1
|
Quraishi S, Nudrat S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Elucidation of inhibitory effects of bioactive anthraquinones towards formation of DNA advanced glycation end products (DNA-AGEs). Int J Biol Macromol 2024; 269:131810. [PMID: 38677669 DOI: 10.1016/j.ijbiomac.2024.131810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
DNA is essential in biological processes as it directs transcription and translation assisting in RNA and protein synthesis. Extended periods of elevated blood glucose levels cause non-enzymatic DNA glycation, which results in the formation of DNA-AGEs and the production of free radicals, causing structural perturbation of DNA. In this work, we have investigated the glycation of calf thymus (ct-DNA) DNA and examined its inhibition by two anthraquinone derivatives, purpurin and aloin. Ribose sugar served as the glycating agent inducing non-enzymatic glycation of DNA and subsequent DNA-AGEs formation. UV-vis and fluorescence spectroscopic methods were utilized to characterize DNA-AGE formation in vitro. Circular dichroism (CD) spectroscopy was used to observe the structural disruption of DNA caused by glycation. The changes in AGEs fluorescence intensity and melting temperature (Tm) were measured to assess the inhibition of glycation process by aloin and purpurin. These derivatives demonstrated inhibitory effects via binding to glycating sites of ct-DNA or by scavenging free radicals generated during glycation. The current study elucidates the inhibitory actions of aloin and purpurin on DNA glycation, suggesting their possible applications in mitigating the adverse consequences linked to increased ribose concentrations.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Erica W M Marboh
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
2
|
Feng G, Yan Y, Wang M, Gao Z, Zhao Y, Peng X. The Inhibition Mechanisms of Three Structurally Different Salvianolic Acids on the Non-Enzymatic Glycation of Bovine Serum Albumin. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:526-530. [PMID: 38530542 DOI: 10.1007/s11130-024-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
The antiglycation mechanisms of three structurally different salvianolic acids (Sals) including salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and salvianolic acid C (Sal-C) were investigated using the bovine serum albumin (BSA)-fructose model. The results showed that the three compounds could inhibit the formation of glycation products, maintain protein structural stability, mitigate the development of amyloid fibrils and scavenge radicals. Notably, Sal-A possessed the highest anti-glycated activity compared with Sal-B and Sal-C. This may be related to the fact that Sal-A contained the most molecules of caffeic acid (Sal-A, Sal-B, and Sal-C possessing two, one, and zero caffeic acid units, respectively), and caffeic acid played a leading role in the antiglycation properties relative to Danshensu. Moreover, these compounds quenched the intrinsic fluorescence intensity of BSA in a static mode, with the binding constants in the order of Sal-A > Sal-B > Sal-C. Obviously, Sal-A possessed the strongest binding affinity among these compounds, which may be one of the reasons why it exhibited the optimal antiglycation capability. Furthermore, molecular docking demonstrated that the three Sals exerted protective effects on BSA by preventing glycation modification of lysine and arginine residues. These findings would provide valuable insights into the potential application of Sals for alleviating non-enzymatic glycation of protein.
Collapse
Affiliation(s)
- Guo Feng
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Yu Yan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| | - Zhao Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, PR China.
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, PR China.
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, PR China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, Guangxi, PR China.
| |
Collapse
|
3
|
Siddiqui S, Ahmad R, Ahmad Y, Faizy AF, Moin S. Biophysical insight into the binding mechanism of epigallocatechin-3-gallate and cholecalciferol to albumin and its preventive effect against AGEs formation: An in vitro and in silico approach. Int J Biol Macromol 2024; 267:131474. [PMID: 38599429 DOI: 10.1016/j.ijbiomac.2024.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Rizwan Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Yusra Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Abul Faiz Faizy
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
4
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Jain A, Kishore N. Glycation and drug binding by serum albumin. VITAMINS AND HORMONES 2024; 125:89-115. [PMID: 38997173 DOI: 10.1016/bs.vh.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Accumulation of glycation products in patients with hyperglycaemic conditions can lead to their reaction with the proteins in the human system such as serum albumin, haemoglobin, insulin, plasma lipoproteins, lens proteins and collagen among others which have important biological functions. Therefore, it is important to understand if glycation of these proteins affects their normal action not only qualitatively, but also importantly quantitatively. Glycation of human serum albumin can easily be carried out over period of weeks and its drug transportability may be examined, in addition to characterisation of the amadori products. A combination of ultrasensitive isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and chromatography provides structure-property-energetics correlations which are important to obtain mechanistic aspects of drug recognition, conformation of the protein, and role of amadori products under conditions of glycation. The role of advance glycation end products is important in recognition of antidiabetic drugs. Further, the extent of glycation of the protein and its implication on drug transportability investigated by direct calorimetric methods enables unravelling mechanistic insights into role of functionality on drug molecules in the binding process, and hinderance in the recognition process, if any, as a result of glycation. It is possible that the drug binding ability of the protein under glycation conditions may not be adversely affected, or may even lead to strengthened ability. Rigorous studies on such systems with diverse functionality on the drug molecules is required which is essential in deriving guidelines for improvements in the existing drugs or in the synthesis of new molecular entities directed towards addressing diabetic conditions.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
6
|
Rodda R, Addipilli R, Kannoujia J, Lingampelly SS, Sripadi P. LC-MS/MS Analysis of Reaction Products of Arginine/Methylarginines with Methylglyoxal/Glyoxal. Chem Res Toxicol 2023; 36:1768-1777. [PMID: 37888804 DOI: 10.1021/acs.chemrestox.3c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Methylglyoxal (MGO) and glyoxal (GO) are toxic α-dicarbonyl compounds that undergo reactions with amine containing molecules such as proteins and amino acids and result in the formation of advanced glycation end products (AGEs). This study aimed at investigating the reactivity of arginine (Arg) or dimethylarginine (SDMA or ADMA) with MGO or GO. The solutions of arginine and MGO or GO were prepared in PBS buffer (pH 7.4) and incubated at 37 °C. Direct electrospray ionization-high-resolution mass spectrometry (ESI-HRMS) analysis of the reaction mixture of Arg and MGO revealed the formation of Arg-MGO (1:1) and Arg-2MGO (1:2) products and their corresponding dehydrated products. Further liquid chromatography (LC)-MS analyses revealed the presence of isomeric products in each 1:1 and 1:2 product. The [M + H]+ of each isomeric product was subjected to MS/MS experiments for structural elucidation. The MS/MS spectra of some of the products showed a distinct structure indicative fragment ions, while others showed similar data. The types of products formed by the arginines with GO were also found to be similar to that of MGO. The importance of the guanidine group in the formation of the AGEs was reflected in similar incubation experiments with ADMA and SDMA. The structures of the products were proposed based on the comparison of the retention times and HRMS and MS/MS data interpretation, and some of them were confirmed by drawing analogy to the data reported in the literature.
Collapse
Affiliation(s)
- Ramesh Rodda
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramunaidu Addipilli
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Kannoujia
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sai Sachin Lingampelly
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Prabhakar Sripadi
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Bastos RG, Rodrigues SDO, Marques LA, Oliveira CMD, Salles BCC, Zanatta AC, Rocha FD, Vilegas W, Pagnossa JP, de A Paula FB, da Silva GA, Batiha GE, Aggad SS, Alotaibi BS, Yousef FM, da Silva MA. Eugenia sonderiana O. Berg leaves: Phytochemical characterization, evaluation of in vitro and in vivo antidiabetic effects, and structure-activity correlation. Biomed Pharmacother 2023; 165:115126. [PMID: 37494787 DOI: 10.1016/j.biopha.2023.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Several medicinal plants have drawn the attention of researchers by its phytochemical composition regarding their potential for treating chronic complications of diabetes mellitus. In this context, plants of the Myrtaceae family popularly used in Brazil for the treatment of diabetes mellitus, including Eugenia sonderiana, have shown beneficial effects due to the presence of phenolic compounds and saponins in their chemical constitution. Thus, the present work aimed to perform the phytochemical characterization of the hydroethanolic extract of E. sonderiana leaves using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS), along with in vitro and in vivo studies of antidiabetic activity. The chemical characterization revealed the presence of phenolic compounds, flavonoids, neolignans, tannins, and saponins. In addition, the extract exhibited minimum inhibitory concentrations of alpha-amylase and alpha-glycosidase higher than the acarbose in the in vitro tests. Also, the in vivo tests revealed a slight increase in body mass in diabetic rats, as well as a significant decrease in water and feed consumption provided by the extract. Regarding serum biochemical parameters, the extract showed significant activity in decreasing the levels of glucose, hepatic enzymes, and triglycerides, in addition to maintaining HDL cholesterol levels within normal ranges, protecting the cell membranes against oxidative damage. Thus, the extract of E. sonderiana leaves was considered promising pharmaceutical ingredient in the production of a phytotherapy medication.
