1
|
Hairul Hisham HI, Lim SM, Neoh CF, Abdul Majeed AB, Shahar S, Ramasamy K. Effects of non-pharmacological interventions on gut microbiota and intestinal permeability in older adults: A systematic review: Non-pharmacological interventions on gut microbiota/barrier. Arch Gerontol Geriatr 2025; 128:105640. [PMID: 39305569 DOI: 10.1016/j.archger.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024]
Abstract
This systematic review appraised previous findings of non-pharmacological interventions on gut microbiota and/ or intestinal permeability in older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on the inclusion and exclusion criteria, and evaluated for risks of bias using the "Cochrane Collaboration's Risk of Bias 2" and the "NIH Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group". The primary outcomes were the effects of non-pharmacological interventions on gut microbiota diversity and composition, and intestinal permeability in older adults. Out of 85,114 studies, 38 were shortlisted. Generally, the non-pharmacological interventions were beneficial against dysbiosis and the leaky gut in older adults. Considering specific interventions with two or more studies that reported consistent outcomes, a pattern was observed amongst the Mediterranean diet (MD), polyphenol-rich (PR) diet and supplements (i.e., probiotics, prebiotics and synbiotics). As for the other interventions, the very few studies that have been conducted did not allow a strong conclusion to be made just yet. The MD (single and multidomain interventions) restored gut microbiota by increasing species richness (alpha diversity) and reduced intestinal permeability (zonulin) and inflammation (CRP). The PR diet only showed slight changes in the gut microbiota but improved the gut barrier by reducing zonulin, CRP and IL-6. Probiotics, prebiotics and synbiotics increased the genus Bifidobacterium spp. which are considered beneficial bacteria. This review has uncovered insights into the relationship between gut microbiota and intestinal epithelial barriers of specific non-pharmacological interventions in older adults.
Collapse
Affiliation(s)
- Hazwanie Iliana Hairul Hisham
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Chin Fen Neoh
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| | - Suzana Shahar
- Centre of Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Mensah EO, Danyo EK, Asase RV. Exploring the effect of different diet types on ageing and age-related diseases. Nutrition 2024; 129:112596. [PMID: 39488864 DOI: 10.1016/j.nut.2024.112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
In recent times, there has been growing interest in understanding the factors contributing to prolonged and healthy lifespans observed in specific populations, tribes, or countries. Factors such as environmental and dietary play significant roles in shaping the ageing process and are often the focus of inquiries seeking to unravel the secrets behind longevity. Among these factors, diet emerges as a primary determinant, capable of either promoting or mitigating the onset of age-related diseases that impact the ageing trajectory. This review examines the impact of various diet types on ageing and age-related conditions, including cardiovascular disease, cancer, neurodegenerative disorders, and metabolic syndrome. Different dietary patterns, such as the Mediterranean diet, the Japanese diet, vegetarian and vegan diets, as well as low-carbohydrate and ketogenic diets, are evaluated for their potential effects on longevity and health span. Each diet type is characterized by distinct nutritional profiles, emphasizing specific food groups, macronutrient compositions, and bioactive components, which may exert diverse effects on ageing processes and disease risk. Additionally, dietary factors such as calorie restriction, intermittent fasting, and dietary supplementation are explored for their potential anti-ageing and disease-modifying effects. Understanding the influence of various diet types on ageing and age-related diseases can inform personalized dietary recommendations and lifestyle interventions aimed at promoting healthy aging and mitigating age-associated morbidities.
Collapse
Affiliation(s)
- Emmanuel O Mensah
- Faculty of Ecotechnology, ITMO University, Saint Petersburg, Russian Federation.
| | - Emmanuel K Danyo
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Richard V Asase
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
3
|
Śliwiński W, Gawlik-Kotelnicka O. Circulating B vitamins metabolites in depressive disorders - connections with the microbiota-gut-brain axis. Behav Brain Res 2024; 472:115145. [PMID: 38992845 DOI: 10.1016/j.bbr.2024.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE In this review, we aim to summarize recent information about the association of B vitamins with immune-metabolic aspects of depression and their connection with the gut-brain axis. VIEWS B vitamins may alter depressive symptoms by many various mechanisms such as reducing oxidative stress, inflammation, gut permeability, controlling epigenetics, modifying the microbiome, and stimulating it to produce many beneficial substances such as short-chain fatty acids or neurotransmitters: norepinephrine, dopamine, serotonin, gamma-aminobutyric acid, and acetylcholine. CONCLUSIONS Specifically, vitamins B1 (thiamine), B6 (pyridoxine), B9 (folate), and B12 (cyanocobalamin), B2 (riboflavin) have been observed to affect depression. Given probiotic's capability to produce vitamins from the B group, and modify intestinal function, inflammation, or metabolic dysfunction, their supplementation might be a possible treatment method for the immunometabolic form of depression. Thus, the intake of certain probiotic bacterial strains simultaneously with controlling the required daily intake of B vitamins may positively affect the course of depression. Circulating B vitamins metabolite levels, especially B9, B12, and B6 may also be biomarkers of depression. Further investigation is needed to find stronger evidence on this topic.
Collapse
Affiliation(s)
- Wiktor Śliwiński
- Faculty of Medicine, Medical University of Lodz, Lodz 92-216, Poland.
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Lodz 92-216, Poland.
| |
Collapse
|
4
|
Ding M, Yan J, Chen Y, Liu J, Chao G, Zhang S. Changes in M6A methylation: A key factor in the vicious cycle of flora -gut aging. Ageing Res Rev 2024; 98:102351. [PMID: 38820855 DOI: 10.1016/j.arr.2024.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The aging process significantly impacts the gastrointestinal tract and various bodily systems, exacerbating age-related diseases. Research suggests a correlation between an imbalance in intestinal flora and gut aging, yet the precise mechanism remains incompletely elucidated. Epigenetic modifications, particularly m6A methylation, play a pivotal role in driving aging and are closely associated with gut aging. Maintaining a healthy balance of intestinal microbes is contingent upon m6A methylation, which is believed to be crucial in the vicious cycle of gut aging and intestinal flora. This article highlights the importance of m6A methylation in the nexus between gut aging and flora. It proposes the potential for targeted m6A methylation to break the vicious cycle of gut aging and flora imbalance, offering novel perspectives on attenuating or reversing gut aging.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Yuxuan Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Jinguo Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China
| | - Guanqun Chao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, PR China; Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, PR China.
| |
Collapse
|
5
|
Makioka-Itaya Y, Inoue R, Tsukahara T. Dysfunction of the Murine Liver with Aging and Its Improvement with the Continuous Consumption of Enterococcus faecalis EC-12. Nutrients 2024; 16:2031. [PMID: 38999780 PMCID: PMC11243158 DOI: 10.3390/nu16132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic inflammation is involved in the development of age-related diseases. Given its persistence, controlling chronic inflammation is essential for preventing age-related diseases. In this study, we investigated the effects of Enterococcus faecalis EC-12 (EC-12), which has immunomodulatory and antioxidant effects, on liver gene expression and aging phenomena in mice. Short-term EC-12 administration stimulated the expression of genes involved in lipid synthesis and metabolism in the liver. Furthermore, long-term EC-12 administration from 10 weeks to 1.5 years of age resulted in significant increases in blood interleukin (IL)-6 and IL-10 concentrations (both p < 0.05) and a significant decrease in the monocyte chemotactic protein-1 concentration (p < 0.05). These results indicated pathologic improvement, such as suppression of fat degeneration in the liver. These results suggest that continuous EC-12 intake from a young age can suppress liver function abnormalities, which is one of the aging phenomena in old age, and contribute to health in old age.
Collapse
Affiliation(s)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Setsunan University, Hirakata 573-0101, Japan;
| | | |
Collapse
|
6
|
Lazou-Ahrén I, Björklund M, Molin G, Xu J, Önning G, Elmståhl S, Jeppsson B. Probiotic-Reduced Inflammaging in Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10310-7. [PMID: 38896223 DOI: 10.1007/s12602-024-10310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The disparity between increased lifespan and healthy aging, marked by prevalent "inflammaging", highlights the global challenge in care of older persons. This study explored the anti-inflammatory effects of Lactiplantibacillus plantarum HEAL9 (LpHEAL9), alone or combined with berries, on older volunteers with chronic low-grade inflammation (LGI). It was a randomized, double-blind, placebo-controlled trial, with a total of 66 volunteers (> 70 years old), randomly assigned, and equally distributed, to placebo, LpHEAL9 or LpHEAL9 + Berries group. After a 2-week run-in period, participants underwent a 4-week dietary intervention. Intake of LpHEAL9 showed a trend towards reduction in serum CRP but without reaching statistical significance. However, LpHEAL9 significantly decreased fecal calprotectin levels compared to placebo. LpHEAL9+Berries did not show any effect on inflammation. Both probiotic groups showed a trend in improving cognitive function albeit not reaching statistical significance. Our findings suggest that the probiotic strain L. plantarum HEAL9 has a modest impact on LGI in a healthy older population (ClinicalTrials.gov ID: NCT02342496).
