1
|
Marino L, Ni B, Farrar JS, Lownik JC, Pearce JV, Martin RK, Celi FS. Adipose tissue-selective ablation of ADAM10 results in divergent metabolic phenotypes following long-term dietary manipulation. Adipocyte 2024; 13:2339418. [PMID: 38706095 PMCID: PMC11073419 DOI: 10.1080/21623945.2024.2339418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, CT, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, PA, USA
| | - Jared S. Farrar
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Joseph C. Lownik
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Janina V. Pearce
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Rebecca K. Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
2
|
Sahin C, Melanson JR, Le Billan F, Magomedova L, Ferreira TAM, Oliveira AS, Pollock-Tahari E, Saikali MF, Cash SB, Woo M, Romeiro LAS, Cummins CL. A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease. Mol Metab 2024; 85:101958. [PMID: 38763495 PMCID: PMC11170206 DOI: 10.1016/j.molmet.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenna-Rose Melanson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Evan Pollock-Tahari
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sarah B Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
3
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Rohm TV, Castellani Gomes Dos Reis F, Isaac R, Murphy C, Cunha E Rocha K, Bandyopadhyay G, Gao H, Libster AM, Zapata RC, Lee YS, Ying W, Miciano C, Wang A, Olefsky JM. Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization. Nat Metab 2024; 6:880-898. [PMID: 38605183 PMCID: PMC11430498 DOI: 10.1038/s42255-024-01023-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
The obesity epidemic continues to worsen worldwide, driving metabolic and chronic inflammatory diseases. Thiazolidinediones, such as rosiglitazone (Rosi), are PPARγ agonists that promote 'M2-like' adipose tissue macrophage (ATM) polarization and cause insulin sensitization. As ATM-derived small extracellular vesicles (ATM-sEVs) from lean mice are known to increase insulin sensitivity, we assessed the metabolic effects of ATM-sEVs from Rosi-treated obese male mice (Rosi-ATM-sEVs). Here we show that Rosi leads to improved glucose and insulin tolerance, transcriptional repolarization of ATMs and increased sEV secretion. Administration of Rosi-ATM-sEVs rescues obesity-induced glucose intolerance and insulin sensitivity in vivo without the known thiazolidinedione-induced adverse effects of weight gain or haemodilution. Rosi-ATM-sEVs directly increase insulin sensitivity in adipocytes, myotubes and primary mouse and human hepatocytes. Additionally, we demonstrate that the miRNAs within Rosi-ATM-sEVs, primarily miR-690, are responsible for these beneficial metabolic effects. Thus, using ATM-sEVs with specific miRNAs may provide a therapeutic path to induce insulin sensitization.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | | - Roi Isaac
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cairo Murphy
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hong Gao
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Avraham M Libster
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rizaldy C Zapata
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Charlene Miciano
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Benvie AM, Lee D, Jiang Y, Berry DC. Platelet-derived growth factor receptor beta is required for embryonic specification and confinement of the adult white adipose lineage. iScience 2024; 27:108682. [PMID: 38235323 PMCID: PMC10792241 DOI: 10.1016/j.isci.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
White adipose tissue (WAT) development and adult homeostasis rely on distinct adipocyte progenitor cells (APCs). While adult APCs are defined early during embryogenesis and generate adipocytes after WAT organogenesis, the mechanisms underlying adult adipose lineage determination and preservation remain undefined. Here, we uncover a critical role for platelet-derived growth factor receptor beta (Pdgfrβ) in identifying the adult APC lineage. Without Pdgfrβ, APCs lose their adipogenic competency to incite fibrotic tissue replacement and inflammation. Through lineage tracing analysis, we reveal that the adult APC lineage is lost and develops into macrophages when Pdgfrβ is deleted embryonically. Moreover, to maintain the APC lineage, Pdgfrβ activation stimulates p38/MAPK phosphorylation to promote APC proliferation and maintains the APC state by phosphorylating peroxisome proliferator activated receptor gamma (Pparγ) at serine 112. Together, our findings identify a role for Pdgfrβ acting as a rheostat for adult adipose lineage confinement to prevent unintended lineage switches.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Lecoutre S, Maqdasy S, Lambert M, Breton C. The Impact of Maternal Obesity on Adipose Progenitor Cells. Biomedicines 2023; 11:3252. [PMID: 38137473 PMCID: PMC10741630 DOI: 10.3390/biomedicines11123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of Developmental Origin of Health and Disease (DOHaD) postulates that adult-onset metabolic disorders may originate from suboptimal conditions during critical embryonic and fetal programming windows. In particular, nutritional disturbance during key developmental stages may program the set point of adiposity and its associated metabolic diseases later in life. Numerous studies in mammals have reported that maternal obesity and the resulting accelerated growth in neonates may affect adipocyte development, resulting in persistent alterations in adipose tissue plasticity (i.e., adipocyte proliferation and storage) and adipocyte function (i.e., insulin resistance, impaired adipokine secretion, reduced thermogenesis, and higher inflammation) in a sex- and depot-specific manner. Over recent years, adipose progenitor cells (APCs) have been shown to play a crucial role in adipose tissue plasticity, essential for its development, maintenance, and expansion. In this review, we aim to provide insights into the developmental timeline of lineage commitment and differentiation of APCs and their role in predisposing individuals to obesity and metabolic diseases. We present data supporting the possible implication of dysregulated APCs and aberrant perinatal adipogenesis through epigenetic mechanisms as a primary mechanism responsible for long-lasting adipose tissue dysfunction in offspring born to obese mothers.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approach Research Group, Nutriomics, Sorbonne Université, INSERM, F-75013 Paris, France
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mélanie Lambert
- U978 Institut National de la Santé et de la Recherche Médicale, F-93022 Bobigny, France;
- Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, F-93000 Bobigny, France
| | - Christophe Breton
- Maternal Malnutrition and Programming of Metabolic Diseases, Université de Lille, EA4489, F-59000 Lille, France
- U1283-UMR8199-EGID, Université de Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Boubertakh B, Courtemanche O, Marsolais D, Di Marzo V, Silvestri C. New role for the anandamide metabolite prostaglandin F 2α ethanolamide: Rolling preadipocyte proliferation. J Lipid Res 2023; 64:100444. [PMID: 37730163 PMCID: PMC10622703 DOI: 10.1016/j.jlr.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
White adipose tissue regulation is key to metabolic health, yet still perplexing. The chief endocannabinoid anandamide metabolite, prostaglandin F2α ethanolamide (PGF2αEA), inhibits adipogenesis, that is, the formation of mature adipocytes. We observed that adipocyte progenitor cells-preadipocytes-following treatment with PGF2αEA yielded larger pellet sizes. Thus, we hypothesized that PGF2αEA might augment preadipocyte proliferation. Cell viability MTT and crystal violet assays, cell counting, and 5-bromo-2'-deoxyuridine incorporation in cell proliferation ELISA analyses confirmed our prediction. Additionally, we discovered that PGF2αEA promotes cell cycle progression through suppression of the expression of cell cycle inhibitors, p21 and p27, as shown by flow cytometry and qPCR. Enticingly, concentrations of this compound that showed no visible effect on cell proliferation or basal transcriptional activity of peroxisome proliferator-activated receptor gamma could, in contrast, reverse the anti-proliferative and peroxisome proliferator-activated receptor gamma-transcription activating effects of rosiglitazone (Rosi). MTT and luciferase reporter examinations supported this finding. The PGF2αEA pharmaceutical analog, bimatoprost, was also investigated and showed very similar effects. Importantly, we suggest the implication of the mitogen-activated protein kinase pathway in these effects, as they were blocked by the selective mitogen-activated protein kinase kinase inhibitor, PD98059. We propose that PGF2αEA is a pivotal regulator of white adipose tissue plasticity, acting as a regulator of the preadipocyte pool in adipose tissue.