Collapse
Affiliation(s)
- Renan G Bastos
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Sarah de O Rodrigues
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | | | - Carla M de Oliveira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Bruno C C Salles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Ana C Zanatta
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | | | - Wagner Vilegas
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Jorge P Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, Brazil
| | - Fernanda B de A Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Geraldo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Sarah S Aggad
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. box 84428, Riyadh 11671, Saudi Arabia
| | - Fatimah M Yousef
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marcelo A da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Brazil.
| |
Collapse
|
8
|
Lapolla A. Thirty years of fruitful collaborations between a physician and mass spectrometrists in diabetes field. MASS SPECTROMETRY REVIEWS 2023; 42:1086-1112. [PMID: 34747543 DOI: 10.1002/mas.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/07/2023]
Abstract
The nonenzymatic protein glycation and the subsequent formation of advanced glycation end products is a process involved in the long-term complications of diabetes. In this context the collaboration, in the last 30 years, between my research group, operating in the DPT of Medicine of Padua University, and the mass spectrometric group, operating in CNR of Padua, are described and discussed. The development of new mass spectrometric techniques has allowed investigation more indepth, starting from the applications on small molecules responsible for the browning observed in the interactions between sugars and proteins, and growing up to intact proteins as albumin, immunoglobulin, hemoglobin, and so forth, with the determination of their glycation levels as well as their glycation sites. This study has helped to clarify the role of advanced glycation end products in the pathogenesis of the chronic complications of diabetes. In particular the results obtained in diabetic nephropathy, diabetic cardiovascular disease and in placenta samples of patients affected by gestational diabetes are described in this review.
Collapse
|
9
|
Atta A, Shahid M, Kanwal Z, Jafri SA, Riaz M, Xiao H, Abbas M, Egbuna C, Simal‐Gandara J. Inhibition of oxidative stress and advanced glycation end-product formation in purified BSA/glucose glycation system by polyphenol extracts of selected nuts from Pakistan. Food Sci Nutr 2023; 11:3414-3421. [PMID: 37324872 PMCID: PMC10261749 DOI: 10.1002/fsn3.3331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Glycation generates advanced glycation end products (AGE) and its intermediates, thus increasing the risk of developing various ailments including diabetes mellitus. Current study was planned to explore the antioxidant and antiglycation potential of selected nuts viz, Juglans regia (Walnut), Prunus dulcis (Almond), Pistacia vera (Pistachio), and Arachis hypogaea (Peanut), locally available and readily consumed in Faisalabad, Pakistan, for their health-promoting properties. The prepared methanolic extracts of selected nuts were tested for biological activities including the antioxidant and antiglycation potential. The effect of these extracts against oxidation and AGE formation was evaluated by in vitro method using bovine serum albumin (BSA)-glucose system. Juglans regia, Pistacia vera, and Arachis hypogaea were found rich in phenolics and flavonoids contents with increased reducing potential and least IC50 due to the DPPH free radical scavenging inhibition. Dose- and time-dependent inhibition of glucose-induced advanced glycation end-product (AGE) was exhibited by fruit extracts through in vitro bovine serum albumin (BSA)-glucose system. Juglans regia and Pistacia vera were predominantly effective in the inhibition of early and intermediary glycation products at different incubation conditions. The study indicated that the extracts of selected nuts possess significant antioxidant capacity and are rich in phenolics and flavonoids, making them useful supplements as an important part of a balanced diet.
Collapse
Affiliation(s)
- Asia Atta
- Department of BiochemistryNUR International UniversityLahore54000Pakistan
- Department of Food ScienceUniversity of Massachusetts Amherst100 Holdsworth WayAmherstMassachusetts01003USA
| | - Muhammad Shahid
- Department of BiochemistryUniversity of AgricultureFaisalabad38040Pakistan
| | - Zunaira Kanwal
- Department of BiochemistryAllama Iqbal Medical CollegeLahore54000Pakistan
| | | | - Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodha40100Pakistan
| | - Hang Xiao
- Department of Food ScienceUniversity of Massachusetts Amherst100 Holdsworth WayAmherstMassachusetts01003USA
| | - Mazhar Abbas
- Department of Basic Sciences (Section Biochemistry)University of Veterinary and Animal SciencesJhang CampusLahore35200Pakistan
| | - Chukwuebuka Egbuna
- Africa Centre of Excellence, Centre for Public Health and Toxicological Research (ACE‐PUTOR)University of Port‐HarcourtPort‐HarcourtNigeria
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of ScienceUniversidade de VigoE‐32004OurenseSpain
| |
Collapse
|
10
|
Panda A, Sabnam K, De S, Dasgupta S. Non-enzymatic glycation of human angiogenin: Effects on enzymatic activity and binding to hRI and DNA. Biochimie 2022; 208:151-159. [PMID: 36592684 DOI: 10.1016/j.biochi.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The effects of non-enzymatic glycation on the structural and functional properties of human angiogenin (hAng) have been investigated with respect to the formation of advanced glycated end products (AGEs), on prolonged treatment with d-Glucose, d-Fructose and d-Ribose at 37 °C. Fluorescence studies show the formation of fluorescent AGEs which exhibit emission maxima at 406 nm and 435 nm. Glycation of hAng with ribose leads to the maximum loss of its functional characteristic properties, as compared to fructose and glucose, along with the formation of higher oligomers. An increase in the incubation time results in the formation of higher oligomers with a concomitant decrease in the ribonucleolytic activity. The increase in the hydrodynamic radii of the glycated samples compared to native hAng is indicative of structural perturbations. The ribonucleolytic activity and the DNA binding ability of glycated hAng has been investigated by an agarose gel-based assay. Glycated hAng was unable to bind with human placental ribonuclease inhibitor (hRI), otherwise known to form one of the strongest protein-protein interaction systems with an affinity in the femtomolar range.
Collapse
Affiliation(s)
- Atashi Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Kabira Sabnam
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
Role of Advanced Glycation End Products in Intervertebral Disc Degeneration: Mechanism and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7299005. [PMID: 36573114 PMCID: PMC9789911 DOI: 10.1155/2022/7299005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The incidence of low back pain caused by lumbar disc degeneration is high, and it can lead to loss of work ability and impose heavy social and economic burdens. The pathogenesis of low back pain is unclear, and there are no effective treatments. With age, the deposition of advanced glycation end products (AGEs) in intervertebral disc (IVD) gradually increases and is accelerated by diabetes and a high-AGEs diet, leading to destruction of the annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) and finally intervertebral disc degeneration (IDD). Reducing the accumulation of AGEs in IVD and blocking the transmission of downstream signals caused by AGEs have a significant effect on alleviating IDD. In this review, we summarize the mechanism by which AGEs induce IDD and potential treatment strategies.
Collapse
|
12
|
Fernandes ACF, Melo JB, Genova VM, Santana ÁL, Macedo G. Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:3-16. [PMID: 34053432 DOI: 10.2174/2212798412666210528130001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The glycation of proteins and lipids synthesizes the advanced glycation end products (AGEs), i.e., substances that irreversibly damage macromolecules present in tissues and organs, which contribute to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress, the inflammatory responses, and consequently the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of anti-AGE agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. OBJECTIVE Here we describe how the AGEs are present in food via Maillard reaction and in organs via natural aging, as well as the effects of AGEs on the worsening of diseases. Also we described the methods used to detect AGEs in samples, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. METHODS This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals for the inhibition of AGEs. Recent patents on the use of anti-AGEs drugs were reviewed with the use of Google Advanced Patents database. RESULTS AND DISCUSSION There is no consensus about which concentration of AGEs in blood serum should not be hazardous to the health of individuals. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising anti-AGEs agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, and the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). CONCLUSION Phytochemicals derived from agroindustry are promising anti-AGEs, which can be included to replace synthetic drugs to inhibit AGE formation, and consequently to act as therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Annayara C F Fernandes
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Jeane B Melo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Vanize M Genova
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Ádina L Santana
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.,264 Food Innovation Center, Nebraska Innovation Campus, University of Nebraska-Lincoln, 1901 N 21st street, Lincoln, NE, USA
| | - Gabriela Macedo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| |
Collapse
|
13
|
Evaluation of Major Constituents of Medicinally Important Plants for Anti-Inflammatory, Antidiabetic and AGEs Inhibiting Properties: In Vitro and Simulatory Evidence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196715. [PMID: 36235251 PMCID: PMC9571302 DOI: 10.3390/molecules27196715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs’ inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities.
