1
|
Savelon ECJ, Jordan HT, Stinear CM, Byblow WD. Noninvasive brain stimulation to improve motor outcomes after stroke. Curr Opin Neurol 2024; 37:621-628. [PMID: 39221935 DOI: 10.1097/wco.0000000000001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This review highlights recent developments in noninvasive brain stimulation (NIBS) techniques and applications for improving motor outcomes after stroke. Two promising areas of development relate to deep brain neuromodulation and the use of single-pulse transcranial magnetic stimulation (TMS) within a prediction tool for predicting upper limb outcome for individual patients. RECENT FINDINGS Systematic reviews highlight the inconsistent effect sizes of interventional NIBS for motor outcome after stroke, as well as limited evidence supporting the interhemispheric competition model. To improve the therapeutic efficacy of NIBS, studies have leveraged metaplasticity and priming approaches. Transcranial temporal interference stimulation (tTIS) and low-intensity focused ultrasound stimulation (LIFUS) are emerging NIBS techniques with potential for modulating deeper brain structures, which may hold promise for stroke neurorehabilitation. Additionally, motor evoked potential (MEP) status obtained with single-pulse TMS is a prognostic biomarker that could be used to tailor NIBS for individual patients. SUMMARY Trials of interventional NIBS to improve stroke outcomes may be improved by applying NIBS in a more targeted manner. This could be achieved by taking advantage of NIBS techniques that can be targeted to deeper brain structures, using biomarkers of structural and functional reserve to stratify patients, and recruiting patients in more homogeneous time windows.
Collapse
Affiliation(s)
| | - Harry T Jordan
- Department of Exercise Sciences
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Centre for Brain Research
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
2
|
Ding MYR, Arora T, Sarica C, Yang AZ, Nasrkhani N, Grippe T, Nankoo JF, Tran S, Samuel N, Xia X, Lozano AM, Chen R. Investigation of Metaplasticity Associated with Transcranial Focused Ultrasound Neuromodulation in Humans. J Neurosci 2024; 44:e2438232024. [PMID: 39266303 PMCID: PMC11529810 DOI: 10.1523/jneurosci.2438-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Low-intensity transcranial focused ultrasound stimulation (TUS) is a novel technique for noninvasive brain stimulation (NIBS). TUS delivered in a theta (5 Hz) burst pattern (tbTUS) induces plasticity in the human primary motor cortex (M1) for 30-60 min, showing promise for therapeutic development. Metaplasticity refers to activity-dependent changes in neural functions governing synaptic plasticity; depotentiation is the reversal of long-term potentiation (LTP) by a subsequent protocol with no effect alone. Metaplasticity can enhance plasticity induction and clinical efficacy of NIBS protocols. In our study, we compared four NIBS protocol combinations to investigate metaplasticity on tbTUS in humans of either sex. We delivered four interventions: (1) sham continuous theta burst stimulation with 150 pulses (cTBS150) followed by real tbTUS (tbTUS only), (2) real cTBS150 followed by sham tbTUS (cTBS only), (3) real cTBS150 followed by real tbTUS (metaplasticity), and (4) real tbTUS followed by real cTBS150 (depotentiation). We measured motor-evoked potential amplitude, short-interval intracortical inhibition, long-interval intracortical inhibition, intracortical facilitation (ICF), and short-interval intracortical facilitation before and up to 90 min after plasticity intervention. Plasticity effects lasted at least 60 min longer when tbTUS was primed with cTBS150 compared with tbTUS alone. Plasticity was abolished when cTBS150 was delivered after tbTUS. cTBS150 alone had no significant effect. No changes in M1 intracortical circuits were observed. Plasticity induction by tbTUS can be modified in manners consistent with homeostatic metaplasticity and depotentiation. This substantiates evidence that tbTUS induces LTP-like processes and suggests that metaplasticity can be harnessed in the therapeutic development of TUS.
Collapse
Affiliation(s)
- Mandy Yi Rong Ding
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Tarun Arora
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Can Sarica
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Talyta Grippe
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Stephanie Tran
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Nardin Samuel
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xue Xia
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
| | - Andres M Lozano
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Chen
- Krembil Brain Institute, Toronto, Ontario M5T 1M8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404254. [PMID: 39445520 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Hannah Thomson
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Hadi Heidari
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Seo M, Shin M, Noh G, Yoo SS, Yoon K. Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108458. [PMID: 39437458 DOI: 10.1016/j.cmpb.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. METHODS The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. RESULTS Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. CONCLUSIONS The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
Collapse
Affiliation(s)
- Minjee Seo
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Minwoo Shin
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Gunwoo Noh
- Korea University, School of Mechanical Engineering, Seoul, 02841, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Kyungho Yoon
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, Yamaguchi H, Angelakos CC, Choi M, Bian W, DiIanni T, Pujol EM, Matosevich N, Airan R, Gaudillière B, Konofagou EE, Butts-Pauly K, Soltesz I, de Lecea L. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron 2024; 112:3252-3266.e5. [PMID: 39079529 DOI: 10.1016/j.neuron.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
Focused ultrasound can non-invasively modulate neural activity, but whether effective stimulation parameters generalize across brain regions and cell types remains unknown. We used focused ultrasound coupled with fiber photometry to identify optimal neuromodulation parameters for four different arousal centers of the brain in an effort to yield overt changes in behavior. Applying coordinate descent, we found that optimal parameters for excitation or inhibition are highly distinct, the effects of which are generally conserved across brain regions and cell types. Optimized stimulations induced clear, target-specific behavioral effects, whereas non-optimized protocols of equivalent energy resulted in substantially less or no change in behavior. These outcomes were independent of auditory confounds and, contrary to expectation, accompanied by a cyclooxygenase-dependent and prolonged reduction in local blood flow and temperature with brain-region-specific scaling. These findings demonstrate that carefully tuned and targeted ultrasound can exhibit powerful effects on complex behavior and physiology.
Collapse
Affiliation(s)
- Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Charlotte Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Neuroscience, Nagoya University, Nagoya, Japan
| | | | - Mihyun Choi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Wenjie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tommaso DiIanni
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esther Martinez Pujol
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Noa Matosevich
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raag Airan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kim Butts-Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00353-3. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
7
|
Zaretskaya N. When sensory input meets spontaneous brain activity. Trends Neurosci 2024; 47:749-750. [PMID: 39218722 DOI: 10.1016/j.tins.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
A recent study by Wu, Podvalny, and colleagues investigated how ongoing spontaneous brain activity interacts with sensory input and shapes conscious perception. It reports diverse effects of prestimulus activity in several key networks, revealing new roles of the prefrontal cortex and the default mode network in perception and consciousness.
Collapse
Affiliation(s)
- Natalia Zaretskaya
- Department of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Micera S, Foffani G. The expanding horizon of neurotechnology: Is multimodal neuromodulation the future? PLoS Biol 2024; 22:e3002885. [PMID: 39466832 PMCID: PMC11527385 DOI: 10.1371/journal.pbio.3002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2024] [Indexed: 10/30/2024] Open
Abstract
The clinical applications of neurotechnology are rapidly expanding, and the combination of different approaches could be more effective and precise to treat brain disorders. This Perspective discusses the potential and challenges of "multimodal neuromodulation," which combines modalities such as electrical, magnetic, and ultrasound stimulation.