Collapse
Affiliation(s)
| | | | - Göran Molin
- Department of Process and Life Science Engineering, Lund University, Lund, Sweden
| | - Jie Xu
- Sapfo Research AB, Bjärred, Sweden
| | | | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Bengt Jeppsson
- Department of Surgery, Skåne University Hospital, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Dominique GM, Hammond C, Stack MS. The Gut Microbiome in Aging and Ovarian Cancer. AGING AND CANCER 2024; 5:14-34. [PMID: 39132604 PMCID: PMC11309124 DOI: 10.1002/aac2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
The gut microbiome changes with age and affects regions beyond the gut, including the ovarian cancer tumor microenvironment. In this review summarizing the literature on the gut microbiome in ovarian cancer and in aging, we note trends in the microbiota composition common to both phenomena and trends that are distinctly opposite. Both ovarian cancer and aging are characterized by an increase in proinflammatory bacterial species, particularly those belonging to phylum Proteobacteria and genus Escherichia, and a decrease in short chain fatty acid producers, particularly those in Clostridium cluster XIVa (family Lachnospiraceae) and the Actinobacteria genus Bifidobacterium. However, while beneficial bacteria from family Porphyromonadaceae and genus Akkermansia tend to increase with normal, healthy aging, these bacteria tend to decrease in ovarian cancer, similar to what is observed in obesity or unhealthy aging. We also note a lack in the current literature of research demonstrating causal relationships between the gut microbiome and ovarian cancer outcomes and research on the gut microbiome in ovarian cancer in the context of aging, both of which could lead to improvements to ovarian cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gena M Dominique
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | | | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
8
|
Islam MA, Sehar U, Sultana OF, Mukherjee U, Brownell M, Kshirsagar S, Reddy PH. SuperAgers and centenarians, dynamics of healthy ageing with cognitive resilience. Mech Ageing Dev 2024; 219:111936. [PMID: 38657874 DOI: 10.1016/j.mad.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Graceful healthy ageing and extended longevity is the most desired goal for human race. The process of ageing is inevitable and has a profound impact on the gradual deterioration of our physiology and health since it triggers the onset of many chronic conditions like dementia, osteoporosis, diabetes, arthritis, cancer, and cardiovascular disease. However, some people who lived/live more than 100 years called 'Centenarians" and how do they achieve their extended lifespans are not completely understood. Studying these unknown factors of longevity is important not only to establish a longer human lifespan but also to manage and treat people with shortened lifespans suffering from age-related morbidities. Furthermore, older adults who maintain strong cognitive function are referred to as "SuperAgers" and may be resistant to risk factors linked to cognitive decline. Investigating the mechanisms underlying their cognitive resilience may contribute to the development of therapeutic strategies that support the preservation of cognitive function as people age. The key to a long, physically, and cognitively healthy life has been a mystery to scientists for ages. Developments in the medical sciences helps us to a better understanding of human physiological function and greater access to medical care has led us to an increase in life expectancy. Moreover, inheriting favorable genetic traits and adopting a healthy lifestyle play pivotal roles in promoting longer and healthier lives. Engaging in regular physical activity, maintaining a balanced diet, and avoiding harmful habits such as smoking contribute to overall well-being. The synergy between positive lifestyle choices, access to education, socio-economic factors, environmental determinants and genetic supremacy enhances the potential for a longer and healthier life. Our article aims to examine the factors associated with healthy ageing, particularly focusing on cognitive health in centenarians. We will also be discussing different aspects of ageing including genomic instability, metabolic burden, oxidative stress and inflammation, mitochondrial dysfunction, cellular senescence, immunosenescence, and sarcopenia.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, dos Santos TW, Ribeiro ML. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024; 16:1066. [PMID: 38613099 PMCID: PMC11013902 DOI: 10.3390/nu16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In the aging process, physiological decline occurs, posing a substantial threat to the physical and mental well-being of the elderly and contributing to the onset of age-related diseases. While traditional perspectives considered the maintenance of life as influenced by a myriad of factors, including environmental, genetic, epigenetic, and lifestyle elements such as exercise and diet, the pivotal role of symbiotic microorganisms had been understated. Presently, it is acknowledged that the intestinal microbiota plays a profound role in overall health by signaling to both the central and peripheral nervous systems, as well as other distant organs. Disruption in this bidirectional communication between bacteria and the host results in dysbiosis, fostering the development of various diseases, including neurological disorders, cardiovascular diseases, and cancer. This review aims to delve into the intricate biological mechanisms underpinning dysbiosis associated with aging and the clinical ramifications of such dysregulation. Furthermore, we aspire to explore bioactive compounds endowed with functional properties capable of modulating and restoring balance in this aging-related dysbiotic process through epigenetics alterations.
Collapse
Affiliation(s)
- Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Fabricio de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.); (T.W.d.S.)
| |
Collapse
|
10
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
11
|
Bedani R, Cucick ACC, Albuquerque MACD, LeBlanc JG, Saad SMI. B-Group Vitamins as Potential Prebiotic Candidates: Their Effects on the Human Gut Microbiome. J Nutr 2024; 154:341-353. [PMID: 38176457 DOI: 10.1016/j.tjnut.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
In recent years, thousands of studies have demonstrated the importance of the gut microbiome for human health and its relationship with certain diseases. The search for new gut microbiome modulators has thus become an objective to beneficially alter the gut microbiome composition and/or metabolic activity, which may modify intestinal physiology. Growing evidence has shown that B-group vitamins might be considered as potential candidates as gut microbiome modulators. However, the relationship between the B-group vitamins and the gut microbiome remains largely unexplored. Studies have suggested that non-absorbed B-group vitamins administered orally can reach the distal intestine or even the colon where these vitamins may have potential health benefits for the host. Clinical trials supporting this effect are still limited. In this review, we discuss evidence regarding the modulatory effects of B-group vitamins on the gut microbiome with a focus on their potential role as prebiotic candidates.
Collapse
Affiliation(s)
- Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil.
| | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcela Albuquerque Cavalcanti de Albuquerque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; Food Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Lim MY, Nam YD. Gut microbiome in healthy aging versus those associated with frailty. Gut Microbes 2023; 15:2278225. [PMID: 37968837 PMCID: PMC10730223 DOI: 10.1080/19490976.2023.2278225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
As the proportion of older people in the world's population steadily increases, there is an urgent need to identify ways to support healthy aging. The gut microbiome has been proposed to be involved in aging-related diseases and has become an attractive target for improving health in older people. Herein, we cover the relationship between the gut microbiome and chronological age in adults, and then, we discuss the gut microbiome features associated with frailty, as a hallmark of unhealthy aging in older people. Furthermore, we describe the effects of microbiome-targeted interventions, such as dietary patterns and consumption of probiotics, prebiotics, and synbiotics, on modulating the gut microbiome composition and further promoting healthy aging. Further studies are needed to explore the underlying mechanisms of gut microbiome-induced aging complications and to develop personalized microbiome-based strategies for reducing the severity of frailty or preventing the onset of frailty in older adults.
