1
|
Speranza BE, Hill AT, Do M, Cerins A, Donaldson PH, Desarker P, Oberman LM, Das S, Enticott PG, Kirkovski M. The Neurophysiological Effects of Theta Burst Stimulation as Measured by Electroencephalography: A Systematic Review. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:1083-1120. [PMID: 39084526 DOI: 10.1016/j.bpsc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Theta burst stimulation (TBS) is a noninvasive brain stimulation technique that can modulate neural activity. The effect of TBS on regions beyond the motor cortex remains unclear. With increased interest in applying TBS to nonmotor regions for research and clinical purposes, these effects must be understood and characterized. We synthesized the electrophysiological effects of a single session of TBS, as indexed by electroencephalography (EEG) and concurrent transcranial magnetic stimulation and EEG, in nonclinical participants. We reviewed 79 studies that administered either continuous TBS or intermittent TBS protocols. Broadly, continuous TBS suppressed and intermittent TBS facilitated evoked response component amplitudes. Response to TBS as measured by spectral power and connectivity was much more variable. Variability increased in the presence of task stimuli. There was a large degree of heterogeneity in the research methodology across studies. Additionally, the effect of individual differences on TBS response has been insufficiently investigated. Future research investigating the effects of TBS as measured by EEG must consider methodological and individual factors that may affect TBS outcomes.
Collapse
Affiliation(s)
- Bridgette E Speranza
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Brain Stimulation Laboratory, Alfred Psychiatry Research Centre, Department of Psychiatry, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Pushpal Desarker
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Tan B, Chen J, Liu Y, Lin Q, Wang Y, Shi S, Ye Y, Che X. Differential analgesic effects of high-frequency or accelerated intermittent theta burst stimulation of M1 on experimental tonic pain: Correlations with cortical activity changes assessed by TMS-EEG. Neurotherapeutics 2024; 21:e00451. [PMID: 39304439 DOI: 10.1016/j.neurot.2024.e00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
Accelerated intermittent theta burst stimulation (AiTBS) has attracted much attention in the past few years as a new form of brain stimulation paradigm. However, it is unclear the relative efficacy of AiTBS on cortical excitability compared to conventional high-frequency rTMS. Using concurrent TMS and electroencephalogram (TMS-EEG), this study systematically compared the efficacy on cortical excitability and a typical clinical application (i.e. pain), between AiTBS with different intersession interval (ISIs) and 10-Hz rTMS. Participants received 10-Hz rTMS, AiTBS-15 (3 iTBS sessions with a 15-min ISI), AiTBS-50 (3 iTBS sessions with a 50-min ISI), or Sham stimulation over the primary motor cortex on four separate days. All four protocols included a total of 1800 pulses but with different session durations (10-Hz rTMS = 18, AiTBS-15 = 40, and AiTBS-50 = 110 min). AiTBS-50 and 10-Hz rTMS were more effective in pain reduction compared to AiTBS-15. Using single-pulse TMS-induced oscillation, our data revealed low gamma oscillation as a shared cortical excitability change across all three active rTMS protocols but demonstrated completely opposite directions. Changes in low gamma oscillation were further associated with changes in pain perception across the three active conditions. In contrast, a distinct pattern of TMS-evoked potentials (TEPs) was revealed, with 10-Hz rTMS decreasing inhibitory N100 amplitude and AiTBS-15 reducing excitatory P60 amplitude. These changes in TEPs were also covarying with low gamma power changes. Sham stimulation indicated no significant effect on either cortical excitability or pain perception. These results are relevant only for provoked experimental pain, without being predictive for chronic pain, and revealed a change in low gamma oscillation, particularly around the very particular frequency of 40 Hz, shared between AiTBS and high-frequency rTMS. Conversely, cortical excitability (balance between excitation and inhibition) assessed by TEP recording was modulated differently by AiTBS and high-frequency rTMS paradigms.
Collapse
Affiliation(s)
- Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuye Lin
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
3
|
Salimi M, Nazari M, Mishler J, Mishra J, Ramanathan DS. Intermittent Theta Burst Stimulation Drives Bi-Directional Changes in Excitability in Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608693. [PMID: 39229174 PMCID: PMC11370367 DOI: 10.1101/2024.08.19.608693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Theta burst stimulation (TBS), an FDA-cleared treatment for depression, is hypothesized to modulate excitability in the prefrontal cortex, though this has not definitively been shown in vivo. We performed calcium imaging on glutamatergic neurons in awake rodents to understand the effects of theta burst stimulation at a cellular level. Our findings provide the first direct evidence that TBS bidirectionally modulates glutamatergic activity when delivered in vivo and directly links calcium activity changes during stimulation with post-stimulation plasticity.
Collapse
|
4
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Dhami P, Moreno S, Croarkin PE, Blumberger DM, Daskalakis ZJ, Farzan F. Baseline markers of cortical excitation and inhibition predict response to theta burst stimulation treatment for youth depression. Sci Rep 2023; 13:19115. [PMID: 37925557 PMCID: PMC10625527 DOI: 10.1038/s41598-023-45107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
Theta burst stimulation (TBS), a specific form of repetitive transcranial magnetic stimulation (TMS), is a promising treatment for youth with Major Depressive Disorder (MDD) who do not respond to conventional therapies. However, given the variable response to TBS, a greater understanding of how baseline features relate to clinical response is needed to identify which patients are most likely to benefit from this treatment. In the current study, we sought to determine if baseline neurophysiology, specifically cortical excitation and/or inhibition, is associated with antidepressant response to TBS. In two independent open-label clinical trials, youth (aged 16-24 years old) with MDD underwent bilateral dorsolateral prefrontal cortex (DLPFC) TBS treatment. Clinical trial one and two consisted of 10 and 20 daily sessions of bilateral DLPFC TBS, respectively. At baseline, single-pulse TMS combined with electroencephalography was used to assess the neurophysiology of 4 cortical sites: bilateral DLPFC and inferior parietal lobule. Measures of cortical excitation and inhibition were indexed by TMS-evoked potentials (i.e., P30, N45, P60, N100, and P200). Depression severity was measured before, during and after treatment completion using the Hamilton Rating Scale for Depression-17. In both clinical trials, the baseline left DLPFC N45 and P60, which are believed to reflect inhibitory and excitatory mechanisms respectively, were predictors of clinical response. Specifically, greater (i.e., more negative) N45 and smaller P60 baseline values were associated with greater treatment response to TBS. Accordingly, cortical excitation and inhibition circuitry of the left DLPFC may have value as a TBS treatment response biomarker for youth with MDD.Clinical trial 1 registration number: NCT02472470 (June 15, 2015).Clinical trial 2 registration number: NCT03708172 (October 17, 2018).
Collapse
Affiliation(s)
- Prabhjot Dhami
- School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, 1001 Queen St. W, Toronto, ON, M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada
- Circle Innovation, 1200-555 W. Hastings Street, Vancouver, BC, V6B 4N6, Canada
| | - Paul E Croarkin
- College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, 1001 Queen St. W, Toronto, ON, M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, 1001 Queen St. W, Toronto, ON, M6J 1A8, Canada
- Institute of Medical Science, Faculty of Medicine, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada.
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, 1001 Queen St. W, Toronto, ON, M6J 1A8, Canada.
- Institute of Medical Science, Faculty of Medicine, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
6
|
Krile L, Ensafi E, Cole J, Noor M, Protzner AB, McGirr A. A dose-response characterization of transcranial magnetic stimulation intensity and evoked potential amplitude in the dorsolateral prefrontal cortex. Sci Rep 2023; 13:18650. [PMID: 37903906 PMCID: PMC10616119 DOI: 10.1038/s41598-023-45730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
By combining transcranial magnetic stimulation (TMS) with electroencephalography, human cortical circuits can be directly interrogated. The resulting electrical trace contains TMS-evoked potential (TEP) components, and it is not known whether the amplitudes of these components are stimulus intensity dependent. We examined this in the left dorsolateral prefrontal cortex in nineteen healthy adult participants and extracted TEP amplitudes for the N40, P60, N120, and P200 components at 110%, 120%, and 130% of resting motor threshold (RMT). To probe plasticity of putative stimulus intensity dose-response relationships, this was repeated after participants received intermittent theta burst stimulation (iTBS; 600 pulses, 80% RMT). The amplitude of the N120 and P200 components exhibited a stimulus intensity dose-response relationship, however the N40 and P60 components did not. After iTBS, the N40 and P60 components continued to exhibit a lack of stimulus intensity dose-dependency, and the P200 dose-response was unchanged. In the N120 component, however, we saw evidence of change within the stimulus intensity dose-dependent relationship characterized by a decrease in absolute peak amplitudes at lower stimulus intensities. These data suggest that TEP components have heterogeneous dose-response relationships, with implications for standardizing and harmonizing methods across experiments. Moreover, the selective modification of the N120 dose-response relationship may provide a novel marker for iTBS plasticity in health and disease.