Collapse
Affiliation(s)
- Silvestro Micera
- Bioelectronics Area and MINE Laboratory, The BioRobotics Institute, and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele, Milan, Italy
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| |
Collapse
|
9
|
Philip NS, Arulpragasam AR. Listening for the beat: Low intensity ultrasound modulates heartbeat evoked potentials. Clin Neurophysiol 2024:S1388-2457(24)00279-7. [PMID: 39379272 DOI: 10.1016/j.clinph.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, VA Providence, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Amanda R Arulpragasam
- Center for Neurorestoration and Neurotechnology, VA Providence, Providence, RI, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Zhang S, Xie X, Xu Y, Mi J, Li Z, Guo Z, Xu G. Effects of transcranial magneto-acoustic stimulation on cognitive function and neural signal transmission in the hippocampal CA1 region of mice. Neuroscience 2024; 556:86-95. [PMID: 39047971 DOI: 10.1016/j.neuroscience.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/29/2024] [Indexed: 07/27/2024]
Abstract
As a new means of brain neuroregulation and research, transcranial magneto-acoustic stimulation (TMAS) uses the coupling effect of ultrasound and a static magnetic field to regulate neural activity in the corresponding brain areas. Calcium ions can promote the secretion of neurotransmitters and play a key role in the transmission of neural signals in brain cognition. In this study, to explore the effects of TMAS on cognitive function and neural signaling in the CA1 region of the hippocampus, TMAS was applied to male 2-month-old C57 mice with a magnetic field strength of 0.3 T and ultrasound intensity of 2.6 W/cm2. First, the efficiency of neural signaling in the CA1 region of the mouse hippocampus was detected by fiber photometry. Second, the effects of TMAS on cognitive function in mice were investigated through multiple behavioral experiments, including spatial learning and memory ability, anxiety and desire for novelty. The experimental results showed that TMAS could improve cognitive function in mice, and the efficiency of neural signaling in the CA1 area of the hippocampus was significantly increased during stimulation and maintained for one week after stimulation. In addition, the neural signaling efficiency in the CA1 area of the hippocampus increased in the open field (OF) experiment and recovered after one week, the neural signaling efficiency in the new object exploration (NOE) experiment was significantly enhanced, and the intensity slowed after one week. In conclusion, TMAS enhances cognitive performance and promotes neural signaling in the CA1 region of the mouse hippocampus.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaofeng Xie
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Yihao Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Jinrui Mi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Zichun Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Zhongsheng Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectricity and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; Hebei Key Laboratory of Electromagnetic Field and Electrical Reliability, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
11
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the insula differentially modulates the heartbeat-evoked potential: A proof-of-concept study. Clin Neurophysiol 2024:S1388-2457(24)00265-7. [PMID: 39366795 DOI: 10.1016/j.clinph.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing that may be generated in the insula and dorsal anterior cingulate cortex (dACC). Low-intensity focused ultrasound (LIFU) can selectively modulate sub-regions of the insula and dACC to better understand their contributions to the HEP. METHODS Healthy participants (n = 16) received stereotaxically targeted LIFU to the anterior insula (AI), posterior insula (PI), dACC, or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was HEP amplitudes. Relationships between LIFU pressure and HEP changes and effects of LIFU on heart rate and heart rate variability (HRV) were also explored. RESULTS Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; PI effects were partially explained by increased LIFU pressure. LIFU did not affect heart rate or HRV. CONCLUSIONS These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. SIGNIFICANCE Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA; VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France; French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S Khalsa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA 24016, USA.
| |
Collapse
|
12
|
Xu J, Wang Z, Niu Y, Tang Y, Wang Y, Huang J, Leung ELH. TRP Channels in Cancer: Therapeutic Opportunities and Research Strategies. Pharmacol Res 2024; 209:107412. [PMID: 39303771 DOI: 10.1016/j.phrs.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The influence of gut microbiota on transient receptor potential (TRP) channels has been identified as an important element in developing gastrointestinal conditions, yet its involvement in cancer progression is not as thoroughly understood. This review explores the multifaceted roles of TRP channels in oncogenesis and emphasizes their significance in cancer progression and therapeutic outcomes. Critical focus was placed on the influence of traditional medicines, such as traditional Chinese medicine (TCM) related aromatic medicines, on TRP channel functions. Moreover, we explored the interplay between the gut microbiota and TRP channels in cancer signaling, highlighting the therapeutic potential of targeting this axis in cancer treatment. The impact of current therapies on TRP channel function was examined, highlighting the need for a comprehensive understanding of how different modalities affect TRP channels in cancer. Technological advancements, including artificial intelligence (AI) tools and computer-aided drug development (CADD), have been discussed in the context of leveraging TRP channels for innovative cancer therapies. Future directions emphasize the potential applications of TRP channel research in advancing cancer treatment and enhancing patient well-being.
Collapse
Affiliation(s)
- Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau
| | - Ziming Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau
| | - Yuqing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
13
|
O'Reilly MA. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 2024; 385:eadp7206. [PMID: 39265013 DOI: 10.1126/science.adp7206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Focused ultrasound is a platform technology capable of eliciting a wide range of biological responses with high spatial precision deep within the body. Although focused ultrasound is already in clinical use for focal thermal ablation of tissue, there has been a recent growth in development and translation of ultrasound-mediated nonthermal therapies. These approaches exploit the physical forces of ultrasound to produce a range of biological responses dependent on exposure conditions. This review discusses recent advances in four application areas that have seen particular growth and have immense clinical potential: brain drug delivery, neuromodulation, focal tissue destruction, and endogenous immune system activation. Owing to the maturation of transcranial ultrasound technology, the brain is a major target organ; however, clinical indications outside the brain are also discussed.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Cox SS, Connolly DJ, Peng X, Badran BW. A Comprehensive Review of Low-Intensity Focused Ultrasound Parameters and Applications in Neurologic and Psychiatric Disorders. Neuromodulation 2024:S1094-7159(24)00662-7. [PMID: 39230530 DOI: 10.1016/j.neurom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Low-intensity focused ultrasound (LIFU) is gaining increased interest as a potential therapeutic modality for a range of neuropsychiatric diseases. Current neuromodulation modalities often require a choice between high spatial fidelity or invasiveness. LIFU is unique in this regard because it provides high spatial acuity of both superficial and deep neural structures while remaining noninvasive. This new form of noninvasive brain stimulation may provide exciting potential treatment options for a variety of neuropsychiatric disorders involving aberrant neurocircuitry within deep brain structures, including pain and substance use disorders. Furthermore, LIFU is compatible with noninvasive neuroimaging techniques, such as functional magnetic resonance imaging and electroencephalography, making it a useful tool for more precise clinical neuroscience research to further understand the central nervous system. MATERIALS AND METHODS In this study, we provide a review of the most recent LIFU literature covering three key domains: 1) the history of focused ultrasound technology, comparing it with other forms of neuromodulation, 2) the parameters and most up-to-date proposed mechanisms of LIFU, and finally, 3) a consolidation of the current literature to date surrounding the clinical research that has used LIFU for the modification or amelioration of several neuropsychiatric conditions. RESULTS The impact of LIFU including poststroke motor changes, pain, mood disorders, disorders of consciousness, dementia, and substance abuse is discussed. CONCLUSIONS Although still in its infancy, LIFU is a promising tool that has the potential to change the way we approach and treat neuropsychiatric disorders. In this quickly evolving field, this review serves as a snapshot of the current understanding of LIFU in neuropsychiatric research.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA.
