1
|
Pintea A, Manea A, Pintea C, Vlad RA, Bîrsan M, Antonoaea P, Rédai EM, Ciurba A. Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review. BIOMOLECULES 2025; 15:88. [PMID: 39858482 DOI: 10.3390/biom15010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
One class of cosmetic compounds that have raised interest of many experts is peptides. The search for ingredients with good biocompatibility and bioactivity has led to the use of peptides in cosmetic products. Peptides are novel active ingredients that improve collagen synthesis, enhance skin cell proliferation, or decrease inflammation. Based on their mechanism of action, they can be classified into signal peptides, carrier peptides, neurotransmitter inhibitor peptides, and enzyme inhibitor peptides. This review focuses on the main types of peptides and their application in the cosmetic field, underlining their main limitations. One of the most significant drawbacks of cosmetic peptides is their poor permeability through membranes, which limits their delivery and effectiveness. As a result, this review follows the methods used for improving permeability through the stratum corneum. Increasing peptide bioavailability and stability for enhanced delivery to the desired site of action and visible effects have become central points for the latest research due to their promising features. For this purpose, several methods have been identified and described. Physical techniques include thermal ablation (radiofrequency and laser), electrical methods (electroporation, iontophoresis), mechanical approach (microneedles), and ultrasounds. As an alternative, innovative formulations have been developed in nano-systems such as liposomes, niosomes, ethosomes, nanoemulsions, and other nanomaterials to reduce skin irritation and improve product effectiveness. The purpose of this review is to provide the latest information regarding these noteworthy molecules and the reasoning behind their use in cosmetic formulations.
Collapse
Affiliation(s)
- Andrada Pintea
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Andrei Manea
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Cezara Pintea
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Magdalena Bîrsan
- Department of Drug Industry and Pharmaceutical Biotechnology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emöke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
2
|
Poleva I. Novel Gel Formulation and Deep Injection Techniques for Lifting Effects in Cosmetic Dermatology. JOURNAL OF COSMETIC DERMATOLOGY 2025; 24:e16789. [PMID: 39797519 PMCID: PMC11724232 DOI: 10.1111/jocd.16789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect. MATERIALS AND METHODS The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments. The injections were administered deeply to ensure proper targeting. Follow-up assessments were conducted after each treatment session and three months after the final injection. Evaluation methods included subjective assessments by both patients and investigators using the Global Aesthetic Improvement Scale (GAIS), as well as objective assessments using a 3D photosystem to measure wrinkle conditions and vectors of traction. RESULTS All participants completed the study, with no significant adverse effects observed apart from mild swelling at the injection sites. Despite the high viscosity of HA necessitating the use of a 27 G needle, the injection process was generally comfortable and minimally painful. Subjective evaluations revealed consistent improvements in skin appearance from the first application, which continued to increase throughout the study and remained high even 3 months post-treatment. Objective evaluations demonstrated significant improvements in wrinkle conditions and lifting effects, with a substantial increase in the standard deviation score for wrinkle conditions and the average traction vector length measuring 1.6 mm. CONCLUSION The study findings confirm the safety and efficacy of the injectable formula, with high patient satisfaction, noticeable lifting effects, and significant improvements in wrinkle conditions. These results support the use of the injectable as a promising option for non-invasive skin rejuvenation treatments.
Collapse
|
3
|
Lee SG, Kang SM, Kang H. Wrinkle Reduction Using Tetrapeptide-68 Contained in an O/W Formulation: A Randomized Double-Blind Placebo-Controlled Study. PHARMACEUTICS 2024; 16:987. [PMID: 39204332 PMCID: PMC11359174 DOI: 10.3390/pharmaceutics16080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Peptides, composed of 2-50 amino acids, have gained attention in anti-aging treatments due to their high safety, low irritation, and cost-effective production. This study aimed to evaluate the anti-wrinkle efficacy of Tetrapeptide-68, derived from the skin structural protein Loricrin, on periorbital wrinkles in women aged 30-65 years. A 12-week, double-blind, randomized controlled trial was conducted with 25 participants who applied the Tetrapeptide-68 (100 ppm) O/W formulation around the eyes. Skin physiological parameters were assessed at baseline, 4, 8, and 12 weeks. Participants also completed efficacy and usability questionnaires. Significant improvements in wrinkle reduction were observed with Tetrapeptide-68 cream treatment, as measured by various skin roughness parameters and 3D imaging analysis. Participants reported positive changes in skin texture and moisture levels, with no adverse reactions noted. Tetrapeptide-68 cream demonstrates promising anti-wrinkle effects, highlighting its potential as an effective ingredient in anti-aging skincare formulations. Further studies are recommended to explore its long-term benefits and underlying mechanisms.
Collapse
Affiliation(s)
- Sung-Gyu Lee
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Republic of Korea;
| | - Sang-Moon Kang
- R&D Center, A&PEP Inc., Cheongju-si 28101, Republic of Korea;
| | - Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si 31116, Republic of Korea;
| |
Collapse
|
4
|
Álvarez CA, Toro-Araneda T, Cumillaf JP, Vega B, Tapia MJ, Roman T, Cárdenas C, Córdova-Alarcón V, Jara-Gutiérrez C, Santana PA, Guzmán F. Evaluation of the Biological Activities of Peptides from Epidermal Mucus of Marine Fish Species from Chilean Aquaculture. MARINE DRUGS 2024; 22:248. [PMID: 38921559 PMCID: PMC11204461 DOI: 10.3390/md22060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
The skin of fish is a physicochemical barrier that is characterized by being formed by cells that secrete molecules responsible for the first defense against pathogenic organisms. In this study, the biological activity of peptides from mucus of Seriola lalandi and Seriolella violacea were identified and characterized. To this purpose, peptide extraction was carried out from epidermal mucus samples of juveniles of both species, using chromatographic strategies for purification. Then, the peptide extracts were characterized to obtain the amino acid sequence by mass spectrometry. Using bioinformatics tools for predicting antimicrobial and antioxidant activity, 12 peptides were selected that were chemically produced by simultaneous synthesis using the Fmoc-Tbu strategy. The results revealed that the synthetic peptides presented a random coil or extended secondary structure. The analysis of antimicrobial activity allowed it to be discriminated that four peptides, named by their synthesis code 5065, 5069, 5070, and 5076, had the ability to inhibit the growth of Vibrio anguillarum and affected the copepodite stage of C. rogercresseyi. On the other hand, peptides 5066, 5067, 5070, and 5077 had the highest antioxidant capacity. Finally, peptides 5067, 5069, 5070, and 5076 were the most effective for inducing respiratory burst in fish leukocytes. The analysis of association between composition and biological function revealed that the antimicrobial activity depended on the presence of basic and aromatic amino acids, while the presence of cysteine residues increased the antioxidant activity of the peptides. Additionally, it was observed that those peptides that presented the highest antimicrobial capacity were those that also stimulated respiratory burst in leukocytes. This is the first work that demonstrates the presence of functional peptides in the epidermal mucus of Chilean marine fish, which provide different biological properties when the fish face opportunistic pathogens.
Collapse
Affiliation(s)
- Claudio A. Álvarez
- Laboratorio de Cultivo de Peces Marinos, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile;
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - Teresa Toro-Araneda
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | | | - Belinda Vega
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - María José Tapia
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
| | - Tanya Roman
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| | - Valentina Córdova-Alarcón
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile; (T.T.-A.); (B.V.); (M.J.T.); (V.C.-A.)