Collapse
|
14
|
Alouffi S, Khanam A, Husain A, Akasha R, Rabbani G, Ahmad S. d-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. Chem Biol Interact 2022; 367:110147. [PMID: 36108717 DOI: 10.1016/j.cbi.2022.110147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
A nonenzymatic reaction between reducing sugars and amino groups of proteins results in the formation of advanced glycation end products, which are linked to a number of chronic progressive diseases with macro- and microvascular complications. In this research, we sought to ascertain the immunological response to d-ibose-glycated fibrinogen. New Zealand White female rabbits were immunized with native and d-ribose-glycated (Rb-gly-Fb) fibrinogen and used for studying the immunological response. Serum from these rabbits analyzed using direct binding and competitive inhibition ELISA was found to contain a high titer of antibodies against Rb-gly-Fb; Rb-gly-Fb was much more immunogenic than its native form. The IgG against Rb-gly-Fb (Rb-gly-Fb-IgG) was highly specific against the immunogenic protein. Moreover, histopathology and immunofluorescence studies revealed the deposition of the Rb-gly-Fb-IgG immune complex in the glomerular basement membrane of the kidneys of immunized rabbits. Furthermore, immunization with Rb-gly-Fb increased the expression of genes encoding proinflammatory cytokines, tumour necrosis factor α, interleukin-6, interleukin-1β, and interferon-gamma, which is indicative of increased inflammation and the antigenic role of Rb-gly-Fb in provoking an immune response.
Collapse
Affiliation(s)
- Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Afreen Khanam
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Department of Biosciences, Integral University, Lucknow, India.
| | - Arbab Husain
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Department of Biosciences, Integral University, Lucknow, India
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia.
| |
Collapse
|
15
|
Zhang Q, Xiao X, Li M, Yu M, Ping F. Bailing capsule (Cordyceps sinensis) ameliorates renal triglyceride accumulation through the PPARα pathway in diabetic rats. Front Pharmacol 2022; 13:915592. [PMID: 36091833 PMCID: PMC9453879 DOI: 10.3389/fphar.2022.915592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe diabetic complication of the kidney and is the main cause of end-stage kidney disease worldwide. Cordyceps sinensis (C. sinensis) is not only a traditional Chinese medicine (TCM) but also a healthy food. In China, C. sinensis has been widely used to treat various kidney diseases. Bailing Capsule, which active ingredient is C. sinensis, is approved to treat kidney disease, respiratory disease, and immune disease. However, its underlying mechanism in DN remains unclear. The purpose of the present study was to investigate the underlying mechanism of Bailing Capsule on kidney in diabetic rats. The DN model was established by streptozotocin (STZ) injection. Low and high doses of Bailing Capsule were orally administrated for 12 weeks after diabetes induction. Renal function was evaluated by serum creatinine, blood urea nitrogen, 24-h urinary protein, and urinary albumin. Mesangial matrix expansion and renal fibrosis were measured using histopathology staining. We found that the disorder of renal function and pathology in DN rats was significantly modified by Bailing Capsule treatment. Consistently, Bailing Capsule markedly alleviated DN rat glomerulosclerosis, tubulointerstitial injury and renal fibrosis as shown by pathological staining. Moreover, Bailing Capsule significantly reduced the kidney triglyceride content and renal lipid droplet formation in DN rats. The renal transcriptome revealed that Bailing Capsule-treated kidneys had 498 upregulated genes and 448 downregulated genes. These differentially expressed genes were enriched in the peroxisome proliferator activated receptor (PPAR) pathway and fatty acid metabolism function ontology. mRNA and protein expression analyses revealed substantial enhancement of the lipolysis pathway and inhibition of lipogenesis in Bailing Capsule-treated rat kidneys compared to DN rats. Bailing Capsule activated the expression of PPARα, ACOX1 (acyl-CoA oxidase 1), and SCD (stearoyl-CoA desaturase) in diabetic nephropathy while suppressing the expression of FASN (fatty acid synthase). In conclusion, Bailing Capsule could attenuate renal triglyceride accumulation in diabetic rats by moderating PPARα pathway.
Collapse
|
16
|
Tülüce Y, Hussein AI, Koyuncu İ, Kiliç A, Durgun M. The effect of a bis-structured Schiff base on apoptosis, cytotoxicity, and DNA damage of breast cancer cells. J Biochem Mol Toxicol 2022; 36:e23148. [PMID: 35719061 DOI: 10.1002/jbt.23148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Developing new anticancer agents are crucial for cancer treatment. Antiproliferative activity of L1H as a bis-structured Schiff base was subjected to preliminary research in eight different kinds of cell lines by the cell viability method using different concentrations to determine their inhibitory concentration. L1H demonstrated the highest cytotoxicity in human breast cancer cell line MCF-7. In this perspective, the MCF-7 cell line was cultured for the examination of different molecular techniques, including MTT, apoptosis analysis by enzyme-linked immunosorbent assay (ELISA), and comet assay. Moreover, the DNA ladder, acridine orange/ethidium bromide as another apoptotic cell analysis, markers of oxidative stress, and total antioxidant status, total thiol, and GSH as nonenzymatic antioxidants assay were conducted. The above techniques have proven that L1H is a growth inhibitor effect when compared to cisplatin as a positive control in human breast cancer cells, especially those affected by L1H. The findings clearly show that L1H evaluated in MCF-7 cell lines causes rising or induced apoptosis, DNA damage, diminished antioxidant status against the increase of oxidized protein, and prevents cell proliferation. Manifold evidence supported our hypothesis that L1H has a potential therapeutically improved effect against the MCF-7 cell line, and then without a doubt is a suitable candidate drug for investigating cancers next.
Collapse
Affiliation(s)
- Yasin Tülüce
- Department of Medical Biology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Türkiye
| | - Azhee Ibrahim Hussein
- Department of Medical Biology, Health Science Institute, Van Yuzuncu Yil University, Van, Türkiye
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Ahmet Kiliç
- Department of Chemistry, Faculty of Science and Art, Harran University, Sanliurfa, Türkiye
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Science and Art, Harran University, Sanliurfa, Türkiye
| |
Collapse
|
17
|
Gupta A, Khursheed M, Arif Z, Badar A, Alam K. Methylglyoxal-induces multiple stable changes in human serum albumin before forming nephrotoxic advanced glycation end-products: Injury demonstration in human embryonic kidney cells. Int J Biol Macromol 2022; 214:252-263. [PMID: 35716786 DOI: 10.1016/j.ijbiomac.2022.06.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
The minor fraction of methylglyoxal that is not metabolized in healthy humans reacts with macromolecules to form AGEs. In diabetics, the formation of MG is accelerated; its level may be enhanced multifold. The glyoxalase enzymes responsible for the regular and effective clearance of excess methylglyoxal may become defective in diabetes mellitus leading to its retention in cells and plasma. The methylglyoxal-modified-HSA was prepared, characterised by multiple biophysical techniques and biochemical (s) and its damaging effect was examined on embryonic kidney cell line HEK 293. The UV results showed hyperchromicity in MG-modified-HSA while nitroblue tetrazolium and fluorescence data suggested AGEs formation in comparison to control HSA. Upward shift of negative peaks in CD suggested reduction in α-helicity. Accelerated mobility and diffused broad bands observed in native and SDS polyacrylamide gel, respectively suggest neutralization of some of the positive charges on MG-modified-HSA as well as generation of cross-links. As observed by trypan blue assay, MTT, LDH activity assay, acridine orange, propidium iodide, ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI) staining and ROS measurements, the MG-HSA AGEs caused damage to human embryonic kidney cells. The data suggest that MG-HSA AGEs may trigger powerful inflammatory responses at cellular level which might set the stage for nephrotoxicity in diabetics.