| | - Dillon J Connolly
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Shen Y, Jethe JV, Reid AP, Hehir J, Amaral MM, Ren C, Hao S, Zhou C, Fisher JAN. Label free, capillary-scale blood flow mapping in vivo reveals that low intensity focused ultrasound evokes persistent dilation in cortical microvasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579513. [PMID: 38370686 PMCID: PMC10871316 DOI: 10.1101/2024.02.08.579513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Non-invasive, low intensity focused ultrasound (FUS) is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide targeted blood flow to electrically active regions involve a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using a novel in vivo optical approach, we found that microvascular responses, unlike larger vessels which prior investigations have explored, exhibit persistent dilation following sonication without the use of microbubbles. This finding and approach offers a heretofore unseen aspect of the effects of FUS in vivo and indicate that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.
Collapse
|
16
|
Kop BR, Shamli Oghli Y, Grippe TC, Nandi T, Lefkes J, Meijer SW, Farboud S, Engels M, Hamani M, Null M, Radetz A, Hassan U, Darmani G, Chetverikov A, den Ouden HEM, Bergmann TO, Chen R, Verhagen L. Auditory confounds can drive online effects of transcranial ultrasonic stimulation in humans. eLife 2024; 12:RP88762. [PMID: 39190585 PMCID: PMC11349300 DOI: 10.7554/elife.88762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Transcranial ultrasonic stimulation (TUS) is rapidly emerging as a promising non-invasive neuromodulation technique. TUS is already well-established in animal models, providing foundations to now optimize neuromodulatory efficacy for human applications. Across multiple studies, one promising protocol, pulsed at 1000 Hz, has consistently resulted in motor cortical inhibition in humans (Fomenko et al., 2020). At the same time, a parallel research line has highlighted the potentially confounding influence of peripheral auditory stimulation arising from TUS pulsing at audible frequencies. In this study, we disentangle direct neuromodulatory and indirect auditory contributions to motor inhibitory effects of TUS. To this end, we include tightly matched control conditions across four experiments, one preregistered, conducted independently at three institutions. We employed a combined transcranial ultrasonic and magnetic stimulation paradigm, where TMS-elicited motor-evoked potentials (MEPs) served as an index of corticospinal excitability. First, we replicated motor inhibitory effects of TUS but showed through both tight controls and manipulation of stimulation intensity, duration, and auditory masking conditions that this inhibition was driven by peripheral auditory stimulation, not direct neuromodulation. Furthermore, we consider neuromodulation beyond driving overall excitation/inhibition and show preliminary evidence of how TUS might interact with ongoing neural dynamics instead. Primarily, this study highlights the substantial shortcomings in accounting for the auditory confound in prior TUS-TMS work where only a flip-over sham and no active control was used. The field must critically reevaluate previous findings given the demonstrated impact of peripheral confounds. Furthermore, rigorous experimental design via (in)active control conditions is required to make substantiated claims in future TUS studies. Only when direct effects are disentangled from those driven by peripheral confounds can TUS fully realize its potential for research and clinical applications.
Collapse
Affiliation(s)
- Benjamin R Kop
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| | - Yazan Shamli Oghli
- Krembil Research Institute, University Health Network; University of TorontoTorontoCanada
| | - Talyta C Grippe
- Krembil Research Institute, University Health Network; University of TorontoTorontoCanada
| | - Tulika Nandi
- Neuroimaging Center; Johannes-Gutenberg University Medical Center MainzMainzGermany
| | - Judith Lefkes
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| | - Sjoerd W Meijer
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| | - Soha Farboud
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| | - Marwan Engels
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| | - Michelle Hamani
- Krembil Research Institute, University Health Network; University of TorontoTorontoCanada
| | - Melissa Null
- Neuroimaging Center; Johannes-Gutenberg University Medical Center MainzMainzGermany
| | - Angela Radetz
- Neuroimaging Center; Johannes-Gutenberg University Medical Center MainzMainzGermany
| | - Umair Hassan
- Neuroimaging Center; Johannes-Gutenberg University Medical Center MainzMainzGermany
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network; University of TorontoTorontoCanada
| | - Andrey Chetverikov
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
- Department of Psychosocial Science, Faculty of Psychology, University of BergenBergenNorway
| | - Hanneke EM den Ouden
- Department of Psychosocial Science, Faculty of Psychology, University of BergenBergenNorway
| | - Til Ole Bergmann
- Neuroimaging Center; Johannes-Gutenberg University Medical Center MainzMainzGermany
- Leibniz Institute for Resilience Research MainzMainzGermany
| | - Robert Chen
- Krembil Research Institute, University Health Network; University of TorontoTorontoCanada
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition, and Behaviour; Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
17
|
Ye SY, Chen CN, Wei B, Zhan JQ, Li YH, Zhang C, Huang JJ, Yang YJ. The efficacy and safety of continuous theta burst stimulation for auditory hallucinations: a systematic review and meta-analysis of randomized controlled trials. Front Psychiatry 2024; 15:1446849. [PMID: 39224479 PMCID: PMC11366629 DOI: 10.3389/fpsyt.2024.1446849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Auditory hallucinations are the most frequently occurring psychotic symptom in schizophrenia. Continuous theta burst stimulation (cTBS) has been used as an adjuvant treatment for auditory hallucinations. This meta-analysis focused on randomized controlled clinical trials (RCTs) to assess the efficacy of adjuvant cTBS on auditory hallucinations in schizophrenia. Methods We performed a comprehensive search of four international databases from their inception to January 14, 2024, to identify relevant RCTs that assessed the effects of adjuvant cTBS on auditory hallucinations. The key words included "auditory hallucinations", "continuous theta burst stimulation" and "transcranial magnetic stimulation". Inclusion criteria included patients with auditory hallucinations in schizophrenia or schizoaffective disorder. The Revised Cochrane risk-of-bias tool for randomized trials (RoB1) were used to evaluate the risk of bias and the Review Manager Software Version 5.4 was employed to pool the data. Results A total of 4 RCTs involving 151 patients with auditory hallucinations were included in the analysis. The Cochrane risk of bias of these studies presented "low risk" in all items. Preliminary analysis showed no significant advantage of adjuvant cTBS over sham stimulation in reducing hallucinations [4 RCTs, n = 151; SMD: -0.45 (95%CI: -1.01, 0.12), P = 0.13; I2 = 61%]. Subgroup analysis revealed that patients treated with adjuvant cTBS for more than 10 stimulation sessions and total number of pulses more than 6000 [3 RCTs, n = 87; SMD: -4.43 (95%CI: -8.22, -0.63), P = 0.02; I2 = 47%] had a statistically significant improvement in hallucination symptoms. Moreover, the rates of adverse events and discontinuation did not show any significant difference between the cTBS and sham group. Conclusions Although preliminary analysis did not revealed a significant advantage of adjuvant cTBS over sham stimulation, subgroup analysis showed that specific parameters of cTBS appear to be effective in the treatment of auditory hallucinations in schizophrenia. Further large-scale studies are needed to determine the standard protocol of cTBS for treating auditory hallucinations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024534045.