Collapse
Affiliation(s)
- Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Olivier Courtemanche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada; École de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, Canada
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Centre NUTRISS, Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
8
|
Yuan Y, Shi Z, Xiong S, Hu R, Song Q, Song Z, Ong SG, Jiang Y. Differential roles of insulin receptor in adipocyte progenitor cells in mice. Mol Cell Endocrinol 2023; 573:111968. [PMID: 37244600 PMCID: PMC10846871 DOI: 10.1016/j.mce.2023.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
The development of white adipose tissue (WAT) occurs during distinct embryonic and postnatal stages, and it is subsequently maintained throughout life. However, the specific mediators and mechanisms responsible for WAT development during different phases remain unclear. In this study, we investigate the role of the insulin receptor (IR) in regulating adipogenesis and adipocyte function within adipocyte progenitor cells (APCs) during WAT development and homeostasis. We use two in vivo adipose lineage tracking and deletion systems to delete IR either in embryonic APCs or adult APCs, respectively, to explore the specific requirements of IR during WAT development and WAT homeostasis in mice. Our data suggest that IR expression in APCs may not be essential for adult adipocyte differentiation but appears to be crucial for adipose tissue development. We reveal a surprising divergent role of IR in APCs during WAT development and homeostasis.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Pharmaceutical Sciences, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Pharmaceutical Sciences, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, The University of Illinois at Chicago, Illinois, 60612, USA; Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Illinois, 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Pharmaceutical Sciences, The University of Illinois at Chicago, Chicago, IL, 60612, USA; Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin. Cancers (Basel) 2023; 15:2737. [PMID: 37345073 PMCID: PMC10216070 DOI: 10.3390/cancers15102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 μM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 μM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.
Collapse
Affiliation(s)
- Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
10
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
11
|
Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med 2023; 21:50. [PMID: 36782211 PMCID: PMC9924890 DOI: 10.1186/s12916-023-02730-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND It is now understood that it is the quality rather than the absolute amount of adipose tissue that confers risk for obesity-associated disease. Adipose-derived stem cells give rise to adipocytes during the developmental establishment of adipose depots. In adult depots, a reservoir of progenitors serves to replace adipocytes that have reached their lifespan and for recruitment to increase lipid buffering capacity under conditions of positive energy balance. MAIN: The adipose tissue expandability hypothesis posits that a failure in de novo differentiation of adipocytes limits lipid storage capacity and leads to spillover of lipids into the circulation, precipitating the onset of obesity-associated disease. Since adipose progenitors are specified to their fate during late fetal life, perturbations in the intrauterine environment may influence the rapid expansion of adipose depots that occurs in childhood or progenitor function in established adult depots. Neonates born to mothers with obesity or diabetes during pregnancy tend to have excessive adiposity at birth and are at increased risk for childhood adiposity and cardiometabolic disease. CONCLUSION In this narrative review, we synthesize current knowledge in the fields of obesity and developmental biology together with literature from the field of the developmental origins of health and disease (DOHaD) to put forth the hypothesis that the intrauterine milieu of pregnancies complicated by maternal metabolic disease disturbs adipogenesis in the fetus, thereby accelerating the trajectory of adipose expansion in early postnatal life and predisposing to impaired adipose plasticity.
Collapse
Affiliation(s)
- Taylor B. Scheidl
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Amy L. Brightwell
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Sarah H. Easson
- Cumming School of Medicine, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Jennifer A. Thompson
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
12
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
13
|
Milan G, Conci S, Sanna M, Favaretto F, Bettini S, Vettor R. ASCs and their role in obesity and metabolic diseases. Trends Endocrinol Metab 2021; 32:994-1006. [PMID: 34625375 DOI: 10.1016/j.tem.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023]
Abstract
We describe adipose stromal/stem cells (ASCs) in the structural/functional context of the adipose tissue (AT) stem niche (adiponiche), including cell-cell interactions and the microenvironment, and emphasize findings obtained in humans and in lineage-tracing models. ASCs have distinctive markers, 'colors', and anatomical 'locations' which influence their functions. Each adiponiche component can become impaired, thereby contributing to the pathological AT alterations seen in obesity and metabolic diseases. We discuss adiposopathy with a focus on adiponiche dysfunction, and underline the mechanisms that control AT expansion and energy balance. Better understanding of adiponiche regulation and ASC features could help to identify therapeutic targets that favor weight loss and counteract weight regain, and also contribute to innovative strategies for regenerative medicine.
Collapse
Affiliation(s)
- Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy.
| | - Scilla Conci
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Marta Sanna
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| |
Collapse
|
14
|
Stefkovich M, Traynor S, Cheng L, Merrick D, Seale P. Dpp4+ interstitial progenitor cells contribute to basal and high fat diet-induced adipogenesis. Mol Metab 2021; 54:101357. [PMID: 34662714 PMCID: PMC8581370 DOI: 10.1016/j.molmet.2021.101357] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE The capacity to generate new adipocytes from precursor cells is critical for maintaining metabolic health. Adipocyte precursor cells (APCs) constitute a heterogenous collection of cell types; however, the contribution of these various cell types to adipose tissue expansion in vivo remains unknown. The aim of the current study is to investigate the contribution of Dpp4+ progenitors to de novo adipogenesis. METHODS Single cell analysis has identified several transcriptionally distinct subpopulations of APCs, including Dpp4+ progenitor cells concentrated in the connective tissue surrounding many organs, including white adipose tissue (WAT). Here, we generated a Dpp4CreER mouse model for in vivo lineage tracing of these cells and their downstream progeny in the setting of basal or high fat diet (HFD)-stimulated adipogenesis. RESULTS Dpp4CreER mice enabled specific temporal labeling of Dpp4+ progenitor cells within their native connective tissue niche. Following a dietary chase period consisting of chow or HFD feeding for 18 weeks, Dpp4+ progenitors differentiated into mature adipocytes within the gonadal and subcutaneous WAT. HFD stimulated adipogenic contribution from Dpp4+ cells in the gonadal but not the subcutaneous depot. Flow cytometry analysis revealed that Dpp4+ progenitors give rise to DPP4(-)/ICAM1+ preadipocytes in vivo. HFD feeding did not perturb the flux of Dpp4+ cell conversion into ICAM1+ preadipocytes in gonadal WAT. Conversely, in subcutaneous WAT, HFD feeding/obesity led to an accumulation of ICAM1+ preadipocytes without a corresponding increase in mature adipocyte differentiation. Examination of non-classical murine visceral depots with relevance to humans, including omentum and retroperitoneal WAT, revealed robust contribution of Dpp4+ progenitors to de novo adipogenesis, which was further stimulated by HFD. CONCLUSION Our data demonstrate that Dpp4+ interstitial progenitor cells contribute to basal adipogenesis in all fat depots and are recruited to support de novo adipogenic expansion of visceral WAT in the setting of HFD-induced obesity.
