1
|
Gao S, Li D, Qiao B, Gong Y, Xu X, Wang Y, Jia L, Du J. Association of elevated levels of soluble transferrin receptor with left ventricular remodeling and mortality in patients with heart failure: Evidence from observational and genetic investigations. Int J Cardiol 2025; 428:133133. [PMID: 40056940 DOI: 10.1016/j.ijcard.2025.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Iron deficiency (ID) is prevalent in heart failure (HF) patients and correlates with adverse outcomes. Serum soluble transferrin receptor (sTfR) levels reflect bone marrow and myocardial iron stores, potentially impacting HF prognosis. However, the specific role of sTfR in the progression of HF remains unclear. METHODS In a retrospective cohort of 391 patients with HF and left ventricular ejection fraction (LVEF) < 50 %, multivariate logistic regression and Cox proportional hazard regression identified mortality-associated factors. The receiver operating characteristic (ROC) curve determined sTfR cut-off value based on the area under the curve. Kaplan-Meier curves were used to compare the cumulative survival rates. Spearman's rank correlation assessed sTfR's relation to left ventricular (LV) parameters. Mendelian randomization (MR) analysis explored causal associations. RESULTS High sTfR levels (≥1.96 mg/L) predicted worse survival and were associated with increased LV volume and lower LVEF. sTfR correlated significantly with LV end-diastolic volume (LVEDV) (r = 0.09, P = 0.0152), LV end-systolic volume (LVESV) (r = 0.16, P = 0.0018), body surface area-indexed LVEDV (LVEDVI) (r = 0.12, P = 0.0140), body surface area-indexed LVESV (LVESVI) (r = 0.14, P = 0.0058), and negatively with LVEF (r = -0.20, P = 0.0001). MR analysis showed a causal link between elevated sTfR and increased LVEDV (β = 0.092; 95 % CI: 1.031-1.162; P = 0.0056) and LVESV (β = 0.089; 95 % CI: 1.027-1.058; P = 0.0079). CONCLUSIONS Elevated sTfR levels identify HF patients at higher risk of mortality and are linked to detrimental LV structural and functional changes, particularly enlargement of LVEDV and LVESV.
Collapse
Affiliation(s)
- Shan Gao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China
| | - Dehui Li
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China
| | - Yanyan Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuan Xu
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China
| | - Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China; Institute for Biological Therapy, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing 100029, China.
| |
Collapse
|
2
|
Yu F, Zhao H, Luo L, Wu W. Nicotinamide Adenine Dinucleotide Supplementation to Alleviate Heart Failure: A Mitochondrial Dysfunction Perspective. Nutrients 2025; 17:1855. [PMID: 40507126 PMCID: PMC12157744 DOI: 10.3390/nu17111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/16/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Heart failure represents the terminal stage in the development of many cardiovascular diseases, and its pathological mechanisms are closely related to disturbances in energy metabolism and mitochondrial dysfunction in cardiomyocytes. In recent years, nicotinamide adenine dinucleotide (NAD+), a core coenzyme involved in cellular energy metabolism and redox homeostasis, has been shown to potentially ameliorate heart failure through the regulation of mitochondrial function. This review systematically investigates four core mechanisms of mitochondrial dysfunction in heart failure: imbalance of mitochondrial dynamics, excessive accumulation of reactive oxygen species (ROS) leading to oxidative stress injury, dysfunction of mitochondrial autophagy, and disturbance of Ca2+ homeostasis. These abnormalities collectively exacerbate the progression of heart failure by disrupting ATP production and inducing apoptosis and myocardial fibrosis. NAD+ has been shown to regulate mitochondrial biosynthesis and antioxidant defences through the activation of the deacetylase family (e.g., silent information regulator 2 homolog 1 (SIRT1) and SIRT3) and to increase mitochondrial autophagy to remove damaged mitochondria, thus restoring energy metabolism and redox balance in cardiomyocytes. In addition, the inhibition of NAD+-degrading enzymes (e.g., poly ADP-ribose polymerase (PARP), cluster of differentiation 38 (CD38), and selective androgen receptor modulators (SARMs)) increases the tissue intracellular NAD+ content, and supplementation with NAD+ precursors (e.g., β-nicotinamide mononucleotide (NMN), nicotinamide riboside, etc.) also significantly elevates myocardial NAD+ levels to ameliorate heart failure. This study provides a theoretical basis for understanding the central role of NAD+ in mitochondrial homeostasis and for the development of targeted therapies for heart failure.
