PMID: 32903665 PMCID: PMC7438724 DOI: 10.3389/fphys.2020.00935] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mitophagy is an evolutionarily conserved process to selectively remove damaged or unnecessary mitochondria via the autophagic machinery. In this review, we focus on recent advances in the molecular mechanisms of mitophagy and how mitophagy contributes to cellular homeostasis in physiological and pathological contexts. We also briefly review and discuss the crosstalk between mitophagy and renal disease, highlighting its modulation as a potentially effective therapeutic strategy to treat kidney diseases such as acute kidney injury (AKI), diabetic kidney disease (DKD), and lupus nephritis (LN).
Collapse
Affiliation(s)
- Zhenying Zuo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kaipeng Jing
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hongluan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Ye
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhihang Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chen Yang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Jing Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Key Laboratory of Chinese Internal Medicine, Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
23
|
Zhang CX, Wang HY, Yin L, Mao YY, Zhou W. Immunometabolism in the pathogenesis of systemic lupus erythematosus. J Transl Autoimmun 2020; 3:100046. [PMID: 32743527 PMCID: PMC7388408 DOI: 10.1016/j.jtauto.2020.100046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by chronic inflammation and pathogenic auto-antibodies. Apart from B cells, dysregulation of other immune cells also plays an essential role in the pathogenesis and development of the disease including CD4+T cells, dendritic cells, macrophages and neutrophils. Since metabolic programs control immune cell fate and function, they are critical checkpoints in an effective immune response and are involved in the etiology of autoimmune disease. In addition, mitochondria and oxidative stress are both involved in cellular metabolism and is also essential in immune response. In this review, apart from the disturbed immune system, we will discuss mitochondrial dysfunction, oxidative stress, abnormal metabolism (including glucose, lipid and amino acid metabolism) of immune cells as well as epigenetic control of metabolism reprogramming to elucidate the underlying pathogenic mechanisms of systemic lupus erythematosus. Mitochondria plays a vital role in cellular metabolism and is involved in immune response. There are alterations in glucose, lipid and amino acid metabolism of various immune cells in SLE patients. Epigenetic status is influenced by the presence of metabolic intermediates and certain autoimmunity-related genes are hypomethylated in CD4+T cells, CD19+ B cells as well as CD14+ monocytes of SLE.
Collapse
Affiliation(s)
- Chen-Xing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Hui-Yu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149, Muenster, Germany
| | - Lei Yin
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - You-Ying Mao
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Wei Zhou
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| |
Collapse
|
24
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
25
|
Narasimhan PB, Marcovecchio P, Hamers AA, Hedrick CC. Nonclassical Monocytes in Health and Disease. Annu Rev Immunol 2019; 37:439-456. [DOI: 10.1146/annurev-immunol-042617-053119] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16−in humans and Ly6Chiin mice), intermediate (CD14+CD16+in humans and Ly6C+Treml4+in mice), and nonclassical (CD14−CD16+in humans and Ly6Cloin mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Anouk A.J. Hamers
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| |
Collapse
|
26
|
Abstract
Mitophagy is a vital form of autophagy for selective removal of dysfunctional or redundant mitochondria. Accumulating evidence implicates elimination of dysfunctional mitochondria as a powerful means employed by autophagy to keep the immune system in check. The process of mitophagy may restrict inflammatory cytokine secretion and directly regulate mitochondrial antigen presentation and immune cell homeostasis. In this review, we describe distinctive pathways of mammalian mitophagy and highlight recent advances relevant to its function in immunity. In addition, we further discuss the direct and indirect evidence linking mitophagy to inflammation and autoimmunity underlying the pathogenesis of autoimmune diseases including inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE) and primary biliary cirrhosis (PBC).Abbreviations: AICD: activation induced cell death; AIM2: absent in melanoma 2; ALPL/HOPS: alkaline phosphatase, biomineralization associated; AMA: anti-mitochondrial antibodies; AMFR: autocrine motility factor receptor; ATG: autophagy-related; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain containing; CASP1: caspase 1; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CXCL1: C-X-C motif chemokine ligand 1; DEN: diethylnitrosamine; DLAT/PDC-E2: dihydrolipoamide S-acetyltransferase; DNM1L/Drp1: dynamin 1 like; ESCRT: endosomal sorting complexes required for transport; FKBP8: FKBP prolyl isomerase 8; FUNDC1: Fun14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HPIV3: human parainfluenza virus type 3; IBD: inflammatory bowel diseases; IEC: intestinal epithelial cell; IFN: interferon; IL1B/IL-1β: interleukin 1 beta; iNK: invariant natural killer; IRGM: immunity related GTPase M; LIR: LC3-interacting region; LPS: lipopolysaccharide; LRRK2: leucine rich repeat kinase 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARCH5: membrane associated ring-CH-type finger 5; MAVS: mitochondrial antiviral signaling protein; MDV: mitochondria-derived vesicle; MFN1: mitofusin 1; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; mtAP: mitochondrial antigen presentation; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; mtROS: mitochondrial ROS; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-ĸB: nuclear factor kappa B subunit; NK: natural killer; NLR: NOD-like receptor; NLRC4: NLR family CARD domain containing 4; NLRP3: NLR family pyrin domain containing 3; OGDH: oxoglutarate dehydrogenase; OMM: outer mitochondrial membrane; OPTN: optineurin; ox: oxidized; PARK7: Parkinsonism associated deglycase; PBC: primary biliary cirrhosis; PEX13: peroxisomal biogenesis factor 13; PHB/PHB1: prohibitin; PHB2: prohibitin 2; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced kinase 1; PLEKHM1: pleckstrin homology and RUN domain containing M1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RAB: member RAS oncogene family; RHEB: Ras homolog: mTORC1 binding; RIPK2: receptor interacting serine/threonine kinase 2; RLR: DDX58/RIG-I like receptor; ROS: reactive oxygen species; SBD: small bile ducts; SLC2A1/GLUT1: solute carrier family 2 member 1; SLE: systemic lupus erythematosus; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TCR: T cell receptor; TFAM: transcription factor A: mitochondrial; Th17: T helper 17; TLR9: toll like receptor 9; TMEM173/STING: transmembrane protein 173; TNF/TNF-α: tumor necrosis factor; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WIPI: WD repeat domain: phosphoinositide interacting; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Ye Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
27
|
Wang CY, Ma S, Bi SJ, Su L, Huang SY, Miao JY, Ma CH, Gao CJ, Hou M, Peng J. Enhancing autophagy protects platelets in immune thrombocytopenia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:134. [PMID: 31157255 DOI: 10.21037/atm.2019.03.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder and involves increased apoptosis of platelets. Autophagy is an essential process for platelets to maintain their life and physiological functions. However, the role of autophagy in ITP platelets was previously unclear. Methods In the present study, the expression of autophagy-related protein and autophagy flux were detected in platelets from ITP patients and healthy controls by immunofluorescence staining and immunoblotting, and the influence of autophagy on the viability and apoptosis of ITP platelets was further explored. Results We found that platelet autophagy was diminished in ITP patients. Platelet autophagy in ITP was regulated by the PI3K/AKT/mTOR pathway, with mTOR (mammalian target of rapamycin) as a negative regulator and class III PtdIns3K playing a crucial role in the process. Importantly, the small-molecule compound ABO (6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine) enhanced autophagy in ITP platelets. Enhancing platelet autophagy alleviated platelet destruction by inhibiting apoptosis and improving platelet viability. Conclusions These results suggest a role for autophagy regulation in the pathogenesis of ITP, and offer a novel treatment for these patients.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Department of Geriatric Medicine, Second Hospital of Shandong University, Ji'nan 250033, China.,Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Sai Ma