Collapse
Affiliation(s)
- Megan Stefkovich
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sarah Traynor
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Lan Cheng
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David Merrick
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Division of Endocrinology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Harvey I, Stephens JM. Artemisia scoparia promotes adipogenesis in the absence of adipogenic effectors. Obesity (Silver Spring) 2021; 29:1309-1319. [PMID: 34227239 PMCID: PMC8883808 DOI: 10.1002/oby.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Extracts of Artemisia scoparia (SCO) have antidiabetic properties in mice and enhance adipogenesis in vitro, but the underlying mechanisms are unknown. Thiazolidinediones, including rosiglitazone (ROSI), are pharmacological activators of peroxisome proliferator-activated receptor gamma that also promote adipogenesis. The aim of this study was to examine adipogenic pathways responsible for SCO-mediated adipogenesis and identify potential differences between SCO and ROSI in the ability to promote adipocyte development. METHODS The ability of SCO or ROSI to promote adipogenesis in 3T3-L1 cells following systematic omission of the common triad of adipogenic effectors dexamethasone, 1-methyl-3-isobutylxanthine (MIX), and insulin was examined. Adipogenesis was assessed by both neutral lipid quantitation and adipocyte marker gene expression. RESULTS The results demonstrate that SCO and ROSI promote adipogenesis and increase the expression of several peroxisome proliferator-activated receptor gamma target genes involved in lipid accumulation in the absence of MIX. However, ROSI can enhance adipogenesis in the absence of MIX and insulin and differentially regulates adipogenic and lipid metabolism genes as compared with SCO. CONCLUSIONS These data demonstrate the adipogenic capabilities of SCO are similar but not identical to ROSI, thereby warranting further research into SCO as a promising source of therapeutic compounds in the treatment of metabolic disease states.
Collapse
Affiliation(s)
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Phone (225) 763-2648, FAX (225) 578-2597,
| |
Collapse
|
16
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
17
|
Angueira AR, Sakers AP, Holman CD, Cheng L, Arbocco MN, Shamsi F, Lynes MD, Shrestha R, Okada C, Batmanov K, Susztak K, Tseng YH, Liaw L, Seale P. Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 2021; 3:469-484. [PMID: 33846639 PMCID: PMC8136151 DOI: 10.1038/s42255-021-00380-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023]
Abstract
Brown adipose tissue can expend large amounts of energy, and therefore increasing its size or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular origins of PVAT are poorly understood. Here, we determine the identity of perivascular adipocyte progenitors in mice and humans. In mice, thoracic PVAT develops from a fibroblastic lineage, consisting of progenitor cells (Pdgfra+, Ly6a+ and Pparg-) and preadipocytes (Pdgfra+, Ly6a+ and Pparg+), which share transcriptional similarity with analogous cell types in white adipose tissue. Interestingly, the aortic adventitia of adult animals contains a population of adipogenic smooth muscle cells (Myh11+, Pdgfra- and Pparg+) that contribute to perivascular adipocyte formation. Similarly, human PVAT contains presumptive fibroblastic and smooth muscle-like adipocyte progenitor cells, as revealed by single-nucleus RNA sequencing. Together, these studies define distinct populations of progenitor cells for thermogenic PVAT, providing a foundation for developing strategies to augment brown fat activity.
Collapse
Affiliation(s)
- Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey D Holman
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelangella N Arbocco
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Rojesh Shrestha
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chihiro Okada
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of "overloading" adipose tissue. Physiol Rev 2020; 101:907-993. [PMID: 33356916 DOI: 10.1152/physrev.00032.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.
Collapse
Affiliation(s)
- Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Abstract
Adipose, or fat, tissue (AT) was once considered an inert tissue that primarily existed to store lipids, and was not historically recognized as an important organ in the regulation and maintenance of health. With the rise of obesity and more rigorous research, AT is now recognized as a highly complex metabolic organ involved in a host of important physiological functions, including glucose homeostasis and a multitude of endocrine capabilities. AT dysfunction has been implicated in several disease states, most notably obesity, metabolic syndrome and type 2 diabetes. The study of AT has provided useful insight in developing strategies to combat these highly prevalent metabolic diseases. This review highlights the major functions of adipose tissue and the consequences that can occur when disruption of these functions leads to systemic metabolic dysfunction.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Wang G. Body Mass Dynamics Is Determined by the Metabolic Ohm's Law and Adipocyte-Autonomous Fat Mass Homeostasis. iScience 2020; 23:101176. [PMID: 32480131 PMCID: PMC7262567 DOI: 10.1016/j.isci.2020.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022] Open
Abstract
An ODE model integrating metabolic mechanisms with clinical data reveals an Ohm's law governing lifetime body mass dynamics, where fat and lean tissues are analogous to a parallel nonlinear capacitor and resistor, respectively. The law unexpectedly decouples weight stability (a cell-autonomous property of adipocytes) and weight change (a parabolic trajectory governed by Ohm's law). In middle age, insulin resistance causes fat accumulation to avoid excessive body shrinkage in old age. Moderate middle-age spread is thus natural, not an anomaly caused by hypothalamic defects, as proposed by lipostatic theory. These discoveries provide valuable insights into health care practices such as weight control and health assessment, explain certain observed phenomena, make testable predictions, and may help to resolve major conundrums in the field. The ODE model, which is more comprehensive than Ohm's law, is useful to study metabolism at the detailed microscopic levels.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenviroment and Disease Research, Shenzhen, Guangdong 518055, China; Shenzhen Key Laboratory of Cell Microenviroment, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
21
|
Shin S, Pang Y, Park J, Liu L, Lukas BE, Kim SH, Kim KW, Xu P, Berry DC, Jiang Y. Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. eLife 2020; 9:56189. [PMID: 32553115 PMCID: PMC7338051 DOI: 10.7554/elife.56189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes arise from distinct progenitor populations during developmental and adult stages but little is known about how developmental progenitors differ from adult progenitors. Here, we investigate the role of platelet-derived growth factor receptor alpha (PDGFRα) in the divergent regulation of the two different adipose progenitor cells (APCs). Using in vivo adipose lineage tracking and deletion mouse models, we found that developmental PDGFRα+ cells are adipogenic and differentiated into mature adipocytes, and the deletion of Pdgfra in developmental adipose lineage disrupted white adipose tissue (WAT) formation. Interestingly, adult PDGFRα+ cells do not significantly contribute to adult adipogenesis, and deleting Pdgfra in adult adipose lineage did not affect WAT homeostasis. Mechanistically, embryonic APCs require PDGFRα for fate maintenance, and without PDGFRα, they underwent fate change from adipogenic to fibrotic lineage. Collectively, our findings indicate that PDGFRα+ cells and Pdgfra gene itself are differentially required for WAT development and adult WAT homeostasis.
