1
|
Kadhim AZ, Vanderkruk B, Mar S, Dan M, Zosel K, Xu EE, Spencer RJ, Sasaki S, Cheng X, Sproul SLJ, Speckmann T, Nian C, Cullen R, Shi R, Luciani DS, Hoffman BG, Taubert S, Lynn FC. Transcriptional coactivator MED15 is required for beta cell maturation. Nat Commun 2024; 15:8711. [PMID: 39379383 PMCID: PMC11461855 DOI: 10.1038/s41467-024-52801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Mediator, a co-regulator complex required for RNA Polymerase II activity, interacts with tissue-specific transcription factors to regulate development and maintain homeostasis. We observe reduced Mediator subunit MED15 expression in endocrine hormone-producing pancreatic islets isolated from people living with type 2 diabetes and sought to understand how MED15 and Mediator control gene expression programs important for the function of insulin-producing β-cells. Here we show that Med15 is expressed during mouse β-cell development and maturation. Knockout of Med15 in mouse β-cells causes defects in β-cell maturation without affecting β-cell mass or insulin expression. ChIP-seq and co-immunoprecipitation analyses found that Med15 binds β-cell transcription factors Nkx6-1 and NeuroD1 to regulate key β-cell maturation genes. In support of a conserved role during human development, human embryonic stem cell-derived β-like cells, genetically engineered to express high levels of MED15, express increased levels of maturation markers. We provide evidence of a conserved role for Mediator in β-cell maturation and demonstrate an additional layer of control that tunes β-cell transcription factor function.
Collapse
Affiliation(s)
- Alex Z Kadhim
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Ben Vanderkruk
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha Mar
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Meixia Dan
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Katarina Zosel
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Eric E Xu
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Rachel J Spencer
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shugo Sasaki
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Shannon L J Sproul
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Thilo Speckmann
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Cuilan Nian
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Robyn Cullen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Dan S Luciani
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Bradford G Hoffman
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Stefan Taubert
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Francis C Lynn
- Diabetes Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
- Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Yan D, Lv M, Kong X, Feng L, Ying Y, Liu W, Wang X, Ma X. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119655. [PMID: 38135007 DOI: 10.1016/j.bbamcr.2023.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic β-cells and is involved in β-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in β-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.
Collapse
Affiliation(s)
- Dan Yan
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xiangchen Kong
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Linxian Feng
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Ying
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Wenjuan Liu
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xin Wang
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
3
|
Blandino-Rosano M, Louzada RA, Werneck-De-Castro JP, Lubaczeuski C, Almaça J, Rüegg MA, Hall MN, Leibowitz G, Bernal-Mizrachi E. Raptor levels are critical for β-cell adaptation to a high-fat diet in male mice. Mol Metab 2023; 75:101769. [PMID: 37423392 PMCID: PMC10391668 DOI: 10.1016/j.molmet.2023.101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The essential role of raptor/mTORC1 signaling in β-cell survival and insulin processing has been recently demonstrated using raptor knock-out models. Our aim was to evaluate the role of mTORC1 function in adaptation of β-cells to insulin resistant state. METHOD Here, we use mice with heterozygous deletion of raptor in β-cells (βraHet) to assess whether reduced mTORC1 function is critical for β-cell function in normal conditions or during β-cell adaptation to high-fat diet (HFD). RESULTS Deletion of a raptor allele in β-cells showed no differences at the metabolic level, islets morphology, or β-cell function in mice fed regular chow. Surprisingly, deletion of only one allele of raptor increases apoptosis without altering proliferation rate and is sufficient to impair insulin secretion when fed a HFD. This is accompanied by reduced levels of critical β-cell genes like Ins1, MafA, Ucn3, Glut2, Glp1r, and specially PDX1 suggesting an improper β-cell adaptation to HFD. CONCLUSION This study identifies that raptor levels play a key role in maintaining PDX1 levels and β-cell function during the adaptation of β-cell to HFD. Finally, we identified that Raptor levels regulate PDX1 levels and β-cell function during β-cell adaptation to HFD by reduction of the mTORC1-mediated negative feedback and activation of the AKT/FOXA2/PDX1 axis. We suggest that Raptor levels are critical to maintaining PDX1 levels and β-cell function in conditions of insulin resistance in male mice.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| | - Ruy Andrade Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joao Pedro Werneck-De-Castro
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA
| | - Camila Lubaczeuski
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joana Almaça
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Markus A Rüegg
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| |
Collapse
|
4
|
Li X, Yang Y, Li Z, Wang Y, Qiao J, Chen Z. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia 2023; 66:1084-1096. [PMID: 36920524 DOI: 10.1007/s00125-023-05900-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS N6-methyladenosine (m6A) mRNA methylation and m6A-related proteins (methyltransferase-like 3 [METTL3], methyltransferase-like 14 [METTL14] and YTH domain containing 1 [YTHDC1]) have been shown to regulate islet beta cell function and the pathogenesis of diabetes. However, whether Wilms' tumour 1-associating protein (WTAP), a key regulator of the m6A RNA methyltransferase complex, regulates islet beta cell failure during pathogenesis of diabetes is largely unknown. The present study aimed to investigate the role of WTAP in the regulation of islet beta cell failure and diabetes. METHODS Islet beta cell-specific Wtap-knockout and beta cell-specific Mettl3-overexpressing mice were generated for this study. Blood glucose, glucose tolerance, serum insulin, glucose-stimulated insulin secretion (both in vivo and in vitro), insulin levels, glucagon levels and beta cell apoptosis were examined. RNA-seq and MeRIP-seq were performed, and the data were well analysed. RESULTS WTAP was downregulated in islet beta cells in type 2 diabetes, due to lipotoxicity and chronic inflammation, and islet beta cell-specific deletion of Wtap (Wtap-betaKO) induced beta cell failure and diabetes. Wtap-betaKO mice showed severe hyperglycaemia (above 20 mmol/l [360 mg/dl]) from 8 weeks of age onwards. Mechanistically, WTAP deficiency decreased m6A mRNA modification and reduced the expression of islet beta cell-specific transcription factors and insulin secretion-related genes by reducing METTL3 protein levels. Islet beta cell-specific overexpression of Mettl3 partially reversed the abnormalities observed in Wtap-betaKO mice. CONCLUSIONS/INTERPRETATION WTAP plays a key role in maintaining beta cell function by regulating m6A mRNA modification depending on METTL3, and the downregulation of WTAP leads to beta cell failure and diabetes. DATA AVAILABILITY The RNA-seq and MeRIP-seq datasets generated during the current study are available in the Gene Expression Omnibus database repository ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215156 ; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215360 ).