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| | - Shao-Jie Bi
- Department of Cardiology, Second Hospital of Shandong University, Ji'nan 250033, China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Shu-Ya Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Ji'nan 250013, China
| | - Chun-Hong Ma
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Cheng-Jiang Gao
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, China
| | - Ming Hou
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Ji'nan 250012, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Ji'nan 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Ji'nan 250012, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Ji'nan 250012, China
| |
Collapse
|
28
|
Sun RJ, Shan NN. Megakaryocytic dysfunction in immune thrombocytopenia is linked to autophagy. Cancer Cell Int 2019; 19:59. [PMID: 30923461 PMCID: PMC6419848 DOI: 10.1186/s12935-019-0779-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023] Open
Abstract
Immune thrombocytopenic purpura (ITP) is a multifactorial autoimmune disease characterized by both increased platelet destruction and/or reduced platelet production. Even though they are detected in ≤ 50% of ITP patients, auto-antibodies play a pivotal role in the pathogenesis of ITP. Recent experimental and clinical observations have revealed abnormal autophagy in ITP patients. Autophagy is a catabolic process responsible for the elimination and recycling of cytoplasmic constituents, such as organelles and macromolecules, in eukaryotic cells. Additionally, it triggers cell death or promotes cell survival following various forms of stress, and maintains the microenvironment and stemness of haematopoietic stem cells. The role of autophagy in megakaryopoiesis, thrombopoiesis, and platelet function is slowly being uncovered. The abnormal autophagy in ITP patients may be caused by deletion of autophagy-related genes such as ATG7 and abnormal signalling due to overexpression of mTOR. These changes are thought to affect markers of haematopoietic stem cells, such as CD41 and CD61, and differentiation of megakaryocytes, ultimately decreasing the function and quantity of platelets and leading to the onset of ITP. This review highlights recent evidence on the essential role played by autophagy in megakaryopoiesis, megakaryocyte differentiation, thrombopoiesis, and platelet production. It also discusses the potential of targeting the autophagy pathway as a novel therapeutic approach against ITP.
Collapse
Affiliation(s)
- Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 325 Jing Wu Rd, Jinan, 250021 Shandong People's Republic of China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, 325 Jing Wu Rd, Jinan, 250021 Shandong People's Republic of China
| |
Collapse
|
29
|
La Cava A. Editorial: Survive to Fight: Effector Treg Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol 2018; 68:1327-9. [PMID: 26866416 DOI: 10.1002/art.39616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 01/06/2023]
|
30
|
Gaber T, Chen Y, Krauß PL, Buttgereit F. Metabolism of T Lymphocytes in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:95-148. [PMID: 30635095 DOI: 10.1016/bs.ircmb.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses that occur in infection, cancer, and autoimmune as well as allergic diseases involve the participation of T cells. T cells travel throughout the body searching for antigens, which are recognized via the major histocompatibility complexes. In the healthy organism, these T cells maintain metabolic quiescence until they encounter a potentially cognate antigen. Once activated, e.g., during an infection or tissue damage, T cells switch their metabolic program to gain energy and building blocks to maintain cellular homeostasis and to fulfill their specific immune functions involving clonal expansion and/or differentiation into effector and memory T cells to ultimately ensure host survival. Thus, differences in metabolism in healthy and pathogenic T cells provide an explanation for dysfunctionality of T-cell responses in metabolic disorders, autoimmunity, and cancer. Here, we summarize current knowledge on T-cell metabolism during the maintenance of homeostasis, activation, and differentiation as well as over the course of time that memory is generated in health and in diseased states such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Timo Gaber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Yuling Chen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Pierre-Louis Krauß