Collapse
Affiliation(s)
- Sunhye Shin
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Yiyu Pang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Lifeng Liu
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Brandon E Lukas
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| | - Seung Hyeon Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Ki-Wook Kim
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, United States
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, United States
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, The University of Illinois, Chicago, United States
| |
Collapse
|
22
|
Merrick D, Sakers A, Irgebay Z, Okada C, Calvert C, Morley MP, Percec I, Seale P. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 2019; 364:364/6438/eaav2501. [PMID: 31023895 DOI: 10.1126/science.aav2501] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Metabolic health depends on the capacity of adipose tissue progenitor cells to undergo de novo adipogenesis. The cellular hierarchy and mechanisms governing adipocyte progenitor differentiation are incompletely understood. Through single-cell RNA sequence analyses, we show that the lineage hierarchy of adipocyte progenitors consists of distinct mesenchymal cell types that are present in both mouse and human adipose tissues. Cells marked by dipeptidyl peptidase-4 (DPP4)/CD26 expression are highly proliferative, multipotent progenitors. During the development of subcutaneous adipose tissue in mice, these progenitor cells give rise to intercellular adhesion molecule-1 (ICAM1)/CD54-expressing (CD54+) committed preadipocytes and a related adipogenic cell population marked by Clec11a and F3/CD142 expression. Transforming growth factor-β maintains DPP4+ cell identity and inhibits adipogenic commitment of DPP4+ and CD142+ cells. Notably, DPP4+ progenitors reside in the reticular interstitium, a recently appreciated fluid-filled space within and between tissues, including adipose depots.
Collapse
Affiliation(s)
- David Merrick
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sakers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhazira Irgebay
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chihiro Okada
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine Calvert
- Division of Plastic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivona Percec
- Division of Plastic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Bayindir-Buchhalter I, Wolff G, Lerch S, Sijmonsma T, Schuster M, Gronych J, Billeter AT, Babaei R, Krunic D, Ketscher L, Spielmann N, Hrabe de Angelis M, Ruas JL, Müller-Stich BP, Heikenwalder M, Lichter P, Herzig S, Vegiopoulos A. Cited4 is a sex-biased mediator of the antidiabetic glitazone response in adipocyte progenitors. EMBO Mol Med 2019; 10:emmm.201708613. [PMID: 29973382 PMCID: PMC6079535 DOI: 10.15252/emmm.201708613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most antidiabetic drugs treat disease symptoms rather than adipose tissue dysfunction as a key pathogenic cause in the metabolic syndrome and type 2 diabetes. Pharmacological targeting of adipose tissue through the nuclear receptor PPARg, as exemplified by glitazone treatments, mediates efficacious insulin sensitization. However, a better understanding of the context‐specific PPARg responses is required for the development of novel approaches with reduced side effects. Here, we identified the transcriptional cofactor Cited4 as a target and mediator of rosiglitazone in human and murine adipocyte progenitor cells, where it promoted specific sets of the rosiglitazone‐dependent transcriptional program. In mice, Cited4 was required for the proper induction of thermogenic expression by Rosi specifically in subcutaneous fat. This phenotype had high penetrance in females only and was not evident in beta‐adrenergically stimulated browning. Intriguingly, this specific defect was associated with reduced capacity for systemic thermogenesis and compromised insulin sensitization upon therapeutic rosiglitazone treatment in female but not male mice. Our findings on Cited4 function reveal novel unexpected aspects of the pharmacological targeting of PPARg.
Collapse
Affiliation(s)
- Irem Bayindir-Buchhalter
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Gretchen Wolff
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Lerch
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Tjeerd Sijmonsma
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Schuster
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Rohollah Babaei
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Ketscher
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephan Herzig
- Helmholtz Center Munich, Institute for Diabetes and Cancer IDC, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandros Vegiopoulos
- DKFZ Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
24
|
Affiliation(s)
- You-Ying Chau
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinbugh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - William P Cawthorn
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinbugh, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
25
|
Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019; 92:51-60. [PMID: 30458177 DOI: 10.1016/j.metabol.2018.11.009] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Obesity-related disease complications reduce life quality and expectancy and increase health-care costs. Some studies have suggested that obesity not always entails metabolic abnormalities and increased risk of cardiometabolic complications. Because of the lack of universally accepted criteria to identify metabolically healthy obesity (MHO), its prevalence varies widely among studies. Moreover, the prognostic value of MHO is hotly debated, mainly because it likely shifts gradually towards metabolically unhealthy obesity (MUO). In this review, we outline the differential factors contributing to the metabolic heterogeneity of obesity by discussing the behavioral, genetic, phenotypical, and biological aspects associated with each of the two metabolic phenotypes (MHO and MUO) of obesity and their clinical implications. Particular emphasis will be laid on the role of adipose tissue biology and function, including genetic determinants of body fat distribution, depot-specific fat metabolism, adipose tissue plasticity and, particularly, adipogenesis. Finally, the emerging role of gut microbiota in obesity and adipose tissue dysfunction as well as the search for novel biomarkers for the obesity-related metabolic traits and associated diseases will be briefly presented. A better understanding of the main determinants of a healthy metabolic status in obesity would allow promotion of this favorable condition by targeting the relevant pathways.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.