Collapse
Affiliation(s)
- Fan Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (H.Z.)
| | - Huiying Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (H.Z.)
| | - Lu Luo
- Department of Anesthesiology, EYE & ENT Hospital of Fudan University, Shanghai 200032, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
3
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
4
|
Shi J, Zhuang T, Li W, Wu X, Wang J, Lyu R, Chen J, Liu C. Effects of Time-Restricted Fasting-Nicotinamide Mononucleotide Combination on Exercise Capacity via Mitochondrial Activation and Gut Microbiota Modulation. Nutrients 2025; 17:1467. [PMID: 40362776 PMCID: PMC12073279 DOI: 10.3390/nu17091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Athletic performance matters for athletes and fitness enthusiasts. Scientific dietary intervention may boost athletic performance alongside training. Intermittent fasting, like time-restricted fasting (TF), may enhance metabolic health. NAD+ supplement nicotinamide mononucleotide (NMN) improves mitochondrial activity. Both potentially boost athletic performance. However, whether TF combined with NMN treatment can further enhance athletic ability is unclear. METHODS Healthy Kunming mice were utilized to test the effects of NMN and TF on the athletic performance of mice. To simulate the in vivo state and further verify the role of TF and NMN, low glucose combined with NMN was used to intervene in C2C12 cells. The exercise capacity of mice was evaluated through motor behavior experiments. At the same time, blood gas analysis and kit tests were used to assess oxygen uptake capacity and post-exercise oxidative stress levels. Muscle development and mitochondrial function were examined through gene expression, protein analysis, and enzyme activity tests, and the distribution of intestinal microbiota and short-chain fatty acid content were also analyzed. RESULTS The results show that TF combined with NMN improved mitochondrial dynamics and biosynthesis, mitochondrial respiratory function, and oxidative metabolism. Then, the intervention enhanced mice's endurance, limb strength, motor coordination, and balance and reduced oxidative damage after exercise. Moreover, TF combined with NMN significantly increased the gut microbiota diversity and upregulated Ruminococcus, Roseburia, and Akkermansia in intestinal bacteria and short-chain fatty acids, which are associated with athletic performance. CONCLUSION TF combined with NMN enhanced mitochondrial function, improved energy metabolism, modulated the gut microbiota and short-chain fatty acids, and affected muscle fiber transformation, ultimately leading to an overall improvement in exercise performance. These findings provide a theoretical framework for expanding the application of NMN and TF in kinesiology.
Collapse
Affiliation(s)
- Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Tingting Zhuang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514028, China;
| | - Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Xueping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Ruiying Lyu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Jingxin Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (W.L.); (X.W.); (J.W.); (R.L.); (J.C.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| |
Collapse
|
5
|
Gupta RC, Szekely K, Zhang K, Lanfear DE, Sabbah HN. Evidence of Hyperacetylation of Mitochondrial Regulatory Proteins in Left Ventricular Myocardium of Dogs with Chronic Heart Failure. Int J Mol Sci 2025; 26:3856. [PMID: 40332514 PMCID: PMC12028004 DOI: 10.3390/ijms26083856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Increased acetylation or "hyperacetylation" of mitochondrial (MITO) proteins can lead to abnormalities of the electron transport chain (ETC) and oxidative phosphorylation. In this study we examined the levels of proteins that regulate acetylation. Studies were performed in isolated MITO fractions from left ventricular (LV) myocardium of seven healthy normal (NL) dogs and seven dogs with coronary microembolization-induced heart failure (HF, LV ejection fraction ~35%). Protein levels of drivers of hyperacetylation, namely sirtuin-3 (Sirt-3), a MITO deacetylase, and CD38, a regulator of nicotinamide adenine dinucleotide (NAD+), were measured by Western blotting, and the bands were quantified in densitometric units (du). To assess MITO function, MITO components directly influenced by a hyperacetylation state, namely the protein level of cytophillin-D (CyPD), a regulator of MITO permeability transition pore and MITO Complex-I activity, were also measured. Protein level of Sirt-3 and amount of NAD+ were decreased in HF compared to NL dogs. Protein levels of CD38 and CyPD were increased in HF compared to NL dogs. Complex-I activity was decreased in HF compared to NL dogs. The results support the existence of a protein hyperacetylation state in mitochondria of failing LV myocardium compared to NL. This abnormality can contribute to MITO dysfunction as evidenced by reduced Complex-I activity and opening of MITO permeability pores.