Collapse
Affiliation(s)
- Louisa Krile
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Elnaz Ensafi
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jaeden Cole
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Mah Noor
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
7
|
Zhang J, Ying C, Qian Z, Jiao X, Tang X, Kong G, Sun J, Wang J, Tang Y. Increased theta-low gamma phase-amplitude coupling in resting electroencephalography after intermittent theta burst stimulation. Neurophysiol Clin 2023; 53:102899. [PMID: 37801870 DOI: 10.1016/j.neucli.2023.102899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE Intermittent theta burst stimulation (iTBS) is based on the phase-amplitude coupling (PAC) pattern. We aimed to investigate the effect of iTBS on PAC in resting electroencephalography (EEG), which may provide insight into the underlying mechanism. METHODS Twenty-one healthy volunteers were recruited and received both active and sham neuroimaging-guided iTBS on two separate days, which was precisely delivered to the right superior temporal gyrus. On each experimental day, resting EEG was recorded before and after stimulation for each participant. PACs across electrodes and frequency bands were calculated and compared to investigate the effect of iTBS. RESULTS Theta (4-6 Hz) -low gamma (45-55 Hz) PAC over the stimulation site had a significant interaction effect, which increased after the active iTBS but did not differ after the sham iTBS. No significant interaction effect occurred in other cross-frequency couplings such as delta-low gamma, alpha-low gamma, delta-high gamma, theta-high gamma, or alpha-high gamma PAC in the region of interest. CONCLUSION iTBS selectively modulated theta-low gamma PAC at the stimulation area, which exhibited both region- and frequency- specificity. This suggests that PAC may be a bridge connecting external neuromodulation to internal neuroplasticity.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunwei Ying
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Gann MA, Dolfen N, King BR, Robertson EM, Albouy G. Prefrontal stimulation as a tool to disrupt hippocampal and striatal reactivations underlying fast motor memory consolidation. Brain Stimul 2023; 16:1336-1345. [PMID: 37647985 DOI: 10.1016/j.brs.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Recent evidence suggests that hippocampal replay in humans support rapid motor memory consolidation during epochs of wakefulness interleaved with task practice. OBJECTIVES/HYPOTHESES The goal of this study was to test whether such reactivation patterns can be modulated with experimental interventions and in turn influence fast consolidation. We hypothesized that non-invasive brain stimulation targeting hippocampal and striatal networks via the prefrontal cortex would influence brain reactivation and the rapid form of motor memory consolidation. METHODS Theta-burst stimulation was applied to a prefrontal cluster functionally connected to both the hippocampus and striatum of young healthy participants before they learned a motor sequence task in a functional magnetic resonance imaging (fMRI) scanner. Neuroimaging data acquired during task practice and the interleaved rest epochs were analyzed to comprehensively characterize the effect of stimulation on the neural processes supporting fast motor memory consolidation. RESULTS Our results collectively show that active, as compared to control, theta-burst stimulation of the prefrontal cortex hindered fast motor memory consolidation. Converging evidence from both univariate and multivariate analyses of fMRI data indicate that active stimulation disrupted hippocampal and caudate responses during inter-practice rest, presumably altering the reactivation of learning-related patterns during the micro-offline consolidation episodes. Last, stimulation altered the link between the brain and the behavioral markers of the fast consolidation process. CONCLUSION These results suggest that stimulation targeting deep brain regions via the prefrontal cortex can be used to modulate hippocampal and striatal reactivations in the human brain and influence motor memory consolidation.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, Santoro F, Pilato F, Spampinato DA, Rocchi L, Di Lazzaro V, Capone F. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci 2023; 17:1247104. [PMID: 37645690 PMCID: PMC10461063 DOI: 10.3389/fnhum.2023.1247104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
10
|
Han S, Li XX, Wei S, Zhao D, Ding J, Xu Y, Yu C, Chen Z, Zhou DS, Yuan TF. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study. Cell Rep Med 2023:101060. [PMID: 37263267 DOI: 10.1016/j.xcrm.2023.101060] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
It has been 15 years since repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex (DLPFC) was approved by the FDA for clinical depression treatment. Yet, the underlying mechanisms for rTMS-induced depression relief are not fully elucidated. This study analyzes TMS-electroencephalogram (EEG) data from 64 healthy control (HC) subjects and 53 patients with major depressive disorder (MDD) before and after rTMS treatment. Prior to treatment, patients with MDD have lower activity in the DLPFC, the hippocampus (HPC), the orbitofrontal cortex (OFC), and DLPFC-OFC connectivity compared with HCs. Following active rTMS treatment, patients with MDD show a significant increase in the DLPFC, HPC, and OFC. Notably, the increase in HPC activity is specifically associated with amelioration of depressive symptoms but not anxiety or sleep quality. The orbitofrontal-hippocampal pathway plays a crucial role in mediating depression relief following rTMS treatment. These findings suggest potential alternative targets for brain stimulation therapy against depression (chictr.org.cn: ChiCTR2100052007).
Collapse
Affiliation(s)
- Sizhu Han
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China; Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Xing-Xing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Shuochi Wei
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jinjun Ding
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yongming Xu
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Chang Yu
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Zan Chen
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
11
|
Rivas-Grajales AM, Barbour T, Camprodon JA, Kritzer MD. The Impact of Sex Hormones on Transcranial Magnetic Stimulation Measures of Cortical Excitability: A Systematic Review and Considerations for Clinical Practice. Harv Rev Psychiatry 2023; 31:114-123. [PMID: 37171472 PMCID: PMC10264142 DOI: 10.1097/hrp.0000000000000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative for the treatment of major depressive disorder (MDD), although its clinical effectiveness varies substantially. The effects of sex hormone fluctuations on cortical excitability have been identified as potential factors that can explain this variability. However, data on how sex hormone changes affect clinical response to rTMS is limited. To address this gap, we reviewed the literature examining the effects of sex hormones and hormonal treatments on transcranial magnetic stimulation (TMS) measures of cortical excitability. Results show that variations of endogenous estrogen, testosterone, and progesterone have modulatory effects on TMS-derived measures of cortical excitability. Specifically, higher levels of estrogen and testosterone were associated with greater cortical excitability, while higher progesterone was associated with lower cortical excitability. This highlights the importance of additional investigation into the effects of hormonal changes on rTMS outcomes and circuit-specific physiological variables. These results call for TMS clinicians to consider performing more frequent motor threshold (MT) assessments in patients receiving high doses of estrogen, testosterone, and progesterone in cases such as in vitro fertilization, hormone replacement therapy, and gender-affirming hormonal treatments. It may also be important to consider physiological hormonal fluctuations and their impact on depressive symptoms and the MT when treating female patients with rTMS.
Collapse
Affiliation(s)
- Ana Maria Rivas-Grajales
- From the Department of Psychiatry, Boston Medical Center, Boston University School of Medicine, Boston, MA (Dr. Rivas-Grajales); Department of Psychiatry, Division of Behavioral Neurology and Neuropsychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Drs. Barbour, Camprodon, Kritzer); Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA (Drs. Camprodon, Kritzer)
| | | | | | | |
Collapse
|
12
|
Momi D, Wang Z, Griffiths JD. TMS-evoked responses are driven by recurrent large-scale network dynamics. eLife 2023; 12:83232. [PMID: 37083491 PMCID: PMC10121222 DOI: 10.7554/elife.83232] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
A compelling way to disentangle the complexity of the brain is to measure the effects of spatially and temporally synchronized systematic perturbations. In humans, this can be non-invasively achieved by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Spatiotemporally complex and long-lasting TMS-EEG evoked potential (TEP) waveforms are believed to result from recurrent, re-entrant activity that propagates broadly across multiple cortical and subcortical regions, dispersing from and later re-converging on, the primary stimulation site. However, if we loosely understand the TEP of a TMS-stimulated region as the impulse response function of a noisy underdamped harmonic oscillator, then multiple later activity components (waveform peaks) should be expected even for an isolated network node in the complete absence of recurrent inputs. Thus emerges a critically important question for basic and clinical research on human brain dynamics: what parts of the TEP are due to purely local dynamics, what parts are due to reverberant, re-entrant network activity, and how can we distinguish between the two? To disentangle this, we used source-localized TMS-EEG analyses and whole-brain connectome-based computational modelling. Results indicated that recurrent network feedback begins to drive TEP responses from 100 ms post-stimulation, with earlier TEP components being attributable to local reverberatory activity within the stimulated region. Subject-specific estimation of neurophysiological parameters additionally indicated an important role for inhibitory GABAergic neural populations in scaling cortical excitability levels, as reflected in TEP waveform characteristics. The novel discoveries and new software technologies introduced here should be of broad utility in basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Zheng Wang
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - John D Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Xu X, Li X, Qi X, Jiang X, Xing H, Huang X, Gong Q. Effect of regional intrinsic activity following two kinds of theta burst stimulation on precuneus. Hum Brain Mapp 2023; 44:2254-2265. [PMID: 36661276 PMCID: PMC10028626 DOI: 10.1002/hbm.26207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Theta burst stimulation (TBS) has been widely used in the treatment of mental disorders, but the cerebral functional difference between intermittent TBS (iTBS) and continuous TBS (cTBS) after one single session of stimulation is not clear. Here we applied resting-state functional magnetic resonance imaging (RS-FMRI) to evaluate the alterations in intrinsic brain activity after iTBS and cTBS in the precuneus. We recruited 32 healthy young adults and performed a single session each of iTBS and cTBS at a 1-week interval. RS-fMRI was collected at baseline before and immediately after the stimulation. Parameters for regional brain activity (ALFF/fALFF/ReHo) and functional connectivity (FC) with the stimulated site of the precuneus after iTBS and cTBS were calculated and compared between each stimulation using a paired t-test. Correlation analysis among those parameters was calculated to explore whether changes in functional connectivity were associated with local spontaneous activity. After iTBS stimulation, fALFF increased in the bilateral precuneus, while fALFF decreased in the bilateral middle temporal gyrus. Reductions in precuneus FC were found in the bilateral cuneus, superior occipital gyrus, superior temporal gyrus, precentral gyrus, and postcentral gyrus, which correlated with regional activity. After cTBS, fALFF decreased in the bilateral insula, and precuneus FC was decreased in the bilateral inferior occipital gyrus and increased in the thalamus. In the current study, we observed that one session of iTBS or cTBS could cause inhibitory effects in remote brain regions, but only iTBS caused significant local activation in the target region.