| |
Collapse
|
26
|
Yaribeygi H, Simental-Mendía LE, Barreto GE, Sahebkar A. Metabolic effects of antidiabetic drugs on adipocytes and adipokine expression. J Cell Physiol 2019; 234:16987-16997. [PMID: 30825205 DOI: 10.1002/jcp.28420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Several classes of antidiabetic agents have been developed that achieve their hypoglycemic outcomes via various molecular mechanisms. Adipose tissue is a major metabolic and energy-storing tissue and plays an important role in many metabolic pathways, including insulin signaling and insulin sensitivity. Adipose tissue monitors and regulates whole body homeostasis via production and release of potent proteins, such as adipokine and adiponectin, into the circulation. Therefore, any agent that can modulate adipocyte metabolism can, in turn, affect metabolic and glucose homeostatic pathways. Antidiabetic drugs are not only recognized primarily as hypoglycemic agents but may also alter adipose tissue itself, as well as adipocyte-derived adipokine expression and secretion. In the current review, we present the major evidence concerning routinely used antidiabetic agents on adipocyte metabolism and adipokine expression.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, México, México
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Zhang Y, Federation AJ, Kim S, O'Keefe JP, Lun M, Xiang D, Brown JD, Steinhauser ML. Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. J Clin Invest 2018; 128:4898-4911. [PMID: 30277475 DOI: 10.1172/jci98353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Adipocyte turnover in adulthood is low, suggesting that the cellular source of new adipocytes, the adipocyte progenitor (AP), resides in a state of relative quiescence. Yet the core transcriptional regulatory circuitry (CRC) responsible for establishing a quiescent state and the physiological significance of AP quiescence are incompletely understood. Here, we integrate transcriptomic data with maps of accessible chromatin in primary APs, implicating the orphan nuclear receptor NR4A1 in AP cell-state regulation. NR4A1 gain and loss of function in APs ex vivo decreased and enhanced adipogenesis, respectively. Adipose tissue of Nr4a1-/- mice demonstrated higher proliferative and adipogenic capacity compared with that of WT mice. Transplantation of Nr4a1-/- APs into the subcutaneous adipose tissue of WT obese recipients improved metrics of glucose homeostasis relative to administration of WT APs. Collectively, these data identify NR4A1 as a previously unrecognized constitutive regulator of AP quiescence and suggest that augmentation of adipose tissue plasticity may attenuate negative metabolic sequelae of obesity.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander J Federation
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA.,Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Soomin Kim
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - John P O'Keefe
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Dongxi Xiang
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan D Brown
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Steinhauser
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Sæther T, Paulsen SM, Tungen JE, Vik A, Aursnes M, Holen T, Hansen TV, Nebb HI. Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects. Eur J Med Chem 2018; 155:736-753. [PMID: 29940464 DOI: 10.1016/j.ejmech.2018.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Obesity and associated disorders such as metabolic syndrome and type 2 diabetes (T2D) have reached epidemic proportions. Several natural products have been reported as Peroxisome Proliferator-Activated Receptor (PPAR) agonists, functioning as lead compounds towards developing new anti-diabetic drugs due to adverse side effects of existing PPAR drugs. We recently isolated and identified (7E)-9-oxohexadec-7-enoic acid (1) and (10E)-9-oxohexadec-10-enoic acid (2) from the marine algae Chaetoceros karianus. Herein we report the total synthesis, pharmacological characterization, and biological evaluations of these naturally occurring oxo-fatty acids (oFAs). The syntheses of 1 and 2 afforded sufficient material for extensive biological evaluations. Both oFAs show an appreciable dose-dependent activation of PPARα and -γ, with EC50 values in the micromolar range, and an ability to regulate important PPAR target genes in hepatocytes and adipocytes. Moreover, both 1 and 2 are able to drive adipogenesis when evaluated in the Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocyte cell model, but with lowered expression of adipocyte markers and reduced lipid accumulation compared to the drug rosiglitazone. This seems to be caused by a transient upregulation of PPARγ and C/EBPα expression. Importantly, whole transcriptome analysis shows that both compounds induce anti-diabetic gene programs in adipocytes by upregulating insulin-sensitizing adipokines and repressing pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Thomas Sæther
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| | - Steinar M Paulsen
- MabCent-SFI, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jørn E Tungen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Anders Vik
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Marius Aursnes
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Trond Vidar Hansen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, N-0316 Oslo, Norway
| | - Hilde I Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
29
|
PPARγ agonists promote differentiation of cancer stem cells by restraining YAP transcriptional activity. Oncotarget 2018; 7:60954-60970. [PMID: 27528232 PMCID: PMC5308629 DOI: 10.18632/oncotarget.11273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma.
Collapse
|
30
|
Woeller CF, Flores E, Pollock SJ, Phipps RP. Editor's Highlight: Thy1 (CD90) Expression is Reduced by the Environmental Chemical Tetrabromobisphenol-A to Promote Adipogenesis Through Induction of microRNA-103. Toxicol Sci 2018; 157:305-319. [PMID: 28329833 DOI: 10.1093/toxsci/kfx046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environmental chemicals termed "obesogens" disrupt the endocrine system to promote adipogenesis and obesity. Tetrabromobisphenol-A (TBBPA) has been reported to increase adipogenesis; however, the mechanism(s) of action are unclear. Thy1 (CD90) is a glycophosphatidylinositol-anchored membrane protein that serves as a marker for stem cells and also plays an important role in regulating adipogenesis and obesity. We investigated whether or not TBBPA promotes adipogenesis in human and mouse cells by reducing Thy1 levels. We further sought to identify the molecular mechanism(s) whereby TBBPA targets Thy1 expression. Mouse and human cells were exposed to TBBPA, and Thy1 expression was analyzed using flow cytometry, Western blotting, and qPCR. We tested whether microRNAs predicted to target Thy1 (miR-103 and miR-107) were upregulated by TBBPA using quantitative PCR assays. We also determined if Thy1 mRNA was a bona fide miR-103/107 target. Our results show that Thy1 expression was reduced in both human and mouse cells after exposure to TBBPA. Both Thy1 mRNA and protein levels were decreased by low-dose TBBPA exposure. TBBPA reduced Thy1 levels and further increased adipogenesis when an adipogenic medium was used. Mechanistically, we show that miR-103 and miR-107 are induced by TBBPA and that miR-103 targets Thy1 to reduce its expression. Our results reveal for the first time that Thy1 is a target of TBBPA. Furthermore, our data support the concept that Thy1 is a key marker targeted by environmental chemicals that promote adipogenesis and obesity.
Collapse
Affiliation(s)
- Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - E'Lissa Flores
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Stephen J Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
31
|
De novo adipocyte differentiation from Pdgfrβ + preadipocytes protects against pathologic visceral adipose expansion in obesity. Nat Commun 2018; 9:890. [PMID: 29497032 PMCID: PMC5832777 DOI: 10.1038/s41467-018-03196-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Pathologic expansion of white adipose tissue (WAT) in obesity is characterized by adipocyte hypertrophy, inflammation, and fibrosis; however, factors triggering this maladaptive remodeling are largely unknown. Here, we test the hypothesis that the potential to recruit new adipocytes from Pdgfrβ+ preadipocytes determines visceral WAT health in obesity. We manipulate levels of Pparg, the master regulator of adipogenesis, in Pdgfrβ+ precursors of adult mice. Increasing the adipogenic capacity of Pdgfrβ+ precursors through Pparg overexpression results in healthy visceral WAT expansion in obesity and adiponectin-dependent improvements in glucose homeostasis. Loss of mural cell Pparg triggers pathologic visceral WAT expansion upon high-fat diet feeding. Moreover, the ability of the TZD class of anti-diabetic drugs to promote healthy visceral WAT remodeling is dependent on mural cell Pparg. These data highlight the protective effects of de novo visceral adipocyte differentiation in these settings, and suggest Pdgfrβ+ adipocyte precursors as targets for therapeutic intervention in diabetes. Adipocyte hyperplasia is thought to have beneficial metabolic effects in obesity, but definitive evidence is lacking. Here, Shao et al. promote de novo formation of adipocytes in visceral white adipose tissue (WAT) of adult mice through inducible overexpression of Pparg in Pdgfrβ+ preadipocytes and show that this protects from pathological WAT remodeling.