Collapse
Affiliation(s)
- Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
5
|
Juan-Mateu J, Bajew S, Miret-Cuesta M, Íñiguez LP, Lopez-Pascual A, Bonnal S, Atla G, Bonàs-Guarch S, Ferrer J, Valcárcel J, Irimia M. Pancreatic microexons regulate islet function and glucose homeostasis. Nat Metab 2023; 5:219-236. [PMID: 36759540 DOI: 10.1038/s42255-022-00734-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
Pancreatic islets control glucose homeostasis by the balanced secretion of insulin and other hormones, and their abnormal function causes diabetes or hypoglycaemia. Here we uncover a conserved programme of alternative microexons included in mRNAs of islet cells, particularly in genes involved in vesicle transport and exocytosis. Islet microexons (IsletMICs) are regulated by the RNA binding protein SRRM3 and represent a subset of the larger neural programme that are particularly sensitive to SRRM3 levels. Both SRRM3 and IsletMICs are induced by elevated glucose levels, and depletion of SRRM3 in human and rat beta cell lines and mouse islets, or repression of particular IsletMICs using antisense oligonucleotides, leads to inappropriate insulin secretion. Consistently, mice harbouring mutations in Srrm3 display defects in islet cell identity and function, leading to hyperinsulinaemic hypoglycaemia. Importantly, human genetic variants that influence SRRM3 expression and IsletMIC inclusion in islets are associated with fasting glucose variation and type 2 diabetes risk. Taken together, our data identify a conserved microexon programme that regulates glucose homeostasis.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Simon Bajew
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Miret-Cuesta
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis P Íñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Amaya Lopez-Pascual
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Goutham Atla
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sílvia Bonàs-Guarch
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jorge Ferrer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Juan Valcárcel
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Yu C, Li X, Zhao Y, Hu Y. The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol (Lausanne) 2023; 14:1081500. [PMID: 36798663 PMCID: PMC9927216 DOI: 10.3389/fendo.2023.1081500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Abnormal glucose metabolism and lipid metabolism are common pathological processes in many metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD). Many studies have shown that the forkhead box (FOX) protein subfamily FOXA has a role in regulating glucolipid metabolism and is closely related to hepatic steatosis and NAFLD. FOXA exhibits a wide range of functions ranging from the initiation steps of metabolism such as the development of the corresponding metabolic organs and the differentiation of cells, to multiple pathways of glucolipid metabolism, to end-of-life problems of metabolism such as age-related obesity. The purpose of this article is to review and discuss the currently known targets and signal transduction pathways of FOXA in glucolipid metabolism. To provide more experimental evidence and basis for further research and clinical application of FOXA in the regulation of glucolipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Chuchu Yu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
7
|
Su C, Gao L, May CL, Pippin JA, Boehm K, Lee M, Liu C, Pahl MC, Golson ML, Naji A, Grant SFA, Wells AD, Kaestner KH. 3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk. Cell Metab 2022; 34:1394-1409.e4. [PMID: 36070683 PMCID: PMC9664375 DOI: 10.1016/j.cmet.2022.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.
Collapse
Affiliation(s)
- Chun Su
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Long Gao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine L May
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Boehm
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle Lee
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Pahl
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria L Golson
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
9
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
10
|
Zhang Y, Li L, Zhang Y, Yan S, Huang L. Improvement of Lipotoxicity-Induced Islet β Cellular Insulin Secretion Disorder by Osteocalcin. J Diabetes Res 2022; 2022:3025538. [PMID: 35313683 PMCID: PMC8934231 DOI: 10.1155/2022/3025538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteocalcin (OCN) has been proved to be closely related with the development of type 2 diabetes mellitus (T2DM). We aimed to study if OCN could improve the disorder of islet cell caused by lipotoxicity. METHODS Alizarin red staining was used to investigate the mineralization. Western blotting and ELISA methods were used to measure protein expression. Immunofluorescence staining was used to investigate the protein nuclear transfer. RESULTS High glucose and high fat inhibited the differentiation of osteoblast precursors. Overexpression of insulin receptor (InsROE) significantly promoted the Runx2 and OCN expression. The increase of insulin, Gprc6a, and Glut2 by osteoblast culture medium overexpressing insulin receptor was reversed by osteocalcin neutralizing antibody. Undercarboxylated osteocalcin (ucOC) suppressed the lipotoxic islet β-cell damage caused by palmitic acid. The FOXO1 from intranuclear to extranuclear was also significantly increased after ucOC treatment compared with the group PA. Knockdown of Gprc6a or suppression of PI3K/AKT signal pathway could reverse the upregulation of GPRC6A/PI3K/AKT/FoxO1/Pdx1 caused by ucOC. CONCLUSION OCN could activate the FOXO1 signaling pathway to regulate GLUT2 expression and improve the insulin secretion disorder caused by lipotoxicity.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Ling Li
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Yongze Zhang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| | - Lingning Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Diabetes Research Institute of Fujian Province, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
- Institute of Metabolic Diseases of Fujian Medical University, No 20 Chazhong Road, Fuzhou, 350004 Fujian province, China
| |
Collapse
|
11
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
REST Inhibits Direct Reprogramming of Pancreatic Exocrine to Endocrine Cells by Preventing PDX1-Mediated Activation of Endocrine Genes. Cell Rep 2021; 31:107591. [PMID: 32375045 DOI: 10.1016/j.celrep.2020.107591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The emerging appreciation of plasticity among pancreatic lineages has created interest in harnessing cellular reprogramming for β cell replacement therapy of diabetes. Current reprogramming methodologies are inefficient, largely because of a limited understanding of the underlying mechanisms. Using an in vitro reprogramming system, we reveal the transcriptional repressor RE-1 silencing transcription factor (REST) as a barrier for β cell gene expression in the reprogramming of pancreatic exocrine cells. We observe that REST-bound loci lie adjacent to the binding sites of multiple key β cell transcription factors, including PDX1. Accordingly, a loss of REST function combined with PDX1 expression results in the synergistic activation of endocrine genes. This is accompanied by increased histone acetylation and PDX1 binding at endocrine gene loci. Collectively, our data identify a mechanism for REST activity involving the prevention of PDX1-mediated activation of endocrine genes and uncover REST downregulation and the resulting chromatin alterations as key events in β cell reprogramming.
Collapse
|
13
|
Marunaka Y, Yagi K. Essential requirement of complex number for oscillatory phenomenon in intracellular trafficking process. Comput Struct Biotechnol J 2021; 19:2990-3005. [PMID: 34136098 PMCID: PMC8176294 DOI: 10.1016/j.csbj.2021.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Intracellular protein trafficking processes consisting of three intracellular states are described by three differential equations. To solve the equations, a quadratic equation is required, and its roots are generally real or complex. The purpose of the present study is to clarify the meanings of roots of real and complex numbers. To clarify the point, we define that: 1) ‘kI’ is the insertion rate from an insertion state trafficking to the plasma membrane state; 2) ‘kE’, the endocytotic rate from the plasma membrane state trafficking to a recycling state; 3) ‘kR’, the recycling rate from the recycling state trafficking to the insertion state. Amounts of proteins in three states are expressed as αelt+βemt+γ with α,β,γ = constant and l and m are roots of a quadratic equation, r2+kI+kE+kRr+kIkE+kIkR+kEkR=0. When l and m are real kI2+kE2+kR2>2kIkE+kEkR+kRkI, amounts of proteins in three states shows no oscillatory change but a monotonic change after a transient increase (or decrease); when l and m are complex kI2+kE2+kR2<2kIkE+kEkR+kRkI, amounts of proteins in three states are expressed as αelt+βemt+γ=2g2+h2sinbt+σeat+γ (α, β, l, m = complex and γ,a,b,g,h,σ = real: α,β = conjugate each other; l,m = conjugate each other), showing an oscillatory change with time. The frequency of oscillatory change appearance is evaluated to be 60% at random combinations of three trafficking rates, kI, kE and kR. The present study indicates that complex numbers have an essentially important meaning in appearance of oscillatory phenomena in bodily and cellular function.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Nakagyo-ku, Kyoto 604-8472, Japan
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 802-8566, Japan
- Corresponding authors at: Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-cho, Nishino-kyo, Nakagyo-ku, Kyoto 604-8472, Japan.