- Genomics on the Wave SpA, Viña del Mar 2520056, Chile
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud—MEDING, Universidad de Valparaíso, Valparaíso 2362905, Chile;
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso 2362905, Chile
| | - Paula A. Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.)
| |
Collapse
|
5
|
Kamińska J, Hecel A, Słowik J, Rombel-Bryzek A, Rowińska-Żyrek M, Witkowska D. Characterization of four peptides from milk fermented with kombucha cultures and their metal complexes-in search of new biotherapeutics. FRONTIERS IN MOLECULAR BIOSCIENCES 2024; 11:1366588. [PMID: 38638688 PMCID: PMC11024286 DOI: 10.3389/fmolb.2024.1366588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
The most common skin diseases include eczema, psoriasis, acne, and fungal infections. There is often no effective cure for them. Increasing antimicrobial drug resistance prompts us to search for new, safe, and effective therapeutics. Among such interesting candidates are peptides derived from milk fermented with specific lactic acid bacteria or with kombucha cultures, which are a potential treasure trove of bioactive peptides. Four of them are discussed in this article. Their interactions with zinc and copper ions, which are known to improve the well-being of the skin, were characterized by potentiometry, MS, ITC, and spectroscopic methods, and their cytostatic potential was analyzed. The results suggest that they are safe for human cells and can be used alone or in complexes with copper for further testing as potential therapeutics for skin diseases.
Collapse
Affiliation(s)
- Justyna Kamińska
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | - Joanna Słowik
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | | | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Opole, Poland
| |
Collapse
|
6
|
Errante F, Pallecchi M, Bartolucci G, Frediani E, Margheri F, Giovannelli L, Papini AM, Rovero P. Retro-Inverso Collagen Modulator Peptide Derived from Serpin A1 with Enhanced Stability and Activity In Vitro. JOURNAL OF MEDICINAL CHEMISTRY 2024. [PMID: 38470817 DOI: 10.1021/acs.jmedchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.
Collapse
Affiliation(s)
- Fosca Errante
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Espikem s.r.l., Prato, PO 59100, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, FI 50139, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Firenze, FI 50139, Italy
| | - Anna M Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Paolo Rovero
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, FI 50019, Italy
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, FI 50019, Italy
| |
Collapse
|
7
|
Li F, Chen H, Chen D, Zhang B, Shi Q, He X, Zhao H, Wang F. Clinical evidence of the efficacy and safety of a new multi-peptide anti-aging topical eye serum. JOURNAL OF COSMETIC DERMATOLOGY 2023; 22:3340-3346. [PMID: 37335808 DOI: 10.1111/jocd.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Skin aging is a complex multifactorial progressive process. With age, intrinsic and extrinsic factors cause the loss of skin elasticity, with the formation of wrinkles, resulting in skin sagging through various pathways. A combination of multiple bioactive peptides could be used as a treatment for skin wrinkles and sagging. OBJECTIVES This study aimed to evaluate the cosmetic efficacy of a multi-peptide eye serum as a daily skin-care product for improving the periocular skin of women within the ages of 20-45 years. METHODS The stratum corneum skin hydration and skin elasticity were assessed using a Corneometer CM825 and Skin Elastometer MPA580, respectively. The PRIMOS CR technique based on digital strip projection technology was used for skin image and wrinkle analysis around the "crow's feet" area. Self-assessment questionnaires were filled on Day 14 and 28 of product use. RESULTS This study included 32 subjects with an average age of 28.5 years. On Day 28, there was a significant decrease in the number, depth, and volume of wrinkles. Skin hydration, elasticity, and firmness increased continuously during the study period, consistent with typical anti-aging claims. A majority of the participants (75.00%) expressed overall satisfaction with their skin appearance after using the product. Most participants noted a visible skin improvement, with an increase in skin elasticity and smoothness, and confirmed the extensibility, applicability, and temperance of the product. No adverse reactions related to product use were observed. CONCLUSIONS The multi-peptide eye serum uses a multi-targeted mechanism against skin aging to improve the skin appearance, making it an ideal choice for daily skincare.
Collapse
Affiliation(s)
- Fengzhu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haowei Chen
- Dingmageili Biotechnology Ltd., Beijing, China
| | - Dongxiao Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Bingjie Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingying Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xihong He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Huabing Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fang Wang
- Dingmageili Biotechnology Ltd., Beijing, China
| |
Collapse
|
8
|
Mendoza-Muñoz N, Leyva-Gómez G, Piñón-Segundo E, Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Prado Audelo ML, Urbán-Morlán Z. Trends in biopolymer science applied to cosmetics. INTERNATIONAL JOURNAL OF COSMETIC SCIENCE 2023; 45:699-724. [PMID: 37402111 DOI: 10.1111/ics.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.
Collapse
Affiliation(s)
- Néstor Mendoza-Muñoz
- Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad de Colima, Colima, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Piñón-Segundo
- Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, L13, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - María L Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli, Mexico
| | | | - Zaida Urbán-Morlán
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
9
|
He B, Wang F, Qu L. Role of peptide-cell surface interactions in cosmetic peptide application. FRONTIERS IN PHARMACOLOGY 2023; 14:1267765. [PMID: 38027006 PMCID: PMC10679740 DOI: 10.3389/fphar.2023.1267765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Cosmetic peptides have gained popularity in a wide range of skincare products due to their good biocompatibility, effective anti-oxidative properties, and anti-aging effects. However, low binding between peptides and the cell surface limits the efficacy of functional peptides. In this study, we designed two novel targeting peptide motifs to enhance the interaction between cosmetic peptides and the cell surface, thereby improving their performance for skin health. To achieve this, we optimized the well-known peptide tripeptide-1 (GHK) by separately grafting the integrin αvβ3-binding motif RGD and the chondroitin sulfate (CS)-binding motif sOtx2 onto it, forming two chimeric targeting peptides, RGD-GHK and sOtx2-GHK. Comparative analysis showed that both RGD-GHK and sOtx2-GHK exhibited superior anti-oxidative and anti-apoptotic effects compared to the non-targeting peptide, GHK. Furthermore, RGD-GHK demonstrated exceptional anti-aging activity, and its potential for promoting wound healing and repairing the skin barrier was evaluated in vitro using cells and skin models. In vitro permeation and in vivo adsorption testing confirmed that RGD-GHK achieved a high local concentration in the skin layer, initiating peptide effects and facilitating in vivo wound healing, while maintaining excellent biocompatibility. The enhancement of signaling cosmetic peptides can be attributed to the specific interaction between the binding motif and cell surface components. Consequently, this targeting peptide holds promising potential as a novel functional peptide for application in cosmetics.
Collapse
Affiliation(s)
- Bingwei He
- Yunnan Botanee Bio-Technology Group Co, Ltd, Kunming, Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co, Ltd, Kunming, Yunnan, China
- Shanghai Jiyan Biomedical Development Co, Ltd, Shanghai, China
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co, Ltd, Kunming, Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co, Ltd, Kunming, Yunnan, China
- Shanghai Jiyan Biomedical Development Co, Ltd, Shanghai, China
| | - Liping Qu
- Yunnan Botanee Bio-Technology Group Co, Ltd, Kunming, Yunnan, China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co, Ltd, Kunming, Yunnan, China
- Shanghai Jiyan Biomedical Development Co, Ltd, Shanghai, China
| |
Collapse
|
10
|
Banov D, Carvalho M, Schwartz S, Frumento R. A randomized, double-blind, controlled study evaluating the effects of two facial serums on skin aging. SKIN RESEARCH AND TECHNOLOGY 2023; 29:e13522. [PMID: 38009023 PMCID: PMC10667605 DOI: 10.1111/srt.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Skin aging is a natural process that occurs because of oxidative stress. Facial skin aging is often concerning for individuals due to the exposure of the face. OBJECTIVES To assess and compare the effects of two anti-aging facial serums on the following characteristics associated with facial skin aging: fine lines/wrinkles, age spots, firmness, elasticity, texture, radiance, tone, lifting, clarity, and complexion. METHODS A 24-week, double-blind controlled study was conducted on 130 participants who were randomized into two groups: facial serum with Liposomal Blend and facial serum without Liposomal Blend. Clinical evaluations (Visual Analog Scale) and instrumental evaluations (Cutometer, SIAscope, and Clarity Pro image analysis) were performed at weeks 0 (baseline), 2, 4, 8, 12, and 24 to assess for changes in skin aging characteristics. RESULTS A total of 123 participants completed the study; participants that used the facial serum with Liposomal Blend had significantly greater improvements in skin aging characteristics compared to those that used the facial serum without Liposomal Blend. This study shows that Liposomal Blend is a vehicle with the ability to enhance the anti-aging properties of the ingredients within the facial serum by facilitating its delivery into the underlying layers of the skin. Higher concentration of ingredients at the site of action could potentially lead to greater damage repair and improvements in signs of facial skin aging. CONCLUSION By using Liposomal Blend, practitioners and pharmacists could potentially improve the delivery of the ingredients within their formulations into the skin, which may lead to increased treatment efficacy.