Collapse
Affiliation(s)
- Xin Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xu Qi
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Xi Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
| | - Haoyang Xing
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- College of Physics, Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
14
|
Yuruk D, Ozger C, Garzon JF, Leffler JM, Shekunov J, Vande Voort JL, Zaccariello MJ, Nakonezny PA, Croarkin PE. Sequential bilateral accelerated theta burst stimulation in adolescents with suicidal ideation associated with major depressive disorder: Protocol for a randomized controlled trial. PLoS One 2023; 18:e0280010. [PMID: 37053246 PMCID: PMC10101506 DOI: 10.1371/journal.pone.0280010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Suicide is a leading cause of death in adolescents worldwide. Previous research findings suggest that suicidal adolescents with depression have pathophysiological dorsolateral prefrontal cortex (DLPFC) deficits in γ-aminobutyric acid neurotransmission. Interventions with transcranial magnetic stimulation (TMS) directly address these underlying pathophysiological deficits in the prefrontal cortex. Theta burst stimulation (TBS) is newer dosing approach for TMS. Accelerated TBS (aTBS) involves administering multiple sessions of TMS daily as this dosing may be more efficient, tolerable, and rapid acting than standard TMS. MATERIALS AND METHODS This is a randomized, double-blind, sham-controlled trial of sequential bilateral aTBS in adolescents with major depressive disorder (MDD) and suicidal ideation. Three sessions are administered daily for 10 days. During each session, continuous TBS is administered first to the right DPFC, in which 1,800 pulses are delivered continuously over 120 seconds. Then intermittent TBS is applied to the left DPFC, in which 1,800 pulses are delivered in 2-second bursts and repeated every 10 seconds for 570 seconds. The TBS parameters were adopted from prior research, with 3-pulse, 50-Hz bursts given every 200 ms (at 5 Hz) with an intensity of 80% active motor threshold. The comparison group will receive 3 daily sessions of bilateral sham TBS treatment for 10 days. All participants will receive the standard of care for patients with depression and suicidal ideation including daily psychotherapeutic skill sessions. Long-interval intracortical inhibition (LICI) biomarkers will be measured before and after treatment. Exploratory measures will be collected with TMS and electroencephalography for biomarker development. DISCUSSION This is the first known randomized controlled trial to examine the efficacy of sequential bilateral aTBS for treating suicidal ideation in adolescents with MDD. Results from this study will also provide opportunities to further understand the neurophysiological and molecular mechanisms of suicidal ideation in adolescents. TRIAL REGISTRATION Investigational device exemption (IDE) Number: G200220, ClinicalTrials.gov (ID: NCT04701840). Registered August 6, 2020. https://clinicaltrials.gov/ct2/show/NCT04502758?term=NCT04701840&draw=2&rank=1.
Collapse
Affiliation(s)
- Deniz Yuruk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Can Ozger
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Juan F. Garzon
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jarrod M. Leffler
- Virginia Treatment Center for Children, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jennifer L. Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Zaccariello
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul A. Nakonezny
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Children’s Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
15
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. Investigation of neurobiological responses to theta burst stimulation during recovery from mild traumatic brain injury (mTBI). Behav Brain Res 2023; 442:114308. [PMID: 36702385 DOI: 10.1016/j.bbr.2023.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The ability of the brain to recover following neurological insult is of interest for mild traumatic brain injury (mTBI) populations. Investigating whether non-invasive brain stimulation (NIBS) can modulate neurophysiology and cognition may lead to the development of therapeutic interventions post injury. The purpose of this study was to investigate neurobiological effects of one session of intermittent theta burst stimulation (iTBS) to the dorsolateral prefrontal cortex (DLPFC) in participants recovering from mTBI. METHOD Changes to neurophysiology were assessed with electroencephalography (EEG) and transcranial magnetic stimulation combined with EEG (TMS-EEG). Digit span working memory accuracy assessed cognitive performance. 30 patients were assessed within one-month of sustaining a mTBI and 26 demographically matched controls were assessed. Participants were also assessed at 3-months (mTBI: N = 21, control: N = 26) and 6-months (mTBI: N = 15, control: N = 24). RESULTS Analyses demonstrated iTBS did not reliably modulate neurophysiological activity, and no differences in cognitive performance were produced by iTBS at any assessment time-point. CONCLUSIONS Factors responsible for our null results are unclear. Possible limitations to our experimental design are discussed. SIGNIFICANCE Our findings suggest additional research is required to establish the effects of iTBS on plasticity following mTBI, prior to therapeutic application. DATA AND CODE AVAILABILITY STATEMENT We do not have ethical approval to make this data publicly available, as our approval predated our inclusion of such approvals (which we now do routinely).
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia.
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Australia; Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bionics Institute of Australia, 384-388 Albert St, East Melbourne, Vic 3002, Australia
| |
Collapse
|
16
|
Cheng M, Che X, Ye Y, He C, Yu L, Lv Y, Fitzgerald PB, Cash RFH, Fitzgibbon BM. Analgesic efficacy of theta-burst stimulation for postoperative pain. Clin Neurophysiol 2023; 149:81-87. [PMID: 36933324 DOI: 10.1016/j.clinph.2023.02.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) may be a relevant method to assist postoperative pain. However, studies to date have only used conventional 10 Hz rTMS and targeted the DLPFC for postoperative pain. A more recent form of rTMS, termed intermittent Theta Burst Stimulation (iTBS), enables to increase cortical excitability in a short period of time. This preliminary double-blind, randomised, sham controlled study was designed to evaluate the efficacy of iTBS in postoperative care across two distinct stimulation targets. METHODS A group of 45 patients post laparoscopic surgery were randomised to receive a single session of iTBS over either the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1), or Sham stimulation (1:1:1 ratio). Outcome measurements were number of pump attempts, total anaesthetic volume used, and self-rated pain experience, assessed at 1 hour, 6 hours, 24 hours, and 48 hours post stimulation. All randomised patients were analysed (n = 15 in each group). RESULTS Compared to Sham stimulation, DLPFC-iTBS reduced pump attempts at 6 (DLPFC = 0.73 ± 0.88, Sham = 2.36 ± 1.65, P = 0.031), 24 (DLPFC = 1.40 ± 1.24, Sham = 5.03 ± 3.87, P = 0.008), and 48 (DLPFC = 1.47 ± 1.41, Sham = 5.87 ± 4.34, P = 0.014) hours post-surgery, whereby M1 stimulation had no effect. No group effect was observed on total anaesthetics, which was mainly provided through the continuous administration of opioids at a set speed for each group. There was also no group or interaction effect on pain ratings. Pump attempts were positively associated with pain ratings in the DLPFC (r = 0.59, P = 0.02) and M1 (r = 0.56, P = 0.03) stimulation. CONCLUSIONS Our findings show that iTBS to the DLPFC reduces pump attempts for additional anaesthetics following a laparoscopic surgery. However, reduced pump attempts by DLPFC stimulation did not translate into a significantly smaller volume of total anaesthetic, due to the continuous administration of opioids at a set speed for each group. SIGNIFICANCE Our findings therefore provide preliminary evidence for iTBS targeting the DLPFC to be used to improve postoperative pain management.