Collapse
Affiliation(s)
| | | | | | | | - Hani N. Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart & Vascular Institute, Henry Ford Hospital, Detroit, MI 48202, USA; (R.C.G.); (K.S.); (K.Z.); (D.E.L.)
| |
Collapse
|
6
|
Zhou X, Tian X, Chen J, Li Y, Lv N, Liu H, Liu T, Yang H, Chen X, Xu Y, He F. Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409644. [PMID: 39823536 PMCID: PMC11905074 DOI: 10.1002/advs.202409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM). Further studies demonstrate that Y-ECM significantly rejuvenates mitochondrial energy metabolism in adult BMMSCs (A-BMMSCs) through the promotion of mitochondrial respiratory functions and amelioration of oxidative stress. A-BMMSCs cultured on Y-ECM exhibited enhanced multi-lineage differentiation potentials in vitro and ectopic bone formation in vivo. Mechanistically, silencing of silent information regulator type 3 (SIRT3) gene abolished the protective impact of Y-ECM on A-BMMSCs. Notably, a novel composite biomaterial combining hyaluronic acid methacrylate hydrogel microspheres with Y-ECM is developed, which yielded substantial improvements in the healing of bone defects in an aged rat model. Collectively, these findings underscore the pivotal role of Y-ECM in maintaining mitochondrial redox homeostasis and present a promising therapeutic strategy for the repair of aged bone defects.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xin Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Jianan Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yantong Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Nanning Lv
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Hao Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Tao Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xi Chen
- Department of PathologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213000China
| | - Yong Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
- Department of OrthopaedicsThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213000China
| | - Fan He
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| |
Collapse
|
7
|
Li R, Yan X, Zhao Y, Liu H, Wang J, Yuan Y, Li Q, Su J. Oxidative Stress Induced by Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) Dysfunction Aggravates Chronic Inflammation Through the NAD +/SIRT3 Axis and Promotes Renal Injury in Diabetes. Antioxidants (Basel) 2025; 14:267. [PMID: 40227196 PMCID: PMC11939224 DOI: 10.3390/antiox14030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Diabetic nephropathy (DN), one of the most common and severe microvascular complications of diabetes, significantly increases the risk of renal failure and cardiovascular events. A high-glucose environment can lead to mitochondrial dysfunction in macrophages, which, through remodeling of energy metabolism, mediates the polarization of a pro-inflammatory phenotype and contributes to the formation of a chronic inflammatory microenvironment. Recent studies have found that high-glucose stimulation induces dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) redox pathway in macrophages, leading to the generation of oxidative stress (OS) that further drives chronic inflammation. Therefore, it is crucial to fully understand how OS affects macrophage phenotypes and functions following NRF2 inhibition. This review analyzes the role of OS induced by NRF2 dysfunction in the chronic inflammation of DN and explores the relationship between OS and macrophage mitochondrial energy metabolism through the NAD⁺/NADH-SIRT3 axis, providing new therapeutic targets for targeting OS to improve the inflammatory microenvironment and vascular damage in DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
8
|
Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, Singh A, Rinsch C, Marcinek DJ, D’Amico D. Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers. iScience 2025; 28:111814. [PMID: 40034121 PMCID: PMC11875685 DOI: 10.1016/j.isci.2025.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the primary cause of global mortality. Nutritional interventions hold promise to reduce CVD risks in an increasingly aging population. However, few nutritional interventions are proven to support heart health and act mostly on blood lipid homeostasis rather than at cardiac cell level. Here, we show that mitochondrial quality dysfunctions are common hallmarks in human cardiomyocytes upon heart aging and in chronic conditions. Preclinically, the post-biotic and mitophagy activator, urolithin A (UA), reduced both systolic and diastolic cardiac dysfunction in models of natural aging and heart failure. At a cellular level, this was associated with a recovery of mitochondrial ultrastructural defects and mitophagy. In humans, UA supplementation for 4 months in healthy older adults significantly reduced plasma ceramides clinically validated to predict CVD risks. These findings extend and translate UA's benefits to heart health, making UA a promising nutritional intervention to support cardiovascular function as we age.