Collapse
Affiliation(s)
- Shi-Yi Ye
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The 3 Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Clinical Medical College, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Bo Wei
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Jin-Qiong Zhan
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Yi-Heng Li
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jing Huang
- Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-Jian Yang
- Department of Psychiatry and Biological Psychiatry Laboratory, Jiangxi Mental Hospital & Affiliated Mental Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, China
| |
Collapse
|
18
|
Salahshoor H, Ortiz M. Application of Data-Driven computing to patient-specific prediction of the viscoelastic response of human brain under transcranial ultrasound stimulation. Biomech Model Mechanobiol 2024; 23:1161-1177. [PMID: 38499911 DOI: 10.1007/s10237-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
We present a class of model-free Data-Driven solvers that effectively enable the utilization of in situ and in vivo imaging data directly in full-scale calculations of the mechanical response of the human brain to sonic and ultrasonic stimulation, entirely bypassing the need for analytical modeling or regression of the data. The well-posedness of the approach and its convergence with respect to data are proven analytically. We demonstrate the approach, including its ability to make detailed spatially resolved patient-specific predictions of wave patterns, using public-domain MRI images, MRE data and commercially available solid-mechanics software.
Collapse
Affiliation(s)
- Hossein Salahshoor
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Michael Ortiz
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
- Hausdorff Center for Mathematics, University of Bonn, Bonn, 53115, Germany
| |
Collapse
|
19
|
Grippe T, Shamli-Oghli Y, Darmani G, Nankoo JF, Raies N, Sarica C, Arora T, Gunraj C, Ding MYR, Rinchon C, DiLuca DG, Pichardo S, Cardoso F, Lozano AM, Chen R. Plasticity-Induced Effects of Theta Burst Transcranial Ultrasound Stimulation in Parkinson's Disease. Mov Disord 2024; 39:1364-1374. [PMID: 38787806 DOI: 10.1002/mds.29836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) technique with high spatial specificity. Previous studies showed that TUS delivered in a theta burst pattern (tbTUS) increased motor cortex (MI) excitability up to 30 minutes due to long-term potentiation (LTP)-like plasticity. Studies using other forms of NIBS suggested that cortical plasticity may be impaired in patients with Parkinson's disease (PD). OBJECTIVE The aim was to investigate the neurophysiological effects of tbTUS in PD patients off and on dopaminergic medications compared to healthy controls. METHODS We studied 20 moderately affected PD patients in on and off dopaminergic medication states (7 with and 13 without dyskinesia) and 17 age-matched healthy controls in a case-controlled study. tbTUS was applied for 80 seconds to the MI. Motor-evoked potentials (MEP), short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were recorded at baseline, and at 5 minutes (T5), T30, and T60 after tbTUS. Motor Unified Parkinson's Disease Rating Scale (mUPDRS) was measured at baseline and T60. RESULTS tbTUS significantly increased MEP amplitude at T30 compared to baseline in controls and in PD patients on but not in PD patients off medications. SICI was reduced in PD off medications compared to controls. tbTUS did not change in SICI or SICF. The bradykinesia subscore of mUPDRS was reduced at T60 compared to baseline in PD on but not in the off medication state. The presence of dyskinesia did not affect tbTUS-induced plasticity. CONCLUSIONS tbTUS-induced LTP plasticity is impaired in PD patients off medications and is restored by dopaminergic medications. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talyta Grippe
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | - Can Sarica
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Tarun Arora
- University Health Network, Toronto, Canada
- Division of Clinical Neuroscience, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Mandy Yi Rong Ding
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Cricia Rinchon
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Daniel G DiLuca
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samuel Pichardo
- Cumming School of Medicine, Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Francisco Cardoso
- Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andres M Lozano
- University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Robert Chen
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
21
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
22
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
23
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
24
|
Daneshzand M, Guerin B, Kotlarz P, Chou T, Dougherty DD, Edlow BL, Nummenmaa A. Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus. Brain Stimul 2024; 17:958-969. [PMID: 39094682 PMCID: PMC11367617 DOI: 10.1016/j.brs.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) neuromodulation has shown promise in animals but is challenging to translate to humans because of the thicker skull that heavily scatters ultrasound waves. OBJECTIVE We develop and disseminate a model-based navigation (MBN) tool for acoustic dose delivery in the presence of skull aberrations that is easy to use by non-specialists. METHODS We pre-compute acoustic beams for thousands of virtual transducer locations on the scalp of the subject under study. We use the hybrid angular spectrum solver mSOUND, which runs in ∼4 s per solve per CPU yielding pre-computation times under 1 h for scalp meshes with up to 4000 faces and a parallelization factor of 5. We combine this pre-computed set of beam solutions with optical tracking, thus allowing real-time display of the tFUS beam as the operator freely navigates the transducer around the subject' scalp. We assess the impact of MBN versus line-of-sight targeting (LOST) positioning in simulations of 13 subjects. RESULTS Our navigation tool has a display refresh rate of ∼10 Hz. In our simulations, MBN increased the acoustic dose in the thalamus and amygdala by 8-67 % compared to LOST and avoided complete target misses that affected 10-20 % of LOST cases. MBN also yielded a lower variability of the deposited dose across subjects than LOST. CONCLUSIONS MBN may yield greater and more consistent (less variable) ultrasound dose deposition than transducer placement with line-of-sight targeting, and thus could become a helpful tool to improve the efficacy of tFUS neuromodulation.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Darin D Dougherty
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Legon W, Strohman A, In A, Payne B. Noninvasive neuromodulation of subregions of the human insula differentially affect pain processing and heart-rate variability: a within-subjects pseudo-randomized trial. Pain 2024; 165:1625-1641. [PMID: 38314779 PMCID: PMC11189760 DOI: 10.1097/j.pain.0000000000003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
26
|
Beisteiner R, Lozano A, Di Lazzaro V, George MS, Hallett M. Clinical recommendations for non-invasive ultrasound neuromodulation. Brain Stimul 2024; 17:890-895. [PMID: 39084519 DOI: 10.1016/j.brs.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Non-invasive ultrasound neuromodulation has experienced exponential growth in the neuroscientific literature, recently also including clinical studies and applications. However, clinical recommendations for the secure and effective application of ultrasound neuromodulation in pathological brains are currently lacking. Here, clinical experts with neuroscientific expertise in clinical brain stimulation and ultrasound neuromodulation present initial clinical recommendations for ultrasound neuromodulation with relevance for all ultrasound neuromodulation techniques. The recommendations start with methodological safety issues focusing on technical issues to avoid harm to the brain. This is followed by clinical safety issues focusing on important factors concerning pathological situations.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of Neurology, Functional Brain Diagnostics and Therapy, High Field MR Center, Medical University of Vienna, Vienna, Austria.