Collapse
Affiliation(s)
- Daniel Banov
- Research and Development (R&D)Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Maria Carvalho
- Research and Development (R&D)Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | | |
Collapse
|
11
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
12
|
Albini F, Biondi B, Lastella L, Peggion C. Oxime and thiazolidine chemoselective ligation reactions: a green method for cotton functionalization. CELLULOSE (LONDON, ENGLAND) 2023; 30:5573-5587. [PMID: 37304190 PMCID: PMC10193351 DOI: 10.1007/s10570-023-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
During the last years, the need to create textile materials provided with peculiar properties has grown significantly. In particular, new textiles are studied to be a first protection in the prevention of living organisms from pathogens. In this regard, modifying a textile material with biologically active compounds, such as antibacterial or antiviral peptides would be useful for many applications. Our work shows a study on the possibility of modifying cotton fabrics with peptides using thiazolidine and oxime chemoselective ligations. For this purpose, an enzymatic oxidation of cellulose in a heterogeneous phase and the possibility to reuse the oxidation solution for multiple times was successfully applied. Model peptides have been designed and synthesized in order to set up the conditions for conjugating peptides to cotton via either thiazolidine or oxime bond. A systematic study of the time, pH, and quantities needed for the best reaction conditions has been conducted. The efficiency and stability of the two chemoselective ligation bonds have been studied and compared. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10570-023-05253-1.
Collapse
Affiliation(s)
- Francesca Albini
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Luana Lastella
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Cristina Peggion
- Department of Chemistry, University of Padova, 35131 Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR - Department of Chemistry, University of Padova, 35131 Padova, Italy
| |
Collapse
|
13
|
Khan N, Ahmed S, Sheraz MA, Anwar Z, Ahmad I. Pharmaceutical based cosmetic serums. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2023; 48:167-210. [PMID: 37061274 DOI: 10.1016/bs.podrm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and demand for cosmeceuticals (cosmetic products that have medicinal or drug-like benefits) have been enhanced for the last few decades. Lately, the newly invented dosage form, i.e., the pharmaceutical-based cosmetic serum has been developed and widely employed in various non-invasive cosmetic procedures. Many pharmaceutical-based cosmetic serums contain natural active components that claim to have a medical or drug-like effect on the skin, hair, and nails, including anti-aging, anti-wrinkle, anti-acne, hydrating, moisturizing, repairing, brightening and lightening skin, anti-hair fall, anti-fungal, and nail growth effect, etc. In comparison with other pharmaceutical-related cosmetic products (creams, gels, foams, and lotions, etc.), pharmaceutical-based cosmetic serums produce more rapid and incredible effects on the skin. This chapter provides detailed knowledge about the different marketed pharmaceutical-based cosmetic serums and their several types such as facial serums, hair serums, nail serums, under the eye serum, lip serum, hand, and foot serum, respectively. Moreover, some valuable procedures have also been discussed which provide prolong effects with desired results in the minimum duration of time after the few sessions of the serum treatment.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan; Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
14
|
Kadyrov J, Ruiz-Perez L, Benson HAE, Mancera RL. Characterisation of the Molecular Mechanism of Permeation of the Prodrug Me-5ALA across the Human Stratum Corneum Using Molecular Dynamics Simulations. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2022; 23:ijms232416001. [PMID: 36555643 PMCID: PMC9786775 DOI: 10.3390/ijms232416001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The barrier imposed by the outer layer of the skin, the stratum corneum, creates an almost impermeable environment for exogenous substances. Few lipophilic drugs with low molecular mass can passively diffuse through this layer, highlighting the need to develop methods to enable the delivery of more drugs via the transdermal route. The prodrug approach involves modifying the structure of a drug molecule to enhance its permeability across the skin, but it is often difficult to predict how exactly changes in chemical structure affect permeation. This study uses molecular dynamics simulations to predict permeability values and adequately characterise the molecular mechanism of permeation of the prodrugs Me-5ALA and its parent compound 5ALA across a molecular model of the lipid bilayers of the human stratum corneum. The influence of increased hydrophobicity in Me-5ALA on its permeation revealed a reduction in hydrogen bonding capability that enables it to interact more favourably with the hydrophobic region of the bilayer and diffuse at a faster rate with less resistance, thus making it a better permeant compared to its more hydrophilic parent compound. This molecular simulation approach offers a promising route for the rational design of drug molecules that can permeate effectively across the stratum corneum.
Collapse
Affiliation(s)
- Janonna Kadyrov
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 5845, Australia
| | - Lanie Ruiz-Perez
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 5845, Australia
| | - Heather A. E. Benson
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 5845, Australia
- Basil Hetzel Institute for Translational Health Research, 37a Woodville Road, Woodville South, SA 5011, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ricardo L. Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 5845, Australia
- Correspondence:
| |
Collapse
|
15
|
Matrikines as mediators of tissue remodelling. ADVANCED DRUG DELIVERY REVIEWS 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
16
|
Tian LW, Luo D, Chen D, Zhou H, Zhang XC, Yang XL, Wang YL, Liu W. Co-delivery of bioactive peptides by nanoliposomes for promotion of hair growth. JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1016/j.jddst.2022.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
17
|
Liu M, Chen S, Zhiwen Z, Li H, Sun G, Yin N, Wen J. Anti-ageing peptides and proteins for topical applications: a review. PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY 2021; 27:108-125. [PMID: 34957891 DOI: 10.1080/10837450.2021.2023569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin ageing is a cumulative result of oxidative stress, predominantly caused by reactive oxygen species (ROS). Respiration, pollutants, toxins, or ultraviolet A (UVA) irradiation produce ROS with 80% of skin damage attributed to UVA irradiation. Anti-ageing peptides and proteins are considered valuable compounds for removing ROS to prevent skin ageing and maintenance of skin health. In this review, skin ageing theory has been illustrated with a focus on the mechanism and relationship with anti-ageing peptides and proteins. The effects, classification, and transport pathways of anti-ageing peptides and proteins across skin are summarized and discussed. Over the last decade, several novel formulations and advanced strategies have been developed to overcome the challenges in the dermal delivery of proteins and peptides for skin ageing. This article also provides an in-depth review of the latest advancements in the dermal delivery of anti-ageing proteins and peptides. Based on these studies, this review prospected several semi-solid dosage forms to achieve topical applicability for anti-ageing peptides and proteins.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Zhang Zhiwen
- Shanghai Institute of Materia Medica, Chinese Academy of Science, China
| | - Hongyu Li
- School of Pharmacy, University of Arkansas for Medical Sciences, Arkansas, USA
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, China
| | - Naibo Yin
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8080125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive peptides are gaining more and more popularity in the research and development of cosmetic products with anti-aging effect. Acetyl hexapeptide-8 is a hydrophilic peptide incorporated in cosmetics to reduce the under-eye wrinkles and the forehead furrows. Hydrophilic interaction liquid chromatography (HILIC) is the separation technique of choice for analyzing peptides. In this work, a rapid HILIC method coupled to photodiode array detection operated at 214 nm was developed, validated and used to determine acetyl-hexapeptide-8 in cosmetics. Chromatography was performed on a Xbridge® HILIC BEH analytical column using as mobile phase a 40 mM ammonium formate water solution (pH 6.5)-acetonitrile mixture 30:70, v/v at flow rate 0.25 mL min−1. The assay was linear over the concentration range 20 to 30 μg mL−1 for the cosmetic formulations and 0.004 to 0.007% (w/w) for the cosmetic cream. The limits of quantitation for acetyl hexapeptide-8 were 1.5 μg mL−1 and 0.002% (w/w) for the assay of cosmetic formulations and cosmetic creams, respectively. The method was applied to the analysis of cosmetic formulations and anti-wrinkle cosmetic creams.