Collapse
Affiliation(s)
- Akankcha Gupta
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Manal Khursheed
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Asim Badar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
18
|
Ahmad S, Mittal S, Gulia R, Alam K, Saha TK, Arif Z, Nafees KA, Al‐Shaghdali K, Ahmad S. Therapeutic role of hesperidin in collagen‐induced rheumatoid arthritis through antiglycation and antioxidant activities. Cell Biochem Funct 2022; 40:473-480. [DOI: 10.1002/cbf.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Shafeeque Ahmad
- Department of Biochemistry, Al‐Falah School of Medical Science and Research Centre Al‐Falah University Faridabad Haryana India
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College Aligarh Muslim University Aligarh Uttar Pradesh India
| | - Shilpa Mittal
- Department of Biochemistry, Al‐Falah School of Medical Science and Research Centre Al‐Falah University Faridabad Haryana India
| | - Rashmi Gulia
- Department of Biochemistry, Al‐Falah School of Medical Science and Research Centre Al‐Falah University Faridabad Haryana India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College Aligarh Muslim University Aligarh Uttar Pradesh India
| | - Tapan Kumar Saha
- Department of Biochemistry, Al‐Falah School of Medical Science and Research Centre Al‐Falah University Faridabad Haryana India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College Aligarh Muslim University Aligarh Uttar Pradesh India
| | - K. A. Nafees
- Department of Radiology, Faculty of Medicine, Jawaharlal Nehru Medical College Aligarh Muslim University Aligarh Uttar Pradesh India
| | - Khalid Al‐Shaghdali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences University of Hail Ha'il Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences University of Hail Ha'il Saudi Arabia
| |
Collapse
|
19
|
Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 2022; 194:2831-2855. [PMID: 35257316 DOI: 10.1007/s12010-022-03860-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.
Collapse
|
20
|
Behl T, Gupta A, Chigurupati S, Singh S, Sehgal A, Badavath VN, Alhowail A, Mani V, Bhatia S, Al-Harrasi A, Bungau S. Natural and Synthetic Agents Targeting Reactive Carbonyl Species against Metabolic Syndrome. Molecules 2022; 27:1583. [PMID: 35268685 PMCID: PMC8911959 DOI: 10.3390/molecules27051583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
Reactive carbonyl species (RCS) may originate from the oxidation of unsaturated fatty acids and sugar in conditions of pathology. They are known to have high reactivity towards DNA as well as nucleophilic sites of proteins, resulting in cellular dysfunction. It has been considered that various pathological conditions are associated with an increased level of RCS and their reaction products. Thus, regulating the levels of RCS may be associated with the mitigation of various metabolic and neurodegenerative disorders. In order to perform a comprehensive review, various literature databases, including MEDLINE, EMBASE, along with Google Scholar, were utilized to obtain relevant articles. The voluminous review concluded that various synthetic and natural agents are available or in pipeline research that hold tremendous potential to be used as a drug of choice in the therapeutic management of metabolic syndrome, including obesity, dyslipidemia, diabetes, and diabetes-associated complications of atherosclerosis, neuropathy, and nephropathy. From the available data, it may be emphasized that various synthetic agents, such as carnosine and simvastatin, and natural agents, such as polyphenols and terpenoids, can become a drug of choice in the therapeutic management for combating metabolic syndromes that involve RCS in their pathophysiology. Since the RCS are known to regulate the biological processes, future research warrants detailed investigations to decipher the precise mechanism.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.G.); (S.S.); (A.S.); (V.N.B.)
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.G.); (S.S.); (A.S.); (V.N.B.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.G.); (S.S.); (A.S.); (V.N.B.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.G.); (S.S.); (A.S.); (V.N.B.)
| | - Vishnu Nayak Badavath
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.G.); (S.S.); (A.S.); (V.N.B.)
| | - Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; (A.A.); (V.M.)
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; (A.A.); (V.M.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
21
|
Xie T, Chen X, Chen W, Huang S, Peng X, Tian L, Wu X, Huang Y. Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front Pharmacol 2021; 12:796565. [PMID: 34955862 PMCID: PMC8702852 DOI: 10.3389/fphar.2021.796565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a natural polyphenol compound with anti-diabetic, anti-oxidative, and anti-inflammatory effects. Although many studies have reported the protective effect of curcumin in diabetes mellitus or diabetic nephropathy, there is a lack of research on curcumin in diabetic retinopathy. The purpose of this study was to investigate the therapeutic effects of curcumin on the diabetic retinal injury. Streptozotocin (STZ)-induced diabetic rats (60, n = 12 each) were respectively given curcumin orally (200 mg/kg/day), insulin subcutaneously (4–6 IU/day), and combined therapy with curcumin and insulin for 4 weeks. Retinal histopathological changes, oxidative stress markers, and transcriptome profiles from each group were observed. Curcumin, insulin, or combination therapy significantly reduced blood glucose, alleviated oxidative stress, and improved pathological damage in diabetic rats. Curcumin not only significantly reduced retinal edema but also had a better anti-photoreceptor apoptosis effect than insulin. In the early stage of diabetes, the enhancement of oxidative stress in the retina induced the adaptive activation of the nuclear factor E2-associated factor 2 (Nrf2) pathway. Treatment of curcumin alleviated the compensatory activation of the Nrf2 pathway induced by oxidative stress, by virtue of its antioxidant ability to transfer hydrogen atoms to free radicals. When curcumin combined with insulin, the effect of maintaining Nrf2 pathway homeostasis in diabetic rats was better than that of insulin alone. Transcriptomic analyses revealed that curcumin either alone, or combined with insulin, inhibited the AGE-RAGE signaling pathway and the extracellular matrix (ECM)-receptor interaction in the diabetic retina. Thus, at the early stage of diabetes, curcumin can be used to alleviate diabetic retinal injury through its anti-oxidative effect. If taking curcumin as a potential complementary therapeutic option in combination with antihyperglycemic agents, which would lead to more effective therapeutic outcomes against diabetic complications.
Collapse
Affiliation(s)
- Ting Xie
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China.,Medical Technology Experimental Teaching Center, Fujian Medical University, Fuzhou, China
| | - Xiaodong Chen
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Wenyi Chen
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China.,Medical Technology Experimental Teaching Center, Fujian Medical University, Fuzhou, China
| | - Sien Huang
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Xinye Peng
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Lingmei Tian
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| | - Xuejie Wu
- Department of Medical Imaging Technology, Fujian Medical University, Fuzhou, China
| | - Yan Huang
- Department of Ophthalmology and Optometry, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Sartore G, Bassani D, Ragazzi E, Traldi P, Lapolla A, Moro S. In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment. Sci Rep 2021; 11:22860. [PMID: 34819560 PMCID: PMC8613179 DOI: 10.1038/s41598-021-02297-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022] Open
Abstract
The worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.
Collapse
Affiliation(s)
- Giovanni Sartore
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Via Giustiniani 2, 35128, Padua, Italy
| | - Davide Bassani
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Via Marzolo, 5, 35131, Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova School of Medicine and Surgery, Largo Meneghetti 2, 35131, Padua, Italy.
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Annunziata Lapolla
- Department of Medicine (DIMED), University of Padova School of Medicine and Surgery, Via Giustiniani 2, 35128, Padua, Italy
| | - Stefano Moro
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Molecular Modeling Section (MMS), University of Padova School of Medicine and Surgery, Via Marzolo, 5, 35131, Padua, Italy
| |
Collapse
|
23
|
Tomaszewski EL, Orchard TJ, Hawkins MS, Conway RB, Buchanich JM, Maynard J, Songer T, Costacou T. Predictors of Change in Skin Intrinsic Fluorescence in Type 1 Diabetes: The Epidemiology of Diabetes Complications Study. J Diabetes Sci Technol 2021; 15:1368-1376. [PMID: 33993770 PMCID: PMC8655295 DOI: 10.1177/19322968211014337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Skin intrinsic fluorescent (SIF) scores are indirect measures of advanced glycation end-products (AGEs). SIF scores are cross-sectionally associated with type 1 diabetes (T1D) complications such as increased albumin excretion rate (AER), coronary artery calcification (CAC) and neuropathy. We assessed predictors of SIF score change in those with T1D. METHODS Data from the 30-year longitudinal Epidemiology of Diabetes Complications (EDC) study of childhood-onset T1D were used to assess AGEs measured with a SIF score produced by the SCOUT DS® device. SIF scores were assessed twice in 83 participants: between 2007-08 and again between 2010-14. Regression analyses were used to assess independent predictors of SIF score change. RESULTS At baseline, mean age was 47.9 ± 6.9 years, diabetes duration was 36.7 ± 6.4 years, and median glycosylated hemoglobin (HbA1c) was 7.1 (interquartile range: 6.5, 8.5). During a mean follow-up of 5.2 ± 0.9 years, mean change in SIF score was 2.9 ± 2.8 arbitrary units. In multivariable linear regression models, log HbA1c (P < 0.001), log estimated glomerular filtration rate (eGFR) (P < 0.001), overt nephropathy (defined as AER ≥ 200 µg/min, P = 0.06), and multiple daily insulin shots/pump use (MDI) exposure years (P = 0.02) were independent predictors of SIF score change. CONCLUSIONS Increases in SIF score over 5 years were related to increased glycemic levels and decreased kidney function (eGFR). MDI and glomerular damage were related to a decreased SIF score. This is one of the first studies with repeated SIF assessments in T1D and provides unique, albeit preliminary, insight about these associations.