| | - Andres Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Mark S George
- Brain Stimulation Division, Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA
| |
Collapse
|
27
|
Olaitan GO, Ganesana M, Strohman A, Lynch WJ, Legon W, Jill Venton B. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580202. [PMID: 38979318 PMCID: PMC11230179 DOI: 10.1101/2024.02.13.580202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm 2 I sppa ) of 2-minute LIFU to the prelimbic region (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm 2 to the PLC significantly reduced dopamine release by ∼ 50% for up to 2 hours. However, double the intensity (26 W/cm 2 ) resulted in less inhibition (∼30%), and half the intensity (6.5 W/cm 2 ) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling of temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm 2 , suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
|
28
|
Hu Z, Yang Y, Yang L, Gong Y, Chukwu C, Ye D, Yue Y, Yuan J, Kravitz AV, Chen H. Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Proc Natl Acad Sci U S A 2024; 121:e2402200121. [PMID: 38885384 PMCID: PMC11214095 DOI: 10.1073/pnas.2402200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Leqi Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Alexxai V. Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO63110
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
29
|
Wilson MG, Riis TS, Kubanek J. Controlled ultrasonic interventions through the human skull. Front Hum Neurosci 2024; 18:1412921. [PMID: 38979100 PMCID: PMC11228146 DOI: 10.3389/fnhum.2024.1412921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Transcranial focused ultrasound enables precise and non-invasive manipulations of deep brain circuits in humans, promising to provide safe and effective treatments of various neurological and mental health conditions. Ultrasound focused to deep brain targets can be used to modulate neural activity directly or localize the release of psychoactive drugs. However, these applications have been impeded by a key barrier-the human skull, which attenuates ultrasound strongly and unpredictably. To address this issue, we have developed an ultrasound-based approach that directly measures and compensates for the ultrasound attenuation by the skull. No additional skull imaging, simulations, assumptions, or free parameters are necessary; the method measures the attenuation directly by emitting a pulse of ultrasound from an array on one side of the head and measuring with an array on the opposite side. Here, we apply this emerging method to two primary future uses-neuromodulation and local drug release. Specifically, we show that the correction enables effective stimulation of peripheral nerves and effective release of propofol from nanoparticle carriers through an ex vivo human skull. Neither application was effective without the correction. Moreover, the effects show the expected dose-response relationship and targeting specificity. This article highlights the need for precise control of ultrasound intensity within the skull and provides a direct and practical approach for addressing this lingering barrier.
Collapse
Affiliation(s)
- Matthew G Wilson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and a Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation (TUS) is a promising non-invasive technique for deep-brain stimulation and focal neuromodulation. Research with animal models and computational modelling has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first conduct a systematic review of human TUS studies for perturbing neural function and alleviating brain disorders. We then collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the human TUS study reported outcomes to date (n = 32 studies, 37 experiments). We find that parameters such as the duty cycle show some predictability regarding whether the targeted area's function is likely to be enhanced or suppressed. Given that human TUS sample sizes are exponentially increasing, we recognize that results can stabilize or change as further studies are reported. Therefore, we conclude by establishing an Iowa-Newcastle (inTUS) resource for the systematic reporting of TUS parameters and outcomes to support further hypothesis testing for greater precision in brain stimulation and neuromodulation with TUS.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
31
|
Pinardi M, Schuler AL, Di Pino G, Pellegrino G. 40 Hz Repetitive auditory stimulation promotes corticospinal plasticity. Clin Neurophysiol 2024; 162:79-81. [PMID: 38583408 DOI: 10.1016/j.clinph.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Mattia Pinardi
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Anna-Lisa Schuler
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Giovanni Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
32
|
Okoroafor F, Beattie H, Qiang Z, Yianni J. Fragile X-associated tremor/ataxia syndrome treated with multitarget deep brain stimulation. BMJ Case Rep 2024; 17:e259452. [PMID: 38802254 DOI: 10.1136/bcr-2023-259452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive hereditary neurodegenerative disorder which causes intention tremor and cerebellar ataxia. It typically affects the ageing population. Deep brain stimulation (DBS) is widely accepted in the treatment of common movement disorders and has been trialled in treating rare and complex neurodegenerative disorders. We report a case of a man in his 40s with a long history of tremor affecting his hands. MRI brain revealed high T2 signal in the middle cerebellar peduncles. Genetic testing revealed FMR1 premutation confirming the diagnosis of FXTAS. Subsequently, he was treated with multitarget DBS of the ventralis intermediate nucleus and ventralis oralis posterior nuclei bilaterally, with excellent neurological function at 9 years follow-up. This case suggests multitarget DBS for FXTAS with neurophysiology-guided DBS programming can provide excellent long-term tremor suppression in selected patients.
Collapse
Affiliation(s)
- Francois Okoroafor
- Neurosurgery Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Harriet Beattie
- Neurosurgery Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Zekai Qiang
- Neurosurgery Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John Yianni
- Neurosurgery Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
33
|
Atkinson-Clement C, Alkhawashki M, Ross J, Gatica M, Zhang C, Sallet J, Kaiser M. Dynamical and individualised approach of transcranial ultrasound neuromodulation effects in non-human primates. Sci Rep 2024; 14:11916. [PMID: 38789473 PMCID: PMC11126417 DOI: 10.1038/s41598-024-62562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Low-frequency transcranial ultrasound stimulation (TUS) allows to alter brain functioning with a high spatial resolution and to reach deep targets. However, the time-course of TUS effects remains largely unknown. We applied TUS on three brain targets for three different monkeys: the anterior medial prefrontal cortex, the supplementary motor area and the perigenual anterior cingulate cortex. For each, one resting-state fMRI was acquired between 30 and 150 min after TUS as well as one without stimulation (control). We captured seed-based brain connectivity changes dynamically and on an individual basis. We also assessed between individuals and between targets homogeneity and brain features that predicted TUS changes. We found that TUS prompts heterogenous functional connectivity alterations yet retain certain consistent changes; we identified 6 time-courses of changes including transient and long duration alterations; with a notable degree of accuracy we found that brain alterations could partially be predicted. Altogether, our results highlight that TUS induces heterogeneous functional connectivity alterations. On a more technical point, we also emphasize the need to consider brain changes over-time rather than just observed during a snapshot; to consider inter-individual variability since changes could be highly different from one individual to another.
Collapse
Affiliation(s)
| | | | - James Ross
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marilyn Gatica
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Jerome Sallet
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, Bron, France
| | - Marcus Kaiser
- Precision Imaging, School of Medicine, University of Nottingham, Nottingham, UK
- School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Hsieh TH, Chu PC, Nguyen TXD, Kuo CW, Chang PK, Chen KHS, Liu HL. Neuromodulatory Responses Elicited by Intermittent versus Continuous Transcranial Focused Ultrasound Stimulation of the Motor Cortex in Rats. Int J Mol Sci 2024; 25:5687. [PMID: 38891875 PMCID: PMC11171676 DOI: 10.3390/ijms25115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.