Collapse
|
19
|
Usage of Synthetic Peptides in Cosmetics for Sensitive Skin. PHARMACEUTICALS 2021; 14:ph14080702. [PMID: 34451799 PMCID: PMC8400021 DOI: 10.3390/ph14080702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Sensitive skin is characterized by symptoms of discomfort when exposed to environmental factors. Peptides are used in cosmetics for sensitive skin and stand out as active ingredients for their ability to interact with skin cells by multiple mechanisms, high potency at low dosage and the ability to penetrate the stratum corneum. This study aimed to analyze the composition of 88 facial cosmetics for sensitive skin from multinational brands regarding usage of peptides, reviewing their synthetic pathways and the scientific evidence that supports their efficacy. Peptides were found in 17% of the products analyzed, namely: acetyl dipeptide-1 cetyl ester, palmitoyl tripeptide-8, acetyl tetrapeptide-15, palmitoyl tripeptide-5, acetyl hexapeptide-49, palmitoyl tetrapeptide-7 and palmitoyl oligopeptide. Three out of seven peptides have a neurotransmitter-inhibiting mechanism of action, while another three are signal peptides. Only five peptides present evidence supporting their use in sensitive skin, with only one clinical study including volunteers having this condition. Noteworthy, the available data is mostly found in patents and supplier brochures, and not in randomized placebo-controlled studies. Peptides are useful active ingredients in cosmetics for sensitive skin. Knowing their efficacy and synthetic pathways provides meaningful insight for the development of new and more effective ingredients.
Collapse
|
20
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
21
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. MOLECULES 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
22
|
Lee EJ, Kim J, Jeong MK, Lee YM, Chung YJ, Kim EM. Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:15-26. [PMID: 33361534 PMCID: PMC7756534 DOI: 10.4196/kjpp.2021.25.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Peptides are short chain of amino acids linked by peptide bonds. They are widely used as effective and biocompatible active ingredients in cosmetic industry. In this study, we developed novel peptide mixture and identified its anti-pigmentation effect on melanocytes and keratinocytes. Our results revealed that peptide mixture inhibited melanosome biogenesis through the regulation of microphthalmia-associated transcription factor, a key factor of melanogenesis in melanocytes. And we observed that peptide mixture inhibited melanosome uptake through the reduction of protease-activated receptor 2, a phagocytosis-related receptor in keratinocytes. Furthermore, peptide mixture activated autophagy system resulting in degradation of transferred melanosomes in keratinocytes. The anti-pigmentation effect of multi-targeting peptide mixture was assessed in a human skin equivalent model (MelanoDerm). Melanin contents in epidermal layer were significantly decreased by topical treatment of peptide mixture, suggesting that it can be applied as a novel cosmetics material having a whitening function.
Collapse
Affiliation(s)
| | - Jandi Kim
- Caregen R&D Center, Anyang 14119, Korea
| | | | | | | | | |
Collapse
|
23
|
Abstract
The development of synthetic peptides for skin care dates to the 1980s. The cosmetic industry periodically launches new peptides, as they are promising and appealing active ingredients in the growing and innovative cosmetics market. In this study, trends in the use of peptides in anti-aging products were analyzed by comparing the composition of the products marketed in 2011 with products launched or reformulated in 2018. The scientific and marketing evidence for their application as active ingredients in anti-aging cosmetics was also compiled from products’ labels, suppliers’ technical data forms and online scientific databases. The use of peptides in anti-aging cosmetics increased by 7.2%, while the variety and the number of peptide combinations in products have increased by 88.5%. The most used peptides in antiaging cosmetic formulations are, in descending order, Palmitoyl Tetrapeptide-7, Palmitoyl Oligopeptide and Acetyl Hexapeptide-8. In 2011, the majority of peptides were obtained from synthesis, while in 2018, biotechnology processing was the dominant source. This study provides an overview of the market trends regarding the use of peptides in anti-aging products, providing meaningful data for scientists involved in the development of new peptides to identify opportunities for innovation in this area.
Collapse
|
24
|
Synthesis of Kisspeptin-Mimicking Fragments and Investigation of their Skin Anti-Aging Effects. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 2020; 21:ijms21228439. [PMID: 33182726 PMCID: PMC7698007 DOI: 10.3390/ijms21228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
In recent years, a number of active materials have been developed to provide anti-aging benefits for skin and, among them, peptides have been considered the most promising candidate due to their remarkable and long-lasting anti-wrinkle activity. Recent studies have begun to elucidate the relationship between the secretion of emotion-related hormones and skin aging. Kisspeptin, a neuropeptide encoded by the KISS1 gene, has gained attention in reproductive endocrinology since it stimulates the reproductive axis in the hypothalamus; however, the effects of Kisspeptin on skin have not been studied yet. In this study, we synthesized Kisspeptin-10 and Kisspeptin-E, which are biologically active fragments, to mimic the action of Kisspeptin. Next, we demonstrated the anti-aging effects of the Kisspeptin-mimicking fragments using UV-induced skin aging models, such as UV-induced human dermal fibroblasts (Hs68) and human skin explants. Kisspeptin-E suppressed UV-induced 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) stimulation leading to a regulation of skin aging related genes, including type I procollagen, matrix metalloproteinases-1 (MMP-1), interleukin-6 (IL-6), and IL-8, and rescued the skin integrity. Taken together, these results suggest that Kisspeptin-E could be useful to improve UV-induced skin aging by modulating expression of stress related genes, such as 11β-HSD1.
Collapse
|
25
|
Imhof L, Leuthard D. Topical Over-the-Counter Antiaging Agents: An Update and Systematic Review. DERMATOLOGY 2020; 237:217-229. [PMID: 32882685 DOI: 10.1159/000509296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Abstract
Over-the-counter antiaging formulations aim to prevent or minimize the signs of aging skin, and to maintain the benefits obtained from different cosmetic procedures. Even though a huge selection of such products is available on the market, evidence and good clinical practice of the data supporting their use are oftentimes lacking. In this systematic review, the authors reviewed scientific data available in the published literature on the most common ingredients used in antiaging cosmetics, with a particular focus on in vivo studies.