| | - Katsumi Yagi
- Medical Research Institute, Kyoto Industrial Health Association, Nakagyo-ku, Kyoto 604-8472, Japan
- Luis Pasteur Center for Medical Research, Sakyo-ku, Kyoto 606-8225, Japan
- Corresponding authors at: Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-cho, Nishino-kyo, Nakagyo-ku, Kyoto 604-8472, Japan.
| |
Collapse
|
14
|
CDK8 Regulates Insulin Secretion and Mediates Postnatal and Stress-Induced Expression of Neuropeptides in Pancreatic β Cells. Cell Rep 2020; 28:2892-2904.e7. [PMID: 31509750 DOI: 10.1016/j.celrep.2019.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) contribute to vital cellular processes including cell cycle regulation. Loss of CDKs is associated with impaired insulin secretion and β cell survival; however, the function of CDK8 in β cells remains elusive. Here, we report that genetic ablation of Cdk8 improves glucose tolerance by increasing insulin secretion. We identify OSBPL3 as a CDK8-dependent phosphoprotein, which acts as a negative regulator of insulin secretion in response to glucose. We also show that embryonic gene silencing of neuropeptide Y in β cells is compromised in Cdk8-null mice, leading to continued expression into adulthood. Cdk8 ablation in β cells aggravates apoptosis and induces de novo expression of neuropeptides upon oxidative stress. Moreover, pancreatic islets exposed to stress display augmented apoptosis in the presence of these same neuropeptides. Our results reveal critical roles for CDK8 in β cell function and survival during metabolic stress that are in part mediated through de novo expression of neuropeptides.
Collapse
|
15
|
Reizel Y, Morgan A, Gao L, Lan Y, Manduchi E, Waite EL, Wang AW, Wells A, Kaestner KH. Collapse of the hepatic gene regulatory network in the absence of FoxA factors. Genes Dev 2020; 34:1039-1050. [PMID: 32561546 PMCID: PMC7397852 DOI: 10.1101/gad.337691.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022]
Abstract
Here, Reizel et al. investigated the FoxA factor's role in maintaining the regulatory network needed for liver development, and ablated all FoxA genes in the adult mouse liver. They found that loss of FoxA caused rapid and massive reduction in the expression of critical liver genes, and that FoxA proteins are be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid and massive reduction in the expression of critical liver genes. Activity of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout adult life.
Collapse
Affiliation(s)
- Yitzhak Reizel
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ashleigh Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Long Gao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yemin Lan
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Elisabetta Manduchi
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric L Waite
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
16
|
Nagao M, Esguerra JLS, Asai A, Ofori JK, Edlund A, Wendt A, Sugihara H, Wollheim CB, Oikawa S, Eliasson L. Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in β-Cells. Diabetes 2020; 69:1193-1205. [PMID: 32198214 PMCID: PMC7243297 DOI: 10.2337/db19-0944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Obesity is a risk factor for type 2 diabetes (T2D); however, not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from donors with T2D and non-T2D (ND), especially obese donors (BMI ≥30 kg/m2). Islets from obese donors with T2D had reduced insulin secretion, decreased β-cell exocytosis, and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis, and reduced granule docking. This was accompanied by reduced expression of the exocytotic proteins SNAP25, STXBP1, and VAMP2, likely because CD36 induced downregulation of the insulin receptor substrate (IRS) proteins, suppressed the insulin-signaling phosphatidylinositol 3-kinase/AKT pathway, and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line EndoC-βH1 increased IRS1 and exocytotic protein levels, improved granule docking, and enhanced insulin secretion. Our results demonstrate that β-cells from obese donors with T2D have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonathan L S Esguerra
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Akira Asai
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jones K Ofori
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Anna Edlund
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Claes B Wollheim
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Lena Eliasson
- Department of Clinical Sciences, Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| |
Collapse
|
17
|
Phua WWT, Tan WR, Yip YS, Hew ID, Wee JWK, Cheng HS, Leow MKS, Wahli W, Tan NS. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21051747. [PMID: 32143325 PMCID: PMC7084392 DOI: 10.3390/ijms21051747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Daily activities expose muscles to innumerable impacts, causing accumulated tissue damage and inflammation that impairs muscle recovery and function, yet the mechanism modulating the inflammatory response in muscles remains unclear. Our study suggests that Forkhead box A2 (FoxA2), a pioneer transcription factor, has a predominant role in the inflammatory response during skeletal muscle injury. FoxA2 expression in skeletal muscle is upregulated by fatty acids and peroxisome proliferator-activated receptors (PPARs) but is refractory to insulin and glucocorticoids. Using PPARβ/δ agonist GW501516 upregulates FoxA2, which in turn, attenuates the production of proinflammatory cytokines and reduces the infiltration of CD45+ immune cells in two mouse models of muscle inflammation, systemic LPS and intramuscular injection of carrageenan, which mimic localized exercise-induced inflammation. This reduced local inflammatory response limits tissue damage and restores muscle tetanic contraction. In line with these results, a deficiency in either PPARβ/δ or FoxA2 diminishes the action of the PPARβ/δ agonist GW501516 to suppress an aggravated inflammatory response. Our study suggests that FoxA2 in skeletal muscle helps maintain homeostasis, acting as a gatekeeper to maintain key inflammation parameters at the desired level upon injury. Therefore, it is conceivable that certain myositis disorders or other forms of painful musculoskeletal diseases may benefit from approaches that increase FoxA2 activity in skeletal muscle.