Collapse
Affiliation(s)
- Ming Cheng
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Yang Ye
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Changlin He
- Anaesthesiologic Department, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liang Yu
- Department of Pain, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Lv
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia; Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Mosayebi-Samani M, Agboada D, Mutanen TP, Haueisen J, Kuo MF, Nitsche MA. Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: A multimodal TMS-EEG study. Brain Stimul 2023; 16:515-539. [PMID: 36828302 DOI: 10.1016/j.brs.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Psychology, Federal Armed Forces University Munich, Neubiberg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076, Aalto, Espoo, Finland
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany.
| |
Collapse
|
18
|
Li Y, Chen X, Zhang Q, Xu W, Li J, Ji F, Dong Q, Chen C, Li J. Effects of working memory span training on top-down attentional asymmetry at both neural and behavioral levels. Cereb Cortex 2023; 33:5937-5946. [PMID: 36617305 DOI: 10.1093/cercor/bhac472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/09/2023] Open
Abstract
The leftward asymmetry of the visual field and posterior brain regions, a feature of the normal attention process, can be strengthened by brain stimulation, e.g. administering alpha frequency stimulation to the left posterior cortex. However, whether it can be strengthened by cognitive training, especially with nonlateralized tasks, is unknown. We used a dataset from a 2-month-long randomized controlled trial and compared the control group with 2 training groups trained with backward or forward memory span tasks. A lateralized change detection task with varied memory loads was administered as the pre-, mid-, and post-tests with simultaneous electroencephalographic recording. Intrasubject response variability (IRV) and the alpha modulation index (MI) were calculated. Analysis of IRV showed more enhanced leftward attentional bias in the backward group than in the other groups. Consistently, analysis of MI found that its enhancements in the left hemisphere (but not the right hemisphere) of the backward group were significantly higher than those of the other groups. Further analysis revealed that left MI changes predicted left IRV improvement. All of these results indicated that backward memory span training enhanced leftward attentional asymmetry at both the behavioral and neural levels.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, P.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, No.5, Ankang Hutong, Xicheng District, Beijing 100088, P.R. China
| | - Qiumei Zhang
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining, Shandong 272013, P.R. China
| | - Wending Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, P.R. China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Haidian District, Beijing 100190, P.R. China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Haidian District, Beijing 100190, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining, Shandong 272013, P.R. China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, 4201 Social & Behavioral Sciences Gateway,CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, P.R. China
| |
Collapse
|
19
|
Luo X, Che X, Li H. Concurrent TMS-EEG and EEG reveal neuroplastic and oscillatory changes associated with self-compassion and negative emotions. Int J Clin Health Psychol 2023; 23:100343. [PMID: 36299492 PMCID: PMC9577271 DOI: 10.1016/j.ijchp.2022.100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background/Objective Self-compassion has a consensual relevance for overall mental health, but its mechanisms remain unknown. Using intermittent theta burst stimulation (iTBS) and concurrent transcranial magnetic stimulation-electroencephalography (TMS-EEG), this study investigated the causal relationship of the dorsolateral prefrontal cortex (DLPFC) with self-compassion and explored the changes in neuroplasticity and neural dynamics. Method Thirty-two healthy participants received iTBS or sham stimulation over the DLPFC, before and after which they were instructed to either use self-compassionate strategies or to be rejected in the context of social rejection and to report the level of self-compassion or negative affect. TMS-evoked potentials were evaluated as novel neuroplastic techniques with N45, P60, N100, and P180. Results iTBS uniquely decreased P180 amplitude measured with TMS-EEG whereby sham stimulation had no effect on neuroplasticity. In line with neuroplasticity changes, iTBS enhanced a widespread gamma band power and coherence, which correlated consistently with increased engagement in self-compassion. Meanwhile, iTBS demonstrated opposite effects on theta activity dependent on the social contexts whereby self-compassion decreased and social rejection enhanced it respectively. This unique effect of iTBS on theta activity was also supplemented by the enhancement of theta band coherence following iTBS. Conclusions We found a causal relationship between DLPFC and self-compassion. We also provide evidence to indicate widespread gamma activity and connectivity to correlate with self-compassion as well as the critical role of the DLPFC in modulating theta activity and negative emotions.
Collapse
Affiliation(s)
- Xi Luo
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China,TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University,Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China,Corresponding author.
| |
Collapse
|
20
|
Moffa AH, Boonstra TW, Wang A, Martin D, Loo C, Nikolin S. Neuromodulatory effects of theta burst stimulation to the prefrontal cortex. Sci Data 2022; 9:717. [PMID: 36414684 PMCID: PMC9681877 DOI: 10.1038/s41597-022-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
Theta burst stimulation (TBS) is a new form of repetitive transcranial magnetic stimulation (TMS) capable of non-invasively modulating cortical excitability. In recent years TBS has been increasingly used as a neuroscientific investigative tool and therapeutic intervention for psychiatric disorders, in which the dorsolateral prefrontal cortex (DLPFC) is often the primary target. However, the neuromodulatory effects of TBS on prefrontal regions remain unclear. Here we share EEG and ECG recordings and structural MRI scans, including high-resolution DTI, from twenty-four healthy participants who received intermittent TBS (two sessions), continuous TBS (two sessions), and sham stimulation (one session) applied to the left DLPFC using a single-blinded crossover design. Each session includes eyes-open resting-state EEG and single-pulse TMS-EEG obtained before TBS and 2-, 15-, and 30-minutes post-stimulation. This dataset enables foundational basic science investigations into the neuromodulatory effects of TBS on the DLPFC.
Collapse
Affiliation(s)
- Adriano H Moffa
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia. Hospital Rd, Randwick, Sydney, NSW, 2031, Australia
| | - Tjeerd W Boonstra
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia. Hospital Rd, Randwick, Sydney, NSW, 2031, Australia
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, Netherlands
| | - Ashley Wang
- University of New South Wales, Sydney, Australia
| | - Donel Martin
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia. Hospital Rd, Randwick, Sydney, NSW, 2031, Australia
| | - Colleen Loo
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia. Hospital Rd, Randwick, Sydney, NSW, 2031, Australia
| | - Stevan Nikolin
- School of Psychiatry, Black Dog Institute, University of New South Wales, Sydney, Australia. Hospital Rd, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
21
|
Maiella M, Casula EP, Borghi I, Assogna M, D’Acunto A, Pezzopane V, Mencarelli L, Rocchi L, Pellicciari MC, Koch G. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci Rep 2022; 12:19391. [PMID: 36371451 PMCID: PMC9653481 DOI: 10.1038/s41598-022-23040-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC). We used TMS in combination with electroencephalography (EEG) to evaluate changes in cortical activity on both left/right DLPFC and over the vertex. We found that simultaneous iTBS with γtACS but not with θtACS resulted in an enhancement of spectral gamma power, a trend in shift of individual peak frequency towards faster oscillations and an increase of local connectivity in the gamma band. Furthermore, the response to the neuromodulatory protocol, in terms of gamma oscillations and connectivity, were directly correlated with the initial level of cortical excitability. These results were specific to the DLPFC and confined locally to the site of stimulation, not being detectable in the contralateral DLPFC. We argue that the results described here could promote a new and effective method able to induce long-lasting changes in brain plasticity useful to be clinically applied to several psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Michele Maiella
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Elias Paolo Casula
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.7841.aDepartment of Psychology, La Sapienza University, Rome, Italy
| | - Ilaria Borghi
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.25786.3e0000 0004 1764 2907Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (IIT), Ferrara, Italy
| | - Martina Assogna
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Alessia D’Acunto
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Valentina Pezzopane
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lucia Mencarelli
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lorenzo Rocchi
- grid.7763.50000 0004 1755 3242Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Maria Concetta Pellicciari
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Giacomo Koch
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.8484.00000 0004 1757 2064Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Neurophysiological Impact of Theta Burst Stimulation Followed by Cognitive Exercise in Treatment of Youth Depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Changes in the TMS-evoked potential N100 in the dorsolateral prefrontal cortex as a function of depression severity in adolescents. J Neural Transm (Vienna) 2022; 129:1339-1352. [PMID: 36029418 PMCID: PMC9550695 DOI: 10.1007/s00702-022-02539-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
Studies using transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) revealed an imbalance between cortical excitation and inhibition (E/I) in the dorsolateral prefrontal cortex (DLPFC) in depression. As adolescence is a developmental period with an increase in depression prevalence and profound neural changes, it is crucial to study the relationship between depression and cortical excitability in adolescence. We aimed to investigate the cortical excitability of the DLPFC in adolescents with depression and a dependency of the TMS-evoked potential N100 on the depression severity. 36 clinical patients (12–18 years of age; 21 females) with a major depressive episode were assessed twice in a longitudinal design: shortly after admission (T0) and after six weeks of intervention (T1). GABA-B-mediated cortical inhibition in the left and right DLPFC, as assessed by the N100, was recorded with EEG. Significantly higher depression scores were reported at T0 compared to T1 (p < 0.001). N100 amplitudes were significantly increased (i.e., more negative) at T0 compared to T1 (p = 0.03). No significant hemispheric difference was found in the N100 component. The correlation between the difference in depression severity and the difference in N100 amplitudes (T0–T1) obtained during stimulation of the left DLPFC did not remain significant after correction for testing in both hemispheres. Higher N100 amplitudes during a state of greater depression severity are suggestive of an E/I imbalance in the DLPFC in adolescents with an acute depressive episode. The N100 reduction potentially reflects a normalization of DLPFC over inhibition in association with decreased depressive symptomatology, indicating severity dependency.