Collapse
Affiliation(s)
- Tsung-Hsun Hsieh
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Chun Chu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Thi Xuan Dieu Nguyen
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Chi-Wei Kuo
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Pi-Kai Chang
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
35
|
Nwafor DC, Obiri-Yeboah D, Fazad F, Blanks W, Mut M. Focused ultrasound as a treatment modality for gliomas. Front Neurol 2024; 15:1387986. [PMID: 38813245 PMCID: PMC11135048 DOI: 10.3389/fneur.2024.1387986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Ultrasound waves were initially used as a diagnostic tool that provided critical insights into several pathological conditions (e.g., gallstones, ascites, pneumothorax, etc.) at the bedside. Over the past decade, advancements in technology have led to the use of ultrasound waves in treating many neurological conditions, such as essential tremor and Parkinson's disease, with high specificity. The convergence of ultrasound waves at a specific region of interest/target while avoiding surrounding tissue has led to the coined term "focused ultrasound (FUS)." In tumor research, ultrasound technology was initially used as an intraoperative guidance tool for tumor resection. However, in recent years, there has been growing interest in utilizing FUS as a therapeutic tool in the management of brain tumors such as gliomas. This mini-review highlights the current knowledge surrounding using FUS as a treatment modality for gliomas. Furthermore, we discuss the utility of FUS in enhanced drug delivery to the central nervous system (CNS) and highlight promising clinical trials that utilize FUS as a treatment modality for gliomas.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - Derrick Obiri-Yeboah
- Department of Neurological Surgery, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Faraz Fazad
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - William Blanks
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
36
|
Dos Santos Alves Maria G, Dias NS, Nicolato R, de Paula JJ, Bicalho MAC, Cunha RS, Silva LC, de Miranda DM, de Mattos Viana B, Romano-Silva MA. Safety and efficacy of repetitive stimulation of the left dorsolateral prefrontal cortex using transcranial focused ultrasound in treatment-resistant depressed patients: A non-inferiority randomized controlled trial protocol. Asian J Psychiatr 2024; 95:103994. [PMID: 38547573 DOI: 10.1016/j.ajp.2024.103994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND About 30% of patients diagnosed with major depressive disorder fail with the mainstream pharmacological treatment. Patients who do not achieve clinical remission of symptoms, even with two different antidepressants, are classified with treatment-resistant depression (TDR). This condition imposes an additional burden with increased Disability Adjusted Life Years. Therefore, complementary treatments, such as neuromodulation, are necessary. The transcranial focused ultrasound (tFUS) has emerged in the past few years as a reliable method for non-invasive neuromodulation in humans and may help treat TRD. This study aims to propose a research protocol for a non-inferiority randomized clinical trial of TDR with tFUS. METHODS Patients with documented TRD will be screened upon entering the TRD outpatient clinic at UFMG (Brazil). One hundred patients without a clinical history of other psychiatric illness, anatomical abnormalities on magnetic resonance imaging (MRI), or treatment with electroconvulsive therapy will be invited to participate. Patients will be randomized (1:1) into two groups: 1) treatment with a previously established protocol of transcranial magnetic stimulation; and 2) treatment with a similar protocol using the stimulation. Besides regular consultations in the outpatient clinic, both groups will attend 7 protocolled spaced days of brain stimulation targeted at the left dorsolateral prefrontal cortex. They will also be submitted to 4 sessions of image studies (2 MRIs, 2 positron-emission tomography), 3 of neuropsychological assessments (at baseline, 1 week and 2 months after treatment), the Montgomery-Åsberg Depression Rating Scale to analyze the severity of depressive symptoms. DISCUSSION This clinical trial intends to verify the safety and clinical efficacy of tFUS stimulation of the dorsolateral prefrontal cortex of patients with TRD, compared with a previously established neuromodulation method.
Collapse
Affiliation(s)
- Gustavo Dos Santos Alves Maria
- Department of Psychiatry, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Natália Silva Dias
- University Hospital of the Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Rodrigo Nicolato
- Department of Psychiatry, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; National Institutes of Science and Technology in Responsible Neurotechnology (INCT-NeuroTecR), Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Jonas Jardim de Paula
- Department of Psychiatry, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; National Institutes of Science and Technology in Responsible Neurotechnology (INCT-NeuroTecR), Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Maria Aparecida Camargos Bicalho
- Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Renan Souza Cunha
- Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Luciana Costa Silva
- Instituto Hermes Pardini (Grupo Fleury), Street Aimorés, 66, Belo Horizonte, Minas Gerais 30.140-920, Brazil
| | - Débora Marques de Miranda
- Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; National Institutes of Science and Technology in Responsible Neurotechnology (INCT-NeuroTecR), Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Department of Pediatrics, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Bernardo de Mattos Viana
- Department of Psychiatry, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; National Institutes of Science and Technology in Responsible Neurotechnology (INCT-NeuroTecR), Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Marco Aurélio Romano-Silva
- Department of Psychiatry, School of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Center of Technology in Molecular Medicine, Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil; National Institutes of Science and Technology in Responsible Neurotechnology (INCT-NeuroTecR), Professor Alfredo Balena Avenue, 190, Belo Horizonte, Minas Gerais 30.130-100, Brazil.
| |
Collapse
|
37
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Osada T, Konishi S. Noninvasive intervention by transcranial ultrasound stimulation: Modulation of neural circuits and its clinical perspectives. Psychiatry Clin Neurosci 2024; 78:273-281. [PMID: 38505983 PMCID: PMC11488602 DOI: 10.1111/pcn.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Low-intensity focused transcranial ultrasound stimulation (TUS) is an emerging noninvasive technique capable of stimulating both the cerebral cortex and deep brain structures with high spatial precision. This method is recognized for its potential to comprehensively perturb various brain regions, enabling the modulation of neural circuits, in a manner not achievable through conventional magnetic or electrical brain stimulation techniques. The underlying mechanisms of neuromodulation are based on a phenomenon where mechanical waves of ultrasound kinetically interact with neurons, specifically affecting neuronal membranes and mechanosensitive channels. This interaction induces alterations in the excitability of neurons within the stimulated region. In this review, we briefly present the fundamental principles of ultrasound physics and the physiological mechanisms of TUS neuromodulation. We explain the experimental apparatus and procedures for TUS in humans. Due to the focality, the integration of various methods, including magnetic resonance imaging and magnetic resonance-guided neuronavigation systems, is important to perform TUS experiments for precise targeting. We then review the current state of the literature on TUS neuromodulation, with a particular focus on human subjects, targeting both the cerebral cortex and deep subcortical structures. Finally, we outline future perspectives of TUS in clinical applications in psychiatric and neurological fields.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University School of MedicineTokyoJapan
- Sportology CenterJuntendo University School of MedicineTokyoJapan
- Advanced Research Institute for Health ScienceJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
39
|
Wang P, Chen J, Zhong R, Xia Y, Wu Z, Zhang C, Yao H. Recent advances of ultrasound-responsive nanosystems in tumor immunotherapy. Eur J Pharm Biopharm 2024; 198:114246. [PMID: 38479562 DOI: 10.1016/j.ejpb.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Immunotherapy has revolutionized cancer treatment by boosting the immune system and preventing disease escape mechanisms. Despite its potential, challenges like limited response rates and adverse immune effects impede its widespread clinical adoption. Ultrasound (US), known for its safety and effectiveness in tumor diagnosis and therapy, has been shown to significantly enhance immunotherapy when used with nanosystems. High-intensity focused ultrasound (HIFU) can obliterate tumor cells and elicit immune reactions through the creation of immunogenic debris. Low-intensity focused ultrasound (LIFU) bolsters tumor immunosuppression and mitigates metastasis risk by concentrating dendritic cells. Ultrasonic cavitation (UC) produces microbubbles that can transport immune enhancers directly, thus strengthening the immune response and therapeutic impact. Sonodynamic therapy (SDT) merges nanotechnology with immunotherapy, using specialized sonosensitizers to kill cancer cells and stimulate immune responses, increasing treatment success. This review discusses the integration of ultrasound-responsive nanosystems in tumor immunotherapy, exploring future opportunities and current hurdles.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Ji Chen
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Runming Zhong
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Yuanyuan Xia
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Zhina Wu
- Department of Ultrasound Medicine, Rui'an people's Hospital (The Third Affiliated Hospital of Wenzhou Medical University), Rui'an 325200, China
| | - Chunye Zhang
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China
| | - Hai Yao
- Center For Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou 215004, China.