Collapse
Affiliation(s)
- Mi Young Lim
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Young-Do Nam
- Personalized Diet Research Group, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
13
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
14
|
Meng X, Liu S, Liu Q, Zhang Y, Jing L, Huang X, Sun J, Ye L. Anti-oxidative stress properties by Lactiplantibacillus plantarum SCS3 in streptozotocin-induced diabetic mice. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2136759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Xiao Meng
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shukun Liu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiuyan Liu
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Zhang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Jing
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Huang
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Ye
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Al-Musharaf S, Aljuraiban GS, Al-Ajllan L, Al-Khaldi N, Aljazairy EA, Hussain SD, Alnaami AM, Sabico S, Al-Daghri N. Vitamin B12 Status and Gut Microbiota among Saudi Females with Obesity. Foods 2022; 11:foods11244007. [PMID: 36553749 PMCID: PMC9778531 DOI: 10.3390/foods11244007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Previous studies have suggested that dietary habits and dysbiosis of gut microbiota contributed to obesity development. Vitamin B12 is produced by microbes; however, the relationships between vitamin B12, gut microbiome, and obesity are understudied. We aimed to determine the association between vitamin B12 status and gut microbiota relative to obesity in 92 Saudi Arabian females aged 19-25 years who were obese (n = 44) or normal weight (n = 48). Anthropometric, biochemical data, and dietary data were collected. The microbial communities of stool samples were characterized using the shotgun metagenomic sequencing technique. The relationship between vitamin B12 status and gut microbiota composition was identified using Pearson correlation analysis. A statistically significant difference was found in bacterial α- and β-diversity between the groups relative to median serum vitamin B12 level (404.0 pg/mL) and body weight. In the total participants, dietary vitamin B12 intake was inversely correlated with Bifidobacterium kashiwanohense and Blautia wexlerae species. In obese participants, dietary vitamin B12 intake was inversely correlated with Akkermansia muciniphila species and species from the Verrucomicrobia phylum, whereas it was positively correlated with Bacteroides species. Our findings indicate that the abundance (frequency) and diversity (richness) of gut microbiota are associated with vitamin B12 levels and obesity in young females.
Collapse
Affiliation(s)
- Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +096-655-4243-033
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lama Al-Ajllan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noura Al-Khaldi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Danish Hussain
- Chair for Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Jendraszak M, Gałęcka M, Kotwicka M, Schwiertz A, Regdos A, Pazgrat-Patan M, Andrusiewicz M. Impact of Biometric Patient Data, Probiotic Supplementation, and Selected Gut Microorganisms on Calprotectin, Zonulin, and sIgA Concentrations in the Stool of Adults Aged 18-74 Years. Biomolecules 2022; 12:biom12121781. [PMID: 36551209 PMCID: PMC9775524 DOI: 10.3390/biom12121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Alterations to the intestinal barrier may be involved in the pathogenesis of various chronic diseases. The diagnosis of mucosal barrier disruption has become a new therapeutic target for disease prevention. The aim of this study was to determine whether various patient demographic and biometric data, often not included in diagnostic analyses, may affect calprotectin, zonulin, and sIgA biomarker values. Stool markers' levels in 160 samples were measured colorimetrically. The analysis of twenty key bacteria (15 genera and 5 species) was carried out on the basis of diagnostic tests, including cultures and molecular tests. The concentrations of selected markers were within reference ranges for most patients. The sIgA level was significantly lower in participants declaring probiotics supplementation (p = 0.0464). We did not observe differences in gastrointestinal discomfort in participants. We found significant differences in the sIgA level between the 29-55 years and >55 years age-related intervals groups (p = 0.0191), together with a significant decreasing trend (p = 0.0337) in age-dependent sIgA concentration. We observed complex interdependencies and relationships between their microbiota and the analyzed biomarkers. For correct clinical application, standardized values of calprotectin and sIgA should be determined, especially in elderly patients. We observed a correlation between the composition of the gut community and biomarker levels, although it requires further in-depth analysis.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| | | | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | | | | | | | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: (M.J.); (M.A.)
| |
Collapse
|
17
|
Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells 2022; 11:cells11182827. [PMID: 36139402 PMCID: PMC9497179 DOI: 10.3390/cells11182827] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.
Collapse
|
18
|
Malinowska AM, Schmidt M, Kok DE, Chmurzynska A. Ex vivo folate production by fecal bacteria does not predict human blood folate status: Associations between dietary patterns, gut microbiota, and folate metabolism. Food Res Int 2022; 156:111290. [DOI: 10.1016/j.foodres.2022.111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022]
|
19
|
Chenhuichen C, Cabello-Olmo M, Barajas M, Izquierdo M, Ramírez-Vélez R, Zambom-Ferraresi F, Martínez-Velilla N. Impact of probiotics and prebiotics in the modulation of the major events of the aging process: A systematic review of randomized controlled trials. Exp Gerontol 2022; 164:111809. [DOI: 10.1016/j.exger.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
20
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
21
|
Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the Gastrointestinal Microbiome: A Systematic Review. Adv Nutr 2021; 13:S2161-8313(22)00075-8. [PMID: 34612492 PMCID: PMC8970816 DOI: 10.1093/advances/nmab123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin B-12 deficiency is a major public health problem affecting individuals across the lifespan, with known hematological, neurological, and obstetric consequences. Emerging evidence suggests that vitamin B-12 may have an important role in other aspects of human health, including the composition and function of the gastrointestinal (gut) microbiome. Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required for over a dozen enzymes in bacteria, compared to only two in humans. However, the impact of vitamin B-12 on the gut microbiome has not been established. This systematic review was conducted to examine the evidence that links vitamin B-12 and the gut microbiome. A structured search strategy was used to identify in vitro, animal, and human studies that assessed vitamin B-12 status, dietary intake, or supplementation, and the gut microbiome using culture-independent techniques. A total of 22 studies (3 in vitro, 8 animal, 11 human observational studies) were included. Nineteen studies reported vitamin B-12 intake, status, or supplementation was associated with gut microbiome outcomes, including beta-diversity, alpha-diversity, relative abundance of bacteria, functional capacity, or short chain fatty acid production. Evidence suggests vitamin B-12 may be associated with changes in bacterial abundance. While results from in vitro studies suggest vitamin B-12 may increase alpha-diversity and shift gut microbiome composition (beta-diversity), findings from animal studies and observational human studies were heterogeneous. Based on evidence from in vitro and animal studies, microbiome outcomes may differ by cobalamin form and co-intervention. To date, few prospective observational studies and no randomized trials have been conducted to examine the effects of vitamin B-12 on the human gut microbiome. The impact of vitamin B-12 on the gut microbiome needs to be elucidated to inform screening and public health interventions. Statement of significance: Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required by over a dozen enzymes in bacteria. However, to date, no systematic reviews have been conducted to evaluate the impact of vitamin B-12 on the gut microbiome, or its implications for human health.
Collapse
Affiliation(s)
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Allison M Fox
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA,Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
22
|
The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:antiox10111845. [PMID: 34829716 PMCID: PMC8614795 DOI: 10.3390/antiox10111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The fact that millions of people worldwide suffer from Alzheimer’s disease (AD) or Parkinson’s disease (PD), the two most prevalent neurodegenerative diseases (NDs), has been a permanent challenge to science. New tools were developed over the past two decades and were immediately incorporated into routines in many laboratories, but the most valuable scientific contribution was the “waking up” of the gut microbiota. Disturbances in the gut microbiota, such as an imbalance in the beneficial/pathogenic effects and a decrease in diversity, can result in the passage of undesired chemicals and cells to the systemic circulation. Recently, the potential effect of probiotics on restoring/preserving the microbiota was also evaluated regarding important metabolite and vitamin production, pathogen exclusion, immune system maturation, and intestinal mucosal barrier integrity. Therefore, the focus of the present review is to discuss the available data and conclude what has been accomplished over the past two decades. This perspective fosters program development of the next steps that are necessary to obtain confirmation through clinical trials on the magnitude of the effects of kefir in large samples.
Collapse
|
23
|
A Pilot Study of the Effect of Lactobacillus casei Obtained from Long-Lived Elderly on Blood Biochemical, Oxidative, and Inflammatory Markers, and on Gut Microbiota in Young Volunteers. Nutrients 2021; 13:nu13113891. [PMID: 34836153 PMCID: PMC8622130 DOI: 10.3390/nu13113891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotic intake has been shown to improve certain physiological health indicators. We aimed to examine effects of Lactobacillus casei LTL1879, obtained from long-lived elderly volunteers, on blood biochemical, oxidative, and inflammatory markers and gut microbiota in twenty healthy, young volunteers. Volunteers were randomly divided into equal probiotic and placebo groups and changes in blood biochemical indicators, oxidative and inflammatory markers, and gut microbiota were examined after three weeks of probiotic intervention. The probiotic group’s antioxidant levels were significantly enhanced post-intervention. Total antioxidant capacity (T-AOC) levels were significantly increased (p < 0.0001), while malondialdehyde (MDA) levels decreased (p < 0.05), and total superoxide dismutase (T-SOD) levels increased, but with no significant difference. In addition, Interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) levels were significantly up-regulated and down-regulated (p < 0.05, respectively). Escherichia coli, Enterococcus, and Bacteroides expression was significantly reduced (p < 0.05), while Clostridium leptum, Bifidobacterium, and Lactobacillus expression increased (p < 0.05). Volunteer health status was quantified using principal components and cluster analysis, indicating that the probiotic group’s overall score was higher than that of the placebo group. The results of this pilot study suggest L. casei LTL 1879 can significantly improve specific immune, oxidative, and gut microbiota characteristics related to health factors.