Collapse
|
24
|
Hooyman A, Garbin A, Fisher BE, Kutch JJ, Winstein CJ. Paired associative stimulation applied to the cortex can increase resting-state functional connectivity: A proof of principle study. Neurosci Lett 2022; 784:136753. [PMID: 35753613 PMCID: PMC10035603 DOI: 10.1016/j.neulet.2022.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION There is emerging evidence that high Beta coherence (hBc) between prefrontal and motor corticies, measured with resting-state electroencephalography (rs-EEG), can be an accurate predictor of motor skill learning and stroke recovery. However, it remains unknown whether and how intracortical connectivity may be influenced using neuromodulation. Therefore, a cortico-cortico PAS (ccPAS) paradigm may be used to increase resting-state intracortical connectivity (rs-IC) within a targeted neural circuit. PURPOSE Our purpose is to demonstrate proof of principle that ccPAS can be used to increase rs-IC between a prefrontal and motor cortical region. METHODS Eleven non-disabled adults were recruited (mean age 26.4, sd 5.6, 5 female). Each participant underwent a double baseline measurement, followed by a real and control ccPAS condition, counter-balanced for order. Control and ccPAS conditions were performed over electrodes of the right prefrontal and motor cortex. Both ccPAS conditions were identical apart from the inter-stimulus interval (i.e ISI 5 ms: real ccPAS and 500 ms: control ccPAS). Whole brain rs-EEG of high Beta coherence (hBc) was acquired before and after each ccPAS condition and then analyzed for changes in rs-IC along the targeted circuit. RESULTS Compared to ccPAS500 and baseline, ccPAS5 induced a significant increase in rs-IC, measured as coherence between electrodes over right prefrontal and motor cortex, (p <.05). CONCLUSION These findings demonstrate proof of principle that ccPAS with an STDP derived ISI, can effectively increase hBc along a targeted circuit.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Alexander Garbin
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
26
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
27
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
28
|
Ngetich R, Jin D, Li W, Song B, Zhang J, Jin Z, Li L. Enhancing Visuospatial Working Memory Performance Using Intermittent Theta-Burst Stimulation Over the Right Dorsolateral Prefrontal Cortex. Front Hum Neurosci 2022; 16:752519. [PMID: 35370586 PMCID: PMC8968997 DOI: 10.3389/fnhum.2022.752519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Noninvasive brain stimulation provides a promising approach for the treatment of neuropsychiatric conditions. Despite the increasing research on the facilitatory effects of this kind of stimulation on the cognitive processes, the majority of the studies have used the standard stimulation approaches such as the transcranial direct current stimulation and the conventional repetitive transcranial magnetic stimulation (rTMS) which seem to be limited in robustness and the duration of the transient effects. However, a recent specialized type of rTMS, theta-burst stimulation (TBS), patterned to mimic the natural cross-frequency coupling of the human brain, may induce robust and longer-lasting effects on cortical activity. Here, we aimed to investigate the effects of the intermittent TBS (iTBS), a facilitatory form of TBS, over the right DLPFC (rDLPFC), a brain area implicated in higher-order cognitive processes, on visuospatial working memory (VSWM) performance. Therefore, iTBS was applied over either the rDLPFC or the vertex of 24 healthy participants, in two separate sessions. We assessed VSWM performance using 2-back and 4-back visuospatial tasks before iTBS (at the baseline (BL), and after the iTBS. Our results indicate that the iTBS over the rDLPFC significantly enhanced VSWM performance in the 2-back task, as measured by the discriminability index and the reaction time. However, the 4-back task performance was not significantly modulated by iTBS. These findings demonstrate that the rDLPFC plays a critical role in VSWM and that iTBS is a safe and effective approach for investigating the causal role of the specific brain areas.
Collapse
|
29
|
Gordon PC, Belardinelli P, Stenroos M, Ziemann U, Zrenner C. Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral responses in human cortex. Brain Stimul 2022; 15:391-402. [PMID: 35182810 DOI: 10.1016/j.brs.2022.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prefrontal theta oscillations are involved in neuronal information transfer and retention. Phases along the theta cycle represent varied excitability states, whereby high-excitability states correspond to high-frequency neuronal activity and heightened capacity for plasticity induction, as demonstrated in animal studies. Human studies corroborate this model and suggest a core role of prefrontal theta activity in working memory (WM). OBJECTIVE/HYPOTHESIS We aimed at modulating prefrontal neuronal excitability and WM performance in healthy humans, using real-time EEG analysis for triggering repetitive transcranial magnetic stimulation (rTMS) theta-phase synchronized to the left dorsomedial prefrontal cortex. METHODS 16 subjects underwent 3 different rTMS interventions on separate days, with pulses triggered according to the individual's real-time EEG activity: 400 rTMS gamma-frequency (100 Hz) triplet bursts applied during either the negative peak of the prefrontal theta oscillation, the positive peak, or at random phase. Changes in cortical excitability were assessed with EEG responses following single-pulse TMS, and behavioral effects by using a WM task. RESULTS Negative-peak rTMS increased single-pulse TMS-induced prefrontal theta power and theta-gamma phase-amplitude coupling, and decreased WM response time. In contrast, positive-peak rTMS decreased prefrontal theta power, while no changes were observed after random-phase rTMS. CONCLUSION Findings point to the feasibility of EEG-TMS technology in a theta-gamma phase-amplitude coupling mode for effectively modifying WM networks in human prefrontal cortex, with potential for therapeutic applications.
Collapse
Affiliation(s)
- Pedro Caldana Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Ding Q, Chen S, Chen J, Zhang S, Peng Y, Chen Y, Chen J, Li X, Chen K, Cai G, Xu G, Lan Y. Intermittent Theta Burst Stimulation Increases Natural Oscillatory Frequency in Ipsilesional Motor Cortex Post-Stroke: A Transcranial Magnetic Stimulation and Electroencephalography Study. Front Aging Neurosci 2022; 14:818340. [PMID: 35197845 PMCID: PMC8859443 DOI: 10.3389/fnagi.2022.818340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Intermittent theta burst stimulation (iTBS) has been widely used as a neural modulation approach in stroke rehabilitation. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers a chance to directly measure cortical reactivity and oscillatory dynamics and allows for investigating neural effects induced by iTBS in all stroke survivors including individuals without recordable MEPs. Here, we used TMS-EEG to investigate aftereffects of iTBS following stroke. Methods We studied 22 stroke survivors (age: 65.2 ± 11.4 years; chronicity: 4.1 ± 3.5 months) with upper limb motor deficits. Upper-extremity component of Fugl-Meyer motor function assessment and action research arm test were used to measure motor function of stroke survivors. Stroke survivors were randomly divided into two groups receiving either Active or Sham iTBS applied over the ipsilesional primary motor cortex. TMS-EEG recordings were performed at baseline and immediately after Active or Sham iTBS. Time and time-frequency domain analyses were performed for quantifying TMS-evoked EEG responses. Results At baseline, natural frequency was slower in the ipsilesional compared with the contralesional hemisphere (P = 0.006). Baseline natural frequency in the ipsilesional hemisphere was positively correlated with upper limb motor function following stroke (P = 0.007). After iTBS, natural frequency in the ipsilesional hemisphere was significantly increased (P < 0.001). Conclusions This is the first study to investigate the acute neural adaptations after iTBS in stroke survivors using TMS-EEG. Our results revealed that natural frequency is altered following stroke which is related to motor impairments. iTBS increases natural frequency in the ipsilesional motor cortex in stroke survivors. Our findings implicate that iTBS holds the potential to normalize natural frequency in stroke survivors, which can be utilized in stroke rehabilitation.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Songbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jixiang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Shunxi Zhang
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yuan Peng
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yujie Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Junhui Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaotong Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Kang Chen
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Guangqing Xu,
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Yue Lan,
| |
Collapse
|
31
|
Rogasch NC, Biabani M, Mutanen TP. Designing and comparing cleaning pipelines for TMS-EEG data: a theoretical overview and practical example. J Neurosci Methods 2022; 371:109494. [PMID: 35143852 DOI: 10.1016/j.jneumeth.2022.109494] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Combining transcranial magnetic stimulation (TMS) with electroencephalography (EEG) is growing in popularity as a method for probing the reactivity and connectivity of neural circuits in basic and clinical research. However, using EEG to measure the neural responses to TMS is challenging due to the unique artifacts introduced by combining the two techniques. In this paper, we overview the artifacts present in TMS-EEG data and the offline cleaning methods used to suppress these unwanted signals. We then describe how open science practices, including the development of open-source toolboxes designed for TMS-EEG analysis (e.g., TESA - the TMS-EEG signal analyser), have improved the availability and reproducibility of TMS-EEG cleaning methods. We provide theoretical and practical considerations for designing TMS-EEG cleaning pipelines and then give an example of how to compare different pipelines using TESA. We show that changing even a single step in a pipeline designed to suppress decay artifacts results in TMS-evoked potentials (TEPs) with small differences in amplitude and spatial topography. The variability in TEPs resulting from the choice of cleaning pipeline has important implications for comparing TMS-EEG findings between research groups which use different online and offline approaches. Finally, we discuss the challenges of validating cleaning pipelines and recommend that researchers compare outcomes from TMS-EEG experiments using multiple pipelines to ensure findings are not related to the choice of cleaning methods. We conclude that the continued improvement, availability, and validation of cleaning pipelines is essential to ensure TMS-EEG reaches its full potential as a method for studying human neurophysiology.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University.