| |
Collapse
|
40
|
Lee K, Park TY, Lee W, Kim H. A review of functional neuromodulation in humans using low-intensity transcranial focused ultrasound. Biomed Eng Lett 2024; 14:407-438. [PMID: 38645585 PMCID: PMC11026350 DOI: 10.1007/s13534-024-00369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/23/2024] Open
Abstract
Transcranial ultrasonic neuromodulation is a rapidly burgeoning field where low-intensity transcranial focused ultrasound (tFUS), with exquisite spatial resolution and deep tissue penetration, is used to non-invasively activate or suppress neural activity in specific brain regions. Over the past decade, there has been a rapid increase of tFUS neuromodulation studies in healthy humans and subjects with central nervous system (CNS) disease conditions, including a recent surge of clinical investigations in patients. This narrative review summarized the findings of human neuromodulation studies using either tFUS or unfocused transcranial ultrasound (TUS) reported from 2013 to 2023. The studies were categorized into two separate sections: healthy human research and clinical studies. A total of 42 healthy human investigations were reviewed as grouped by targeted brain regions, including various cortical, subcortical, and deep brain areas including the thalamus. For clinical research, a total of 22 articles were reviewed for each studied CNS disease condition, including chronic pain, disorder of consciousness, Alzheimer's disease, Parkinson's disease, depression, schizophrenia, anxiety disorders, substance use disorder, drug-resistant epilepsy, and stroke. Detailed information on subjects/cohorts, target brain regions, sonication parameters, outcome readouts, and stimulatory efficacies were tabulated for each study. In later sections, considerations for planning tFUS neuromodulation in humans were also concisely discussed. With an excellent safety profile to date, the rapid growth of human tFUS research underscores the increasing interest and recognition of its significant potential in the field of non-invasive brain stimulation (NIBS), offering theranostic potential for neurological and psychiatric disease conditions and neuroscientific tools for functional brain mapping.
Collapse
Affiliation(s)
- Kyuheon Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Wonhye Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| |
Collapse
|
41
|
Prieto ML, Maduke M. Towards an ion-channel-centric approach to ultrasound neuromodulation. Curr Opin Behav Sci 2024; 56:101355. [PMID: 38505510 PMCID: PMC10947167 DOI: 10.1016/j.cobeha.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ultrasound neuromodulation is a promising technology that could revolutionize study and treatment of brain conditions ranging from mood disorders to Alzheimer's disease and stroke. An understanding of how ultrasound directly modulates specific ion channels could provide a roadmap for targeting specific neurological circuits and achieving desired neurophysiological outcomes. Although experimental challenges make it difficult to unambiguously identify which ion channels are sensitive to ultrasound in vivo, recent progress indicates that there are likely several different ion channels involved, including members of the K2P, Piezo, and TRP channel families. A recent result linking TRPM2 channels in the hypothalamus to induction of torpor by ultrasound in rodents demonstrates the feasibility of targeting a specific ion channel in a specific population of neurons.
Collapse
Affiliation(s)
- Martin Loynaz Prieto
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B151 Beckman Center, Stanford, CA 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, 279 Campus Drive West, B155 Beckman Center, Stanford, CA 94305
| |
Collapse
|
42
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
43
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the human insular cortex differentially modulates the heartbeat-evoked potential: a proof-of-concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584152. [PMID: 38559271 PMCID: PMC10979877 DOI: 10.1101/2024.03.08.584152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
- Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA
| |
Collapse
|
44
|
Barksdale BR, Doss MK, Fonzo GA, Nemeroff CB. The mechanistic divide in psychedelic neuroscience: An unbridgeable gap? Neurotherapeutics 2024; 21:e00322. [PMID: 38278658 DOI: 10.1016/j.neurot.2024.e00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
In recent years, psychedelics have generated considerable excitement and interest as potential novel therapeutics for an array of conditions, with the most advanced evidence base in the treatment of certain severe and/or treatment-resistant psychiatric disorders. An array of clinical and pre-clinical evidence has informed our current understanding of how psychedelics produce profound alterations in consciousness. Mechanisms of psychedelic action include receptor binding and downstream cellular and transcriptional pathways, with long-term impacts on brain structure and function-from the level of single neurons to large-scale circuits. In this perspective, we first briefly review and synthesize separate lines of research on potential mechanistic processes underlying the acute and long-term effects of psychedelic compounds, with a particular emphasis on highlighting current theoretical models of psychedelic drug action and their relationships to therapeutic benefits for psychiatric and brain-based disorders. We then highlight an existing area of ongoing controversy we argue is directly informed by theoretical models originating from disparate levels of inquiry, and we ultimately converge on the notion that bridging the current chasm in explanatory models of psychedelic drug action across levels of inquiry (molecular, cellular, circuit, and psychological/behavioral) through innovative methods and collaborative efforts will ultimately yield the comprehensive understanding needed to fully capitalize on the potential therapeutic properties of these compounds.