Collapse
Affiliation(s)
- Wendy Wen Ting Phua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
| | - Yun Sheng Yip
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Ivan Dongzheng Hew
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Melvin Khee Shing Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Department of Endocrinology, Division of Medicine, Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Correspondence: ; Tel.: +65-6904-1295; Fax: +65-6339-2889
| |
Collapse
|
18
|
Yang W, Chi Y, Meng Y, Chen Z, Xiang R, Yan H, Yang J. FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic beta cells. FASEB J 2020; 34:3915-3931. [PMID: 31944392 DOI: 10.1096/fj.201902368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
So far, the mechanism that links mitochondrial dysfunction to PDX1 inhibition in the pathogenesis of pancreatic β cell dysfunction under diabetic condition remains largely unclear. This study determined the role of mitochondrial protein FAM3A in regulating PDX1 expression in pancreatic β cells using gain- and loss-of function methods in vitro and in vivo. Within pancreas, FAM3A is highly expressed in β, α, δ, and pp cells of islets. Islet FAM3A expression was correlated with insulin expression under physiological and diabetic conditions. Mice with specific knockout of FAM3A in islet β cells exhibited markedly blunted insulin secretion and glucose intolerance. FAM3A-deficient islets showed significant decrease in PDX1 expression, and insulin expression and secretion. FAM3A overexpression upregulated PDX1 and insulin expressions, and augmented insulin secretion in cultured islets and β cells. Mechanistically, FAM3A enhanced ATP production to elevate cellular Ca2+ level and promote insulin secretion. Furthermore, FAM3A-induced ATP release activated CaM to function as a co-activator of FOXA2, stimulating PDX1 gene transcription. In conclusion, FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic β cells. Inhibition of FAM3A will trigger mitochondrial dysfunction to repress PDX1 and insulin expressions.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
19
|
Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, Nie Y, Teng CB. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15:2561-2575. [PMID: 31754329 PMCID: PMC6854373 DOI: 10.7150/ijbs.34985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by pancreatic β cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuansen Zhu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Delin Kong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiawei Gong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Yu S, Tong K, Zhao Y, Balasubramanian I, Yap GS, Ferraris RP, Bonder EM, Verzi MP, Gao N. Paneth Cell Multipotency Induced by Notch Activation following Injury. Cell Stem Cell 2018; 23:46-59.e5. [PMID: 29887318 PMCID: PMC6035085 DOI: 10.1016/j.stem.2018.05.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 01/08/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing. Irradiation induced a subset of Paneth cells to proliferate and differentiate into villus epithelial cells. RNA sequencing (RNA-seq) revealed that Paneth cells sorted from irradiated mice acquired a stem cell-like transcriptome; when cultured in vitro, these individual Paneth cells formed organoids. Irradiation activated Notch signaling, and forced expression of Notch intracellular domain (NICD) in Paneth cells, but not Wnt/β-catenin pathway activation, induced their dedifferentiation. This study documents Paneth cell plasticity, particularly their ability to participate in epithelial replenishment following stem cell loss, adding to a growing body of knowledge detailing the molecular pathways controlling injury-induced regeneration.
Collapse
Affiliation(s)
- Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kevin Tong
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | | | - George S Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
21
|
Salunkhe VA, Ofori JK, Gandasi NR, Salö SA, Hansson S, Andersson ME, Wendt A, Barg S, Esguerra JLS, Eliasson L. MiR-335 overexpression impairs insulin secretion through defective priming of insulin vesicles. Physiol Rep 2018; 5:5/21/e13493. [PMID: 29122960 PMCID: PMC5688784 DOI: 10.14814/phy2.13493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs contribute to the maintenance of optimal cellular functions by fine‐tuning protein expression levels. In the pancreatic β‐cells, imbalances in the exocytotic machinery components lead to impaired insulin secretion and type 2 diabetes (T2D). We hypothesize that dysregulated miRNA expression exacerbates β‐cell dysfunction, and have earlier shown that islets from the diabetic GK‐rat model have increased expression of miRNAs, including miR‐335‐5p (miR‐335). Here, we aim to determine the specific role of miR‐335 during development of T2D, and the influence of this miRNA on glucose‐stimulated insulin secretion and Ca2+‐dependent exocytosis. We found that the expression of miR‐335 negatively correlated with secretion index in human islets of individuals with prediabetes. Overexpression of miR‐335 in human EndoC‐βH1 and in rat INS‐1 832/13 cells (OE335) resulted in decreased glucose‐stimulated insulin secretion, and OE335 cells showed concomitant reduction in three exocytotic proteins: SNAP25, Syntaxin‐binding protein 1 (STXBP1), and synaptotagmin 11 (SYT11). Single‐cell capacitance measurements, complemented with TIRF microscopy of the granule marker NPY‐mEGFP demonstrated a significant reduction in exocytosis in OE335 cells. The reduction was not associated with defective docking or decreased Ca2+ current. More likely, it is a direct consequence of impaired priming of already docked granules. Earlier reports have proposed reduced granular priming as the cause of reduced first‐phase insulin secretion during prediabetes. Here, we show a specific role of miR‐335 in regulating insulin secretion during this transition period. Moreover, we can conclude that miR‐335 has the capacity to modulate insulin secretion and Ca2+‐dependent exocytosis through effects on granular priming.
Collapse
Affiliation(s)
- Vishal A Salunkhe
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Jones K Ofori
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sofia A Salö
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sofia Hansson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Markus E Andersson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Anna Wendt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jonathan L S Esguerra
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis Lund University Diabetes Centre Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Gandasi NR, Yin P, Omar-Hmeadi M, Ottosson Laakso E, Vikman P, Barg S. Glucose-Dependent Granule Docking Limits Insulin Secretion and Is Decreased in Human Type 2 Diabetes. Cell Metab 2018; 27:470-478.e4. [PMID: 29414688 DOI: 10.1016/j.cmet.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023]
Abstract
Glucose-stimulated insulin secretion is biphasic, with a rapid first phase and a slowly developing sustained second phase; both are disturbed in type 2 diabetes (T2D). Biphasic secretion results from vastly different release probabilities of individual insulin granules, but the morphological and molecular basis for this is unclear. Here, we show that human insulin secretion and exocytosis critically depend on the availability of membrane-docked granules and that T2D is associated with a strong reduction in granule docking. Glucose accelerated granule docking, and this effect was absent in T2D. Newly docked granules only slowly acquired release competence; this was regulated by major signaling pathways, but not glucose. Gene expression analysis indicated that key proteins involved in granule docking are downregulated in T2D, and overexpression of these proteins increased granule docking. The findings establish granule docking as an important glucose-dependent step in human insulin secretion that is dysregulated in T2D.
Collapse
Affiliation(s)
- Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Peng Yin
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden
| | - Emilia Ottosson Laakso
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Petter Vikman
- Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, 20502 Malmö, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, BMC 571, 75123 Uppsala, Sweden.