| | - Mana Biabani
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| |
Collapse
|
32
|
Pizem D, Novakova L, Gajdos M, Rektorova I. Is the vertex a good control stimulation site? Theta burst stimulation in healthy controls. J Neural Transm (Vienna) 2022; 129:319-329. [DOI: 10.1007/s00702-022-02466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 01/02/2023]
|
33
|
Ye Y, Wang J, Che X. Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cereb Cortex 2022; 32:4436-4446. [DOI: 10.1093/cercor/bhab493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
Collapse
|
34
|
Dose-response of intermittent theta burst stimulation of the prefrontal cortex: a TMS-EEG study. Clin Neurophysiol 2022; 136:158-172. [DOI: 10.1016/j.clinph.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023]
|
35
|
Hoy KE, Emonson MRL, Bailey NW, Humble G, Coyle H, Rogers C, Fitzgerald PB. Investigating Neurophysiological Markers of Symptom Severity in Alzheimer's Disease. J Alzheimers Dis 2021; 85:309-321. [PMID: 34806601 DOI: 10.3233/jad-210401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive decline in cognitive functioning for which there is a stark lack of effective treatments. Investigating the neurophysiological markers of symptom severity in AD may aid in the identification of alternative treatment targets. OBJECTIVE In the current study, we used a multimodal approach to investigate the association between functional connectivity (specifically between scalp electrodes placed over frontal and parietal regions) and symptom severity in AD, and to explore the relationship between connectivity and cortical excitability. METHODS 40 people with AD (25 mild severity, 15 moderate severity) underwent neurobiological assessment (resting state electroencephalography (EEG) and prefrontal transcranial magnetic stimulation (TMS) with EEG) and cognitive assessment. Neurobiological outcomes were resting state functional connectivity and TMS-evoked potentials. Cognitive outcomes were scores on the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, and a measure of episodic verbal learning. RESULTS Greater contralateral functional theta connectivity between frontal scalp electrodes and parietal scalp electrodes was associated with poorer cognitive performance. In addition, significant correlations were seen between the contralateral theta connectivity and the N100 and P60 TMS-evoked potentials measured from electrodes over the left dorsolateral prefrontal cortex. CONCLUSION Together these findings provide initial support for the use of a multimodal neurophysiological approaches to investigate potential therapeutic targets in AD. Suggestions for future research are discussed.
Collapse
Affiliation(s)
- Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Melanie R L Emonson
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Neil W Bailey
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Gregory Humble
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Hannah Coyle
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Caitlyn Rogers
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| |
Collapse
|
36
|
Deng X, Wang J, Zang Y, Li Y, Fu W, Su Y, Chen X, Du B, Dong Q, Chen C, Li J. Intermittent theta burst stimulation over the parietal cortex has a significant neural effect on working memory. Hum Brain Mapp 2021; 43:1076-1086. [PMID: 34730863 PMCID: PMC8764471 DOI: 10.1002/hbm.25708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The crucial role of the parietal cortex in working memory (WM) storage has been identified by fMRI studies. However, it remains unknown whether repeated parietal intermittent theta‐burst stimulation (iTBS) can improve WM. In this within‐subject randomized controlled study, under the guidance of fMRI‐identified parietal activation in the left hemisphere, 22 healthy adults received real and sham iTBS sessions (five consecutive days, 600 pulses per day for each session) with an interval of 9 months between the two sessions. Electroencephalography signals of each subject before and after both iTBS sessions were collected during a change detection task. Changes in contralateral delay activity (CDA) and K‐score were then calculated to reflect neural and behavioral WM improvement. Repeated‐measures ANOVA suggested that real iTBS increased CDA more than the sham one (p = .011 for iTBS effect). Further analysis showed that this effect was more significant in the left hemisphere than in the right hemisphere (p = .029 for the hemisphere‐by‐iTBS interaction effect). Pearson correlation analyses showed significant correlations for two conditions between CDA changes in the left hemisphere and K score changes (ps <.05). In terms of the behavioral results, significant K score changes after real iTBS were observed for two conditions, but a repeated‐measures ANOVA showed a nonsignificant main effect of iTBS (p = .826). These results indicate that the current iTBS protocol is a promising way to improve WM capability based on the neural indicator (CDA) but further optimization is needed to produce a behavioral effect.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanyan Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Intermittent Theta Burst Stimulation to the Primary Motor Cortex Reduces Cortical Inhibition: A TMS-EEG Study. Brain Sci 2021; 11:brainsci11091114. [PMID: 34573136 PMCID: PMC8472376 DOI: 10.3390/brainsci11091114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The aim of this study was to reveal the effects of intermittent theta burst stimulation (iTBS) in modulating cortical networks using transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording. Methods: Eighteen young adults participated in our study and received iTBS to the primary motor cortex (M1), supplementary motor area, and the primary visual cortex in three separate sessions. A finger tapping task and ipsilateral single-pulse TMS-EEG recording for the M1 were administrated before and after iTBS in each session. The effects of iTBS in motor performance and TMS-evoked potentials (TEPs) were investigated. Results: The results showed that iTBS to the M1, but not supplementary motor area or the primary visual cortex, significantly reduced the N100 amplitude of M1 TEPs in bilateral hemispheres (p = 0.019), with a more prominent effect in the contralateral hemisphere than in the stimulated hemisphere. Moreover, only iTBS to the M1 decreased global mean field power (corrected ps < 0.05), interhemispheric signal propagation (t = 2.53, p = 0.030), and TMS-induced early α-band synchronization (p = 0.020). Conclusion: Our study confirmed the local and remote after-effects of iTBS in reducing cortical inhibition in the M1. TMS-induced oscillations after iTBS for changed cortical excitability in patients with various neurological and psychiatric conditions are worth further exploration.
Collapse
|
38
|
Gann MA, King BR, Dolfen N, Veldman MP, Chan KL, Puts NAJ, Edden RAE, Davare M, Swinnen SP, Mantini D, Robertson EM, Albouy G. Hippocampal and striatal responses during motor learning are modulated by prefrontal cortex stimulation. Neuroimage 2021; 237:118158. [PMID: 33991699 PMCID: PMC8351752 DOI: 10.1016/j.neuroimage.2021.118158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Kimberly L Chan
- Advanced Imaging Research Center, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Nicolaas A J Puts
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience; King's College London, SE5 8AF London, United Kingdom
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Marco Davare
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, UB8 3PN Uxbridge, United Kingdom
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB Glasgow, United Kingdom
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001 Leuven, Belgium; LBI - KU Leuven Brain Institute, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
39
|
Chen L, Thomas EHX, Kaewpijit P, Miljevic A, Hughes R, Hahn L, Kato Y, Gill S, Clarke P, Ng F, Paterson T, Giam A, Sarma S, Hoy KE, Galletly C, Fitzgerald PB. Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial. Brain Stimul 2021; 14:1095-1105. [PMID: 34332155 DOI: 10.1016/j.brs.2021.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Theta burst pattern repetitive transcranial magnetic stimulation (TBS) is increasingly applied to treat depression. TBS's brevity is well-suited to application in accelerated schedules. Sizeable trials of accelerated TBS are lacking; and optimal TBS parameters such as stimulation intensity are not established. METHODS We conducted a three arm, single blind, randomised, controlled, multi-site trial comparing accelerated bilateral TBS applied at 80 % or 120 % of the resting motor threshold and left unilateral 10 Hz rTMS. 300 patients with treatment-resistant depression (TRD) were recruited. TBS arms applied 20 bilateral prefrontal TBS sessions over 10 days, while the rTMS arm applied 20 daily sessions of 10 Hz rTMS to the left prefrontal cortex over 4 weeks. Primary outcome was depression treatment response at week 4. RESULTS The overall treatment response rate was 43.7 % and the remission rate was 28.2 %. There were no significant differences for response (p = 0.180) or remission (p = 0.316) across the three groups. Response rates between accelerated bilateral TBS applied at sub- and supra-threshold intensities were not significantly different (p = 0.319). Linear mixed model analysis showed a significant effect of time (p < 0.01), but not rTMS type (p = 0.680). CONCLUSION This is the largest accelerated bilateral TBS study to date and provides evidence that it is effective and safe in treating TRD. The accelerated application of TBS was not associated with more rapid antidepressant effects. Bilateral sequential TBS did not have superior antidepressant effect to unilateral 10 Hz rTMS. There was no significant difference in antidepressant efficacy between sub- and supra-threshold accelerated bilateral TBS.