Collapse
|
24
|
Is Inflammation Status in Postbariatric Patients Predictive for Their Response to Vitamin B12 Supplementation Therapy? Int Surg 2021. [DOI: 10.9738/intsurg-d-16-00263.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background
Several studies indicate that there is a relationship between vitamin B12 levels and inflammatory status. Some studies showed a significantly correlation between vitamin B12 status and inflammation. The aim of this study is to investigate the influence of inflammatory status on the effect of different vitamin B12 supplementation regimes.
Methods
We selected patients with a vitamin B12 deficiency based on methylmalonic acid (MMA) levels. A moderate vitamin B12 deficiency was defined as an MMA blood level between ≥300 and 430 nmol/L. In included patients, C-reactive protein (CRP), leukocytes, serum vitamin B12, and MMA levels were measured at baseline and after 6 months of follow-up.
Results
A total of 63 patients were included, treated with 3, 6, or no intramuscular vitamin B12 injections. In the 6 intramuscular injections group, the presupplementation CRP levels significantly predicted the response in terms of vitamin B12 increase (P = 0.015). Also, there was a significant reduction in CRP levels (P = 0.03) after 6 injections. There was a significant correlation between presupplementation MMA and presupplementation CRP (r = 0.127, P = 0.049).
Conclusion
This study showed that presupplementation CRP levels significantly predicted the response on 6 intramuscular vitamin B12 injections in patients after bariatric surgery. Second, the 6 intramuscular injection regimen showed a significant reduction in CRP levels. Third, there was a significant correlation between MMA and presupplementation CRP. This might indicate that there is interplay between the vitamin B12 supplementation and inflammatory levels in patients after bariatric surgery.
Collapse
|
25
|
Barkhidarian B, Roldos L, Iskandar MM, Saedisomeolia A, Kubow S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients 2021; 13:3001. [PMID: 34578878 PMCID: PMC8472411 DOI: 10.3390/nu13093001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Micronutrient deficiencies are a worldwide public health concern. Emerging evidence supports the ability of probiotics to enhance micronutrient status, which could aid in the prevention of non-communicable disease-associated malnutrition. This systematic review evaluated evidence of the efficacy of probiotic supplementation to improve micronutrient status in healthy subjects. The authors searched for published English language peer-reviewed journal articles in PubMed, Scopus, Embase, and Google Scholar databases from inception to July 2020 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of eligible studies was assessed using the Revised Cochrane Risk-of-Bias tool (RoB)2 and Risk of Bias in Non-Randomized Studies of Interventions tool (ROBINS-I tool). Fourteen original studies out of 2790 met the inclusion criteria. The results indicated that, despite varying degrees of efficacy, the intake of certain probiotics in healthy subjects was associated with a positive impact on the status of certain micronutrients (vitamin B12, calcium, folate, iron and zinc). A limitation was that studies were widely heterogeneous in terms of participant age, probiotic strain, species, dosage, intervention duration, and form of administration. Additional clinical trials are warranted to determine the most effective strains of probiotics, doses and durations of interventions.
Collapse
Affiliation(s)
- Bahareh Barkhidarian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Keshavarz Blvd., Tehran 1471613151, Iran;
| | - Lucas Roldos
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Keshavarz Blvd., Tehran 1471613151, Iran;
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Stan Kubow
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| |
Collapse
|
26
|
Jukic Peladic N, Dell’Aquila G, Carrieri B, Maggio M, Cherubini A, Orlandoni P. Potential Role of Probiotics for Inflammaging: A Narrative Review. Nutrients 2021; 13:nu13092919. [PMID: 34578796 PMCID: PMC8471548 DOI: 10.3390/nu13092919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS Inflammaging, a chronic, low-grade inflammation (LGI), is one of the mechanisms of adaptation of an organism to aging. Alterations in the composition of gut microbiota and gut permeability are among the main sources of LGI. They may be modulated by supplementation with live microorganisms, i.e. probiotics. This narrative review was performed with the aim to critically examine the current evidence from randomized clinical trials (RCTs) on the effects of probiotics on pro-inflammatory and anti-inflammatory cytokines and C-reactive protein (CRP) in healthy older subjects. METHODOLOGY RCTs on the effects of probiotics on inflammatory parameters in subjects older than 65 years published in English and Italian from 1990 to October 2020 were searched in PubMed. Studies that were not RCTs, those using probiotics together with prebiotics (synbiotics), and studies performed in subjects with acute or chronic diseases were excluded. The findings of RCTs were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS A total of nine RCTs met the eligibility criteria and were included in this narrative review. Four articles reported that probiotic supplementation significantly affected inflammatory parameters, respectively, by reducing TGF-β1 concentrations, IL-8, increasing IL-5 and Il-10, and IFN-γ and IL-12. CONCLUSIONS Based on this narrative review, probiotic supplementation showed a limited effect on inflammatory markers in healthy individuals older than 65 years. Besides being few, the studies analyzed have methodological limitations, are heterogeneous, and provide results which are incomparable.
Collapse
Affiliation(s)
| | - Giuseppina Dell’Aquila
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy; (B.C.); (A.C.)
- Correspondence:
| | - Barbara Carrieri
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy; (B.C.); (A.C.)
| | - Marcello Maggio
- Department of Medicine and Surgery, University Medical School of Parma, 43121 Parma, Italy;
- Geriatric Clinic Unit, University-Hospital of Parma, 43121 Parma, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy; (B.C.); (A.C.)
| | - Paolo Orlandoni
- Clinical Nutrition, IRCCS INRCA Ancona, 60127 Ancona, Italy; (N.J.P.); (P.O.)
| |
Collapse
|
27
|
Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14080821. [PMID: 34451918 PMCID: PMC8399392 DOI: 10.3390/ph14080821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD.
Collapse
|
28
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
29
|
The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms 2021; 9:microorganisms9061344. [PMID: 34205818 PMCID: PMC8234958 DOI: 10.3390/microorganisms9061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests that probiotic supplementation may be efficacious in counteracting age-related shifts in gut microbiota composition and diversity, thereby impacting health outcomes and promoting healthy aging. However, randomized controlled trials (RCTs) with probiotics in healthy older adults have utilized a wide variety of strains and focused on several different outcomes with conflicting results. Therefore, a systematic review was conducted to determine which outcomes have been investigated in randomized controlled trials with probiotic supplementation in healthy older adults and what has been the effect of these interventions. For inclusion, studies reporting on randomized controlled trials with probiotic and synbiotic supplements in healthy older adults (defined as minimum age of 60 years) were considered. Studies reporting clinical trials in specific patient groups or unhealthy participants were excluded. In addition to assessment of eligibility and data extraction, each study was examined for risk of bias and quality assessment was performed by two independent reviewers. Due to the heterogeneity of outcomes, strains, study design, duration, and methodology, we did not perform any meta-analyses and instead provided a narrative overview of the outcomes examined. Of 1997 potentially eligible publications, 17 studies were included in this review. The risk of bias was low, although several studies failed to adequately describe random sequence generation, allocation concealment, and blinding. The overall study quality was high; however, many studies did not include sample calculations, and the majority of studies had a small sample size. The main outcomes examined in the trials included microbiota composition, immune-related measurements, digestive health, general well-being, cognitive function, and lipid and other biomarkers. The most commonly assessed outcome with the most consistent effect was microbiota composition; all but one study with this outcome showed significant effects on gut microbiota composition in healthy older adults. Overall, probiotic supplementation had modest effects on markers of humoral immunity, immune cell population levels and activity, as well as the incidence and duration of the common cold and other infections with some conflicting results. Digestive health, general-well-being, cognitive function, and lipid and other biomarkers were investigated in a very small number of studies; therefore, the impact on these outcomes remains inconclusive. Probiotics appear to be efficacious in modifying gut microbiota composition in healthy older adults and have moderate effects on immune function. However, the effect of probiotic supplementation on other health outcomes remains inconclusive, highlighting the need for more well-designed, sufficiently-powered studies to investigate if and the mechanisms by which probiotics impact healthy aging.