| |
Collapse
|
23
|
Bonnavion R, Teinturier R, Gherardi S, Leteurtre E, Yu R, Cordier-Bussat M, Du R, Pattou F, Vantyghem MC, Bertolino P, Lu J, Zhang CX. Foxa2, a novel protein partner of the tumour suppressor menin, is deregulated in mouse and human MEN1 glucagonomas. J Pathol 2017; 242:90-101. [PMID: 28188614 DOI: 10.1002/path.4885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 11/10/2022]
Abstract
Foxa2, known as one of the pioneer factors, plays a crucial role in islet development and endocrine functions. Its expression and biological functions are regulated by various factors, including, in particular, insulin and glucagon. However, its expression and biological role in adult pancreatic α-cells remain elusive. In the current study, we showed that Foxa2 was overexpressed in islets from α-cell-specific Men1 mutant mice, at both the transcriptional level and the protein level. More importantly, immunostaining analyses showed its prominent nuclear accumulation, specifically in α-cells, at a very early stage after Men1 disruption. Similar nuclear FOXA2 expression was also detected in a substantial proportion (12/19) of human multiple endocrine neoplasia type 1 (MEN1) glucagonomas. Interestingly, our data revealed an interaction between Foxa2 and menin encoded by the Men1 gene. Furthermore, using several approaches, we demonstrated the relevance of this interaction in the regulation of two tested Foxa2 target genes, including the autoregulation of the Foxa2 promoter by Foxa2 itself. The current study establishes menin, a novel protein partner of Foxa2, as a regulator of Foxa2, the biological functions of which extend beyond the pancreatic endocrine cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rémy Bonnavion
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Romain Teinturier
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Samuele Gherardi
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Emmanuelle Leteurtre
- Institut de Pathologie, CHRU de Lille, Lille, France.,Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France
| | - Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martine Cordier-Bussat
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Rui Du
- The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - François Pattou
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrine Surgery, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, Univ. Lille 2, INSERM UMR 1190, Lille, France.,CHRU Lille, Endocrinology, Lille, France
| | - Philippe Bertolino
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France
| | - Jieli Lu
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China.,Shanghai Clinical Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao-Tong University, Shanghai, PR China
| | - Chang Xian Zhang
- INSERM U1052, Lyon, France.,CNRS UMR5286, Lyon, France.,Université de Lyon, Lyon, France.,The E-Institute of Shanghai, Sino-French Life Science and Genomic Centre, Ruijin Hospital, Shanghai, PR China
| |
Collapse
|
24
|
Bastidas-Ponce A, Roscioni SS, Burtscher I, Bader E, Sterr M, Bakhti M, Lickert H. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Mol Metab 2017; 6:524-534. [PMID: 28580283 PMCID: PMC5444078 DOI: 10.1016/j.molmet.2017.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The transcription factors (TF) Foxa2 and Pdx1 are key regulators of beta-cell (β-cell) development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY), pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. METHODS In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBFDHom) fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF) with the newly generated Pdx1-BFP (blue fluorescent protein) fusion (PBF) mice. RESULTS Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBFDHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. CONCLUSIONS Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,Technical University of Munich, Germany.,German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
25
|
Kieckhaefer JE, Lukovac S, Ye DZ, Lee D, Beetler DJ, Pack M, Kaestner KH. The RNA polymerase III subunit Polr3b is required for the maintenance of small intestinal crypts in mice. Cell Mol Gastroenterol Hepatol 2016; 2:783-795. [PMID: 28090567 PMCID: PMC5235342 DOI: 10.1016/j.jcmgh.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The continuously self-renewing mammalian intestinal epithelium, with high cellular turnover, depends on adequate protein synthesis for its proliferative capacity. RNA polymerase III activity is closely related to cellular growth and proliferation. Here, we studied the role of Polr3b, a large RNA polymerase III subunit, in the mammalian intestinal epithelium. METHODS We derived mice with an intestinal epithelium-specific hypomorphic mutation of the Polr3b gene, using VillinCre-mediated gene ablation. Phenotypic consequences of the Polr3b mutation on the intestinal epithelium in mice were assessed using histological and molecular methodologies, including genetic lineage tracing. RESULTS The Polr3b mutation severely reduced survival and growth in mice during the first postnatal week, the period when the expansion of the intestinal epithelium, and thus the requirement for protein synthesis, are highest. The neonatal intestinal epithelium of Polr3bloxP/loxP;VillinCre mice was characterized by areas with reduced proliferation, abnormal epithelial architecture, loss of Wnt signaling and a dramatic increase in apoptotic cells in crypts. Genetic lineage tracing using Polr3bLoxP/LoxP;Rosa26-lox-stop-lox-YFP;VillinCre mice demonstrated that in surviving mutant mice, Polr3b-deficient dying crypts were progressively replaced by 'Cre-escaper' cells that had retained wild type Polr3b function. In addition, enteroids cultured from Polr3bloxP/loxP;VillinCre mice show reduced proliferative activity and increased apoptosis. CONCLUSIONS We provide evidence for an essential role of the Pol III subunit Polr3b in orchestrating the maintenance of the intestinal crypt during early postnatal development in mice.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sabina Lukovac
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Diana Z. Ye
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dolim Lee
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Danielle J. Beetler
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Pack
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Michael Pack, MD, University of Pennsylvania, Perelman School of Medicine, 1212 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 898-9871.University of PennsylvaniaPerelman School of Medicine1212 Biomedical Research Building II/III421 Curie BoulevardPhiladelphiaPennsylvania 19104
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania,Correspondence Address correspondence to: Klaus H. Kaestner, PhD, 12-126 Smilow Center for Translational Research, University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104. fax: (215) 573-5892.12-126 Smilow Center for Translational ResearchUniversity of PennsylvaniaPerelman School of Medicine3400 Civic Center BoulevardPhiladelphiaPennsylvania 19104
| |
Collapse
|
26
|
Tugay K, Guay C, Marques AC, Allagnat F, Locke JM, Harries LW, Rutter GA, Regazzi R. Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets. Diabetologia 2016; 59:161-169. [PMID: 26474776 PMCID: PMC4670458 DOI: 10.1007/s00125-015-3783-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/23/2015] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Ageing can lead to reduced insulin sensitivity and loss of pancreatic beta cell function, predisposing individuals to the development of diabetes. The aim of this study was to assess the contribution of microRNAs (miRNAs) to age-associated beta cell dysfunction. METHODS The global mRNA and miRNA profiles of 3- and 12-month-old rat islets were collected by microarray. The functional impact of age-associated differences in miRNA expression was investigated by mimicking the observed changes in primary beta cells from young animals. RESULTS Beta cells from 12-month-old rats retained normal insulin content and secretion, but failed to proliferate in response to mitotic stimuli. The islets of these animals displayed modifications at the level of several miRNAs, including upregulation of miR-34a, miR-124a and miR-383, and downregulation of miR-130b and miR-181a. Computational analysis of the transcriptomic modifications observed in the islets of 12-month-old rats revealed that the differentially expressed genes were enriched for miR-34a and miR-181a targets. Indeed, the induction of miR-34a and reduction of miR-181a in the islets of young animals mimicked the impaired beta cell proliferation observed in old animals. mRNA coding for alpha-type platelet-derived growth factor receptor, which is critical for compensatory beta cell mass expansion, is directly inhibited by miR34a and is likely to be at least partly responsible for the effects of this miRNA. CONCLUSIONS/INTERPRETATION Changes in the level of specific miRNAs that occur during ageing affect the proliferative capacity of beta cells. This might reduce their ability to expand under conditions of increased insulin demand, favouring the development of type 2 diabetes.
Collapse
Affiliation(s)
- Ksenia Tugay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Ana C Marques
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Florent Allagnat
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Jonathan M Locke
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
27
|
Tennant BR, Hurley P, Dhillon J, Gill A, Whiting C, Hoffman BG. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets. PLoS One 2015; 10:e0141470. [PMID: 26505193 PMCID: PMC4623983 DOI: 10.1371/journal.pone.0141470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Peter Hurley
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Jasmine Dhillon
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Amol Gill
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Cheryl Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. RECENT FINDINGS Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in-situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. SUMMARY The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes.