Collapse
|
32
|
Song T, Yang Y, Zhou Y, Wei H, Peng J. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell Mol Life Sci 2017; 74:2723-2733. [PMID: 28285320 PMCID: PMC11107682 DOI: 10.1007/s00018-017-2492-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/12/2023]
Abstract
It is well known that adipose tissue has a critical role in the development of obesity and metabolic diseases and that adipose tissue acts as an endocrine organ to regulate lipid and glucose metabolism. Accumulating in the adipose tissue, fatty acids serve as a primary source of essential nutrients and act on intracellular and cell surface receptors to regulate biological events. G protein-coupled receptor 120 (GPR120) represents a promising target for the treatment of obesity-related metabolic disorders for its involvement in the regulation of adipogenesis, inflammation, glucose uptake, and insulin resistance. In this review, we summarize recent studies and advances regarding the systemic role of GPR120 in adipose tissue, including both white and brown adipocytes. We offer a new perspective by comparing the different roles in a variety of homeostatic processes from adipogenic development to adipocyte metabolism, and we also discuss the effects of natural and synthetic agonists that may be potential agents for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
33
|
Jiang Y, Berry DC, Jo A, Tang W, Arpke RW, Kyba M, Graff JM. A PPARγ transcriptional cascade directs adipose progenitor cell-niche interaction and niche expansion. Nat Commun 2017. [PMID: 28649987 PMCID: PMC5490270 DOI: 10.1038/ncomms15926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Adipose progenitor cells (APCs) reside in a vascular niche, located within the perivascular compartment of adipose tissue blood vessels. Yet, the signals and mechanisms that govern adipose vascular niche formation and APC niche interaction are unknown. Here we show that the assembly and maintenance of the adipose vascular niche is controlled by PPARγ acting within APCs. PPARγ triggers a molecular hierarchy that induces vascular sprouting, APC vessel niche affinity and APC vessel occupancy. Mechanistically, PPARγ transcriptionally activates PDGFRβ and VEGF. APC expression and activation of PDGFRβ promotes the recruitment and retention of APCs to the niche. Pharmacologically, targeting PDGFRβ disrupts APC niche contact thus blocking adipose tissue expansion. Moreover, enhanced APC expression of VEGF stimulates endothelial cell proliferation and expands the adipose niche. Consequently, APC niche communication and retention are boosted by VEGF thereby impairing adipogenesis. Our data indicate that APCs direct adipose tissue niche expansion via a PPARγ-initiated PDGFRβ and VEGF transcriptional axis. Adipocyte progenitor cells (APCs) are found tethered to adipose tissue blood vessel walls and can differentiate into adipocytes. Here the authors show that PPARγ controls angiogenesis by stimulating APC–blood vessel interaction and retention via a transcriptional network that includes PDGFRβ and VEGF.
Collapse
Affiliation(s)
- Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ayoung Jo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Wei Tang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
34
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
35
|
Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Res 2016; 2016:4794576. [PMID: 28042289 PMCID: PMC5155092 DOI: 10.1155/2016/4794576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.
Collapse
|
36
|
Berry DC, Jiang Y, Graff JM. Emerging Roles of Adipose Progenitor Cells in Tissue Development, Homeostasis, Expansion and Thermogenesis. Trends Endocrinol Metab 2016; 27:574-585. [PMID: 27262681 PMCID: PMC10947416 DOI: 10.1016/j.tem.2016.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023]
Abstract
Stem or progenitor cells are an essential component for the development, homeostasis, expansion, and regeneration of many tissues. Within white adipose tissue (WAT) reside vascular-resident adipose progenitor cells (APCs) that can proliferate and differentiate into either white or beige/brite adipocytes, which may control adiposity. Recent studies have begun to show that APCs can be manipulated to control adiposity and counteract 'diabesity'. However, much remains unknown about the identity of APCs and how they may control adiposity in response to homeostatic and external cues. Here, we discuss recent advances in our understanding of adipose progenitors and cover a range of topics, including the stem cell/progenitor lineage, their niche, their developmental and adult roles, and their role in cold-induced beige/brite adipocyte formation.
Collapse
Affiliation(s)
- Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA
| | - Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center 5323, Harry Hines Blvd, Dallas, TX 75235, USA.
| |
Collapse
|
37
|
Zeve D, Millay DP, Seo J, Graff JM. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells. PLoS One 2016; 11:e0152129. [PMID: 27015423 PMCID: PMC4807773 DOI: 10.1371/journal.pone.0152129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/09/2016] [Indexed: 01/01/2023] Open
Abstract
Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.
Collapse
Affiliation(s)
- Daniel Zeve
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Douglas P. Millay
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jin Seo
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jonathan M. Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 2016; 7:10184. [PMID: 26729601 PMCID: PMC4728429 DOI: 10.1038/ncomms10184] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/12/2015] [Indexed: 12/29/2022] Open
Abstract
Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. Beige adipocytes are formed in response to cold and thought to contribute to organismal energy homeostasis. Here, the authors study a range of conditional and inducible RFP-expressing Cre mouse strains and find that SMA-based lines are the most useful for mapping beige adipocyte progenitor cells.
Collapse
|
39
|
Ding F, Qiu J, Li Q, Hu J, Song C, Han C, He H, Wang J. Effects of rosiglitazone on proliferation and differentiation of duck preadipocytes. In Vitro Cell Dev Biol Anim 2015; 52:174-81. [PMID: 26487429 DOI: 10.1007/s11626-015-9958-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
Rosiglitazone (RSG), one member of the thiazolidinediones (TZDs), is a type of anti-diabetic drug in diabetic humans and animal models, whose function remains unknown in waterfowl. In this study, effects of RSG on duck preadipocyte differentiation were investigated. We detected cell viability using CCK method and measured the mRNA expression of key genes and protein contents involved in preadipocyte differentiation via qRT-PCR and ELISA kits, respectively. Lipid accumulation was determined via Oil Red O staining extraction, and lipolysis was measured by free fatty acid release in the culture medium. Results showed that high concentrations of RSG (50, 100 μM) significantly decreased cell viability. RSG (0-10 μM) enhanced preadipocyte differentiation in a dose-dependent manner and thus promoted lipid accumulation. With increasing RSG concentrations, cellular lipid content gradually decreased and preadipocyte differentiation was suppressed. mRNA expression of key genes involved in preadipocyte differentiation including FAS, ACC, SCD1, LPL, PLIN, SREBP1c, and ATGL were significantly upregulated by RSG, and the protein content of FAS, ACC, and ATGL were also increased in response to RSG. Meanwhile, RSG exposure increased free fatty acid release in the culture medium. Similar results were obtained in response to RSG plus oleate that was used to induce cell differentiation. These findings suggest that RSG does not promote duck preadipocyte viability, but it does induce duck preadipocyte differentiation, which might influence both lipogenesis and lipolysis pathways.
Collapse
Affiliation(s)
- Fang Ding
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
- Suzhou Institute of Systems Medicine, Center of System Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, 215123, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Qingqing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Chenling Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
40
|
Stohn JP, Wang Q, Siviski ME, Kennedy K, Jin YR, Kacer D, DeMambro V, Liaw L, Vary CP, Rosen CJ, Prudovsky I, Lindner V. Cthrc1 controls adipose tissue formation, body composition, and physical activity. Obesity (Silver Spring) 2015; 23:1633-42. [PMID: 26148471 PMCID: PMC4509980 DOI: 10.1002/oby.21144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study investigated the effects of loss of Cthrc1 on adipogenesis, body composition, metabolism, physical activity, and muscle physiology. METHODS Complete metabolic and activity monitoring as well as grip strength measurements and muscle myography was performed in Cthrc1 null and wildtype mice. RESULTS Compared to wildtypes, Cthrc1 null mice had similar body weights but significantly reduced energy expenditure, decreased lean mass, and increased fat mass, especially visceral fat. In vitro studies demonstrated that Cthrc1 inhibited adipocyte differentiation as well as PPAR and CREB reporter activity, while preadipocytes isolated from Cthrc1 null mice exhibited enhanced adipogenic differentiation. Voluntary physical activity in Cthrc1 null mice as assessed by wheel running was reduced to approximately half the distance covered by wildtypes. Reduced grip strength was observed in Cthrc1 null mice at the age of 15 weeks or older with reduced performance and mass of hyphenate muscle. In the brain, Cthrc1 expression was most prominent in neurons of thalamic and hypothalamic nuclei with evidence for secretion into the circulation in the median eminence. CONCLUSIONS Our data indicate that Cthrc1 regulates body composition through inhibition of adipogenesis. In addition, central Cthrc1 may be a mediator of muscle function and physical activity.