Collapse
Affiliation(s)
- Laurence Imhof
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland,
| | - Deborah Leuthard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Kennedy K, Cal R, Casey R, Lopez C, Adelfio A, Molloy B, Wall AM, Holton TA, Khaldi N. The anti-ageing effects of a natural peptide discovered by artificial intelligence. INTERNATIONAL JOURNAL OF COSMETIC SCIENCE 2020; 42:388-398. [PMID: 32453870 DOI: 10.1111/ics.12635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/08/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE As skin ages, impaired extracellular matrix (ECM) protein synthesis and increased action of degradative enzymes manifest as atrophy, wrinkling and laxity. There is mounting evidence for the functional role of exogenous peptides across many areas, including in offsetting the effects of cutaneous ageing. Here, using an artificial intelligence (AI) approach, we identified peptide RTE62G (pep_RTE62G), a naturally occurring, unmodified peptide with ECM stimulatory properties. The AI-predicted anti-ageing properties of pep_RTE62G were then validated through in vitro, ex vivo and proof of concept clinical testing. METHODS A deep learning approach was applied to unlock pep_RTE62G from a plant source, Pisum sativum (pea). Cell culture assays of human dermal fibroblasts (HDFs) and keratinocytes (HaCaTs) were subsequently used to evaluate the in vitro effect of pep_RTE62G. Distinct activities such as cell proliferation and ECM protein production properties were determined by ELISA assays. Cell migration was assessed using a wound healing assay, while ECM protein synthesis and gene expression were analysed, respectively, by immunofluorescence microscopy and PCR. Immunohistochemistry of human skin explants was employed to further investigate the induction of ECM proteins by pep_RTE62G ex vivo. Finally, the clinical effect of pep_RTE626 was evaluated in a proof of concept 28-day pilot study. RESULTS In vitro testing confirmed that pep_RTE62G is an effective multi-functional anti-ageing ingredient. In HaCaTs, pep_RTE62G treatment significantly increases both cellular proliferation and migration. Similarly, in HDFs, pep_RTE62G consistently induced the neosynthesis of ECM protein elastin and collagen, effects that are upheld in human skin explants. Lastly, in our proof of concept clinical study, application of pep_RTE626 over 28 days demonstrated anti-wrinkle and collagen stimulatory potential. CONCLUSION pep_RTE62G represents a natural, unmodified peptide with AI-predicted and experimentally validated anti-ageing properties. Our results affirm the utility of AI in the discovery of novel, functional topical ingredients.
Collapse
Affiliation(s)
- K Kennedy
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - R Cal
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - R Casey
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - C Lopez
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - A Adelfio
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - B Molloy
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - A M Wall
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - T A Holton
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| | - N Khaldi
- Nuritas Ltd, Joshua Dawson House, Dawson St, Dublin 2, D02 RY95, Ireland
| |
Collapse
|
27
|
The First Human Clinical Trial on the Skin Depigmentation Efficacy of Glycinamide Hydrochloride. BIOMEDICINES 2020; 8:biomedicines8080257. [PMID: 32751779 PMCID: PMC7460399 DOI: 10.3390/biomedicines8080257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
A previous study identified certain low molecular anti-melanogenic peptides that share a common sequence with α-melanocyte stimulating hormone (MSH) and end with a glycinamide moiety. Glycinamide itself also showed anti-melanogenic activity in cell-based assays, but neither glycine nor acetyl glycinamide were active, which indicated a special structure and activity relationship. The aim of this study was to examine the skin depigmentation efficacy of glycinamide hydrochloride in human subjects. The primary skin irritation potential of glycinamide hydrochloride was evaluated by patch testing in 30 human subjects. The skin depigmentation efficacy of glycinamide hydrochloride was evaluated in a double-blinded clinical test in 21 human subjects. The test product and a control product were applied to designated sites on the right or left side of the face twice daily for eight weeks. Skin color parameters, i.e., the melanin index, the L* value (representing skin lightness), a* value (redness), and b* value (yellowness) were measured using instruments. The individual topology angle (ITAo, representing skin color) was calculated from L* and b values. The degree of skin pigmentation was visually assessed by two testers. The primary skin irritation test showed that a solution containing glycinamide hydrochloride up to 10% did not induce any adverse skin responses. In the efficacy test, the test product significantly reduced the melanin index, and increased L* value and ITAo after two weeks of application relative to the baseline value at the start of the test. It also significantly lowered the degree of pigmentation after 6 weeks of application, relative to the baseline value. Differences in the melanin index, L* value, ITAo and the degree of pigmentation between the test and control groups became statistically significant after six weeks or eight weeks of application. No signs of skin irritation were observed during the efficacy test. The present study suggests that glycinamide hydrochloride has great potential to be used in the control of skin hyperpigmentation.
Collapse
|
28
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. FRONTIERS IN PHARMACOLOGY 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
29
|
Park KY, Kim J. Synthesis and Biological Evaluation of the Anti-Melanogenesis Effect of Coumaric and Caffeic Acid-Conjugated Peptides in Human Melanocytes. FRONTIERS IN PHARMACOLOGY 2020; 11:922. [PMID: 32625101 PMCID: PMC7311773 DOI: 10.3389/fphar.2020.00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
Excessive pigmentation and reduced elasticity are the major skin problems that dermatologists and cosmetologists address. Compounds that inhibit melanin production might contribute to improving skin problems. In this study, we investigated whether coumaric acid- and caffeic acid-conjugated peptides might affect alpha-melanocyte stimulating hormone-induced melanin production, tyrosinase activity, and melanin synthesis-related gene expression in SK-MEL-2 human melanoma cells. Coumaric acid and caffeic acid showed no significant cytotoxicity, and they inhibited melanin production. In addition, coumaric acid- and caffeic acid-conjugated peptides suppressed tyrosinase activity more than arbutin, a known tyrosinase inhibitor. Quantitative real-time PCR (qRT-PCR) results also showed that both peptides inhibited the expression of melanin synthesis-related genes, TYR, TYRP1, TYRP2, and MITF. In particular, among the nine conjugated peptides tested, caffeic acid linked to a Gly-Gly-Gly linker and conjugated to the tripeptide, ARP, showed the greatest inhibition of gene expression in the qRT-PCR analysis. These results suggested that the inhibition of melanin exerted by coumaric acid- and caffeic acid-conjugated peptides might provide important information for the development of pigmentation-related skin diseases and cosmetic products.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material's Development, CHA Meditech Co., Ltd, Daejeon, South Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
30
|
Response Factorial Design Analysis on Papain-Generated Hydrolysates from Actinopyga lecanora for Determination of Antioxidant and Antityrosinase Activities. MOLECULES 2020; 25:molecules25112663. [PMID: 32521731 PMCID: PMC7321370 DOI: 10.3390/molecules25112663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to alleviate skin aging. In the present study, pH, reaction temperature, reaction time and enzyme/substrate ratio (E/S) have been identified as the parameters in the papain enzymatic hydrolysis of A. lecanora. The degree of hydrolysis (DH) with antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays were used as the responses in the optimization. Analysis of variance (ANOVA), normal plot of residuals and 3D contour plots were evaluated to study the effects and interactions between parameters. The best conditions selected from the optimization were at pH 5.00, 70 °C of reaction temperature, 9 h of hydrolysis time and 1.00% enzyme/substrate (E/S) ratio, with the hydrolysates having 51.90% of DH, 42.70% of DPPH activity and 109.90 Fe2+μg/mL of FRAP activity. The A. lecanora hydrolysates (ALH) showed a high amount of hydrophobic amino acids (286.40 mg/g sample) that might be responsible for antioxidant and antityrosinase activities. Scanning electron microscopy (SEM) image of ALH shows smooth structures with pores. Antityrosinase activity of ALH exhibited inhibition of 31.50% for L-tyrosine substrate and 25.40% for L-DOPA substrate. This condition suggests that the optimized ALH acquired has the potential to be used as a bioactive ingredient for cosmeceutical applications.