Collapse
Affiliation(s)
- Anthony I Romer
- Department of Genetics and Development, Columbia University, New York, New York, USA
| | | |
Collapse
|
29
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
30
|
Heddad Masson M, Poisson C, Guérardel A, Mamin A, Philippe J, Gosmain Y. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion. Endocrinology 2014; 155:3781-92. [PMID: 25057789 DOI: 10.1210/en.2013-1843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.
Collapse
Affiliation(s)
- Mounia Heddad Masson
- Department of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital of Geneva, Medical School, 1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Jonatan D, Spence JR, Method AM, Kofron M, Sinagoga K, Haataja L, Arvan P, Deutsch GH, Wells JM. Sox17 regulates insulin secretion in the normal and pathologic mouse β cell. PLoS One 2014; 9:e104675. [PMID: 25144761 PMCID: PMC4140688 DOI: 10.1371/journal.pone.0104675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.
Collapse
Affiliation(s)
- Diva Jonatan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Anna M. Method
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katie Sinagoga
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Gail H. Deutsch
- Seattle Children’s Hospital, Seattle, WA, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhang J, McKenna LB, Bogue CW, Kaestner KH. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev 2014; 28:829-34. [PMID: 24736842 PMCID: PMC4003275 DOI: 10.1101/gad.235499.113] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been linked to type 2 diabetes mellitus in genome-wide association studies. Zhang et al. discover that Hhex is selectively expressed in the somatostatin-secreting δ cell of the adult pancreas. Hhex was required for δ-cell differentiation, and the reduced somatostatin levels in Hhex-deficient islets caused disrupted paracrine inhibition of insulin release from δ cells. This study identifies Hhex as the first transcriptional regulator specifically required for islet δ cells and suggests compromised paracrine control as a contributor to type 2 diabetes. The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been repeatedly linked to type 2 diabetes mellitus (T2DM) using genome-wide association studies. We report here that within the adult endocrine pancreas, Hhex is selectively expressed in the somatostatin-secreting δ cell. Using two mouse models with Hhex deficiency in the endocrine pancreas, we show that Hhex is required for δ-cell differentiation. Decreased somatostatin levels in Hhex-deficient islets cause disrupted paracrine inhibition of insulin release from β cells. These findings identify Hhex as the first transcriptional regulator specifically required for islet δ cells and suggest compromised paracrine control as a contributor to T2DM.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
33
|
Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 2013; 10:527-34. [DOI: 10.1002/term.1787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/21/2013] [Accepted: 05/27/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Reyhaneh Lahmy
- Department of Genetics, Faculty of Biology Sciences; Tarbiat Modares University; Tehran Iran
| | - Masoud Soleimani
- Department of Haematology, School of Medicine; Tarbiat Modares University; Tehran Iran
| | - Mohammad H. Sanati
- National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biology Sciences; Tarbiat Modares University; Tehran Iran
| | - Fatemeh Kouhkan
- Department of Genetics, Faculty of Biology Sciences; Tarbiat Modares University; Tehran Iran
| | - Naser Mobarra
- Department of Clinical Biochemistry, School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
34
|
Gosmain Y, Masson MH, Philippe J. Glucagon: the renewal of an old hormone in the pathophysiology of diabetes. J Diabetes 2013; 5:102-9. [PMID: 23302052 DOI: 10.1111/1753-0407.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) is one of the most common diseases, affecting 5-10% of the population in most countries; the progression of its prevalence has been constant over the past 50 years in all countries worldwide, creating a major public health problem in terms of disease management and financial burden. Although the pathophysiology of T2D has been attributed for decades to insulin resistance and decreased insulin secretion, particularly in response to glucose, the contributing role of glucagon in hyperglycemia has been highlighted since the early 1970s by demonstrating its glycogenolytic, gluconeogenic and ketogenic properties. More recently, the importance of glucagon in diabetes has been highlighted in a model of streptozotocin-induced diabetic mice becoming euglycemic in the absence of glucagon receptors and without insulin treatment. Understanding the dysregulation of α-cells in diabetes will be critical to better define the pathophysiology of diabetes and develop new antidiabetic treatment.
Collapse
Affiliation(s)
- Yvan Gosmain
- Service of Endocrinology, Diabetes, Hypertension and Nutrition, University Hospital Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
35
|
Fox RM, Vaishnavi A, Maruyama R, Andrew DJ. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development 2013; 140:2160-71. [PMID: 23578928 DOI: 10.1242/dev.092924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | | | |
Collapse
|
36
|
Tennant BR, Robertson AG, Kramer M, Li L, Zhang X, Beach M, Thiessen N, Chiu R, Mungall K, Whiting CJ, Sabatini PV, Kim A, Gottardo R, Marra MA, Lynn FC, Jones SJM, Hoodless PA, Hoffman BG. Identification and analysis of murine pancreatic islet enhancers. Diabetologia 2013; 56:542-52. [PMID: 23238790 PMCID: PMC4773896 DOI: 10.1007/s00125-012-2797-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/20/2012] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS The paucity of information on the epigenetic barriers that are blocking reprogramming protocols, and on what makes a beta cell unique, has hampered efforts to develop novel beta cell sources. Here, we aimed to identify enhancers in pancreatic islets, to understand their developmental ontologies, and to identify enhancers unique to islets to increase our understanding of islet-specific gene expression. METHODS We combined H3K4me1-based nucleosome predictions with pancreatic and duodenal homeobox 1 (PDX1), neurogenic differentiation 1 (NEUROD1), v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MAFA) and forkhead box A2 (FOXA2) occupancy data to identify enhancers in mouse islets. RESULTS We identified 22,223 putative enhancer loci in in vivo mouse islets. Our validation experiments suggest that nearly half of these loci are active in regulating islet gene expression, with the remaining regions probably poised for activity. We showed that these loci have at least nine developmental ontologies, and that islet enhancers predominately acquire H3K4me1 during differentiation. We next discriminated 1,799 enhancers unique to islets and showed that these islet-specific enhancers have reduced association with annotated genes, and identified a subset that are instead associated with novel islet-specific long non-coding RNAs (lncRNAs). CONCLUSIONS/INTERPRETATIONS Our results indicate that genes with islet-specific expression and function tend to have enhancers devoid of histone methylation marks or, less often, that are bivalent or repressed, in embryonic stem cells and liver. Further, we identify a subset of enhancers unique to islets that are associated with novel islet-specific genes and lncRNAs. We anticipate that these data will facilitate the development of novel sources of functional beta cell mass.