Collapse
Affiliation(s)
- J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Qiaozeng Wang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Matthew E Siviski
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Kevin Kennedy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Victoria DeMambro
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Calvin P Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| |
Collapse
|
41
|
Pan X, Wang P, Luo J, Wang Z, Song Y, Ye J, Hou X. Adipogenic changes of hepatocytes in a high-fat diet-induced fatty liver mice model and non-alcoholic fatty liver disease patients. Endocrine 2015; 48:834-47. [PMID: 25138963 DOI: 10.1007/s12020-014-0384-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis associated with liver inflammation. As NAFLD progresses, triglycerides increase within hepatocytes, causing typical vacuoles that resemble adipocytes. However, whether these morphological changes in hepatocytes indicate potential functional changes is unclear. C57BL/6J mice were fed a high-fat diet (HFD) containing 42% fat. Markers for adipocytes in the liver were measured using real-time PCR, Western blot, and double immunofluorescent labeling. Cytokines in cell culture supernatants were quantified with ELISA. To determine the macrophage phenotype, hepatic classical M1 markers and alternative M2 markers were analyzed. After a 24-week feeding period, adipocyte markers aP2 and PPARγ increased at both the mRNA and protein level in the liver of HFD-fed mice. FITC-labeled aP2 and rhodamine-labeled albumin were both stained in the cytoplasm of steatotic hepatocytes as observed under confocal laser scanning microscopy. Cell membrane-bound E-cadherin and albumin expression were reduced in steatotic hepatocytes compared to controls. However, hepatic adiponectin and adiponectin receptor-2 expression decreased with upregulation of hepatic CD36, suggesting impaired adiponectin activity in livers of HFD-fed mice. Moreover, steatotic primary hepatocytes not only released pro-inflammatory cytokines such as TNFα, MCP-1, IL-6, and IL-18, but also could activate macrophages when co-cultured in vitro. In vivo, hepatic expression of M1 genes such as iNOS and TNFα was markedly increased in HFD-fed mice. In contrast, hepatic expression of M2 genes such as Arg1 and CD206 was significantly reduced. Specifically, the ratio of TNFα to CD206 in HFD-fed mice was notably upregulated. Overexpression of adipocyte-specific genes in hepatocytes and their secretory function and epithelial phenotype impairment in NAFLD cause functional changes in steatotic hepatocytes aside from morphological changes. This suggests that adipogenic changes in hepatocytes are involved in pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Gastroenterology and Hepatology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Eisenstein A, Carroll SH, Johnston-Cox H, Farb M, Gokce N, Ravid K. An adenosine receptor-Krüppel-like factor 4 protein axis inhibits adipogenesis. J Biol Chem 2015; 289:21071-81. [PMID: 24928509 DOI: 10.1074/jbc.m114.566406] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipogenesis represents a key process in adipose tissue development and remodeling, including during obesity. Exploring the regulation of adipogenesis by extracellular ligands is fundamental to our understanding of this process. Adenosine, an extracellular nucleoside signaling molecule found in adipose tissue depots, acts on adenosine receptors. Here we report that, among these receptors, the A2b adenosine receptor (A2bAR) is highly expressed in adipocyte progenitors. Activation of the A2bAR potently inhibits differentiation of mouse stromal vascular cells into adipocytes, whereas A2bAR knockdown stimulates adipogenesis. The A2bAR inhibits differentiation through a novel signaling cascade involving sustained expression of Krüppel-like factor 4 (KLF4), a regulator of stem cell maintenance. Knockdown of KLF4 ablates the ability of the A2bAR to inhibit differentiation. A2bAR activation also inhibits adipogenesis in a human primary preadipocyte culture system. We analyzed the A2bARKLF4 axis in adipose tissue of obese subjects and, intriguingly, found a strong correlation between A2bAR and KLF4 expression in both subcutaneous and visceral human fat. Hence, our study implicates the A2bAR as a regulator of adipocyte differentiation and the A2bAR-KLF4 axis as a potentially significant modulator of adipose biology.
Collapse
|
43
|
Kim SM, Lun M, Wang M, Senyo SE, Guillermier C, Patwari P, Steinhauser ML. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab 2014; 20:1049-58. [PMID: 25456741 PMCID: PMC4715375 DOI: 10.1016/j.cmet.2014.10.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Fat mass expansion occurs by adipocyte hypertrophy or recruitment of differentiating adipocyte progenitors, the relative balance of which may impact systemic metabolism. We measured adipogenesis in murine subcutaneous (sWAT) and visceral white adipose tissue (vWAT) using stable isotope methodology and then modeled adipocyte turnover. Birth and death rates were similar within depots; however, turnover was higher in vWAT relative to sWAT. In juvenile mice, obesity increased adipogenesis, but in adults, this was only seen in vWAT after prolonged high-fat feeding. Statistical modeling suggests differentiation of adipocyte progenitors without an accompanying self-renewing division step may partially explain the age-dependent decline in hyperplastic potential. Additional metabolic interrogation of obese mice demonstrated an association between adipocyte turnover and insulin sensitivity. These data therefore identify adipocyte hypertrophy as the dominant mechanism of adult fat mass expansion and support the paradoxical concept that metabolic disease ensues due to a failure of adipose tissue plasticity.
Collapse
Affiliation(s)
- Soo M Kim
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mei Wang
- National Resource for Imaging Mass Spectroscopy, Brigham and Women's Hospital, Cambridge, MA 02138, USA
| | - Samuel E Senyo
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christelle Guillermier
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; National Resource for Imaging Mass Spectroscopy, Brigham and Women's Hospital, Cambridge, MA 02138, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Parth Patwari
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew L Steinhauser
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
44
|
Jiang Y, Berry DC, Tang W, Graff JM. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep 2014; 9:1007-22. [PMID: 25437556 PMCID: PMC4250841 DOI: 10.1016/j.celrep.2014.09.049] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Daniel C Berry
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Wei Tang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Jonathan M Graff
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA.
| |
Collapse
|
45
|
Lapid K, Lim A, Clegg DJ, Zeve D, Graff JM. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells. Nat Commun 2014; 5:5196. [PMID: 25330806 PMCID: PMC4770882 DOI: 10.1038/ncomms6196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022] Open
Abstract
Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases.