Collapse
Affiliation(s)
- Sophia Liu
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anurag Singh
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | | |
Collapse
|
9
|
Nasuhidehnavi A, Zarzycka W, Górecki I, Chiao YA, Lee CF. Emerging interactions between mitochondria and NAD + metabolism in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:176-190. [PMID: 39198117 PMCID: PMC11794032 DOI: 10.1016/j.tem.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.
Collapse
Affiliation(s)
- Azadeh Nasuhidehnavi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13790, USA
| | - Weronika Zarzycka
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ignacy Górecki
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chi Fung Lee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Keller MA, Ivessa A, Liu T, Li H, Romanienko PJ, Nakamura M. KAT6A acetylation drives metabolic adaptation to mediate cellular growth and mitochondrial metabolism through AMPK interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633047. [PMID: 39829935 PMCID: PMC11741246 DOI: 10.1101/2025.01.14.633047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Diets influence metabolism and disease susceptibility, with lysine acetyltransferases (KATs) serving as key regulators through acetyl-CoA. We have previously demonstrated that a ketogenic diet alleviates cardiac pathology, though the underlying mechanisms remain largely unknown. Here we show that KAT6A acetylation is crucial for mitochondrial function and cell growth. Proteomic analysis revealed that KAT6A is acetylated at lysine (K)816 in the hearts of mice fed a ketogenic diet under hypertension, which enhances its interaction with AMPK regulatory subunits. RNA-sequencing analysis demonstrated that the KAT6A acetylation-mimetic mutant stimulates AMPK signaling in cardiomyocytes. Moreover, the acetylation-mimetic mutant mitigated phenylephrine-induced mitochondrial dysfunction and cardiomyocyte hypertrophy via AMPK activation. However, KAT6A-K816R acetylation-resistant knock-in mice unexpectedly exhibited smaller hearts with enhanced AMPK activity, conferring protection against neurohumoral stress-induced cardiac hypertrophy and remodeling. These findings indicate that KAT6A regulates metabolism and cellular growth by interacting with and modulating AMPK activity through K816-acetylation in a cell type-specific manner.
Collapse
|
11
|
Yang J, Xie S, Guo J, Zhou Y, Yang Y, Sun Z, Cai P, Zhang C, Jiang S, Cao X, Fan Y, Chen X, Li X, Zhang Y. Restoration of mitochondrial function alleviates trigeminal neuropathic pain in mice. Free Radic Biol Med 2025; 226:185-198. [PMID: 39528053 DOI: 10.1016/j.freeradbiomed.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Craniofacial pain is prevalent and a debilitating condition. Managing craniofacial pain is particularly challenging due to its multifaceted nature. Among the most severe forms of craniofacial pain is trigeminal neuralgia, often described as one of the most excruciating pain syndromes encountered in clinical practice. Utilizing a mouse model of trigeminal neuropathic pain, we found severe mitochondrial impairment in the injured trigeminal ganglion (TG), spanning transcription and translation to functionality. Our findings demonstrated that rejuvenating mitochondria by boosting NAD+ levels enhanced mitochondrial fitness and significantly ameliorated trigeminal neuropathic pain. Additionally, we showed that the analgesic effects of nicotinamide riboside (NR) supplementation mainly depend on Sirt1. Importantly, our multi-omics studies revealed that activated Sirt1 by NR suppresses a broad range of key pain genes and exerts anti-inflammatory effects in the TG. Together, we present a comprehensive view of how mitochondrial dysfunction is involved in trigeminal neuropathic pain. Therefore, targeting mitochondrial dysfunction offers a novel and promising approach to craniofacial pain management.
Collapse
Affiliation(s)
- Jiajun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Song Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Jiahao Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yujuan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yaning Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Zhaoxia Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Peng Cai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Chenchen Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Shangying Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Xuxia Cao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yuanlan Fan
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, 330006, China
| | - Xing Chen
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang Province, 325101, China.