Collapse
|
30
|
Luo J, Yu J, Peng X. Could partial nonstarch polysaccharides ameliorate cancer by altering m 6A RNA methylation in hosts through intestinal microbiota? Crit Rev Food Sci Nutr 2021; 62:8319-8334. [PMID: 34036843 DOI: 10.1080/10408398.2021.1927975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Cardoneanu A, Cozma S, Rezus C, Petrariu F, Burlui AM, Rezus E. Characteristics of the intestinal microbiome in ankylosing spondylitis. Exp Ther Med 2021; 22:676. [PMID: 33986841 PMCID: PMC8112129 DOI: 10.3892/etm.2021.10108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of intestinal microbiota in the development of various systemic diseases has been highlighted over time. Ankylosing spondylitis (AS) is a systemic disease with a complex pathogenesis involving a particular genetic marker and distinctive environmental triggers such as a specific gut dysbiosis. We conducted a prospective case-control study which included 60 subjects from Iasi Rehabilitation Hospital: 28 AS cases and 32 healthy controls. Intestinal microbiota analysis was performed by real-time polymerase chain reaction (qPCR) in stool samples. We performed the quantitative analysis of gut microbiome, focusing both on anti-inflammatory (Bifidobacterium, Lactobacillus, Faecalibacterium prausnitzii) and pro-inflammatory (Bacteroides, Escherichia coli) species. Overall, intestinal bacterial diversity in the AS group was decreased compared to that noted in the control. A significantly decreased level of Clostridium leptum was observed, associated with an increased level of Escherichia coli. We showed correlations between laboratory tests (liver and kidney functional tests, inflammatory syndrome), the presence of HLA-B27, smoker status, the forms of AS with peripheral arthritis vs. pure axial forms and bacterial structures. No significant correlations were shown for disease activity scores, radiological stage of sacroiliitis or for body mass index. Our findings support that the intestinal microbiome in AS patients has a special signature characterized by an inflammatory status. Numerous environmental, genetical, clinical and paraclinical factors can lead to changes in gut bacterial diversity in these cases.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Sebastian Cozma
- Department of Surgery (II), Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Florin Petrariu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Alexandra Maria Burlui
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology and Physiotherapy, Grigore T Popa University of Medicine and Pharmacy, Faculty of Medicine, 700115 Iasi, Romania
| |
Collapse
|
32
|
Rudzki L, Stone TW, Maes M, Misiak B, Samochowiec J, Szulc A. Gut microbiota-derived vitamins - underrated powers of a multipotent ally in psychiatric health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110240. [PMID: 33428888 DOI: 10.1016/j.pnpbp.2020.110240] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Despite the well-established roles of B-vitamins and their deficiencies in health and disease, there is growing evidence indicating a key role of those nutrients in functions of the central nervous system and in psychopathology. Clinical data indicate the substantial role of B-vitamins in various psychiatric disorders, including major depression, bipolar disorder, schizophrenia, autism, and dementia, including Alzheimer's and Parkinson's diseases. As enzymatic cofactors, B-vitamins are involved in many physiological processes such as the metabolism of glucose, fatty acids and amino acids, metabolism of tryptophan in the kynurenine pathway, homocysteine metabolism, synthesis and metabolism of various neurotransmitters and neurohormones including serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate, D-serine, glycine, histamine and melatonin. Those vitamins are highly involved in brain energetic metabolism and respiration at the cellular level. They have a broad range of anti-inflammatory, immunomodulatory, antioxidant and neuroprotective properties. Furthermore, some of those vitamins are involved in the regulation of permeability of the intestinal and blood-brain barriers. Despite the fact that a substantial amount of the above vitamins is acquired from various dietary sources, deficiencies are not uncommon, and it is estimated that micronutrient deficiencies affect about two billion people worldwide. The majority of gut-resident microbes and the broad range of bacteria available in fermented food, express genetic machinery enabling the synthesis and metabolism of B-vitamins and, consequently, intestinal microbiota and fermented food rich in probiotic bacteria are essential sources of B-vitamins for humans. All in all, there is growing evidence that intestinal bacteria-derived vitamins play a significant role in physiology and that dysregulation of the "microbiota-vitamins frontier" is related to various disorders. In this review, we will discuss the role of vitamins in mental health and explore the perspectives and potential of how gut microbiota-derived vitamins could contribute to mental health and psychiatric treatment.
Collapse
Affiliation(s)
- Leszek Rudzki
- The Charleston Centre, 49 Neilston Road, Paisley PA2 6LY, UK.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
33
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
34
|
Ale EC, Binetti AG. Role of Probiotics, Prebiotics, and Synbiotics in the Elderly: Insights Into Their Applications. Front Microbiol 2021; 12:631254. [PMID: 33584631 PMCID: PMC7876055 DOI: 10.3389/fmicb.2021.631254] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Elderly people are an important part of the global population who suffer from the natural processes of senescence, which lead to changes in the gut microbiota composition. These modifications have a great impact on their quality of life, bringing a general putrefactive and inflammatory status as a consequence. Some of the most frequent conditions related to this status are constipation, undernutrition, neurodegenerative diseases, susceptibility to opportunistic pathogens, and metabolic disbalance, among others. For these reasons, there is an increasing interest in improving their quality of life by non-invasive treatments such as the consumption of probiotics, prebiotics, and synbiotics. The aim of the present mini-review is to describe the benefits of these functional supplements/food according to the most recent clinical and pre-clinical studies published during the last decade. In addition, insights into several aspects we consider relevant to improve the quality of future studies are provided.
Collapse
Affiliation(s)
- Elisa C Ale
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química (UNL), Santa Fe, Argentina
| | - Ana G Binetti
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química (UNL), Santa Fe, Argentina
| |
Collapse
|
35
|
Badal VD, Vaccariello ED, Murray ER, Yu KE, Knight R, Jeste DV, Nguyen TT. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients 2020; 12:E3759. [PMID: 33297486 PMCID: PMC7762384 DOI: 10.3390/nu12123759] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is determined by complex interactions among genetic and environmental factors. Increasing evidence suggests that the gut microbiome lies at the core of many age-associated changes, including immune system dysregulation and susceptibility to diseases. The gut microbiota undergoes extensive changes across the lifespan, and age-related processes may influence the gut microbiota and its related metabolic alterations. The aim of this systematic review was to summarize the current literature on aging-associated alterations in diversity, composition, and functional features of the gut microbiota. We identified 27 empirical human studies of normal and successful aging suitable for inclusion. Alpha diversity of microbial taxa, functional pathways, and metabolites was higher in older adults, particularly among the oldest-old adults, compared to younger individuals. Beta diversity distances significantly differed across various developmental stages and were different even between oldest-old and younger-old adults. Differences in taxonomic composition and functional potential varied across studies, but Akkermansia was most consistently reported to be relatively more abundant with aging, whereas Faecalibacterium, Bacteroidaceae, and Lachnospiraceae were relatively reduced. Older adults have reduced pathways related to carbohydrate metabolism and amino acid synthesis; however, oldest-old adults exhibited functional differences that distinguished their microbiota from that of young-old adults, such as greater potential for short-chain fatty acid production and increased butyrate derivatives. Although a definitive interpretation is limited by the cross-sectional design of published reports, we integrated findings of microbial composition and downstream functional pathways and metabolites, offering possible explanations regarding age-related processes.
Collapse
Affiliation(s)
- Varsha D. Badal
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Eleonora D. Vaccariello
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
| | - Emily R. Murray
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
| | - Kasey E. Yu
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Dilip V. Jeste
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tanya T. Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; (V.D.B.); (E.D.V.); (E.R.M.); (K.E.Y.); (D.V.J.)