Collapse
Affiliation(s)
- Erin L. Tomaszewski
- Graduate School of Public Health
Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Trevor J. Orchard
- Graduate School of Public Health
Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marquis S. Hawkins
- Graduate School of Public Health
Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jeanine M. Buchanich
- Graduate School of Public Health
Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Maynard
- Medical Device and Diagnostics
Consultant, Atlanta, GA, USA
| | - Thomas Songer
- Graduate School of Public Health
Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina Costacou
- Graduate School of Public Health
Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Ghosh R, Kishore N. Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions. Biochimie 2021; 193:16-37. [PMID: 34688791 DOI: 10.1016/j.biochi.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 11/02/2022]
Abstract
The drug binding ability of serum albumin might get affected as a result of its glycation under diabetic conditions. It requires not only an understanding of the effect of glycation of the protein upon association with the drug, but also calls for an assessment of structure-property-energetics relationships. A combination of ultrasensitive calorimetric, spectroscopic and chromatographic approach has been employed to correlate thermodynamic signatures with recognition, conformation and mechanistic details of the processes involved. An important observation from this work is that 3-(dansylamino) phenyl boronic acid (DnsPBA) assay cannot always determine the extent of glycation as evidenced by MALDI-TOF mass spectra of glycated HSA due to its selectivity for 1,2 or 1,3 cis-diol structures which may be absent in certain AGEs. Protein gets modified post glycation with the formation of advanced glycation end products (AGEs), which are monitored to be targeted by the guanidine group present in anti-diabetic drugs. AGEs formed in the third and fourth week of glycation are significant in the recognition of anti-diabetic drugs. The results with metformin and aminoguanidine suggest that the extent of binding depends upon the number of guanidine group(s) in the drug molecule. Open chain molecules having guanidine group(s) exhibit stronger affinity towards glycated HSA than closed ring entities like naphthalene or pyridine moiety. The observation that the drug binding ability of HSA is not adversely affected, rather strengthened upon glycation, has implications in diabetic conditions. A rigorous structure-property-energetics correlation based on thermodynamic signatures and identification of functional groups on drugs for recognition by HSA are essential in deriving guidelines for rational drug design addressing diabetes.
Collapse
Affiliation(s)
- Ritutama Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| |
Collapse
|
25
|
Alrubaye A, Motovali-Bashi M, Miroliaei M. Rosmarinic acid inhibits DNA glycation and modulates the expression of Akt1 and Akt3 partially in the hippocampus of diabetic rats. Sci Rep 2021; 11:20605. [PMID: 34663861 PMCID: PMC8523555 DOI: 10.1038/s41598-021-99286-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Non-enzymatic glycation of DNA and the associated effects are among pathogenic factors in diabetes mellitus. Natural polyphenols have anti-diabetic activity. Herein, the protective role of one of the phytochemicals, rosmarinic acid (RA), was evaluated in glycation (with fructose) of human DNA and expression of Akt genes in the hippocampus of diabetic rats. In-vitro studies using fluorescence, agarose gel electrophoresis, fluorescence microscopy, and thermal denaturation analyses revealed that glycation causes DNA damage and that RA inhibits it. In-vivo studies were performed by induction of diabetes in rats using streptozotocin. The diabetic rats were given RA daily through gavage feeding. The expression of Akt genes (inhibitors of apoptosis) in the hippocampus was evaluated using RT-qPCR. In diabetic rats, Akt1 and Akt3 were significantly down-regulated compared to the control group. Treating the diabetic rats with RA returned the expression of Akt1 and Akt3 relatively to the normal condition. Past studies have shown that diabetes induces apoptosis in the hippocampal neurons. Given that glycation changes the genes expression and causes cell death, apoptosis of the hippocampal neurons can be due to the glycation of DNA. The results also suggest that RA has reliable potency against the gross modification of DNA under hyperglycemic conditions.
Collapse
Affiliation(s)
- Ameer Alrubaye
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Motovali-Bashi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehran Miroliaei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
26
|
Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc Natl Acad Sci U S A 2021; 118:2009579118. [PMID: 33653950 PMCID: PMC7958397 DOI: 10.1073/pnas.2009579118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several neurodegenerative diseases associated with protein misfolding (Alzheimer's and Parkinson's disease) exhibit oxidative and nitrergic stress following initiation of neuroinflammatory pathways. Associated nitric oxide (NO)-mediated posttranslational modifications impact upon protein functions that can exacerbate pathology. Nonenzymatic and irreversible glycation signaling has been implicated as an underlying pathway that promotes protein misfolding, but the direct interactions between both pathways are poorly understood. Here we investigated the therapeutic potential of pharmacologically suppressing neuroinflammatory NO signaling during early disease progression of prion-infected mice. Mice were injected daily with an NO synthase (NOS) inhibitor at early disease stages, hippocampal gene and protein expression levels of oxidative and nitrergic stress markers were analyzed, and electrophysiological characterization of pyramidal CA1 neurons was performed. Increased neuroinflammatory signaling was observed in mice between 6 and 10 wk postinoculation (w.p.i.) with scrapie prion protein. Their hippocampi were characterized by enhanced nitrergic stress associated with a decline in neuronal function by 9 w.p.i. Daily in vivo administration of the NOS inhibitor L-NAME between 6 and 9 w.p.i. at 20 mg/kg prevented the functional degeneration of hippocampal neurons in prion-diseased mice. We further found that this intervention in diseased mice reduced 3-nitrotyrosination of triose-phosphate isomerase, an enzyme involved in the formation of disease-associated glycation. Furthermore, L-NAME application led to a reduced expression of the receptor for advanced glycation end-products and the diminished accumulation of hippocampal prion misfolding. Our data suggest that suppressing neuroinflammatory NO signaling slows functional neurodegeneration and reduces nitrergic and glycation-associated cellular stress.
Collapse
|
27
|
Protective Effects of Swertiamarin against Methylglyoxal-Induced Epithelial-Mesenchymal Transition by Improving Oxidative Stress in Rat Kidney Epithelial (NRK-52E) Cells. Molecules 2021; 26:molecules26092748. [PMID: 34067107 PMCID: PMC8125635 DOI: 10.3390/molecules26092748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1β. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.
Collapse
|
28
|
The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants (Basel) 2021; 10:antiox10030480. [PMID: 33803588 PMCID: PMC8003070 DOI: 10.3390/antiox10030480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a complex metabolic disorder resulting either from insulin resistance or an impaired insulin secretion. Prolonged elevated blood glucose concentration, the key clinical sign of diabetes, initiates an enhancement of reactive oxygen species derived from glucose autoxidation and glycosylation of proteins. Consequently, chronic oxidative stress overwhelms cellular endogenous antioxidant defenses and leads to the acute and long-standing structural and functional changes of macromolecules resulting in impaired cellular functioning, cell death and organ dysfunction. The oxidative stress provoked chain of pathological events over time cause diabetic complications such as nephropathy, peripheral neuropathy, cardiomyopathy, retinopathy, hypertension, and liver disease. Under diabetic conditions, accompanying genome/epigenome and metabolite markers alterations may also affect glucose homeostasis, pancreatic β-cells, muscle, liver, and adipose tissue. By providing deeper genetic/epigenetic insight of direct or indirect dietary effects, nutrigenomics offers a promising opportunity to improve the quality of life of diabetic patients. Natural plant extracts, or their naturally occurring compounds, were shown to be very proficient in the prevention and treatment of different pathologies associated with oxidative stress including diabetes and its complications. Considering that food intake is one of the crucial components in diabetes’ prevalence, progression and complications, this review summarizes the effect of the major plant secondary metabolite and phytoconstituents on the antioxidant enzymes activity and gene expression under diabetic conditions.