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
31
|
Wilhelm M, Wang F, Schall N, Kleinmann JF, Faludi M, Nashi EP, Sibilia J, Martin T, Schaeffer E, Muller S. Lupus Regulator Peptide P140 Represses B Cell Differentiation by Reducing HLA Class II Molecule Overexpression. Arthritis Rheumatol 2018; 70:1077-1088. [DOI: 10.1002/art.40470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Maud Wilhelm
- CNRS UPR3572, Immunopathologie et chimie thérapeutique, Laboratory of Excellence Medalis; Institut de Biologie Moléculaire et Cellulaire; Strasbourg France
| | - Fengjuan Wang
- CNRS UMR7242, Biotechnology and Cell Signaling, Laboratory of Excellence Medalis; University of Strasbourg; Strasbourg France
| | - Nicolas Schall
- CNRS UMR7242, Biotechnology and Cell Signaling, Laboratory of Excellence Medalis; University of Strasbourg; Strasbourg France
| | - Jean-François Kleinmann
- INSERM UMRS1109, Département de rhumatologie; Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UFR Médecine, Université de Strasbourg, Strasbourg, France, and Centre de Référence National des Maladies autoimmunes systémiques rares, Centre Hospitalier Universitaire de Strasbourg; Strasbourg France
| | - Michael Faludi
- McGill University Health Center Research Institute; Montreal Quebec Canada
| | - Emil Pablo Nashi
- McGill University Health Center Research Institute; Montreal Quebec Canada
| | - Jean Sibilia
- INSERM UMRS1109, Département de rhumatologie; Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UFR Médecine, Université de Strasbourg, Strasbourg, France, and Centre de Référence National des Maladies autoimmunes systémiques rares, Centre Hospitalier Universitaire de Strasbourg; Strasbourg France
| | - Thierry Martin
- CNRS UPR3572, Immunopathologie et chimie thérapeutique, Laboratory of Excellence Medalis; Institut de Biologie Moléculaire et Cellulaire, UFR Médecine, Université de Strasbourg, Centre de Référence National des Maladies autoimmunes systémiques rares, Centre Hospitalier Universitaire de Strasbourg, and Department of Clinical Immunology, Hôpitaux Universitaires de Strasbourg; Strasbourg France
| | - Evelyne Schaeffer
- CNRS UPR3572, Immunopathologie et chimie thérapeutique, Laboratory of Excellence Medalis; Institut de Biologie Moléculaire et Cellulaire; Strasbourg France
| | - Sylviane Muller
- CNRS UMR7242, Biotechnology and Cell Signaling, Laboratory of Excellence Medalis; University of Strasbourg; Strasbourg France
| |
Collapse
|
32
|
Bettencourt IA, Powell JD. Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. THE JOURNAL OF IMMUNOLOGY 2017; 198:999-1005. [PMID: 28115589 DOI: 10.4049/jimmunol.1601318] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Immune cell activation and differentiation occurs concurrently with metabolic reprogramming. This ensures that activated cells generate the energy and substrates necessary to perform their specified function. Likewise, the metabolic programs among different cells of the immune system vary. By targeting different metabolic pathways, these differences allow for selective regulation of immune responses. Further, the relative susceptibility of cells to a metabolic inhibitor is dictated by their metabolic demands; cellular selectivity is based on demand. Therefore, where differences exist in metabolic pathways between healthy and pathogenic cells, there is opportunity for selective regulation with agents lacking intrinsic specificity. There are now a host of studies demonstrating how inhibitors of metabolism (e.g., glycolysis, glutamine metabolism, and fatty acid oxidation) can regulate immune responses and treat immune-mediated pathogenesis. In this brief review we detail how inhibitors of metabolism can be employed to regulate immune responses in both autoimmunity and transplantation.
Collapse
Affiliation(s)
- Ian A Bettencourt
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Jonathan D Powell
- Department of Oncology, Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
33
|
Chandrasekaran U, Yi W, Gupta S, Weng CH, Giannopoulou E, Chinenov Y, Jessberger R, Weaver CT, Bhagat G, Pernis AB. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol 2017; 68:1454-66. [PMID: 26816213 DOI: 10.1002/art.39599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/14/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. METHODS Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. RESULTS The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. CONCLUSION This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development.