| |
Collapse
|
12
|
Tocantins C, Martins JD, Rodrigues ÓM, Grilo LF, Diniz MS, Stevanovic-Silva J, Beleza J, Coxito P, Rizo-Roca D, Santos-Alves E, Moreno AJ, Ascensão A, Magalhães J, Oliveira PJ, Pereira SP. Maternal heart exhibits metabolic and redox adaptations post-uncomplicated pregnancy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167539. [PMID: 39378968 DOI: 10.1016/j.bbadis.2024.167539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Pregnancy may be a challenging period for the maternal systems and has been regarded as a stress test, as imperceptible/mild dysfunctions eventually present may be exacerbated during this period. The cardiovascular system is no exception, and several morphological and functional adaptations accompanying pregnancy have been described. However, long-term pregnancy-induced cardiac molecular alterations remain highly unexplored. The postpartum is marked by reverse remodeling of the pregnancy-induced cardiovascular adaptations, representing a possible critical period for assessing future maternal cardiovascular health. The current study explored the molecular and metabolic alterations in the cardiac tissue eight weeks after a physiological uncomplicated pregnancy. Female Sprague-Dawley rats were fed a chow diet through pregnancy, lactation, and weaning and compared to their non-pregnant counterparts. Eight weeks postpartum, increased levels of the phosphorylated form of AMPKα (Thr172) and its ratio to total AMPKα indicated possible alterations in cardiac metabolic flexibility, accompanied by increased Pparα and Hif1α transcripts levels. Additionally, postpartum hearts exhibited higher mitochondrial ATP and NADH levels without major changes in mitochondrial respiratory function. Elevated Nrf2 levels in the cardiac tissue suggested potential implications for cardiac redox balance, further supported by increased levels or activity of proteins directly regulated by Nrf2. The findings herein reported suggest that at eight weeks postpartum, molecular alterations induced by pregnancy, especially regarding redox balance, are still observed in the mothers' heart. These alterations present at late postpartum may open new avenues to understand the different risk for cardiovascular complications development after normal pregnancies.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - João D Martins
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Óscar M Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Luís F Grilo
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, PDBEB - Doctoral Programme in Experimental Biology and Biomedicine, Coimbra, Portugal
| | - Jelena Stevanovic-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - António J Moreno
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Department of Life Sciences, School of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Paulo J Oliveira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
13
|
Dutta N, Gerke JA, Odron SF, Morris JD, Hruby A, Kim J, Torres TC, Shemtov SJ, Clarke JG, Chang MC, Shaghasi H, Ray MN, Averbukh M, Hoang S, Oorloff M, Alcala A, Vega M, Mehta HH, Thorwald MA, Crews P, Vermulst M, Garcia G, Johnson TA, Higuchi-Sanabria R. Investigating impacts of the mycothiazole chemotype as a chemical probe for the study of mitochondrial function and aging. GeroScience 2024; 46:6009-6028. [PMID: 38570396 PMCID: PMC11493899 DOI: 10.1007/s11357-024-01144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/16/2024] [Indexed: 04/05/2024] Open
Abstract
Small molecule inhibitors of the mitochondrial electron transport chain (ETC) hold significant promise to provide valuable insights to the field of mitochondrial research and aging biology. In this study, we investigated two molecules: mycothiazole (MTZ) - from the marine sponge C. mycofijiensis and its more stable semisynthetic analog 8-O-acetylmycothiazole (8-OAc) as potent and selective chemical probes based on their high efficiency to inhibit ETC complex I function. Similar to rotenone (Rote), MTZ, a newly employed ETC complex I inhibitor, exhibited higher cytotoxicity against cancer cell lines compared to certain non-cancer cell lines. Interestingly, 8-OAc demonstrated greater selectivity for cancer cells when compared to both MTZ and Rote, which has promising potential for anticancer therapeutic development. Furthermore, in vivo experiments with these small molecules utilizing a C. elegans model demonstrate their unexplored potential to investigate aging studies. We observed that both molecules have the ability to induce a mitochondria-specific unfolded protein response (UPRMT) pathway, that extends lifespan of worms when applied in their adult stage. We also found that these two molecules employ different pathways to extend lifespan in worms. Whereas MTZ utilizes the transcription factors ATFS-1 and HSF1, which are involved in the UPRMT and heat shock response (HSR) pathways respectively, 8-OAc only required HSF1 and not ATFS-1 to mediate its effects. This observation underscores the value of applying stable, potent, and selective next generation chemical probes to elucidate an important insight into the functional roles of various protein subunits of ETC complexes and their regulatory mechanisms associated with aging.
Collapse
Affiliation(s)
- Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Joe A Gerke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Sofia F Odron
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Joseph D Morris
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jacqueline G Clarke
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Michelle C Chang
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Hooriya Shaghasi
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Marissa N Ray
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Phillip Crews
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tyler A Johnson
- Department of Natural Sciences & Mathematics, Dominican University of California, San Rafael, CA, 94901, USA.