Collapse
|
29
|
Tomaszewski EL, Orchard TJ, Hawkins M, Conway BN, Buchanich JM, Maynard J, Songer T, Costacou T. Skin intrinsic fluorescence scores are a predictor of all-cause mortality risk in type 1 diabetes: The Epidemiology of Diabetes Complications study. J Diabetes Complications 2021; 35:107770. [PMID: 33168396 PMCID: PMC7855847 DOI: 10.1016/j.jdiacomp.2020.107770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023]
Abstract
AIMS We assessed the association of skin intrinsic fluorescence (SIF) scores, as a measure of advanced glycation end-products (AGE), with all-cause mortality in type 1 diabetes (T1D). METHODS This is an observational retrospective study of a convenience sample from the Epidemiology of Diabetes Complications (EDC) study. AGEs were measured with a SIF score between 2007 and 2014; vital status was assessed in 2020. RESULTS Among 245 participants, mean age was 48.6 ± 7.4 years, median diabetes duration was 39.5 years (IQR: 34.2, 44.9), and 53.5% were female. Compared to survivors, the deceased (n = 20) were older, with higher SIF scores, longer diabetes duration, lower body mass index (BMI), and an adverse risk factor profile (all p≤0.05). Univariate Cox regression showed a marginal association between SIF score and mortality (HR: 1.1, 95% CI 0.9-1.2, p = 0.06), which persisted after adjustment for multiple daily insulin shots/pump (MDI) use (HR: 1.1, 95% CI 1.0-1.2, p = 0.04). This association was attenuated after adjustment for T1D duration, A1c months, or estimated glomerular filtration rate (eGFR). CONCLUSIONS In individuals with long duration T1D, SIF scores adjusted for MDI predicted all-cause mortality, although this association was attenuated after adjustments. Given the nature of sampling and small number of events, our findings require replication.
Collapse
Affiliation(s)
- Erin L Tomaszewski
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15231, USA.
| | - Trevor J Orchard
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15231, USA
| | - Marquis Hawkins
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15231, USA
| | - Baqiyyah N Conway
- University of Texas Health Science Center at Tyler, School of Rural and Community Health, Department of Community Health, 11937 US Highway 271, suite H250, Tyler, TX 75701, USA
| | - Jeanine M Buchanich
- University of Pittsburgh, Graduate School of Public Health, Department of Biostatistics, 130 De Soto Street, Pittsburgh, PA 15231, USA
| | - John Maynard
- Medical Device and Diagnostics Consultant, 185 Montag Circle NE, #453, Atlanta, GA 30307, USA
| | - Thomas Songer
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15231, USA
| | - Tina Costacou
- University of Pittsburgh, Graduate School of Public Health, Department of Epidemiology, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15231, USA
| |
Collapse
|
30
|
Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: The role of autophagy. J Biochem Mol Toxicol 2021; 35:e22710. [PMID: 33506967 DOI: 10.1002/jbt.22710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
The critical roles played by advanced glycation endproducts (AGEs) accumulation in diabetes and diabetic complications have gained intense recognition. AGEs interfere with the normal functioning of almost every organ with multiple actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction, and oxidative stress. However, the development of a potential treatment strategy is yet to be established. Autophagy is an evolutionarily conserved cellular process that maintains cellular homeostasis with the degradation and recycling systems. AGEs can activate autophagy signaling, which could be targeted as a therapeutic strategy against AGEs induced problems. In this review, we have provided an overview of the adverse effects of AGEs, and we put forth the notion that autophagy could be a promising targetable strategy against AGEs.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Anwar S, Khan S, Almatroudi A, Khan AA, Alsahli MA, Almatroodi SA, Rahmani AH. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds. Mol Biol Rep 2021; 48:787-805. [PMID: 33389535 DOI: 10.1007/s11033-020-06084-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Advanced glycation end products (AGEs) are naturally occurring biomolecules formed by interaction of reducing sugars with biomolecules such as protein and lipids etc., Long term high blood sugar level and glycation accelerate the formation of AGEs. Unchecked continuous formation and accumulation of AGEs are potential risks for pathogenesis of various chronic diseases. Current mode of antidiabetic therapy is based on synthetic drugs that are often linked with severe adverse effects. Polyphenolic compounds derived from plants are supposed to inhibit glycation and formation of AGEs at multiple levels. Some polyphenolic compounds regulate the blood glucose metabolism by amplification of cell insulin resistance and activation of insulin like growth factor binding protein signaling pathway. Their antioxidant nature and metal chelating activity, ability to trap intermediate dicarbonyl compounds could be possible mechanisms against glycation and AGEs formation and hence, against AGEs induced health complications. Although, few species of polyphenolic compounds are being used in in vitro trials and their in vivo study is still in progress, increasing the area of research in this field may produce a fruitful approach in management of overall diabetic complications.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Shifa Khan
- Department of Biochemistry, Faculty of Medicine, JNMC, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, 52571, Saudi Arabia.
| |
Collapse
|
32
|
Bagherzadeh-Yazdi M, Bohlooli M, Khajeh M, Ghamari F, Ghaffari-Moghaddam M, Poormolaie N, Khatibi A, Hasanein P, Sheibani N. Acetoacetate enhancement of glucose mediated DNA glycation. Biochem Biophys Rep 2020; 25:100878. [PMID: 33364448 PMCID: PMC7750490 DOI: 10.1016/j.bbrep.2020.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Acetoacetate (AA) is a ketone body, which generates reactive oxygen species (ROS). ROS production is impacted by the formation of covalent bonds between amino groups of biomacromolecules and reducing sugars (glycation). Glycation can damage DNA by causing strand breaks, mutations, and changes in gene expression. DNA damage could contribute to the pathogenesis of various diseases, including neurological disorders, complications of diabetes, and aging. Here we studied the enhancement of glucose-mediated DNA glycation by AA for the first time. The effect of AA on the structural changes, Amadori and advanced glycation end products (AGEs) formation of DNA incubated with glucose for 4 weeks were investigated using various techniques. These included UV-Vis, circular dichroism (CD) and fluorescence spectroscopy, and agarose gel electrophoresis. The results of UV-Vis and fluorescence spectroscopy confirmed that AA increased the DNA-AGE formation. The NBT test showed that AA also increased Amadori product formation of glycated DNA. Based on the CD and agarose gel electrophoresis results, the structural changes of glycated DNA was increased in the presence of AA. The chemiluminescence results indicated that AA increased ROS formation. Thus AA has an activator role in DNA glycation, which could enhance the adverse effects of glycation under high glucose conditions.
Collapse
Affiliation(s)
| | - M Bohlooli
- Department of Biology, University of Zabol, Zabol, Iran
| | - M Khajeh
- Department of Chemistry, University of Zabol, Zabol, Iran
| | - F Ghamari
- Department of Biology, Payame Noor University, Ghazvin, Iran
| | | | - N Poormolaie
- Department of Chemistry, University of Zabol, Zabol, Iran
| | - A Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - P Hasanein
- Department of Biology, University of Zabol, Zabol, Iran
| | - N Sheibani
- Departments of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Monitoring matrix remodeling in the cellular microenvironment using microrheology for complex cellular systems. Acta Biomater 2020; 111:254-266. [PMID: 32434077 DOI: 10.1016/j.actbio.2020.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G0,app in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G0,app by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G0,app was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers.
Collapse
|
34
|
Increased serum levels of advanced glycation end products due to induced molting in hen layers trigger a proinflammatory response by peripheral blood leukocytes. Poult Sci 2020; 99:3452-3462. [PMID: 32616239 PMCID: PMC7597842 DOI: 10.1016/j.psj.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Induced molting (IM), a severe detriment to animal welfare, is still used in the poultry industry in some countries to increase or rejuvenate egg production and is responsible for several physiological perturbations, possibly including reactive oxidative stress, a form of metabolic stress. Because metabolic stress has been shown to induce a proinflammatory response involved in attempts to restore homeostasis, we hypothesized that similar responses followed IM. To confirm this hypothesis, we initially confirmed the establishment of oxidative stress during IM in 75-wk-old layers by demonstrating increased production of advanced glycation end products (AGE). Concomitant with increased oxidative metabolites, cellular stress was demonstrated in peripheral blood leukocytes (PBL) by increased levels of stress gene products (the glucocorticoid receptor, sirtuin-1, and heat shock protein 70 mRNA). Increased expression of stress proteins in PBL was followed by a proinflammatory response as demonstrated by increased levels of proinflammatory gene products (IL-6 and IL-1β mRNA); increased expression of these gene products was also demonstrated in direct response to AGE in vitro, thus establishing a direct link between oxidative and cellular stress. To establish a possible pathway for inducing a proinflammatory response by PBL, we showed that AGE increased a time dependent expression of galactin-3, Toll-like receptor-4, and nuclear factor - κB, all involved in the proinflammatory activation pathway. In vivo, AGE formed complexes with increased levels of circulating acute phase proteins (lysozyme and transferrin), products of a proinflammatory immune response, thereby demonstrating an effector response to cope with the consequences of oxidative stress. Thus, the harmful consequences of IM for animal welfare are extended here by demonstrating the activation of a resource-demanding proinflammatory response.