Collapse
|
31
|
Liu K, Yang L, Peng X, Gong H, Wang J, Lu JR, Xu H. Effects of Conventional Surfactants on the Activity of Designed Antimicrobial Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3531-3539. [PMID: 32183512 DOI: 10.1021/acs.langmuir.0c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, the interaction between a designed antimicrobial peptide (AMP) G(IIKK)3I-NH2 (G3) and four typical conventional surfactants (sodium dodecyl sulfonate (SDS), hexadecyl trimethyl ammonium bromide (C16TAB), polyoxyethylene (23) lauryl ether (C12EO23), and tetradecyldimethylamine oxide (C14DMAO)) has been studied through surface tension measurement and circular dichroism (CD) spectroscopy. The antimicrobial activities of AMP/surfactant mixtures have also been studied with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the fungus Candida albicans. The cytotoxicity of the AMP/surfactant mixtures has also been assessed with NIH 3T3 and human skin fibroblast (HSF) cells. The surface tension data showed that the AMP/SDS mixture was much more surface-active than SDS alone. CD results showed that G3 conformation changed from random coil, to β-sheet, and then to α-helix with increasing SDS concentration, showing a range of structural transformation driven by the different interactions with SDS. The antimicrobial activity of G3 to Gram-negative and Gram-positive bacteria decreased in the presence of SDS due to the strong interaction of electrostatic attraction between the peptide and the surfactant. The interactions between G3 and C16TAB, C12EO23, and C14DMAO were much weaker than SDS. As a result, the surface tension of surfactants with G3 did not change much, neither did the secondary structures of G3. The antimicrobial activities of G3 were little affected in the presence of C12EO23, slightly improved by C14DMAO, and clearly enhanced by cationic surfactant C16TAB due to its strong cationic and antimicrobial nature, consistent with their surface physical activities as binary mixtures. Although AMP G3 did not show activity to fungus, the mixtures of AMP/C16TAB and AMP/C14DMAO could kill C. albicans at high surfactant concentrations. The mixtures had rather high cytotoxicity to NIH 3T3 and HSF cells although G3 is nontoxic to cells. Cationic AMPs can be formulated with nonionic, cationic, and zwitterionic surfactants during product development, but care must be taken when AMPs are formulated with anionic surfactants, as the strong electrostatic interaction may undermine their antimicrobial activity.
Collapse
Affiliation(s)
- Kang Liu
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Liuxin Yang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoting Peng
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Haoning Gong
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
32
|
Bojarska J, Remko M, Breza M, Madura ID, Kaczmarek K, Zabrocki J, Wolf WM. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. MOLECULES 2020; 25:E1135. [PMID: 32138329 PMCID: PMC7179192 DOI: 10.3390/molecules25051135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
The success of innovative drugs depends on an interdisciplinary and holistic approach to their design and development. The supramolecular architecture of living systems is controlled by non-covalent interactions to a very large extent. The latter are prone to extensive cooperation and like a virtuoso play a symphony of life. Thus, the design of effective ligands should be based on thorough knowledge on the interactions at either a molecular or high topological level. In this work, we emphasize the importance of supramolecular structure and ligand-based design keeping the potential of supramolecular H-bonding synthons in focus. In this respect, the relevance of supramolecular chemistry for advanced therapies is appreciated and undisputable. It has developed tools, such as Hirshfeld surface analysis, using a huge data on supramolecular interactions in over one million structures which are deposited in the Cambridge Structure Database (CSD). In particular, molecular interaction surfaces are useful for identification of macromolecular active sites followed by in silico docking experiments. Ornithine-derived compounds are a new, promising class of multi-targeting ligands for innovative therapeutics and cosmeceuticals. In this work, we present the synthesis together with the molecular and supramolecular structure of a novel ornithine derivative, namely N-α,N-δ)-dibenzoyl-(α)-hydroxymethylornithine, 1. It was investigated by modern experimental and in silico methods in detail. The incorporation of an aromatic system into the ornithine core induces stacking interactions, which are vital in biological processes. In particular, rare C=O…π intercontacts have been identified in 1. Supramolecular interactions were analyzed in all structures of ornithine derivatives deposited in the CSD. The influence of substituent was assessed by the Hirshfeld surface analysis. It revealed that the crystal packing is stabilized mainly by H…O, O…H, C…H, Cl (Br, F)…H and O…O interactions. Additionally, π…π, C-H…π and N-O…π interactions were also observed. All relevant H-bond energies were calculated using the Lippincott and Schroeder H-bond model. A library of synthons is provided. In addition, the large synthons (Long-Range Synthon Aufbau Module) were considered. The DFT optimization either in vacuo or in solutio yields very similar molecular species. The major difference with the relevant crystal structure was related to the conformation of terminal benzoyl C15-C20 ring. Furthermore, in silico prediction of the extensive physicochemical ADME profile (absorption, distribution, metabolism and excretion) related to the drug-likeness and medicinal chemistry friendliness revealed that a novel ornithine derivative 1 has the potential to be a new drug candidate. It has shown good in silico absorption and very low toxicity.
Collapse
Affiliation(s)
- Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Milan Remko
- Remedika, Sustekova, 1 85104 Bratislava, Slovakia;
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovakia;
| | - Izabela D. Madura
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland;
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Faculty of Chemistry, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|
33
|
Pimentel FB, Alves RC, Harnedy PA, FitzGerald RJ, Oliveira MBP. Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. TRENDS IN FOOD SCIENCE & TECHNOLOGY 2019. [DOI: 10.1016/j.tifs.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Falla T, Rodan K, Fields K, Bianchini R, Mahon C, Skobowiat C. Novel interpenetrating polymer network provides significant and long-lasting improvements in hydration to the skin from different body areas. JOURNAL OF COSMETIC DERMATOLOGY 2019; 19:1246-1253. [PMID: 31498539 PMCID: PMC7216996 DOI: 10.1111/jocd.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 06/21/2019] [Indexed: 01/19/2023]
Abstract
Background Hydration and moisturization both impact skin quality, directly reflecting its appearance. Signs and onset of dehydration‐related skin aging are region‐specific and require tailored treatment to be effective. Aims To test the hydrating effects of formulas containing a novel 3‐dimensional 3‐polymer interpenetrating network (3D3P‐IPN) to deliver humectants and actives to specific body sites. Methods Two clinical studies were conducted focused on the skin under eyes and body (arms/legs). Healthy women ages 25‐65 (eyes) or 35‐65 (body) with mild to moderate dry and aged skin were enrolled. Study product containing the 3D3P‐IPN and tailored actives was applied twice daily for 8 weeks on the periorbital area and for 4 weeks on the body. Changes in skin attributes were measured by biophysical instrumentation for hydration, dark circles, skin color, elasticity and transepidermal water loss, and by clinical grading and subject self‐assessment. Results Significant improvements in hydration and skin smoothing were demonstrated in both studies. In the periorbital region, actives and humectants delivered by the 3D3P‐IPN also led to significant improvements in dark circles, fine lines/crow's feet, puffiness, restoring radiance, and overall younger‐looking appearance. On the arms and legs, there were significant reductions in crepiness and dullness. The arms and legs also had improvements in tactile and visual skin texture, radiance, and general healthy look. Improvements were immediate and persisted through the end of both studies. Conclusion The 3D3P‐IPN provides immediate and long‐lasting improvements in skin hydration and overall healthy appearance regardless of the targeted application site.
Collapse
Affiliation(s)
| | - Katie Rodan
- Rodan + Fields, San Francisco, CA, USA.,Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Kathy Fields
- Rodan + Fields, San Francisco, CA, USA.,Department of Dermatology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
35
|
Kim JH, Seok JK, Kim YM, Boo YC. Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library. BRITISH JOURNAL OF DERMATOLOGY 2019; 181:128-137. [PMID: 30637717 DOI: 10.1111/bjd.17634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antimelanogenic peptides are potentially useful to treat hyperpigmentation, but many peptides have limited application because of high cost and/or low activity. OBJECTIVES To identify small and potent peptide inhibitors of cellular melanin synthesis that are useful for cosmetic and medical applications. METHODS A positional scanning synthetic tetrapeptide combinatorial library was used for screening of potentially active peptides. Antimelanogenic activities of the peptide pools and individual peptides were evaluated in B16-F10 melanoma cells and human epidermal melanocytes treated with alpha-melanocyte-stimulating hormone (α-MSH). RESULTS Predicted active tetrapeptide sequences were R-(F/L)-(C/W)-(G/R)-NH2 . Of the individual tetrapeptides tested, D3 (RFWG-NH2 ) and D5 (RLWG-NH2 ) exhibited high antimelanogenic activities. Tetrapeptide D9 (FRWG-NH2 ) with a sequence identical to that of a portion of α-MSH also showed antimelanogenic activity. Of the tripeptides tested, E5 (FWG-NH2 ), E6 (LWG-NH2 ) and E7 (RWG-NH2 ) were relatively more active. Dipeptide F1 (WG-NH2 ) and monopeptide G1 (G-NH2 , glycinamide) retained activity, but G2 (Ac-G-NH2 ) and G3 (glycine) did not. The antimelanogenic activities of peptides D3, E5, F1 and G1 were verified in α-MSH-stimulated human epidermal melanocytes. Commercially available G-NH2 ·HCl suppressed the phosphorylation levels of cAMP-responsive element binding protein, protein levels of microphthalmia-associated transcription factor and tyrosinase, l-tyrosine hydroxylase activity of tyrosinase, and the melanin levels in stimulated cells. CONCLUSIONS Small peptides, including glycinamide and tryptophanyl glycinamide, are potent antimelanogenic agents with potential value for the treatment of skin hyperpigmentation.