Collapse
Affiliation(s)
- B. R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - A. G. Robertson
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - M. Kramer
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - L. Li
- Biostatistics Branch, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - X. Zhang
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - M. Beach
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - N. Thiessen
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - R. Chiu
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - K. Mungall
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - C. J. Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - P. V. Sabatini
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - A. Kim
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
| | - R. Gottardo
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M. A. Marra
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - F. C. Lynn
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - S. J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
| | - P. A. Hoodless
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - B. G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Room A4-185, 950 W28th Avenue, Vancouver, BC, Canada V5Z 4H4
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Tennant BR, Islam R, Kramer MM, Merkulova Y, Kiang RL, Whiting CJ, Hoffman BG. The transcription factor Myt3 acts as a pro-survival factor in β-cells. PLoS One 2012; 7:e51501. [PMID: 23236509 PMCID: PMC3517555 DOI: 10.1371/journal.pone.0051501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
Aims/Hypothesis We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival. Methods Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets. Results We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis. Conclusion/Interpretation We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Ratib Islam
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Marabeth M. Kramer
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Yulia Merkulova
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Roger L. Kiang
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Cheryl J. Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: E-mail:
| |
Collapse
|
38
|
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012; 150:1223-34. [PMID: 22980982 DOI: 10.1016/j.cell.2012.07.029] [Citation(s) in RCA: 1065] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 03/20/2012] [Accepted: 07/06/2012] [Indexed: 12/12/2022]
Abstract
Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication.
Collapse
Affiliation(s)
- Chutima Talchai
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
39
|
Belaguli NS, Zhang M, Brunicardi FC, Berger DH. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation. PLoS One 2012; 7:e48019. [PMID: 23118920 PMCID: PMC3485284 DOI: 10.1371/journal.pone.0048019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022] Open
Abstract
The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.
Collapse
|
40
|
Iglesias J, Barg S, Vallois D, Lahiri S, Roger C, Yessoufou A, Pradevand S, McDonald A, Bonal C, Reimann F, Gribble F, Debril MB, Metzger D, Chambon P, Herrera P, Rutter GA, Prentki M, Thorens B, Wahli W. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice. J Clin Invest 2012; 122:4105-17. [PMID: 23093780 DOI: 10.1172/jci42127] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/19/2012] [Indexed: 12/30/2022] Open
Abstract
PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
Collapse
Affiliation(s)
- José Iglesias
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet 2012; 44:406-12, S1. [PMID: 22406641 PMCID: PMC3315609 DOI: 10.1038/ng.2215] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/07/2012] [Indexed: 12/31/2022]
Abstract
Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3(+) enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins(+)) cells that express markers of mature β cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins(+) cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins(+) cells. Following ablation by the β-cell toxin streptozotocin, gut Ins(+) cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3(+) enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins(+) cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.
Collapse
|
42
|
Bramswig NC, Kaestner KH. Organogenesis and functional genomics of the endocrine pancreas. Cell Mol Life Sci 2012; 69:2109-23. [PMID: 22241333 DOI: 10.1007/s00018-011-0915-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/04/2011] [Accepted: 12/29/2011] [Indexed: 02/06/2023]
Abstract
Functional genomics, the analysis of the wealth of data produced by genome-wide analyses of gene expression, protein-protein, and protein-DNA interactions, has revolutionized biomedical research. Our ability to determine global gene expression profiles, transcription factor-binding sites, and histone modification maps using microarray-based technologies and next-generation sequencing applications has greatly enhanced our understanding of gene regulatory networks and the molecular wiring diagrams of cells and tissues. The organogenesis of the endocrine pancreas involves numerous signaling events within the endoderm-derived pancreatic epithelium and the surrounding mesenchyme, as well as complex transcription factor networks. Detailed understanding of the differentiation process from foregut endoderm to mature endocrine cells has enabled the rational design of in vitro differentiation protocols that coax embryonic stem cells into β-like cells that might enable cell replacement therapy for diabetes in the future. In this review, we summarize the research studies that have utilized genomic tools to elucidate endocrine pancreatic organogenesis.
Collapse
Affiliation(s)
- Nuria C Bramswig
- Department of Genetics, Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
43
|
A small molecule differentiation inducer increases insulin production by pancreatic β cells. Proc Natl Acad Sci U S A 2011; 108:20713-8. [PMID: 22143803 DOI: 10.1073/pnas.1118526109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
New drugs for preserving and restoring pancreatic β-cell function are critically needed for the worldwide epidemic of type 2 diabetes and the cure for type 1 diabetes. We previously identified a family of neurogenic 3,5-disubstituted isoxazoles (Isx) that increased expression of neurogenic differentiation 1 (NeuroD1, also known as BETA2); this transcription factor functions in neuronal and pancreatic β-cell differentiation and is essential for insulin gene transcription. Here, we probed effects of Isx on human cadaveric islets and MIN6 pancreatic β cells. Isx increased the expression and secretion of insulin in islets that made little insulin after prolonged ex vivo culture and increased expression of neurogenic differentiation 1 and other regulators of islet differentiation and insulin gene transcription. Within the first few hours of exposure, Isx caused biphasic activation of ERK1/2 and increased bulk histone acetylation. Although there was little effect on histone deacetylase activity, Isx increased histone acetyl transferase activity in nuclear extracts. Reconstitution assays indicated that Isx increased the activity of the histone acetyl transferase p300 through an ERK1/2-dependent mechanism. In summary, we have identified a small molecule with antidiabetic activity, providing a tool for exploring islet function and a possible lead for therapeutic intervention in diabetes.
Collapse
|
44
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
45
|
Chen F, Zhu Y, Tang X, Sun Y, Jia W, Sun Y, Han X. Dynamic regulation of PDX-1 and FoxO1 expression by FoxA2 in dexamethasone-induced pancreatic β-cells dysfunction. Endocrinology 2011; 152:1779-88. [PMID: 21385937 DOI: 10.1210/en.2010-1048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription factors forkhead box (Fox)O1 and pancreatic and duodenal homeobox-1 (PDX-1) are involved in dexamethasone (DEX)-induced dysfunction in pancreatic β-cells. However, the molecular mechanism underlying the regulation of FoxO1 and PDX-1 expression in β-cells treated with DEX is not fully understood. In this study, we found that DEX markedly increased FoxO1 mRNA and protein expression, whereas it decreased PDX-1 mRNA and protein expression in a dose- and time-dependent manner. Further study showed that FoxA2 was involved in regulation of FoxO1 and PDX-1 expression in DEX-induced pancreatic β-cells dysfunction. Interestingly, we demonstrated for the first time that FoxA2 could bind to the FoxO1 gene promoter and positively regulate FoxO1 expression. Moreover, we found that DEX increased the activity of FoxA2 binding to the FoxO1 promoter but decreased the activity of FoxA2 binding to the PDX-1 promoter of RINm5F cells. Knockdown of FoxA2 by RNA interference inhibited FoxO1 expression and restored PDX-1 expression in pancreatic β-cells treated with DEX. However, DEX had no effect on the expression of FoxA2. Together, the results of the present study demonstrated that FoxA2 could dynamically regulate FoxO1 and PDX-1 expression in pancreatic β-cells treated with DEX, which provides new important information on the transcriptional regulation of FoxO1 and PDX-1 in DEX-induced pancreatic β-cells. Inhibition of FoxA2 can effectively protect β-cells against DEX-induced dysfunction.