Collapse
Affiliation(s)
- Bryan R Barksdale
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Manoj K Doss
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
45
|
Zadeh AK, Raghuram H, Shrestha S, Kibreab M, Kathol I, Martino D, Pike GB, Pichardo S, Monchi O. The effect of transcranial ultrasound pulse repetition frequency on sustained inhibition in the human primary motor cortex: A double-blind, sham-controlled study. Brain Stimul 2024; 17:476-484. [PMID: 38621645 DOI: 10.1016/j.brs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation hold promise for inducing brain plasticity. However, their limited precision may hamper certain applications. In contrast, Transcranial Ultrasound Stimulation (TUS), known for its precision and deep brain targeting capabilities, requires further investigation to establish its efficacy in producing enduring effects for treating neurological and psychiatric disorders. OBJECTIVE To investigate the enduring effects of different pulse repetition frequencies (PRF) of TUS on motor corticospinal excitability. METHODS T1-, T2-weighted, and zero echo time magnetic resonance imaging scans were acquired from 21 neurologically healthy participants for neuronavigation, skull reconstruction, and the performance of transcranial ultrasound and thermal modelling. The effects of three different TUS PRFs (10, 100, and 1000 Hz) with a constant duty cycle of 10 % on corticospinal excitability in the primary motor cortex were assessed using TMS-induced motor evoked potentials (MEPs). Each PRF and sham condition was evaluated on separate days, with measurements taken 5-, 30-, and 60-min post-TUS. RESULTS A significant decrease in MEP amplitude was observed with a PRF of 10 Hz (p = 0.007), which persisted for at least 30 min, and with a PRF of 100 Hz (p = 0.001), lasting over 60 min. However, no significant changes were found for the PRF of 1000 Hz and the sham conditions. CONCLUSION This study highlights the significance of PRF selection in TUS and underscores its potential as a non-invasive approach to reduce corticospinal excitability, offering valuable insights for future clinical applications.
Collapse
Affiliation(s)
- Ali K Zadeh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Shirshak Shrestha
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Mekale Kibreab
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Iris Kathol
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Samuel Pichardo
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montreal, QC, Canada; Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
46
|
Bao S, Kim H, Shettigar NB, Li Y, Lei Y. Personalized depth-specific neuromodulation of the human primary motor cortex via ultrasound. J Physiol 2024; 602:933-948. [PMID: 38358314 DOI: 10.1113/jp285613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.
Collapse
Affiliation(s)
- Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Hakjoo Kim
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Nandan B Shettigar
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Yue Li
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, Texas, USA
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
47
|
Qin PP, Jin M, Xia AW, Li AS, Lin TT, Liu Y, Kan RL, Zhang BB, Kranz GS. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105501. [PMID: 38061596 DOI: 10.1016/j.neubiorev.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Low-intensity transcranial ultrasound stimulation (LITUS) is a novel non-invasive neuromodulation technique. We conducted a systematic review to evaluate current evidence on the efficacy and safety of LITUS neuromodulation. Five databases were searched from inception to May 31, 2023. Randomized controlled human trials and controlled animal studies were included. The neuromodulation effects of LITUS on clinical or pre-clinical, neurophysiological, neuroimaging, histological and biochemical outcomes, and adverse events were summarized. In total, 11 human studies and 44 animal studies were identified. LITUS demonstrated therapeutic efficacy in neurological disorders, psychiatric disorders, pain, sleep disorders and hypertension. LITUS-related changes in neuronal structure and cortical activity were found. From histological and biochemical perspectives, prominent findings included suppressing the inflammatory response and facilitating neurogenesis. No adverse effects were reported in controlled animal studies included in our review, while reversible headache, nausea, and vomiting were reported in a few human subjects. Overall, LITUS alleviates various symptoms and modulates associated brain circuits without major side effects. Future research needs to establish a solid therapeutic framework for LITUS.
Collapse
Affiliation(s)
- Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Adam Weili Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ami Sinman Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Tim Tianze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuchen Liu
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Laidi Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Bella Bingbing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Ash RT, Nix KC, Norcia AM. Stability of steady-state visual evoked potential contrast response functions. Psychophysiology 2024; 61:e14412. [PMID: 37614220 PMCID: PMC10871127 DOI: 10.1111/psyp.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 08/25/2023]
Abstract
Repetitive sensory stimulation has been shown to induce neuroplasticity in sensory cortical circuits, at least under certain conditions. We measured the plasticity-inducing effect of repetitive contrast-reversal-sweep steady-state visual-evoked potential (ssVEP) stimuli, hoping to employ the ssVEP's high signal-to-noise electrophysiological readout in the study of human visual cortical neuroplasticity. Steady-state VEP contrast-sweep responses were measured daily for 4 days (four 20-trial blocks per day, 20 participants). No significant neuroplastic changes in response amplitude were observed either across blocks or across days. Furthermore, response amplitudes were stable within-participant, with measured across-block and across-day coefficients of variation (CV = SD/mean) of 15-20 ± 2% and 22-25 ± 2%, respectively. Steady-state VEP response phase was also highly stable, suggesting that temporal processing delays in the visual system vary by at most 2-3 ms across blocks and days. While we fail to replicate visual stimulation-dependent cortical plasticity, we show that contrast-sweep steady-state VEPs provide a stable human neurophysiological measure well suited for repeated-measures longitudinal studies.
Collapse
Affiliation(s)
- Ryan T Ash
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kerry C Nix
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anthony M Norcia
- Department of Psychology and Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
49
|
Van Reet J, Tunnell K, Anderson K, Kim HC, Kim E, Kowsari K, Yoo SS. Evaluation of advective solute infiltration into porous media by pulsed focused ultrasound-induced acoustic streaming effects. Ultrasonography 2024; 43:35-46. [PMID: 38029736 PMCID: PMC10766883 DOI: 10.14366/usg.23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Acoustic streaming induced by applying transcranial focused ultrasound (FUS) promotes localized advective solute transport in the brain and has recently garnered research interest for drug delivery and enhancement of brain waste clearance. The acoustic streaming behavior in brain tissue is difficult to model numerically and thus warrants an in vitro examination of the effects of using different sonication parameters, in terms of frequency, intensity, and pulse duration (PD). METHODS Melamine and polyvinyl alcohol (PVA) foams were used to mimic the porous brain tissue, which contains leptomeningeal fenestrations and perivascular space, while agar hydrogel was used to emulate denser neuropil. FUS was delivered to these media, which were immersed in a phosphate-buffered saline containing toluidine blue O dye, across various frequencies (400, 500, and 600 kHz; applicable to transcranial delivery) in a pulsed mode at two different spatialpeak pulse-average intensities (3 and 4 W/cm2). RESULTS Image analysis showed that the use of 400 kHz yielded the greatest dye infiltration in melamine foam, while sonication had no impact on infiltration in the agar hydrogel due to the dominance of diffusional transport. Using a fixed spatial-peak temporal-average intensity of 0.4 W/cm2 at 400 kHz, a PD of 75 ms resulted in the greatest infiltration depth in both melamine and PVA foams among the tested range (50-150 ms). CONCLUSION These findings suggest the existence of a specific frequency and PD that induce greater enhancement of solute/fluid movement, which may contribute to eventual in vivo applications in promoting waste clearance from the brain.
Collapse
Affiliation(s)
- Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Tunnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara Anderson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Benster LL, Weissman CR, Stolz LA, Daskalakis ZJ, Appelbaum LG. Pre-clinical indications of brain stimulation treatments for non-affective psychiatric disorders, a status update. Transl Psychiatry 2023; 13:390. [PMID: 38097566 PMCID: PMC10721798 DOI: 10.1038/s41398-023-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.
Collapse
Affiliation(s)
- Lindsay L Benster
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA.
| | - Cory R Weissman
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Louise A Stolz
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Zafiris J Daskalakis
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Lawrence G Appelbaum
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|