Collapse
|
35
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
36
|
Comparative study of different glycating agents on human plasma and vascular cells. Mol Biol Rep 2019; 47:521-531. [DOI: 10.1007/s11033-019-05158-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
|
37
|
Mazumder MAR, Hongsprabhas P, Thottiam Vasudevan R. In vitro and in vivo inhibition of maillard reaction products using amino acids, modified proteins, vitamins, and genistein: A review. J Food Biochem 2019; 43:e13089. [PMID: 31680276 DOI: 10.1111/jfbc.13089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Maillard reaction is known to result in loss of nutrients, particularly that of essential amino acids; decrease in digestibility and safety issues due to the development of toxic compounds. Maillard reaction products are also known to cause oxidation of tissues and inflammation, thus increasing the risk of cardiovascular diseases and diabetes. The aim of this review is to present a detailed information about the role of foodborne constituents as antibrowning agents to significantly reduce the harmful compounds like advanced glycation end products (AGEs) during food processing. This review includes strategies involving addition of amino acids, aromatic compounds, vitamins, modification of amino acids, and reducing sugars as antibrowning agents to reduce the AGEs. The role of Food borne functional ingredients such as catechin, epicathechin, luteolin, and ferulic acids as inhibitors of AGEs is also discussed. Among the naturally occurring inhibitors, genistein could be a crucial and safe agent to reduce reactive intermediates. PRACTICAL APPLICATIONS: Maillard reaction leads to changes in food color, protein functionality, protein digestibility, and loss of nutrient from foods. Maillard reaction products (MRPs) is also reported to be associated with various inflammatory conditions and may contribute to the progress of chronic diseases, including diabetes. It is hence necessary to reduce the MRPs, in both food and biological products, to offset this phenomenon. Among the strategies adopted till date, chemical agents could inhibit reactive carbonyl species and reactive oxygen species, but also are known to elicit serious side effects. Dietary flavonoids could be a very good inhibitor of MRPs both in biological and in food systems. It could be suggested that dietary flavonoids and isoflavones can be used as antibrowning agents in food and pharmaceutical industries particularly for targeted and sustained release of hypoglycemic drug in the intestines.
Collapse
Affiliation(s)
- Md Anisur Rahman Mazumder
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India.,Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Parichat Hongsprabhas
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Ranganathan Thottiam Vasudevan
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
38
|
Mohsen ROM, Halawa AM, Hassan R. Role of bone marrow-derived stem cells versus insulin on filiform and fungiform papillae of diabetic albino rats (light, fluorescent and scanning electron microscopic study). Acta Histochem 2019; 121:812-822. [PMID: 31358295 DOI: 10.1016/j.acthis.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels. DM affects many body's organs and caused by insulin production deficiency or by the ineffectiveness of the produced insulin. Administration of exogenous insulin is required for management of type I DM; however, it does not cure the disease. Bone marrow-mesenchymal stem cells (BM-MSCs) have been highlighted to offer a novel cell based approach for treatment of diabetes because of their anti-diabetic effect, direct differentiation into a variety of cell types, or release of paracrine factors. AIM To examine the effect of BM-MSCs versus insulin on true filiform and fungiform papillae of diabetic rats. MATERIALS AND METHODS Fifty six male Wistar albino rats weighing 200-250 g were equally divided into: Control group (Gp I): Rats did not receive any drug. Diabetic group (Gp II): Rats received a single intra-peritoneal injection of streptozotocin (40 mg/kg). BM-MSCs treated diabetic group (Gp III): After DM confirmation; rats received a single intravenous injection of BM-MSCs (million units) through tail vein. Insulin treated diabetic group (Gp IV): After DM confirmation; rats received a daily subcutaneous injection of insulin (5IU/kg). After four weeks, half of the tongue specimens were processed and stained by Hematoxyline & Eosin and Anti-proliferating cell nuclear antigen (Anti-PCNA) then examined by light microscope. Fluorescent microscope was used to detect homing of injected labeled BM-MSCs in rats' filiform and fungiform papillae. While the other half were examined by scanning electron microscope. RESULTS True filiform and fungiform papillae of Gp II showed significant histological and morphological alterations. In treated groups, Gp III and Gp IV, both papillae showed marked improvements, being more noticeable in Gp IV. There was a significant increase in the number of Anti-PCNA positive cells and a significant decrease in fasting blood glucose level in Gp III and Gp IV in comparison to Gp II. CONCLUSIONS DM had degenerative effects on true filiform and fungiform papillae. Administration of BM-MSCs reduced the deleterious effects of DM on both papillae. Insulin injection caused more obvious improvements in both papillae of diabetic rats than BM-MSCs.
Collapse
|
39
|
Perween S, Abidi M, Faizy AF, Moinuddin. Post-translational modifications on glycated plasma fibrinogen: A physicochemical insight. Int J Biol Macromol 2019; 126:1201-1212. [DOI: 10.1016/j.ijbiomac.2019.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/29/2022]
|
40
|
Pereira Morais MP, Kassaar O, Flower SE, Williams RJ, James TD, van den Elsen JMH. Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis. Methods Mol Biol 2019; 1855:161-175. [PMID: 30426417 DOI: 10.1007/978-1-4939-8793-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbohydrate modification of proteins adds complexity and diversity to the proteome. However, undesired carbohydrate modifications also occur in the form of glycation, which have been implicated in diseases such as diabetes, Alzheimer's disease, autoimmune diseases, and cancer. The analysis of glycated proteins is challenging due to their complexity and variability. Numerous analytical techniques have been developed that require expensive specialized equipment and complex data analysis. In this chapter, we describe two easy-to-use electrophoresis-based methods that will enable researchers to detect, identify, and analyze these posttranslational modifications. This new cost-effective methodology will aid the detection of unwanted glycation products in processed foods and may lead to new diagnostics and therapeutics for age-related chronic diseases.
Collapse
Affiliation(s)
| | - Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK
| | | |
Collapse
|
41
|
Rivera-Velez SM, Hwang J, Navas J, Villarino NF. Identification of differences in the formation of plasma glycated proteins between dogs and humans under diabetes-like glucose concentration conditions. Int J Biol Macromol 2018; 123:1197-1203. [PMID: 30465839 DOI: 10.1016/j.ijbiomac.2018.11.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Dogs have been proposed as a translational model and used for studying aging, diabetes, and diabetes-related complications in humans. However, no studies have ever compared the glycation of plasma proteins between dogs and humans under similar experimental conditions. Thus, the aim of this study was to fill this gap by comparing the plasma protein glycation patterns of dogs and humans in an ex-vivo system. Canine and human plasma samples were incubated with glucose at concentrations comparable to those observed in diabetic patients. The final glucose plasma concentration resulted in similar glucose:albumin ratios in both species. Glycated proteins were evaluated by measuring the content of fructosamine, protein carbonyls, and the formation of advanced glycation end-products (AGEs). The concentrations of fructosamine and protein carbonyls in canine and human plasma increased in a glucose concentration-dependent manner (P < 0.0001). Of note, the relative increment of fructosamine and protein carbonyl content and AGE formation was always higher in human than in dog plasma. Our results reveal that the plasma glycation processes in dogs and humans are not similar. These novel findings could contribute to improve our understating about canine and human diabetes as well as other condition associated in the glycation of proteins.
Collapse
Affiliation(s)
- S M Rivera-Velez
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Julianne Hwang
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Jinna Navas
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
| | - Nicolas Francisco Villarino
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States.
| |
Collapse
|
42
|
Li CT, How SC, Chen ME, Lo CH, Chun MC, Chang CK, Chen WA, Wu JW, Wang SSS. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents. Int J Biol Macromol 2018; 118:442-451. [DOI: 10.1016/j.ijbiomac.2018.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
|
43
|
Sai Sachin L, Nagarjuna Chary R, Pavankumar P, Prabhakar S. Identification and characterization of reaction products of 5-hydroxytryptamine with methylglyoxal and glyoxal by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1529-1539. [PMID: 29874403 DOI: 10.1002/rcm.8195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Methylglyoxal (MGO) and glyoxal (GO) are known to be at high levels in humans with diabetes. They react with amine-containing proteins and amino acids to form advanced glycation end products, however, their reactivity with other amine-containing metabolites, such as neurotransmitters, has not been explored. In this study, we aimed at studying the reactivity of 5-hydroxytryptamine (5-HT) with MGO or GO, which may alter the metabolic function of 5-HT. METHODS Stock solutions of 5-HT, MGO and GO were made in PBS buffer at pH 7.4 and 5-HT was incubated with MGO or GO at different concentrations. The reactions were also performed at physiological concentrations. The reaction mixtures collected at different incubation times were analyzed by direct ESI-HRMS, LC/MS and LC/MS/MS to detect/characterize the products. Agilent 6545 Q-TOF and Agilent 6420 triple quadrupole mass spectrometers were used for the study, and LC separations were performed on a C18 column. RESULTS The direct ESI-HRMS data of the reaction mixtures showed formation of three and four reaction products when 5-HT was reacted with MGO and GO, respectively. All the products showed dominant [M + H]+ ions. The products were characterized by HRMS, LC/MS/MS and literature reports on similar compounds. The products can easily be identified by LC/MS based on the accurate mass values together with retention time information. The MS/MS of the reaction products showed structure-indicative fragment ions. CONCLUSIONS 5-HT reacts with one or two MGO/GO to form a set of reaction products. The reaction between 5-HT and MGO or GO was faster at higher concentrations of MGO/GO (<10 min), and the same products were found even at physiological concentrations (<48 h). The LC/MS/MS (SRM) method can be used to screen the reaction products when present at low levels.