Collapse
Affiliation(s)
| | - Woelsung Yi
- Hospital for Special Surgery, New York, New York
| | - Sanjay Gupta
- Hospital for Special Surgery, New York, New York
| | - Chien-Huan Weng
- Hospital for Special Surgery and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Eugenia Giannopoulou
- Hospital for Special Surgery, New York, and New York City College of Technology, City University of New York, Brooklyn, New York
| | | | | | | | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Alessandra B Pernis
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
34
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease mediated by pathogenic autoantibodies directed against nucleoprotein complexes. Beyond the activation of autoreactive B cells, this process involves dysregulation in many other types of immune cells, including CD4+ T cells, dendritic cells, macrophages and neutrophils. Metabolic substrate utilization and integration of cues from energy sensors are critical checkpoints of effector functions in the immune system, with common as well as cell-specific programmes. Patients with SLE and lupus-prone mice present with activated metabolism of CD4+ T cells, and the use of metabolic inhibitors to normalize these features is associated with therapeutic effects. Far less is known about the metabolic requirements of B cells and myeloid cells in SLE. This article reviews current knowledge of the alterations in metabolism of immune cells in patients with SLE and mouse models of lupus in the context of what is known about the metabolic regulation of these cells during normal immune responses. How these alterations might contribute to lupus pathogenesis and how they can be targeted therapeutically are also discussed.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
35
|
Santos FMM, Telles RW, Lanna CCD, Teixeira AL, Miranda AS, Rocha NP, Ribeiro AL. Adipokines, tumor necrosis factor and its receptors in female patients with systemic lupus erythematosus. Lupus 2016; 26:10-16. [PMID: 27365371 DOI: 10.1177/0961203316646463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To analyze the association of adipokines and tumor necrosis factor α (TNFα) and its receptors with characteristics of systemic lupus erythematosus (SLE) and to investigate the correlation between adipokines and the TNF system. METHODS One hundred and thirty-six SLE women, aged ≥18 years old, were assessed. TNFα, soluble TNFα receptors 1 (sTNFR1) and 2 (sTNFR2) and adipokines were analyzed by ELISA kits. RESULTS The median (IQR) of age was 41.5 (33.0-49.7) years old and of disease duration 11.3 (7.8-15.8) years. The median (IQR) of disease activity was 0 (0-4) and of damage index was 2 (1-3). Higher levels of sTNFR1 and sTNFR2 were associated with nephritis (p < 0.001 for both), and sTNFR1 (p = 0.025) and TNFα (p = 0.014) were positively associated with arthritis. Higher sTNFR1 levels were found in participants that were not using antimalarial drugs (p = 0.04). Independent correlation was found between sTNFR1 (β = 0.253; p = 0.003) and sTNFR2 (β = 0.297; p < 0.001) levels and disease activity and damage index (sTNFR1: β = 0.367; p < 0.001; sTNFR2: β = 0.335; p < 0.001). Higher adiponectin levels were independently associated with nephritis (p = 0.009) and antimalarial drugs use (p = 0.015). There was a positive correlation between leptin and sTNFR2 levels (p = 0.002) and between resistin levels and sTNFR1 (p < 0.001) and sTNFR2 (p < 0.001). CONCLUSION The correlation between adipokines and TNF system allows a better understanding of the role of adipokines in the inflammatory response in SLE patients.
Collapse
Affiliation(s)
- F M M Santos
- Department of Rheumatology, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - R W Telles
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - C C D Lanna
- Department of Rheumatology, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| | - A L Teixeira
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil.,Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - A S Miranda
- Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - N P Rocha
- Interdisciplinary Laboratory for Medical Research, Universidade Federal de Minas Gerais, Brazil
| | - A L Ribeiro
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
36
|
Abstract
Autoimmune diseases represent a heterogeneous group of common disorders defined by complex trait genetics and environmental effects. The genetic variants usually align in immune and metabolic pathways that affect cell survival or apoptosis and modulate leukocyte function. Nevertheless, the exact triggers of disease development remain poorly understood and the current therapeutic interventions only modify the disease course. Both the prevention and the cure of autoimmune disorders are beyond our present medical capabilities. In contrast, a growing number of single gene autoimmune disorders have also been identified and characterized in the last few decades. Mutations and other gene alterations exert significant effects in these conditions, and often affect genes involved in central or peripheral immunologic tolerance induction. Even though a single genetic abnormality may be the disease trigger, it usually upsets a number of interactions among immune cells, and the biological developments of these monogenic disorders are also complex. Nevertheless, identification of the triggering molecular abnormalities greatly contributes to our understanding of the pathogenesis of autoimmunity and facilitates the development of newer and more effective treatment strategies.