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
14
|
Henke M, Prigione A, Schuelke M. Disease models of Leigh syndrome: From yeast to organoids. J Inherit Metab Dis 2024; 47:1292-1321. [PMID: 39385390 PMCID: PMC11586605 DOI: 10.1002/jimd.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Leigh syndrome (LS) is a severe mitochondrial disease that results from mutations in the nuclear or mitochondrial DNA that impairs cellular respiration and ATP production. Mutations in more than 100 genes have been demonstrated to cause LS. The disease most commonly affects brain development and function, resulting in cognitive and motor impairment. The underlying pathogenesis is challenging to ascertain due to the diverse range of symptoms exhibited by affected individuals and the variability in prognosis. To understand the disease mechanisms of different LS-causing mutations and to find a suitable treatment, several different model systems have been developed over the last 30 years. This review summarizes the established disease models of LS and their key findings. Smaller organisms such as yeast have been used to study the biochemical properties of causative mutations. Drosophila melanogaster, Danio rerio, and Caenorhabditis elegans have been used to dissect the pathophysiology of the neurological and motor symptoms of LS. Mammalian models, including the widely used Ndufs4 knockout mouse model of complex I deficiency, have been used to study the developmental, cognitive, and motor functions associated with the disease. Finally, cellular models of LS range from immortalized cell lines and trans-mitochondrial cybrids to more recent model systems such as patient-derived induced pluripotent stem cells (iPSCs). In particular, iPSCs now allow studying the effects of LS mutations in specialized human cells, including neurons, cardiomyocytes, and even three-dimensional organoids. These latter models open the possibility of developing high-throughput drug screens and personalized treatments based on defined disease characteristics captured in the context of a defined cell type. By analyzing all these different model systems, this review aims to provide an overview of past and present means to elucidate the complex pathology of LS. We conclude that each approach is valid for answering specific research questions regarding LS, and that their complementary use could be instrumental in finding treatment solutions for this severe and currently untreatable disease.
Collapse
Affiliation(s)
- Marie‐Thérèse Henke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical FacultyHeinrich Heine UniversityDuesseldorfGermany
| | - Markus Schuelke
- NeuroCure Cluster of ExcellenceCharité–Universitätsmedizin BerlinBerlinGermany
- Department of NeuropediatricsCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
15
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Huang Q, Yao Y, Wang Y, Li J, Chen J, Wu M, Guo C, Lou J, Yang W, Zhao L, Tong X, Zhao D, Li X. Ginsenoside Rb2 inhibits p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1 alternative splicing against myocardial ischemic/reperfusion injury. J Adv Res 2024; 65:365-379. [PMID: 38101749 PMCID: PMC11518965 DOI: 10.1016/j.jare.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Ginsenosides (GS) derived from Panax ginseng can regulate protein acetylation to promote mitochondrial function for protecting cardiomyocytes. However, the potential mechanisms of GS for regulating acetylation modification are not yet clear. OBJECTIVES This study aimed to explore the potential mechanisms of GS in regulating protein acetylation and identify ginsenoside monomer for fighting myocardial ischemia-related diseases. METHODS The 4D-lable free acetylomic analysis was employed to gain the acetylated proteins regulated by GS pretreatment. The co-immunoprecipitation assay, immunofluorescent staining, and mitochondrial respiration measurement were performed to detect the effect of GS or ginsenoside monomer on acetylated protein level and mitochondrial function. RNA sequencing, site-specific mutation, and shRNA interference were used to explore the downstream targets of acetylation modificationby GS. Cellular thermal shift assay and surface plasmon resonance were used for identifying the binding of ginsenoside with target protein. RESULTS In the cardiomyocytes of normal, oxygen glucose deprivation and/or reperfusion conditions, the acetylomic analysis identified that the acetylated levels of spliceosome proteins were inhibited by GS pretreatment and SF3A2 acetylation at lysine 10 (K10) was significantly decreased as a potential target of GS. Ginsenoside Rb2 was identified as one of the active ginsenoside monomers for reducing the acetylation of SF3A2 (K10), which enhanced mitochondrial respiration against myocardial ischemic injury in in vivo and in vitro experiments. RNA-seq analysis showed that ginsenoside Rb2 promoted alternative splicing of mitochondrial function-related genes and the level of fascin actin-bundling protein 1 (Fscn1) was obviously upregulated, which was dependent on SF3A2 acetylation. Critically, thermodynamic, kinetic and enzymatic experiments demonstrated that ginsenoside Rb2 directly interacted with p300 for inhibiting its activity. CONCLUSION These findings provide a novel mechanism underlying cardiomyocyte protection of ginsenoside Rb2 by inhibiting p300-mediated SF3A2 acteylation for promoting Fscn1 expression, which might be a promising approach for the prevention and treatment of myocardial ischemic diseases.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yao Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yisa Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jinjin Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Mingxia Wu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jia Lou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Linhua Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xiaolin Tong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