Collapse
Affiliation(s)
- J H Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - J K Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Y M Kim
- Ruby Crown Co., Ltd., Suite 505, Korea, Mediventure Center, 76 Dongnae-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Y C Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Ruby Crown Co., Ltd., Suite 505, Korea, Mediventure Center, 76 Dongnae-ro, Dong-gu, Daegu, 41061, Republic of Korea
| |
Collapse
|
36
|
Fluorescence-based Quantification of Bioactive Keratin Peptides from Feathers for Optimizing Large-scale Anaerobic Fermentation and Purification. BIOTECHNOLOGY AND BIOPROCESS ENGINEERING 2019. [DOI: 10.1007/s12257-018-0400-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Jin HS, Song K, Baek JH, Lee JE, Kim DJ, Nam GW, Kang NJ, Lee DW. Identification of Matrix Metalloproteinase-1-Suppressive Peptides in Feather Keratin Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12719-12729. [PMID: 30395462 DOI: 10.1021/acs.jafc.8b05213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhibition of matrix metalloproteinases (MMPs), which degrade collagen and elastin in the dermis of normal skin, is a key strategy for anti-skin aging. In this study, we identified five low-molecular-weight (LMW, <1 kDa) MMP-1-suppressive peptides in feather keratin hydrolysate (FKH) obtained by anaerobic digestion with an extremophilic bacterium. FKH was first subjected to ultrafiltration, followed by size-exclusion chromatography and liquid chromatography/electrospray ionization tandem mass spectrometry analysis. Chemically synthesized peptides identical to the sequences identified suppressed MMP expression in human dermal fibroblasts (HDFs). To investigate the impact of the MMP-1-suppressive peptides on the signaling pathway, we performed antibody array phosphorylation profiling of HDFs. The results suggested that the peptide GGFDL regulates ultraviolet-B-induced MMP-1 expression by inhibiting mitogen-activated protein kinases and nuclear factor κB signaling pathways as well as histone modification. Thus, LMW feather keratin peptides could serve as novel bioactive compounds to protect the skin against intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Hyeon-Su Jin
- Department of Biotechnology , Yonsei University , Seoul 03722 , South Korea
| | - Kyeongseop Song
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Je-Hyun Baek
- Center of Biomedical Mass Spectrometry (CBMS) , DiatechKorea Company, Limited , Seoul 05808 , South Korea
| | - Jae-Eun Lee
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Da Jeong Kim
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Gae-Won Nam
- School of Cosmetics , Seowon University , Cheongju 28674 , South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology , Kyungpook National University , Daegu 41566 , South Korea
| | - Dong-Woo Lee
- Department of Biotechnology , Yonsei University , Seoul 03722 , South Korea
| |
Collapse
|
38
|
Dermal peptide delivery using enhancer molecules and colloidal carrier systems. Part III: Tetrapeptide GEKG. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES 2018; 124:137-144. [DOI: 10.1016/j.ejps.2018.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022]
|
39
|
Abstract
Cosmeceuticals are cosmetics that promise to deliver physiologically relevant benefits without the incorporation of prescription drugs. To entice consumers to purchase these premium priced products, a story must be told of how the cosmeceutical delivers on these appearance improvement promises. The backbone of any cosmeceutical skin care regimen is facial cleansing and moisturizing. This article reviews the novel ingredients and technologies used to achieve these benefits examining what is real and what is not.
Collapse
Affiliation(s)
- Zoe Diana Draelos
- Dermatology Consulting Services, PLLC, 2444 North Main Street, High Point, NC 27262, USA.
| |
Collapse
|
40
|
Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, Franco OL, Carvalho JL. Breaking the frontiers of cosmetology with antimicrobial peptides. BIOTECHNOLOGY ADVANCES 2018; 36:2019-2031. [PMID: 30118811 DOI: 10.1016/j.biotechadv.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
Antimicrobial peptides (AMPs) are mostly endogenous, cationic, amphipathic polypeptides, produced by many natural sources. Recently, many biological functions beyond antimicrobial activity have been attributed to AMPs, and some of these have attracted the attention of the cosmetics industry. AMPs have revealed antioxidant, self-renewal and pro-collagen effects, which are desirable in anti-aging cosmetics. Additionally, AMPs may also be customized to act on specific cellular targets. Here, we review the recent literature that highlights the many possibilities presented by AMPs, focusing on the relevance and impact that this potentially novel class of active cosmetic ingredients might have in the near future, creating new market outlooks for the cosmetic industry with these molecules as a viable alternative to conventional cosmetics.
Collapse
Affiliation(s)
- Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Mariana Carolina Braga
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gustavo Oliveira Silva Santana
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Robert Pogue
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Simoni Campos Dias
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Universidade de Brasília, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasília/DF, 70910-900, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
41
|
Yang Y, Kong B, Jung Y, Park JB, Oh JM, Hwang J, Cho JY, Kweon DH. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. FRONTIERS IN IMMUNOLOGY 2018; 9:725. [PMID: 29696021 PMCID: PMC5904360 DOI: 10.3389/fimmu.2018.00725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/23/2018] [Indexed: 01/09/2023]
Abstract
Vesicle-associated V-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans-SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, South Korea
| | - Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Younghoon Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Joon-Bum Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jung-Mi Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Jaesung Hwang
- Department of Genetic Engineering, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
42
|
Abstract
Peptides found in skin can act by different mechanisms of action, being able to function as epidermal or nervous growth factors or even as neurotransmitters. Due to the vast functionality of these compounds, there is growing research on bioactive peptides aimed at investigating their uses in products developed for stimulating collagen and elastin synthesis and improving skin healing. Thus, a literature search on applications of the most common bioactive peptides used in cosmeceuticals was carried out. There is a lack of proper reviews concerning this topic in scientific literature. Nine peptides with specific actions on body and facial dysfunctions were described. It could be noted while searching scientific literature that studies aimed at investigating peptides which prevent aging of the skin are overrepresented. This makes searching for peptides designed for treating other skin dysfunctions more difficult. The use of biomimetic peptides in cosmetic formulations aimed at attenuating or preventing different types of skin dysfunctions is a topic where information is still lackluster. Even though research on these compounds is relatively common, there is still a need for more studies concerning their practical uses so their mechanisms of action can be fully elucidated, as they tend to be quite complex.