Collapse
Affiliation(s)
- Mark Plander
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and
| | - Bernadette Kalman
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and.,b University of Pecs , Pecs , Hungary
| |
Collapse
|
37
|
Shan NN, Dong LL, Zhang XM, Liu X, Li Y. Targeting autophagy as a potential therapeutic approach for immune thrombocytopenia therapy. Crit Rev Oncol Hematol 2016; 100:11-5. [PMID: 26830007 DOI: 10.1016/j.critrevonc.2016.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Autophagy involves the sequestration and lysosomal degradation of various cytoplasmic structures, including damaged organelles and invading microorganisms. Autophagy is not only an essential cell-intrinsic mechanism for protecting against internal and external stress conditions but is also key in the cellular response against microbes, in antigen processing for major histocompatibility complex (MHC) presentation, and in lymphocyte development, survival, and proliferation. In recent years, perturbations in autophagy have been implicated in a number of diseases, including autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Immune thrombocytopenia (ITP) is a multifactorial disease characterized by autoimmune responses to self-platelet membrane proteins. Recently, our unpublished original data demonstrated aberrant expression of molecules in the autophagy pathway in ITP patients compared with controls, and we found a close correlation between the pathogenesis of ITP and the autophagy pathway. The potential of targeting the autophagy pathway in ITP as a novel therapeutic approach has been discussed.
Collapse
Affiliation(s)
- Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| | - Li-Li Dong
- Department of Pediatric surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xiao-Mei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| |
Collapse
|
38
|
Choi YJ, Yoo WH. Pathogenic Role of Autophagy in Rheumatic Diseases. JOURNAL OF RHEUMATIC DISEASES 2016. [DOI: 10.4078/jrd.2016.23.4.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yun Jung Choi
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea
| | - Wan-Hee Yoo
- Division of Rheumatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
39
|
Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 2015; 6:252. [PMID: 26042127 PMCID: PMC4437184 DOI: 10.3389/fimmu.2015.00252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment.
Collapse
Affiliation(s)
- Fengjuan Wang
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France
| | - Sylviane Muller
- Immunopathology and Therapeutic Chemistry/Laboratory of Excellence MEDALIS, CNRS, Institut de Biologie Moléculaire et Cellulaire , Strasbourg , France ; University of Strasbourg Institute for Advanced Study , Strasbourg , France
| |
Collapse
|
40
|
Caza T, Oaks Z, Perl A. Interplay of Infections, Autoimmunity, and Immunosuppression in Systemic Lupus Erythematosus. Int Rev Immunol 2014; 33:330-63. [DOI: 10.3109/08830185.2013.863305] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Gianchecchi E, Delfino DV, Fierabracci A. Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmun Rev 2013; 13:231-41. [PMID: 24184881 DOI: 10.1016/j.autrev.2013.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022]
Abstract
The incidence of autoimmune pathologies is increasing worldwide. This has stimulated interest on their etiopathogenesis, caused by a complex interaction of genetic and environmental factors. With the advent of genome-wide linkage, candidate gene and genome wide association studies, risk polymorphisms in autophagy-related genes were discovered in several autoimmune conditions suggesting the possible contribution of autophagy to their etiopathogenesis. Autophagy represents the principal catabolic process mediated by lysosomes used by eukaryotic cells and is strictly regulated by proteins belonging to the Atg family. The function of autophagy has been well characterized in various tissues and systems, but its role in the regulation of innate and adaptive immune systems has been only recently discovered. It plays a fundamental role in the modulation of thymocyte selection and in the generation of T lymphocyte repertoire by participating in the intracellular antigen presentation on MHC class-II molecules by thymic epithelial cells. Furthermore, the generation of mice with knockout for specific autophagy-related genes induced several immunological alterations, including defects in B and T cell compartments and in T cell activation. In this review we report recent evidence on the role of autophagy in autoimmunity and discuss its relevance to the pathogenesis of these diseases. We finally highlight that future research may disclose potential new therapeutic targets for the treatment of this category of disorders by modulating the autophagic pathway.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Domenico Vittorio Delfino
- Section of Pharmacology, Toxicology and Chemotherapy, Department of Clinical and Experimental Medicine, Perugia University, Perugia, Italy
| | - Alessandra Fierabracci
- Autoimmunity Laboratory, Immunology Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
42
|
Abstract
Oxidative stress is increased in systemic lupus erythematosus (SLE), and it contributes to immune system dysregulation, abnormal activation and processing of cell-death signals, autoantibody production and fatal comorbidities. Mitochondrial dysfunction in T cells promotes the release of highly diffusible inflammatory lipid hydroperoxides, which spread oxidative stress to other intracellular organelles and through the bloodstream. Oxidative modification of self antigens triggers autoimmunity, and the degree of such modification of serum proteins shows striking correlation with disease activity and organ damage in SLE. In T cells from patients with SLE and animal models of the disease, glutathione, the main intracellular antioxidant, is depleted and serine/threonine-protein kinase mTOR undergoes redox-dependent activation. In turn, reversal of glutathione depletion by application of its amino acid precursor, N-acetylcysteine, improves disease activity in lupus-prone mice; pilot studies in patients with SLE have yielded positive results that warrant further research. Blocking mTOR activation in T cells could conceivably provide a well-tolerated and inexpensive alternative approach to B-cell blockade and traditional immunosuppressive treatments. Nevertheless, compartmentalized oxidative stress in self-reactive T cells, B cells and phagocytic cells might serve to limit autoimmunity and its inhibition could be detrimental. Antioxidant therapy might also be useful in ameliorating damage caused by other treatments. This Review thus seeks to critically evaluate the complexity of oxidative stress and its relevance to the pathogenesis and treatment of SLE.