Collapse
Affiliation(s)
- Kfir Lapid
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | - Ajin Lim
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | - Deborah J Clegg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | - Daniel Zeve
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | - Jonathan M Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| |
Collapse
|
46
|
Abstract
Type 2 diabetes is caused by insulin resistance coupled with an inability to produce enough insulin to control blood glucose, and thiazolidinediones (TZDs) are the only current antidiabetic agents that function primarily by increasing insulin sensitivity. However, despite clear benefits in glycemic control, this class of drugs has recently fallen into disuse due to concerns over side effects and adverse events. Here we review the clinical data and attempt to balance the benefits and risks of TZD therapy. We also examine potential mechanisms of action for the beneficial and harmful effects of TZDs, mainly via agonism of the nuclear receptor PPARγ. Based on critical appraisal of both preclinical and clinical studies, we discuss the prospect of harnessing the insulin sensitizing effects of PPARγ for more effective, safe, and potentially personalized treatments of type 2 diabetes.
Collapse
Affiliation(s)
- Raymond E Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric R Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 2014; 20:433-47. [PMID: 25043816 DOI: 10.1016/j.cmet.2014.06.011] [Citation(s) in RCA: 493] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/28/2014] [Accepted: 06/04/2014] [Indexed: 01/22/2023]
Abstract
Cancer-associated cachexia (CAC) is a wasting syndrome characterized by systemic inflammation, body weight loss, atrophy of white adipose tissue (WAT) and skeletal muscle. Limited therapeutic options are available and the underlying mechanisms are poorly defined. Here we show that a phenotypic switch from WAT to brown fat, a phenomenon termed WAT browning, takes place in the initial stages of CAC, before skeletal muscle atrophy. WAT browning is associated with increased expression of uncoupling protein 1 (UCP1), which uncouples mitochondrial respiration toward thermogenesis instead of ATP synthesis, leading to increased lipid mobilization and energy expenditure in cachectic mice. Chronic inflammation and the cytokine interleukin-6 increase UCP1 expression in WAT, and treatments that reduce inflammation or β-adrenergic blockade reduce WAT browning and ameliorate the severity of cachexia. Importantly, UCP1 staining is observed in WAT from CAC patients. Thus, inhibition of WAT browning represents a promising approach to ameliorate cachexia in cancer patients.
Collapse
|
48
|
Sui Y, Park SH, Xu J, Monette S, Helsley RN, Han SS, Zhou C. IKKβ links vascular inflammation to obesity and atherosclerosis. ACTA ACUST UNITED AC 2014; 211:869-86. [PMID: 24799533 PMCID: PMC4010900 DOI: 10.1084/jem.20131281] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IKKβ functions in smooth muscle cells to regulate vascular inflammatory responses and atherosclerosis development. IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of NF-κB, has been implicated in vascular pathologies, but its role in atherogenesis remains elusive. Here, we demonstrate that IKKβ functions in smooth muscle cells (SMCs) to regulate vascular inflammatory responses and atherosclerosis development. IKKβ deficiency in SMCs driven by a SM22Cre-IKKβ-flox system rendered low density lipoprotein receptor-null mice resistant to vascular inflammation and atherosclerosis induced by high-fat feeding. Unexpectedly, IKKβ-deficient mice were also resistant to diet-induced obesity and metabolic disorders. Cell lineage analysis revealed that SM22Cre is active in primary adipose stromal vascular cells and deficiency of IKKβ diminished the ability of these cells to differentiate, leading to accumulation of adipocyte precursor cells in adipose tissue. Mechanistically, reduction of IKKβ expression or pharmacological inhibition of IKKβ inhibited proteasome-mediated β-catenin ubiquitination and degradation in murine preadipocytes, resulting in elevated β-catenin levels and impaired adipocyte differentiation. Further, chronic treatment of mice with a potent IKKβ inhibitor decreased adipogenesis and ameliorated diet-induced obesity. Our findings demonstrate a pivotal role of IKKβ in linking vascular inflammation to atherosclerosis and adipose tissue development, and provide evidence for using appropriate IKKβ inhibitors in the treatment of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yipeng Sui
- Graduate Center for Nutritional Sciences, 2 Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536
| | | | | | | | | | | | | |
Collapse
|
49
|
Martinez-Santibañez G, Lumeng CNK. Macrophages and the regulation of adipose tissue remodeling. Annu Rev Nutr 2014; 34:57-76. [PMID: 24850386 DOI: 10.1146/annurev-nutr-071812-161113] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of adipose tissue to adapt to a changing nutrient environment is critical to the maintenance of metabolic control. Nutrient excess and deficiency alter the shape of adipose tissue drastically and trigger many events that are collectively known as adipose tissue remodeling. Remodeling of adipose tissue involves more than adipocytes and is controlled by an extensive network of stromal cells and extracellular matrix proteins. Prominent players in this process are adipose tissue macrophages, which are a specialized leukocyte present in lean and obese states that contributes to adipose tissue inflammation. The interest in adipose tissue remodeling has been accelerated by the current epidemic of obesity and the chronic generation of signals that lead to expansion of adipose tissue. It is clear that evidence of dysfunctional remodeling events is a hallmark of obesity associated with metabolic disease. This review summarizes and highlights the recent work in this area and provides a framework in which to consider how adipose tissue macrophages contribute to the remodeling events in lean and obese states. Advancing our understanding of the involvement of macrophages in adipose tissue remodeling will promote one aspect of the new field of "immunometabolism," which connects control systems developed for regulation of immunity with those that control metabolism. It will also provide insight into how physiologic and pathophysiologic remodeling differs in adipose tissue and identify potential nodes for intervention to break the link between obesity and disease.
Collapse
|
50
|
Gealekman O, Gurav K, Chouinard M, Straubhaar J, Thompson M, Malkani S, Hartigan C, Corvera S. Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J Biol Chem 2014; 289:18327-38. [PMID: 24778188 DOI: 10.1074/jbc.m113.545798] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue expansion requires growth and proliferation of adipocytes and the concomitant expansion of their stromovascular network. We have used an ex vivo angiogenesis assay to study the mechanisms involved in adipose tissue expansion. In this assay, adipose tissue fragments placed under pro-angiogenic conditions form sprouts composed of endothelial, perivascular, and other proliferative cells. We find that sprouting was directly stimulated by insulin and was enhanced by prior treatment of mice with the insulin sensitizer rosiglitazone. Moreover, basal and insulin-stimulated sprouting increased progressively over 30 weeks of high fat diet feeding, correlating with tissue expansion during this period. cDNA microarrays analyzed to identify genes correlating with insulin-stimulated sprouting surprisingly revealed only four positively correlating (Fads3, Tmsb10, Depdc6, and Rasl12) and four negatively correlating (Asph, IGFbp4, Ppm1b, and Adcyap1r1) genes. Among the proteins encoded by these genes, IGFbp4, which suppresses IGF-1 signaling, has been previously implicated in angiogenesis, suggesting a role for IGF-1 in adipose tissue expandability. Indeed, IGF-1 potently stimulated sprouting, and the presence of activated IGF-1 receptors in the vasculature was revealed by immunostaining. Recombinant IGFbp4 blocked the effects of insulin and IGF-1 on mouse adipose tissue sprouting and also suppressed sprouting from human subcutaneous adipose tissue. These results reveal an important role of IGF-1/IGFbp4 signaling in post-developmental adipose tissue expansion.
Collapse
Affiliation(s)
| | | | | | | | - Michael Thompson
- Department of Medicine, and Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | | | | | |
Collapse
|