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| |
Collapse
|
36
|
Coman V, Vodnar DC. Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Exp Gerontol 2020; 141:111095. [PMID: 32979504 PMCID: PMC7510636 DOI: 10.1016/j.exger.2020.111095] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Our gut microbiota is a complex and dynamic ecosystem with a paramount role in shaping our metabolic and immunological functions. Recent research suggests that aging may negatively affect the composition, diversity, and function of our microbiota mainly due to alterations in diet and immunologic reactivity (i.e. immunosenescence), and increased incidence of certain diseases and, therefore, increased exposure to certain medication (e.g. antibiotics, proton pump inhibitors). In turn, this aging-related gut dysbiosis may contribute to the initiation and/or progress of other metabolic diseases, and consequently, to a decrease in healthy longevity. On the positive side, promising therapeutic interventions, such as diet supplementation with prebiotics, probiotics and synbiotics, or fecal microbiota transplantation, aimed to counteract these aging-related deleterious consequences, could improve our health, and extend our healthy lifespan. In this context, the current review aims to assess the latest progress in identifying the key elements affecting the gut microbiota of the older adults and their mechanism of action, and the effectiveness of the therapeutic interventions aimed at restoring the diversity and healthy functions of the gut microbiota in older individuals.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
37
|
Pourrajab B, Fatahi S, Sohouli MH, Găman MA, Shidfar F. The effects of probiotic/synbiotic supplementation compared to placebo on biomarkers of oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 62:490-507. [PMID: 33016089 DOI: 10.1080/10408398.2020.1821166] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS During the last decades, there has been a burst of scientific literature hypothesizing the antioxidant effect of probiotics. However, the results of these studies are inconsistent and a final conclusion has yet to be reached. Thus, the aim of this study was to assess the effects of probiotic/synbiotic supplementation on serum total antioxidant capacity (TAC), glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in adults. METHODS AND RESULTS The following online databases were searched until August 26th 2020: PubMed/Medline, Scopus, Clarivate Analytics Web of Science, Cochrane Central Register of Controlled Trials, Science Direct, Google Scholar and Igaku Chuo Zasshi. The effect sizes were expressed as the weighted mean difference (WMD) with 95% confidence intervals (CI). A total of 31 eligible trials with 1681 participants (839 cases and 842 controls) were included in this meta-analysis. The results revealed that the supplementation with probiotics/synbiotics, significantly increased serum TAC (WMD: 54.14 mmol/L, 95% CI: 27.87, 80.40, P < 0.001), GSH (WMD: 40.38 μmol/L, 95% CI: 20.72, 60.03, P < 0.001) and NO (WMD: 3.54 μmol/L, 95% CI: 1.73, 5.34, P < 0.001) levels. In addition, MDA levels were significantly reduced (WMD: -0.45 μmol/L, 95% CI: -0.58,-0.32, P < 0.001) following probiotic/synbiotic supplementation. None of the variables showed a significant change in the sensitivity analysis. CONCLUSION Available evidence suggests that probiotic/synbiotic supplementation can significantly increase serum TAC, GSH and NO, as well as reduce MDA levels in adults. Therefore, probiotic/synbiotic supplementation may play a role in improving antioxidant indices and reducing oxidative stress in the body.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran.,Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Mohammad Hassan Sohouli
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran.,Student Research Committee, Faculty of public health branch, Iran University of Medical Sciences, Tehran Iran
| | - Mihnea-Alexandru Găman
- Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran Iran
| |
Collapse
|
38
|
Angelini S, Pinto A, Hrelia P, Malaguti M, Buccolini F, Donini LM, Hrelia S. The "Elderly" Lesson in a "Stressful" Life: Italian Holistic Approach to Increase COVID-19 Prevention and Awareness. Front Endocrinol (Lausanne) 2020; 11:579401. [PMID: 33101211 PMCID: PMC7556109 DOI: 10.3389/fendo.2020.579401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
It's a frightening time due to COVID-19, but the great elderly/centenarians, apparently with more frailty, seem to have a better response to the pandemic. "The South Italy" lifestyle seems an "effective strategy" promoting the well-being embedded in a holistic solution: healthy diet, less exposure to PM10 pollution, protected environment, and moderate physical activity. The European FP7 Project RISTOMED results, since 2010, have shown that dietary intervention improved a heathy status in the elderly people. Based on the RISTOMED results, in addition to sociocultural and environmental factors, the authors suggest an integrated approach for resilience to COVID-19. Such an approach during the next months could make the difference for the success of any government progress policy to fight COVID-19, finalizing long-term well-being and successful aging.
Collapse
Affiliation(s)
- Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandro Pinto
- Experimental Medicine Department, Sapienza University of Rome, Rome, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | | | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
39
|
The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients 2020; 12:nu12082402. [PMID: 32796608 PMCID: PMC7468753 DOI: 10.3390/nu12082402] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation negatively impacts health and is associated with aging and obesity, among other health outcomes. A large number of immune mediators are present in the digestive tract and interact with gut bacteria to impact immune function. The gut microbiota itself is also an important initiator of inflammation, for example by releasing compounds such as lipopolysaccharides (LPS) that may influence cytokine production and immune cell function. Certain nutrients (e.g., probiotics, ω-3 fatty acids [FA]) may increase gut microbiota diversity and reduce inflammation. Lactobacilli and Bifidobacteria, among others, prevent gut hyperpermeability and lower LPS-dependent chronic low-grade inflammation. Furthermore, ω-3 FA generate positive effects on inflammation-related conditions (e.g., hypertriglyceridemia, diabetes) by interacting with immune, metabolic, and inflammatory pathways. Ω-3 FA also increase LPS-suppressing bacteria (i.e., Bifidobacteria) and decrease LPS-producing bacteria (i.e., Enterobacteria). Additionally, ω-3 FA appear to promote short-chain FA production. Therefore, combining probiotics with ω-3 FA presents a promising strategy to promote beneficial immune regulation via the gut microbiota, with potential beneficial effects on conditions of inflammatory origin, as commonly experienced by aged and obese individuals, as well as improvements in gut-brain-axis communication.
Collapse
|
40
|
Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis. Aging (Albany NY) 2020; 12:13090-13114. [PMID: 32634783 PMCID: PMC7377876 DOI: 10.18632/aging.103399] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 01/06/2023]
Abstract
The relationship between type 2 diabetes mellitus (T2DM) and oral microbiota is still insufficiently recognized. In the present study, we compared the salivary microbiome of nondiabetic individuals, treatment-naïve diabetic patients, and diabetic patients treated with metformin or a combination of insulin and other drugs. The α- and β-diversity demonstrated significant differences in the salivary microbiome between the nondiabetic people and patients with a history of diabetes, while little divergence was found among individuals with a history of diabetes. After characterizing the effects of periodontitis on the microbial composition of each group, the salivary microbiome of the treatment-naïve diabetic patient group was compared with that of nondiabetic people and the metformin/combined treatment groups. The results revealed changes in the contents of certain bacteria after both the onset and the treatment of diabetes; among these differential bacteria, Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_coeliaca and Selenomonas_artemidis varied in all processes. A subsequent correlational analysis of the differential bacteria and clinical characteristics demonstrated that salivary microbes were related to drug treatment and certain pathological changes. Finally, the four common differential bacteria were employed for distinguishing the treatment-naïve diabetic patients from the nondiabetic people and the treated patients, with prediction accuracies of 83.3%, 75% and 75%, respectively.
Collapse
|
41
|
Soleimani A, Motamedzadeh A, Zarrati Mojarrad M, Bahmani F, Amirani E, Ostadmohammadi V, Tajabadi-Ebrahimi M, Asemi Z. The Effects of Synbiotic Supplementation on Metabolic Status in Diabetic Patients Undergoing Hemodialysis: a Randomized, Double-Blinded, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1248-1256. [PMID: 30560426 DOI: 10.1007/s12602-018-9499-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was conducted to evaluate the effects of synbiotic supplementation on metabolic profiles in diabetic patients undergoing hemodialysis (HD). This randomized, double-blinded, placebo-controlled clinical trial was performed in 60 diabetic HD patients. Participants were randomly assigned into two groups to receive either synbiotic capsule, containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum (2 × 109 CFU/g each), plus 0.8 g/day of inulin (n = 30) or placebo (n = 30) for 12 weeks. Synbiotic supplementation significantly decreased fasting plasma glucose (β - 13.56 mg/dL; 95% CI, - 23.82, - 3.30; P = 0.01), insulin levels (β - 5.49 μIU/mL; 95% CI, - 6.92, - 4.05; P < 0.001), and insulin resistance (β - 2.25; 95% CI, - 3.02, - 1.48; P < 0.001), while increased the quantitative insulin sensitivity check index (β 0.02; 95% CI, 0.01, 0.02; P < 0.001) compared with the placebo. Additionally, synbiotic intake resulted in a significant reduction in high-sensitivity C-reactive protein (β - 2930.48 ng/mL; 95% CI, - 3741.15, - 2119.80; P < 0.001) and malondialdehyde levels (β - 0.60 μmol/L; 95% CI, - 0.99, - 0.20; P = 0.003). Moreover, we found a significant increase in total antioxidant capacity (β 142.99 mmol/L; 95% CI, 61.72, 224.25; P = 0.001) and total glutathione levels (β 131.11 μmol/L; 95% CI, 89.35, 172.87; P < 0.001) in the synbiotic group compared with the placebo group. Overall, synbiotic supplementation for 12 weeks had beneficial effects on glycemic control, biomarkers of inflammation, and oxidative stress in diabetic patients under HD. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT2017090133941N17). http://www.irct.ir: IRCT2017090133941N17.