Collapse
Affiliation(s)
- Leo Chen
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Alfred Mental and Addiction Health, Alfred Health, Melbourne, Victoria, Australia.
| | - Elizabeth H X Thomas
- Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia
| | - Pakin Kaewpijit
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia; Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Monash University, Melbourne, Victoria, Australia; Bangkok Hospital, Bang Kapi, Bangkok, Thailand
| | - Aleksandra Miljevic
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Rachel Hughes
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Lisa Hahn
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Yuko Kato
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Shane Gill
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Patrick Clarke
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia
| | - Felicity Ng
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia
| | - Tom Paterson
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia
| | - Andrew Giam
- Central Adelaide Local Health Network, South Australia, Australia
| | - Shanthi Sarma
- Department of Mental Health, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | - Cherrie Galletly
- The Adelaide Clinic, Ramsay Health Care (SA) Mental Health Services, South Australia, Australia; Discipline of Psychiatry, The University of Adelaide, South Australia, Australia; Northern Adelaide Local Health Network, South Australia, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| |
Collapse
|
40
|
Investigating neurophysiological markers of impaired cognition in schizophrenia. Schizophr Res 2021; 233:34-43. [PMID: 34225025 DOI: 10.1016/j.schres.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Cognitive impairment is highly prevalent in schizophrenia and treatment options are severely limited. A greater understanding of the pathophysiology of impaired cognition would have broad implications, including for the development of effective treatments. In the current study we used a multimodal approach to identify neurophysiological markers of cognitive impairment in schizophrenia. Fifty-seven participants (30 schizophrenia, 27 controls) underwent neurobiological assessment (electroencephalography [EEG] and Transcranial Magnetic Stimulation combined with EEG [TMS-EEG]) and assessment of cognitive functioning using an n-back task and the MATRICS Consensus Cognitive Battery. Neurobiological outcome measures included oscillatory power during a 2-back task, TMS-related oscillations and TMS-evoked potentials (TEPs). Cognitive outcome measures were d prime and accurate reaction time on the 2-back and MATRICS domain scores. Compared to healthy controls, participants with schizophrenia showed significantly reduced theta oscillations in response to TMS, and trend level decreases in task-related theta and cortical reactivity (i.e. reduced N100 and N40 TEPs). Participants with schizophrenia also showed significantly impaired cognitive performance across all measures. Correlational analysis identified significant associations between cortical reactivity and TMS-related oscillations in both groups; and trend level associations between task-related oscillations and impaired cognition in schizophrenia. The current study provides experimental support for possible neurophysiological markers of cognitive impairment in schizophrenia. The potential implications of these findings, including for treatment development, are discussed.
Collapse
|
41
|
Ozdemir RA, Boucher P, Fried PJ, Momi D, Jannati A, Pascual-Leone A, Santarnecchi E, Shafi MM. Reproducibility of cortical response modulation induced by intermittent and continuous theta-burst stimulation of the human motor cortex. Brain Stimul 2021; 14:949-964. [PMID: 34126233 PMCID: PMC8565400 DOI: 10.1016/j.brs.2021.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Over the past decade, the number of experimental and clinical studies using theta-burststimulation (TBS) protocols of transcranial magnetic stimulation (TMS) to modulate brain activity has risen substantially. The use of TBS is motivated by the assumption that these protocols can reliably and lastingly modulate cortical excitability despite their short duration and low number of stimuli. However, this assumption, and thus the experimental validity of studies using TBS, is challenged by recent work showing large inter- and intra-subject variability in response to TBS protocols. Objectives: To date, the reproducibility of TBS effects in humans has been exclusively assessed with motor evoked potentials (MEPs), which provide an indirect and limited measure of cortical excitability. Here we combined TMS with electroencephalography (TMS-EEG) and report the first comprehensive investigation of (1) direct TMS-evoked cortical responses to intermittent (iTBS) and continuous TBS (cTBS) of the human motor cortex, and (2) reproducibility of both iTBS- and cTBS-induced cortical response modulation against a robust sham control across repeat visits with commonly used cortical responsivity metrics. Results: We show that although single pulse TMS generates stable and reproducible cortical responses across visits, the modulatory effects of TBS vary substantially both between and within individuals. Overall, at the group level, most measures of the iTBS and cTBS-induced effects were not significantly different from sham-TBS. Most importantly, none of the significant TBS-induced effects observed in visit1 were reproduced in visit-2. Conclusions: Our findings suggest that the generally accepted mechanisms of TBS-induced neuromodulation, i.e. through changes in cortical excitability, may not be accurate. Future research is needed to determine the mechanisms underlying the established therapeutic effects of TBS in neuropsychiatry and examine reproducibility of TBS-induced neuromodulation through oscillatory response dynamics.
Collapse
Affiliation(s)
- Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Pierre Boucher
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Davide Momi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanne and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Characterizing Cortical Oscillatory Responses in Major Depressive Disorder Before and After Convulsive Therapy: A TMS-EEG Study. J Affect Disord 2021; 287:78-88. [PMID: 33774319 DOI: 10.1016/j.jad.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful technique for interrogating neural circuit dysfunction in psychiatric disorders. Here, we utilized time-frequency analyses to characterize differences in neural oscillatory dynamics between subjects with major depressive disorder (MDD) and healthy controls (HC). We further examined changes in TMS-related oscillatory power following convulsive therapy. METHODS Oscillatory power was examined following TMS over the dorsolateral prefrontal and motor cortices (DLPFC and M1) in 38 MDD subjects, and 22 HCs. We further investigated how these responses changed in the MDD group following an acute course of convulsive therapy (either magnetic seizure therapy [MST, n = 24] or electroconvulsive therapy [ECT, n = 14]). RESULTS Prior to treatment, MDD subjects exhibited increased oscillatory power within delta, theta, and alpha frequency bands with TMS-EEG over the DLPFC, but showed no differences to HCs with stimulation over M1. Following MST, DLPFC stimulation revealed attenuated baseline-normalized power in the delta and theta bands, with reductions in the delta, theta, and alpha power following ECT. TMS over M1 revealed reduced delta and theta power following ECT, with no changes observed following MST. An association was also observed between the treatment- induced change in alpha power and depression severity score. LIMITATIONS Limitations include the modest sample size, open-label MST and ECT treatment designs, and lack of a placebo condition. CONCLUSIONS These results provide evidence of alterations in TMS-related oscillatory activity in MDD, and further suggest modulation of oscillatory power following ECT and MST.