Collapse
Affiliation(s)
- L Sai Sachin
- Analytical Chemistry & Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - R Nagarjuna Chary
- Analytical Chemistry & Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - P Pavankumar
- Analytical Chemistry & Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - S Prabhakar
- Analytical Chemistry & Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| |
Collapse
|
44
|
El-Maghrabey MH, Nakatani T, Kishikawa N, Kuroda N. Aromatic aldehydes as selective fluorogenic derivatizing agents for α‐dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum. J Pharm Biomed Anal 2018; 158:38-46. [DOI: 10.1016/j.jpba.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 10/16/2022]
|
45
|
Qin D, Li L, Li J, Li J, Zhao D, Li Y, Li B, Zhang X. A New Compound Isolated from the Reduced Ribose-Tryptophan Maillard Reaction Products Exhibits Distinct Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6752-6761. [PMID: 29895144 DOI: 10.1021/acs.jafc.8b01561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, a compound of 532.24 Da named BF-4 was separated from the ribose-tryptophan Maillard reaction products by solvent extraction and purified through reverse phase high performance liquid chromatography. The purified compound BF-4 was identified as 3-((1 H-indol-3-yl)methyl)-8-(5-((1 H-indol-3-yl)methyl)-6-oxomorpholin-2-yl)-9-hydroxy-1,7,4-dioxazecan-2-one in accordance with 1D- and 2D-NMR spectra and LC-ESI-MS/MS analysis. BF-4 significantly reduced the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) in lipopolysaccharide-stimulated RAW 264.7 cells. It inhibited nuclear factor κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation through suppressing phosphorylation of IκBα, P65, P38 and c-Jun N-terminal kinase (JNK). The anti-inflammatory activity of BF-4 was comparable to dexamethasone, and more importantly, BF-4 showed less cytotoxicity than dexamethasone on the normal human liver cell LO2. The results indicate that BF-4 is a promising anti-inflammatory agent with pharmaceutical potential.
Collapse
Affiliation(s)
- Dan Qin
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- College of Food Science and Engineering , Anhui Science and Technology University , Bengbu 233100 , China
| | - Lin Li
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| | - Jing Li
- Center for Molecular Metabolism , Nanjing University of Science and Technology , 200 Xiaolingwei Street , Nanjing 210094 , China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou 510515 , China
| | - Di Zhao
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology , Dongguan University of Technology , Dongguan 523808 , China
| | - Bing Li
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| | - Xia Zhang
- College of Food Science and Engineering , South China University of Technology , 381 Wushan Road , Tianhe District, Guangzhou 510640 , China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , 381 Wushan Road , Guangzhou 510640 , China
| |
Collapse
|
46
|
Saifi IJ, Neelofar K, Ajmal M, Siddiqi SS. Biophysical and immunological characterization of 2-dRib modified HSA and its implications in diabetes mellitus. Int J Biol Macromol 2018; 113:294-299. [DOI: 10.1016/j.ijbiomac.2018.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/15/2022]
|
47
|
Inhibition of advanced glycation end products by isoferulic acid and its free radical scavenging capacity: An in vitro and molecular docking study. Int J Biol Macromol 2018; 118:1479-1487. [PMID: 29969636 DOI: 10.1016/j.ijbiomac.2018.06.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/02/2023]
Abstract
Non-enzymatic glycation and Oxidation of some essential biological macromolecules are paramount in the pathogenesis of various diseases including diabetes and atherosclerosis. Hyperglycemia plays a key role in the pathological process of diabetic complications by progressive accumulation of advanced glycation end products (AGEs) in body tissues. Formation of AGEs as a result of protein glycation is followed by an increased free radical activity that additionally contributes towards the bio-macromolecular damage. The present study aimed to evaluate the free radical scavenging and antiglycation capacity of isoferulic acid (IFA). The free radical scavenging activity of IFA was measured using DPPH, FRAP, and metal chelating assays. IFA showed effective reducing power, free radical scavenging activity and metal chelation activity in concentration dependent manner. The antiglycation activity of IFA was studied using various spectroscopic techniques. The obtained results were validated with free amino, sulfhydryl group, carbonyl content and AGEs formation. Secondary structural alterations were monitored using circular dichroism, morphology of aggregates was analyzed using transmission electron microscopy. Molecular docking reveals the possible binding location of IFA with in the sub-domain IIA of human serum albumin (HSA).
Collapse
|
48
|
Bohlooli M, Ghaffari-Moghaddam M, Khajeh M, Sheibani N. Determination of Amadori Product in Glycated Human Serum Albumin by Spectroscopy Methods. ChemistrySelect 2018. [DOI: 10.1002/slct.201800207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Mostafa Khajeh
- Department of Chemistry; University of Zabol; Zabol Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Biomedical Engineering, University of Wisconsin; School of Medicine and Public Health; Madison, WI USA
| |
Collapse
|
49
|
Fournier JE, Northrup V, Canales DD, Moore C, Shea JL. The Effects of Storage and Additives on Postmortem HbA1c Measurements. J Forensic Sci 2018; 63:1870-1874. [PMID: 29495066 DOI: 10.1111/1556-4029.13770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 11/28/2022]
Abstract
HbA1c is used in forensic toxicology to identify undiagnosed diabetes mellitus (DM) and those with poor glycemic control prior to death. HbA1c is typically measured in whole blood collected in tubes containing ethylenediaminetetraacetic acid (EDTA). The effect of other additives, including sodium fluoride (NaF), is unclear. Furthermore, the assessment of short- and long-term stability of HbA1c has produced conflicting results. In this study, we collected paired postmortem blood samples in EDTA and NaF tubes (n = 142) to assess their comparability for HbA1c measurement. Stability was assessed by measuring HbA1c at baseline, 2, 3, and 4 weeks postcollection (stored at 4°C) and at 2, 4, 6, and 12 months postcollection (stored at -20°C). We found no significant difference in HbA1c between the two preservatives at any of the time points indicating NaF is a suitable preservative for HbA1c measurement. We also determined that DM status, postmortem interval, and decomposition had no effect on stability.
Collapse
Affiliation(s)
- Jeffrey E Fournier
- Dalhousie Medicine New Brunswick, Dalhousie Medical School, 100 Tucker Park Road, Saint John, NB, Canada, E2K 5E2
| | - Victoria Northrup
- Department of Research Services, Saint John Regional Hospital, 400 University Avenue, Saint John, NB, Canada, E2L 4L4.,Department of Laboratory Medicine, Saint John Regional Hospital, 400 University Avenue, Saint John, NB, Canada, E2L 4L4
| | - Donaldo D Canales
- Department of Research Services, Saint John Regional Hospital, 400 University Avenue, Saint John, NB, Canada, E2L 4L4
| | - Christa Moore
- Department of Laboratory Medicine, Saint John Regional Hospital, 400 University Avenue, Saint John, NB, Canada, E2L 4L4
| | - Jennifer L Shea
- Department of Laboratory Medicine, Saint John Regional Hospital, 400 University Avenue, Saint John, NB, Canada, E2L 4L4.,Department of Pathology, Dalhousie University, 6299 South Street, Halifax, NS, Canada, B3H 4R2
| |
Collapse
|
50
|
Glycation induced conformational alterations in caprine brain cystatin (CBC) leads to aggregation via passage through a partially folded state. Int J Biol Macromol 2018; 106:917-929. [DOI: 10.1016/j.ijbiomac.2017.08.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022]
|