Collapse
Affiliation(s)
- Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Malihe Zarrati Mojarrad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Tajabadi-Ebrahimi
- Faculty member of Science department, science faculty, Islamic Azad University Tehran Central Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
Skonieczna-Żydecka K, Kaźmierczak-Siedlecka K, Kaczmarczyk M, Śliwa-Dominiak J, Maciejewska D, Janda K, Stachowska E, Łoniewska B, Malinowski D, Borecki K, Marlicz W, Łoniewski I. The Effect of Probiotics and Synbiotics on Risk Factors Associated with Cardiometabolic Diseases in Healthy People-A Systematic Review and Meta-Analysis with Meta-Regression of Randomized Controlled Trials. J Clin Med 2020; 9:jcm9061788. [PMID: 32521799 PMCID: PMC7357153 DOI: 10.3390/jcm9061788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
We aimed to systematically review the effectiveness of probiotic/synbiotic formulations to counteract cardiometabolic risk (CMR) in healthy people not receiving adjunctive medication. The systematic search (PubMed/MEDLINE/Embase) until 1 August 2019 was performed for randomized controlled trials in >20 adult patients. Random-effect meta-analysis subgroup and meta-regression analysis of co-primary (haemoglobin A1c (HbA1C), glucose, insulin, body weight, waist circumference (WC), body mass index (BMI), cholesterol, low-density lipoproteins (LDL), high-density lipoproteins (HDL), triglycerides, and blood pressure) and secondary outcomes (uric acid, plasminogen activator inhibitor-1-PAI-1, fibrinogen, and any variable related to inflammation/endothelial dysfunction). We included 61 trials (5422 persons). The mean time of probiotic administration was 67.01 ± 38.72 days. Most of probiotic strains were of Lactobacillus and Bifidobacterium genera. The other strains were Streptococci, Enterococci, and Pediococci. The daily probiotic dose varied between 106 and 1010 colony-forming units (CFU)/gram. Probiotics/synbiotics counteracted CMR factors (endpoint data on BMI: standardized mean difference (SMD) = -0.156, p = 0.006 and difference in means (DM) = -0.45, p = 0.00 and on WC: SMD = -0.147, p = 0.05 and DM = -1.21, p = 0.02; change scores on WC: SMD = -0.166, p = 0.04 and DM = -1.35, p = 0.03) in healthy persons. Overweight/obese healthy people might additionally benefit from reducing total cholesterol concentration (change scores on WC in overweight/obese: SMD: -0.178, p = 0.049). Poor quality of probiotic-related trials make systematic reviews and meta-analyses difficult to conduct and draw definite conclusions. "Gold standard" methodology in probiotic studies awaits further development.
Collapse
Affiliation(s)
- Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
| | | | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | | | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
| | - Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Pharmacology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Krzysztof Borecki
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 71-252 Szczecin, Poland
- Correspondence: (W.M.); (I.Ł.); Tel.: +48-91-425-3231 (W.M.)
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.S.-Ż.); (D.M.); (K.J.); (E.S.); (K.B.)
- Correspondence: (W.M.); (I.Ł.); Tel.: +48-91-425-3231 (W.M.)
| |
Collapse
|
43
|
The Multispecies Probiotic Effectively Reduces Homocysteine Concentration in Obese Women: A Randomized Double-Blind Placebo-Controlled Study. J Clin Med 2020; 9:jcm9040998. [PMID: 32252416 PMCID: PMC7230928 DOI: 10.3390/jcm9040998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Dysregulated metabolism of homocysteine (Hcy) is associated with obesity. Supplementation with probiotics can potentially be a natural therapeutic method for metabolic disorders. The precise mechanism in which microbiota affect Hcy metabolism in obese individuals is still unknown. The aim of this study was to evaluate the effects of a 12-week supplementation with a multispecies probiotic on Hcy levels, oxidative stress, inflammation and lipid profile in obese patients. This randomized double-blind placebo-controlled trial was performed on 50 obese women (aged 45–70 years). Subjects were randomly assigned to take either a multispecies probiotic supplement (n = 25) or placebo (n = 25) for 12 weeks. The probiotic contained nine bacterial strains containing 2.5 × 109 CFU/g. Biochemical and anthropometric measurements were carried out at baseline and after 12 weeks of intervention. At the end of the study, a significant decrease in Hcy, tumor necrosis factor α (TNF-α), total cholesterol (TC), low-density lipoprotein cholesterol (LDL) and triglyceride (TG) levels were observed in the probiotic group. The amelioration of total antioxidant status (TAS) was also observed. The 12-week supplementation of the multispecies probiotic (Ecologic® BARIER) effectively reduced Hcy concentration, oxidative stress and inflammation, and improved the lipid profile. These multidirectional effects can potentially reduce cardiometabolic risks.
Collapse
|
44
|
Bourdel-Marchasson I, Ostan R, Regueme SC, Pinto A, Pryen F, Charrouf Z, d’Alessio PA, Roubaud Baudron C, Guerville F, Durrieu J, Donini LM, Franceschi C, Valentini L. Quality of Life: Psychological Symptoms-Effects of a 2-Month Healthy Diet and Nutraceutical Intervention; A Randomized, Open-Label Intervention Trial (RISTOMED). Nutrients 2020; 12:nu12030800. [PMID: 32197408 PMCID: PMC7146172 DOI: 10.3390/nu12030800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 01/15/2023] Open
Abstract
Depression symptoms and lower health-related quality of life (HRQoL) are associated with inflammation. This multicenter dietary intervention was shown to reduce inflammation in older people. This was the main outcome. Here, we describe the effects on HRQoL, anxiety, and depressive symptoms according to inflammation status. Overall, 125 healthy older subjects (65–80 year) were recruited (Italy, France, and Germany) and randomized into four arms (A, Healthy diet (HD); B, HD plus De Simone Formulation probiotic blend; C, HD plus AISA d-Limonene; D, HD plus Argan oil). The HD was weight maintaining, rich in antioxidant vitamins, polyphenols, polyunsaturated fatty acids (n6: n3 ratio = 3:1), and fiber. Data on inflammatory parameters, mental (MCS) and physical (PCS) component summaries of HRQoL (SF−36), anxiety symptoms (STAI state), and depressive symptoms (CES-D) were collected before and after 56 days of intervention. Body fat mass proportion (BFM) was considered a co-variable. A decrease of CES-D score was seen in the four arms (A: −40.0%, p = 0.001; B: −32.5%, p = 0.023; C: −42.8%, p = 0.004; and D: −33.3%, p = 0.21). Within the subgroups of subjects with medium/high inflammation a similar decrease in CES-D score occurred in all groups (A: −44.8%, p = 0.021; B, −46.7%, p = 0.024; C, −52.2%, p = 0.039; D, −43.8%, p = 0.037). The effect of interventions on CES-D was not related to baseline inflammation. MCS-HRQoL improved in A and C. There was no change in anxiety or PCS-HRQoL. In this trial with no control group, a decrease in depressive symptoms in healthy older volunteers was observed after a 2-month healthy diet intervention, independently of inflammation but with possible limitations due to participation.
Collapse
Affiliation(s)
- Isabelle Bourdel-Marchasson
- CRMSB UMR 5536, Université Bordeaux/CNRS, F−33000 Bordeaux, France
- CHU Bordeaux, Pôle de Gérontologie, Bordeaux, F−33000 Bordeaux, France; (S.C.R.); (C.R.B.); (F.G.); (J.D.)
- Correspondence: ; Tel.: +33-55-765-6571
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (R.O.); (C.F.)
| | - Sophie C Regueme
- CHU Bordeaux, Pôle de Gérontologie, Bordeaux, F−33000 Bordeaux, France; (S.C.R.); (C.R.B.); (F.G.); (J.D.)
| | - Alessandro Pinto
- Experimental Medicine Department, Sapienza University of Rome, 00185 Rome, Italy; (A.P.); (L.M.D.)
| | - Florence Pryen
- Mendes SA, Via Giacometti 1, CH−6900 Lugano, Switzerland;
| | - Zoubida Charrouf
- Department of Chemistry, University Mohammed V, Rabat BP 1014, Morocco;
| | - Patrizia A d’Alessio
- AISA (Anti-Inflammatory Senescence Actives) Therapeutics, Genopole Entreprises 91058 Evry, France;
| | - Claire Roubaud Baudron
- CHU Bordeaux, Pôle de Gérontologie, Bordeaux, F−33000 Bordeaux, France; (S.C.R.); (C.R.B.); (F.G.); (J.D.)