Collapse
|
43
|
Ferrarelli F, Phillips M. Examining and Modulating Neural Circuits in Psychiatric Disorders With Transcranial Magnetic Stimulation and Electroencephalography: Present Practices and Future Developments. Am J Psychiatry 2021; 178:400-413. [PMID: 33653120 PMCID: PMC8119323 DOI: 10.1176/appi.ajp.2020.20071050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique uniquely equipped to both examine and modulate neural systems and related cognitive and behavioral functions in humans. As an examination tool, TMS can be used in combination with EEG (TMS-EEG) to elucidate directly, objectively, and noninvasively the intrinsic properties of a specific cortical region, including excitation, inhibition, reactivity, and oscillatory activity, irrespective of the individual's conscious effort. Additionally, when applied in repetitive patterns, TMS has been shown to modulate brain networks in healthy individuals, as well as ameliorate symptoms in individuals with psychiatric disorders. The key role of TMS in assessing and modulating neural dysfunctions and associated clinical and cognitive deficits in psychiatric populations is therefore becoming increasingly evident. In this article, the authors review TMS-EEG studies in schizophrenia and mood disorders, as most TMS-EEG studies to date have focused on individuals with these disorders. The authors present the evidence on the efficacy of repetitive TMS (rTMS) and theta burst stimulation (TBS), when targeting specific cortical areas, in modulating neural circuits and ameliorating symptoms and abnormal behaviors in individuals with psychiatric disorders, especially when informed by resting-state and task-related neuroimaging measures. Examples of how the combination of TMS-EEG assessments and rTMS and TBS paradigms can be utilized to both characterize and modulate neural circuit alterations in individuals with psychiatric disorders are also provided. This approach, along with the evaluation of the behavioral effects of TMS-related neuromodulation, has the potential to lead to the development of more effective and personalized interventions for individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
44
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
45
|
Holczer A, Németh VL, Vékony T, Kocsis K, Király A, Kincses ZT, Vécsei L, Klivényi P, Must A. The Effects of Bilateral Theta-burst Stimulation on Executive Functions and Affective Symptoms in Major Depressive Disorder. Neuroscience 2021; 461:130-139. [PMID: 33731314 DOI: 10.1016/j.neuroscience.2021.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) is characterized by severe affective as well as cognitive symptoms. Moreover, cognitive impairment in MDD can persist after the remission of affective symptoms. Theta-burst stimulation (TBS) is a promising tool to manage the affective symptoms of major depressive disorder (MDD); however, its cognition-enhancing effects are sparsely investigated. Here, we aimed to examine whether the administration of bilateral TBS has pro-cognitive effects in MDD. Ten daily sessions of neuronavigated active or sham TBS were delivered bilaterally over the dorsolateral prefrontal cortex to patients with MDD. The n-back task and the attention network task were administered to assess working memory and attention, respectively. Affective symptoms were measured using the 21-item Hamilton Depression Rating Scale. We observed moderate evidence that the depressive symptoms of patients receiving active TBS improved compared to participants in the sham stimulation. No effects of TBS on attention and working memory were detected, supported by a moderate-to-strong level of evidence. The effects of TBS on psychomotor processing speed should be further investigated. Bilateral TBS has a substantial antidepressive effect with no immediate adverse effects on executive functions.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Viola Luca Németh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Teodóra Vékony
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Central European Institute of Technology, Brno, Czech Republic
| | - Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Anita Must
- Institute of Psychology, Faculty of Arts, University of Szeged, Szeged, Hungary.
| |
Collapse
|
46
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
47
|
Dhami P, Atluri S, Lee J, Knyahnytska Y, Croarkin PE, Blumberger DM, Daskalakis ZJ, Farzan F. Neurophysiological markers of response to theta burst stimulation in youth depression. Depress Anxiety 2021; 38:172-184. [PMID: 33001549 PMCID: PMC8143862 DOI: 10.1002/da.23100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Theta burst stimulation (TBS) has recently been proposed as a novel treatment for youth depression. However, the impact of TBS on the youth brain and neurophysiological predictors of response to TBS in this population have not been investigated. METHODS Cortical reactivity was assessed at baseline and following 2 weeks of bilateral dorsolateral prefrontal cortex (DLPFC) TBS treatment in 16 youth with depression (aged 16-24 years old). In 16 age-matched health youths, cortical reactivity was assessed twice, 2 weeks apart. Transcranial magnetic stimulation (TMS) combined with electroencephalography was used to assess TMS-evoked potentials in bilateral DLPFC, motor cortices, and intraparietal lobules (IPL). Resting-state functional magnetic resonance imaging (fMRI) data was also collected at baseline. RESULTS Left DLPFC pretreatment cortical reactivity, specifically the negativity at 45 ms (i.e., N45), which is related to GABAA neurotransmission, was associated with changes in depressive symptoms. Furthermore, TBS treatment was found to alter the N45 in the right IPL, a site distal to the treatment sites. The magnitude of the right IPL N45 modulation was correlated with the baseline fMRI connectivity between the right IPL and right DLPFC. CONCLUSIONS TMS-probed cortical inhibition at the site of TBS application may have potential as a predictor of treatment response in youth depression. Furthermore, pre-treatment functional connectivity may predict the impact of TBS on the neurophysiology of regions distal to the stimulation site. Collectively, these results offer novel neurophysiological insights into the application of TBS for youth depression, which may facilitate its wider use in the youth population.
Collapse
Affiliation(s)
- Prabhjot Dhami
- eBrain Lab, School of Mechatronic Systems Engineering, Faculty of Applied Science, Simon Fraser University, Surrey, British Columbia, Canada
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sravya Atluri
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterial and Biomedical Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Lee
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Neuromodulation Division, Department of Psychiatry and Biobehavioral Sciences, TMS Clinical and Research Program, Semel Institute for Neuroscience and Human Behavior at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Paul E. Croarkin
- Mayo Clinic Depression Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Faculty of Applied Science, Simon Fraser University, Surrey, British Columbia, Canada
- Temerty Centre for Therapeutic Brain Intervention, General Adult Psychiatry and Health Systems Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Influence of theta-burst transcranial magnetic stimulation over the dorsolateral prefrontal cortex on emotion processing in healthy volunteers. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1278-1293. [PMID: 33000366 PMCID: PMC7716858 DOI: 10.3758/s13415-020-00834-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Repetitive transcranial magnetic stimulation is a potential treatment option for depression, with the newer intermittent theta-burst stimulation (iTBS) protocols providing brief intervention. However, their mechanism of action remains unclear. We investigated the hypothesis that iTBS influences brain circuits involved in emotion processing that are also affected by antidepressants. We predicted that iTBS would lead to changes in performance on emotion-processing tasks. We investigated the effects of intermittent TBS (iTBS) over the left dorsolateral prefrontal cortex (DLPFC) on the processing of emotional information (word recall and categorization, facial emotion recognition, and decision-making) in 28 healthy volunteers by contrasting these effects with those of sham stimulation. Each volunteer received iTBS and sham stimulation in a blinded crossover design and completed the emotion-processing tasks before and after stimulation. Compared to sham stimulation, iTBS increased positive affective processing for word recall, yet had an unexpected effect on facial emotion recognition for happy and sad faces. There was no evidence of an effect on decision-making or word categorization. We found support for our hypothesis that iTBS influences emotion processing, though some changes were not in the expected direction. These findings suggest a possible common mechanism of action between iTBS and antidepressants, and a complex neural circuitry involved in emotion processing that could potentially be tapped into via brain stimulation. Future research should investigate the neural correlates of emotion processing more closely to inform future iTBS protocols.
Collapse
|
49
|
Goldsworthy MR, Rogasch NC, Ballinger S, Graetz L, Van Dam JM, Harris R, Yu S, Pitcher JB, Baune BT, Ridding MC. Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 2020; 131:2181-2191. [DOI: 10.1016/j.clinph.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
|
50
|
Meng HJ, Cao N, Zhang J, Pi YL. Intermittent theta burst stimulation facilitates functional connectivity from the dorsal premotor cortex to primary motor cortex. PeerJ 2020; 8:e9253. [PMID: 32704437 PMCID: PMC7346859 DOI: 10.7717/peerj.9253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/07/2020] [Indexed: 01/28/2023] Open
Abstract
Background Motor information in the brain is transmitted from the dorsal premotor cortex (PMd) to the primary motor cortex (M1), where it is further processed and relayed to the spinal cord to eventually generate muscle movement. However, how information from the PMd affects M1 processing and the final output is unclear. Here, we applied intermittent theta burst stimulation (iTBS) to the PMd to alter cortical excitability not only at the application site but also at the PMd projection site of M1. We aimed to determine how PMd iTBS–altered information changed M1 processing and the corticospinal output. Methods In total, 16 young, healthy participants underwent PMd iTBS with 600 pulses (iTBS600) or sham-iTBS600. Corticospinal excitability, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were measured using transcranial magnetic stimulation before and up to 60 min after stimulation. Results Corticospinal excitability in M1 was significantly greater 15 min after PMd iTBS600 than that after sham-iTBS600 (p = 0.012). Compared with that after sham-iTBS600, at 0 (p = 0.014) and 15 (p = 0.037) min after iTBS600, SICI in M1 was significantly decreased, whereas 15 min after iTBS600, ICF in M1 was significantly increased (p = 0.033). Conclusion Our results suggested that projections from the PMd to M1 facilitated M1 corticospinal output and that this facilitation may be attributable in part to decreased intracortical inhibition and increased intracortical facilitation in M1. Such a facilitatory network may inform future understanding of the allocation of resources to achieve optimal motion output.
Collapse
Affiliation(s)
- Hai-Jiang Meng
- School of Sports, Anqing Normal University, Anqing, China
| | - Na Cao
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yan-Ling Pi
- Shanghai Punan Hosptial of Pudong New District, Shanghai, China
| |
Collapse
|