Collapse
|
43
|
Giannakou M, Varvaresou A, Kiriazopoulos E, Papageorgiou S, Kavvalou E, Tsirivas E, Panderi I. Quantification of oligopeptide-20 and oligopeptide-24 in cosmetic creams using hydrophilic interaction liquid chromatography with electrospray ionization mass spectrometry. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Giannakou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Division of Pharmaceutical Chemistry; Laboratory of Pharmaceutical Analysis; Zografou Greece
| | - Athanasia Varvaresou
- Technological Education Institution of Athens, School of Health and Caring Professions, Department of Aesthetics and Cosmetology; Laboratory of Cosmetic Science; Greece
| | - Evaggelos Kiriazopoulos
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Division of Pharmaceutical Chemistry; Laboratory of Pharmaceutical Analysis; Zografou Greece
| | - Spiridon Papageorgiou
- Technological Education Institution of Athens, School of Health and Caring Professions, Department of Aesthetics and Cosmetology; Laboratory of Cosmetic Science; Greece
| | - Eirini Kavvalou
- University of Crete, School of Medicine; Department of Dermatology; Heraklion Greece
| | - Efstathios Tsirivas
- Technological Education Institution of Athens, School of Health and Caring Professions, Department of Aesthetics and Cosmetology; Laboratory of Cosmetic Science; Greece
| | - Irene Panderi
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Division of Pharmaceutical Chemistry; Laboratory of Pharmaceutical Analysis; Zografou Greece
| |
Collapse
|
44
|
Yeo I, Lee YJ, Song K, Jin HS, Lee JE, Kim D, Lee DW, Kang NJ. Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. JOURNAL OF BIOTECHNOLOGY 2018; 271:17-25. [PMID: 29438785 DOI: 10.1016/j.jbiotec.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Bioactive peptides contribute to various cellular processes including improved skin physiology. Hence, bioactive keratins have attracted considerable attention as active cosmetic ingredients for skin health. Here, we obtained low molecular weight (LMW) keratins from native chicken feathers by anaerobic digestion with an extremely thermophilic bacterium Fervidobacterium islandicum AW-1, followed by stepwise fractionation through ultrafiltration. To assess the effects of the feather keratins on skin health, we performed in vitro and ex vivo assays to investigate their inhibitory effects on matrix metalloproteinases (MMPs). As results, LMW feather keratins marginally inhibited collagenase, elastase, and radical scavenging activities. On the other hand, LMW feather keratins significantly suppressed the expression of ultraviolet B (UVB)-induced MMP-1 and MMP-13 in human dermal fibroblasts. Furthermore, phospho-kinase antibody array revealed that LMW feather keratins suppressed UVB-induced phosphorylation of Akts, c-Jun N-terminal kinases 1, p38 beta, and RSK2, but not ERKs in human dermal fibroblast. Overall, these results suggest that LMW feather keratins are potential candidates as cosmeceutical peptides for anti-skin aging.
Collapse
Affiliation(s)
- Inhyuk Yeo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Jik Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeongseop Song
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeon-Su Jin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dajeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Woo Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
45
|
Song D, Park H, Lee SH, Kim MJ, Kim EJ, Lim KM. PAL-12, a new anti-aging hexa-peptoid, inhibits UVB-induced photoaging in human dermal fibroblasts and 3D reconstructed human full skin model, Keraskin-FT™. ARCHIVES OF DERMATOLOGICAL RESEARCH 2017; 309:697-707. [PMID: 28852829 DOI: 10.1007/s00403-017-1768-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/23/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Peptoids are a class of peptidomimetics whose pharmacological activities are widely investigated owing to their remarkable biological stability. However, the utilities of peptoids as cosmetic functional ingredients have not been fully explored. Here, we investigated anti-aging effects of PAL-12, a new hexa-peptoid, on UVB-induced photoaging in human dermal fibroblasts (HDFs) and a 3D reconstituted human full skin model, Keraskin-FT™. PAL-12 suppressed matrix metalloproteinase-1 (MMP-1) expression induced by UVB irradiation along with the attenuation of MMP-1 secretion as determined by ELISA assay. Interestingly PAL-12 slightly enhanced the expression levels of collagen-1 and fibronectin-1 in HDFs or Keraskin-FT™. In addition, PAL-12 prevented the decrease of cell viability following UVB irradiation. However, PAL-12 failed to affect ROS generation, cell necrosis and apoptosis significantly. Instead, PAL-12 suppressed UVB-induced activation of epidermal growth factor receptors (EGFR), extracellular signal-regulated kinase (ERK) and c-Jun, which may resulted in the attenuation of AP-1-promoted MMP-1 expression. Collectively, these results suggest that PAL-12 might be a novel cosmetic ingredient effective against UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Daeun Song
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyeonji Park
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Su-Hyon Lee
- Biosolution Co., Seoul, 01811, Republic of Korea
| | - Mi Jung Kim
- Department of Microbiology and Immunology, College of Medicine, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Eun-Joo Kim
- Biosolution Co., Seoul, 01811, Republic of Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
46
|
Interactions and release of two palmitoyl peptides from phytantriol cubosomes. EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS 2017; 117:60-67. [DOI: 10.1016/j.ejpb.2017.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
|
47
|
Olejnik A, Kapuscinska A, Schroeder G, Nowak I. Physico-chemical characterization of formulations containing endomorphin-2 derivatives. AMINO ACIDS 2017; 49:1719-1731. [PMID: 28752396 PMCID: PMC5602077 DOI: 10.1007/s00726-017-2470-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/19/2017] [Indexed: 01/07/2023]
Abstract
In this study semisolid formulations containing AcYPFF (N-acetyl-Tyr-Pro-Phe-Phe-NH2) tetrapeptide were obtained and characterized in terms of rheology, stability by multiple light scattering and particle size distribution by laser diffraction. Additionally, the release studies of tetrapeptide from formulations obtained were performed. The influence of different factors such as semisolid and membrane type on tetrapeptide release rate was examined. The release experiments of tetrapeptide modified with palmitoyl group (PalmYPFF) were also carried out. The results proved that formulation type and its rheological properties strongly determined the permeation process of the tetrapeptide. The fastest release of tetrapeptide was observed from hydrogel that had the lowest viscosity. The kinetic data of tetrapeptide released from oil-in-water (o/w) and water-in-oil (w/o) emulsions prepared at elevated temperature showed good fit to the Higuchi equation, whereas when AcYPFF was released from oil-in-water (o/w) emulsion prepared with the addition of auto-emulsifier high linearity with Korsmeyer–Peppas model was observed. While when tetrapeptide was released from Hydrogel the most suitable model was the first-order kinetics. It was suggested that mechanism that led to the release of tetrapeptide from all formulations was non-Fickian diffusion transport. The presence of palmitoyl group changed the solubility of tetrapeptide both in formulation and receptor fluid and thus the release rate of active compound was modified.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznań, Poland.
| | - Alicja Kapuscinska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznań, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznań, Poland
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznań, Poland
| |
Collapse
|
48
|
Kosheleva NV, Ilina IV, Kozhina KV, Zurina IM, Roskova AE, Gorkun AA, Ovchinnikov AV, Agranat MB, Morozov SG, Saburina IN. Cellular model based on laser microsurgery of cell spheroids to study the repair process. RUSSIAN JOURNAL OF DEVELOPMENTAL BIOLOGY 2017. [DOI: 10.1134/s1062360417010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Seok JK, Lee SW, Choi J, Kim YM, Boo YC. Identification of novel antimelanogenic hexapeptides via positional scanning of a synthetic peptide combinatorial library. EXPERIMENTAL DERMATOLOGY 2017; 26:742-744. [PMID: 27892629 DOI: 10.1111/exd.13262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Jin K Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seok W Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehyuk Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Young M Kim
- Ruby Crown Co., Ltd., Daegu, Republic of Korea
| | - Yong C Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Ruby Crown Co., Ltd., Daegu, Republic of Korea
| |
Collapse
|
50
|
Chai TT, Law YC, Wong FC, Kim SK. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. MARINE DRUGS 2017; 15:E42. [PMID: 28212329 PMCID: PMC5334622 DOI: 10.3390/md15020042] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
- Centre for Bio-diversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Yew-Chye Law
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
- Centre for Bio-diversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Se-Kwon Kim
- Department of Marine Bio-Convergence Science, Pukyong National University, 48513 Busan, Korea.
- Institute for Life Science of Seogo (ILSS), Kolmar Korea Co, 137-876 Seoul, Korea.
| |
Collapse
|