- Université Bordeaux, INSERM UMR 1053, BaRITon, F−33000 Bordeaux, France
| | - Florent Guerville
- CHU Bordeaux, Pôle de Gérontologie, Bordeaux, F−33000 Bordeaux, France; (S.C.R.); (C.R.B.); (F.G.); (J.D.)
| | - Jessica Durrieu
- CHU Bordeaux, Pôle de Gérontologie, Bordeaux, F−33000 Bordeaux, France; (S.C.R.); (C.R.B.); (F.G.); (J.D.)
| | - Lorenzo M Donini
- Experimental Medicine Department, Sapienza University of Rome, 00185 Rome, Italy; (A.P.); (L.M.D.)
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy; (R.O.); (C.F.)
- Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod 603950, Russia
| | - Luzia Valentini
- Department Gastroenterology and Hepatology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Neubrandenburg Institute of Evidence-Based Dietetics (NIED), University of Applied Sciences, 17033 Neubrandenburg, Germany
| |
Collapse
|
45
|
Sanchez-Rodriguez E, Egea-Zorrilla A, Plaza-Díaz J, Aragón-Vela J, Muñoz-Quezada S, Tercedor-Sánchez L, Abadia-Molina F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020; 12:605. [PMID: 32110880 PMCID: PMC7146472 DOI: 10.3390/nu12030605] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
The importance of gut microbiota in health and disease is being highlighted by numerous research groups worldwide. Atherosclerosis, the leading cause of heart disease and stroke, is responsible for about 50% of all cardiovascular deaths. Recently, gut dysbiosis has been identified as a remarkable factor to be considered in the pathogenesis of cardiovascular diseases (CVDs). In this review, we briefly discuss how external factors such as dietary and physical activity habits influence host-microbiota and atherogenesis, the potential mechanisms of the influence of gut microbiota in host blood pressure and the alterations in the prevalence of those bacterial genera affecting vascular tone and the development of hypertension. We will also be examining the microbiota as a therapeutic target in the prevention of CVDs and the beneficial mechanisms of probiotic administration related to cardiovascular risks. All these new insights might lead to novel analysis and CVD therapeutics based on the microbiota.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alejandro Egea-Zorrilla
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise and Sports (NEXS), Section of Integrative Physiology, University of Copenhagen, Nørre Allé 51, DK-2200 Copenhagen, Denmark;
| | - Sergio Muñoz-Quezada
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile;
- National Agency for Medicines (ANAMED), Public Health Institute, Santiago 7780050, Chile
| | | | - Francisco Abadia-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
46
|
Bianchi L, Laghi L, Correani V, Schifano E, Landi C, Uccelletti D, Mattei B. A Combined Proteomics, Metabolomics and In Vivo Analysis Approach for the Characterization of Probiotics in Large-Scale Production. Biomolecules 2020; 10:biom10010157. [PMID: 31963736 PMCID: PMC7022454 DOI: 10.3390/biom10010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/28/2022] Open
Abstract
The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT- and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 40126 Cesena, Italy;
| | - Virginia Correani
- Department of Biochemical Sciences, Sapienza University, 00185 Roma, Italy;
| | - Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
| | - Claudia Landi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.B.); (C.L.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University, 00185 Rome, Italy;
- Correspondence:
| | | |
Collapse
|
47
|
Kazemi A, Soltani S, Ghorabi S, Nasri F, Babajafari S, Mazloomi SM. Is Probiotic and Synbiotic Supplementation Effective on Immune Cells? A Systematic Review and Meta-analysis of Clinical Trials. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1710748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asma Kazemi
- Nutrition research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sima Ghorabi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasri
- Department immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sivash Babajafari
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition research center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Bernabé BP, Tussing-Humphreys L, Rackers HS, Welke L, Mantha A, Kimmel MC. Improving Mental Health for the Mother-Infant Dyad by Nutrition and the Maternal Gut Microbiome. Gastroenterol Clin North Am 2019; 48:433-445. [PMID: 31383280 DOI: 10.1016/j.gtc.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perinatal mood and anxiety disorders (PMAD) have significant negative impacts on mother and child, yet treatments are limited. Adequate nutrition during the perinatal period is essential to maternal and infant health, including maternal mental health and the child's neurologic and neuropsychiatric development. Nutrition holds promise to improve prevention and treatment of PMAD. The ability to manipulate the gut microbiota composition and structure through host nutrition and to harness the gut microbes for improved individualized nutrition may be an important new direction for prevention and treatment of PMAD, thus improving the mental health of mother and child.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Surgery, Microbiome Center, University of Chicago, 5841 S. Maryland Street, Chicago, IL 60637, USA; Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Lisa Tussing-Humphreys
- Division of Academic Internal Medicine, Department of Medicine, Institute for Health Research and Policy Cancer Center, University of Illinois at Chicago, 1747 W. Roosevelt Road, Chicago, IL 60608, USA
| | - Hannah S Rackers
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA
| | - Lauren Welke
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, IL 60612, USA
| | - Alina Mantha
- Department of Maternal and Child Health, UNC Gillings School of Global Public Health, 401 Rosenau Hall, CB #7445, Chapel Hill, NC 27599-7445, USA
| | - Mary C Kimmel
- Department of Psychiatry, UNC School of Medicine Campus Box 7160, Chapel Hill, NC 27599-7160, USA.
| |
Collapse
|
49
|
El Bouchikhi S, Pagès P, El Alaoui Y, Ibrahimi A, Bensouda Y. Syneresis investigations of lacto-fermented sodium caseinate in a mixed model system. BMC Biotechnol 2019; 19:57. [PMID: 31375117 PMCID: PMC6679467 DOI: 10.1186/s12896-019-0539-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The textural characteristics of fermented dairy products are important quality parameters that play a major role in their stability and consumer's acceptance. The aim of this study was to investigate the influence of sodium caseinate, starch, lactose and lactic acid bacteria as ferment on the syneresis in a mixed model system, and to evaluate their impact on the acid gel formation throughout pH and zeta potential monitoring. Accordingly, a protocol was designed to perform an experimental design by using a mixture of the selected factors. RESULTS A significant decrease of syneresis was detected in all mixtures at 8% of sodium caseinate, ranging between a minimum of 1.8% and a maximum of 20.6% compared to the mixtures at 3% of sodium caseinate in which the syneresis decrease had ranged between a minimum of 22.2% and a maximum of 47.8%. The addition of starch had a significant impact on the acidification profile and on the syneresis of the fermented mixed model. Moreover, the monitoring of pH and zeta potential during the lacto-fermentation process has also led to a better understanding of the acid gelation and the syneresis variations. CONCLUSION Syneresis varies very closely with sodium caseinate concentration, starch concentration and also with their association, regardless of the concentrations of lactose and ferment. In fact syneresis could be reduced to an optimum level if a sodium caseinate-starch mixed system is employed: Less syneresis gels could be obtained at a sodium caseinate concentration above 5% if starch is used above 1%.
Collapse
Affiliation(s)
- Soumaya El Bouchikhi
- Laboratory of Pharmaceutics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.,Laboratory of Medical Biotechnology, Faculty of Medicine and Pharmacy, Mohammed the Vth University in Rabat, Rabat, Morocco
| | - Philippe Pagès
- PhP Stats, Création et analyse d'information, Conseil, études et formations en statistique, 19, rue Pasteur, 94170, Le Perreux, France
| | - Yassir El Alaoui
- Laboratory of Pharmaceutics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Medical Biotechnology, Faculty of Medicine and Pharmacy, Mohammed the Vth University in Rabat, Rabat, Morocco
| | - Yahya Bensouda
- Laboratory of Pharmaceutics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.
| |
Collapse
|
50
|
Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer's dementia - Nutritional approach to modulate inflammation. Pharmacol Biochem Behav 2019; 184:172743. [PMID: 31356838 DOI: 10.1016/j.pbb.2019.172743] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease causing dementia in the elderly population. Due to the fact that there is still no cure for Alzheimer's dementia and available treatment strategies bring only symptomatic benefits, there is a pressing demand for other effective strategies such as diet. Since the inflammation hypothesis gained considerable significance in the AD pathogenesis, elucidating the modulatory role of dietary factors on inflammation may help to prevent, delay the onset and slow the progression of AD. Current evidence clearly shows that synergistic action of combined supplementation and complex dietary patterns provides stronger benefits than any single component considered separately. Recent studies reveal the growing importance of novel factors such as dietary advanced glycation end products (d-AGE), gut microbiota, butyrate and vitamin D3 on inflammatory processes in AD. CONCLUSION This paper summarizes the available evidence of pro- and anti-inflammatory activity of some dietary components including fatty acids, vitamins, flavonoids, polyphenols, probiotics and d-AGE, and their potential for AD prevention and treatment.
Collapse
Affiliation(s)
| | - Breno S Diniz
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|