Collapse
Affiliation(s)
- Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Clinical Diabetes Centre of Jiangsu Province, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Pancreatic islets contain low activities of catalase, selenium-dependent glutathione peroxidase 1 (GPX1), and Cu,Zn-superoxide dismutase 1 (SOD1). Thus, enhancing expression of these enzymes in islets has been unquestionably favored. However, such an attempt has produced variable metabolic outcomes. While β cell-specific overexpression of Sod1 enhanced mouse resistance to streptozotocin-induced diabetes, the same manipulation of catalase aggravated onset of type 1 diabetes in nonobese diabetic mice. Global overexpression of Gpx1 in mice induced type 2 diabetes-like phenotypes. Although knockouts of Gpx1 and Sod1 each alone or together decreased pancreatic β cell mass and plasma insulin concentrations, these knockouts improved body insulin sensitivity to different extents. Pancreatic duodenal homeobox 1, forkhead box A2, and uncoupling protein 2 are three key regulators of β cell mass, insulin synthesis, and glucose-stimulated insulin secretion. Phenotypes resulted from altering GPX1 and/or SOD1 were partly mediated through these factors, along with protein kinase B and c-jun terminal kinase. A shifted reactive oxygen species inhibition of protein tyrosine phosphatases in insulin signaling might be attributed to altered insulin sensitivity. Overall, metabolic roles of antioxidant enzymes in β cells and diabetes depend on body oxidative status and target functions. Revealing regulatory mechanisms for this type of dual role will help prevent potential pro-diabetic risk of antioxidant over-supplementation to humans.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
47
|
Zhao A, Ohara-Imaizumi M, Brissova M, Benninger RK, Xu Y, Hao Y, Abramowitz J, Boulay G, Powers AC, Piston D, Jiang M, Nagamatsu S, Birnbaumer L, Gu G. Gαo represses insulin secretion by reducing vesicular docking in pancreatic beta-cells. Diabetes 2010; 59:2522-9. [PMID: 20622165 PMCID: PMC3279551 DOI: 10.2337/db09-1719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Pertussis toxin uncoupling-based studies have shown that Gαi and Gαo can inhibit insulin secretion in pancreatic β-cells. Yet it is unclear whether Gαi and Gαo operate through identical mechanisms and how these G-protein-mediated signals inhibit insulin secretion in vivo. Our objective is to examine whether/how Gαo regulates islet development and insulin secretion in β-cells. RESEARCH DESIGN AND METHODS Immunoassays were used to analyze the Gαo expression in mouse pancreatic cells. Gαo was specifically inactivated in pancreatic progenitor cells by pancreatic cell-specific gene deletion. Hormone expression and insulin secretion in response to different stimuli were assayed in vivo and in vitro. Electron microscope and total internal reflection fluorescence-based assays were used to evaluate how Gαo regulates insulin vesicle docking and secretion in response to glucose stimulation. RESULTS Islet cells differentiate properly in Gαo(-/-) mutant mice. Gαo inactivation significantly enhances insulin secretion both in vivo and in isolation. Gαo nullizygous β-cells contain an increased number of insulin granules docked on the cell plasma membrane, although the total number of vesicles per β-cell remains unchanged. CONCLUSIONS Gαo is not required for endocrine islet cell differentiation, but it regulates the number of insulin vesicles docked on the β-cell membrane.
Collapse
Affiliation(s)
- Aizhen Zhao
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine Mitaka, Tokyo, Japan
| | - Marcella Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard K.P. Benninger
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yanwen Xu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuhan Hao
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Guylain Boulay
- Department of Pharmacology, School of Medicine, Sherbrooke University, Sherbrooke, Québec, Canada
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - David Piston
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine Mitaka, Tokyo, Japan
| | - Lutz Birnbaumer
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Guoqiang Gu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Corresponding author: Guoqiang Gu,
| |
Collapse
|
48
|
Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, Magnuson MA, Stein R. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 2010; 59:2530-9. [PMID: 20627934 PMCID: PMC3279542 DOI: 10.2337/db10-0190] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Several transcription factors are essential to pancreatic islet β-cell development, proliferation, and activity, including MafA and MafB. However, MafA and MafB are distinct from others in regard to temporal and islet cell expression pattern, with β-cells affected by MafB only during development and exclusively by MafA in the adult. Our aim was to define the functional relationship between these closely related activators to the β-cell. RESEARCH DESIGN AND METHODS The distribution of MafA and MafB in the β-cell population was determined immunohistochemically at various developmental and perinatal stages in mice. To identify genes regulated by MafB, microarray profiling was performed on wild-type and MafB(-/-) pancreata at embryonic day 18.5, with candidates evaluated by quantitative RT-PCR and in situ hybridization. The potential role of MafA in the expression of verified targets was next analyzed in adult islets of a pancreas-wide MafA mutant (termed MafA(ΔPanc)). RESULTS MafB was produced in a larger fraction of β-cells than MafA during development and found to regulate potential effectors of glucose sensing, hormone processing, vesicle formation, and insulin secretion. Notably, expression from many of these genes was compromised in MafA(ΔPanc) islets, suggesting that MafA is required to sustain expression in adults. CONCLUSIONS Our results provide insight into the sequential manner by which MafA and MafB regulate islet β-cell formation and maturation.
Collapse
Affiliation(s)
- Isabella Artner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- Corresponding authors: Roland Stein, , and Isabella Artner,
| | - Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Magdalena Mazur
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Tsunehiko Yamamoto
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jill Lindner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Corresponding authors: Roland Stein, , and Isabella Artner,
| |
Collapse
|
49
|
Marcheva B, Moynihan Ramsey K, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466:627-31. [PMID: 20562852 PMCID: PMC2920067 DOI: 10.1038/nature09253] [Citation(s) in RCA: 1090] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/10/2010] [Indexed: 01/01/2023]
Abstract
The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective beta-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the beta-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.
Collapse
Affiliation(s)
- Biliana Marcheva
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Ethan D. Buhr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Yumiko Kobayashi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Hong Su
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Caroline H. Ko
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Ganka Ivanova
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Chiaki Omura
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - Shelley Mo
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208
| | - James P. Lopez
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | | - Christopher A. Bradfield
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Seth D. Crosby
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | | | - Xiaozhong Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111
| | - Joseph Bass
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
50
|
Kaestner KH. The FoxA factors in organogenesis and differentiation. Curr Opin Genet Dev 2010; 20:527-32. [PMID: 20591647 DOI: 10.1016/j.gde.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
Abstract
The genetic analysis of the Foxa genes in both total and conditional mutant mice has clearly established that organogenesis of multiple systems is controlled by this subfamily of winged helix transcription factors. These discoveries followed the establishment of the conceptional framework of the mechanism of action of the FoxA proteins as 'pioneer factors' that can engage chromatin before other transcription factors. Recent molecular and genomic studies have also shown that FoxA proteins can facilitate binding of several nuclear receptors to their respective targets in a context-dependent manner, greatly increasing the range and importance of FoxA factors in biology.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Department of Genetics & Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, United States.
| |
Collapse
|