Collapse
|
43
|
Walker DM, Mahfooz N, Kemme KA, Patel VC, Spangler M, Drew ME. Plasmodium falciparum erythrocytic stage parasites require the putative autophagy protein PfAtg7 for normal growth. PLoS One 2013; 8:e67047. [PMID: 23825614 PMCID: PMC3692556 DOI: 10.1371/journal.pone.0067047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Analysis of the Plasmodium falciparum genome reveals a limited number of putative autophagy genes, specifically the four genes involved in ATG8 lipidation, an essential step in formation of autophagosomes. In yeast, Atg8 lipidation requires the E1-type ligase Atg7, an E2-type ligase Atg3, and a cysteine protease Atg4. These four putative P. falciparum ATG (PfATG) genes are transcribed during the parasite's erythrocytic stages. PfAtg7 has relatively low identity and similarity to yeast Atg7 (14.7% and 32.2%, respectively), due primarily to long insertions typical of P. falciparum. Excluding the insertions the identity and similarity are higher (38.0% and 70.8%, respectively). This and the fact that key residues are conserved, including the catalytic cysteine and ATP binding domain, we hypothesize that PfAtg7 is the activating enzyme of PfAtg8. To assess the role of PfAtg7 we have generated two transgenic parasite lines. In one, the PfATG7 locus was modified to introduce a C-terminal hemagglutinin tag. Western blotting reveals two distinct protein species, one migrating near the predicted 150 kDa and one at approximately 65 kDa. The second transgenic line introduces an inducible degradation domain into the PfATG7 locus, allowing us to rapidly attenuate PfAtg7 protein levels. Corresponding species are also observed in this parasite line at approximately 200 kDa and 100 kDa. Upon PfATG7 attenuation parasites exhibit a slow growth phenotype indicating the essentiality of this putative enzyme for normal growth.
Collapse
Affiliation(s)
- Dawn M. Walker
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Najmus Mahfooz
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Katherine A. Kemme
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Viral C. Patel
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Maribeth Spangler
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Mark E. Drew
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Division of Medicinal Chemistry, The Ohio State University College of Pharmacy, Columbus, Ohio, United States of America
| |
Collapse
|
44
|
Yu Y, Liu Y, Shi FD, Zou H, Matarese G, La Cava A. Cutting edge: Leptin-induced RORγt expression in CD4+ T cells promotes Th17 responses in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2013; 190:3054-8. [PMID: 23447682 DOI: 10.4049/jimmunol.1203275] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th17 CD4(+) cells promote inflammation and autoimmunity. In this study, we report that Th17 cell frequency is reduced in ob/ob mice (that are genetically deficient in the adipokine leptin) and that the administration of leptin to ob/ob mice restored Th17 cell numbers to values comparable to those found in wild-type animals. Leptin promoted Th17 responses in normal human CD4(+) T cells and in mice, both in vitro and in vivo, by inducing RORγt transcription. Leptin also increased Th17 responses in (NZB × NZW)F1 lupus-prone mice, whereas its neutralization in those autoimmune-prone mice inhibited Th17 responses. Because Th17 cells play an important role in the development and maintenance of inflammation and autoimmunity, these findings envision the possibility to modulate abnormal Th17 responses via leptin manipulation, and they reiterate the link between metabolism/nutrition and susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Yiyun Yu
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|