17
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
18
|
Hu Y, Zheng Y, Liu C, You Y, Wu Y, Wang P, Wu Y, Ba H, Lu J, Yuan Y, Liu P, Mao Y. Mitochondrial MOF regulates energy metabolism in heart failure via ATP5B hyperacetylation. Cell Rep 2024; 43:114839. [PMID: 39392752 DOI: 10.1016/j.celrep.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
Lysine acetylation is a conserved post-translational modification involved in energy metabolism in mitochondria and heart function. This study investigates the role of mitochondria-localized lysine acetyltransferase MOF (males absent on the first) in heart failure (HF). We find that MOF is upregulated in mitochondria during HF, and overexpression of mitochondria-targeted MOF (mtMOF) in mouse models results in mitochondria dysfunction, cardiac remodeling, and HF. Furthermore, sirtuin 3 (SIRT3) knockout aggravates mtMOF-induced damages, underscoring the role of MOF-catalyzed hyperacetylation in HF. Quantitative lysine acetylome analysis identifies ATP5B as a substrate of MOF. We demonstrate that the acetylation of ATP5B at K201, co-regulated by MOF and SIRT3, impairs mitochondrial respiration and energy metabolism both in vitro and in vivo. These findings suggest that the role of MOF in HF could be attributed to its regulation of ATP5B acetylation. Overall, our results highlight the disruptive impact of mitochondrial MOF on cardiac function and emphasize the significance of enzyme-catalyzed acetylation in mitochondria.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjia Zheng
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Cui Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyu You
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiyang Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongjun Ba
- Department of Pediatric Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Walker MA, Tian R. NAD metabolism and heart failure: Mechanisms and therapeutic potentials. J Mol Cell Cardiol 2024; 195:45-54. [PMID: 39096536 PMCID: PMC11390314 DOI: 10.1016/j.yjmcc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.
Collapse
Affiliation(s)
- Matthew A Walker
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
22
|
Doan KV, Luongo TS, Ts'olo TT, Lee WD, Frederick DW, Mukherjee S, Adzika GK, Perry CE, Gaspar RB, Walker N, Blair MC, Bye N, Davis JG, Holman CD, Chu Q, Wang L, Rabinowitz JD, Kelly DP, Cappola TP, Margulies KB, Baur JA. Cardiac NAD + depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1236-1248. [PMID: 39294272 DOI: 10.1038/s44161-024-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics.
Collapse
MESH Headings
- Nicotinamide Phosphoribosyltransferase/metabolism
- Nicotinamide Phosphoribosyltransferase/genetics
- NAD/metabolism
- Animals
- Energy Metabolism
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Arrhythmias, Cardiac/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Pyridinium Compounds
- Male
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Mice
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Niacinamide/metabolism
- Electrocardiography
Collapse
Grants
- S10 OD025098 NIH HHS
- T32AR53461 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- TL1TR001880 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL128349 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL141232 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- S10-OD025098 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL058493 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 DK098656 NIDDK NIH HHS
- F32HL145923 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- F32DK127843 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- DP1DK113643 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 HL165792 NHLBI NIH HHS
- R01CA163591 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Khanh V Doan
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Luongo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thato T Ts'olo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Won Dong Lee
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - David W Frederick
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Adzika
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline E Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan B Gaspar
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Walker
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan C Blair
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bye
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James G Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey D Holman
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
24
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Wu X, Meng X, Xiao Y, Yang H, Zhang Z, Zhu D. Energy Metabolism Enhance Perylenequinone Biosynthesis in Shiraia sp. Slf14 through Promoting Mitochondrial ROS Accumulation. Int J Mol Sci 2024; 25:10113. [PMID: 39337596 PMCID: PMC11432641 DOI: 10.3390/ijms251810113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Perylenequinones (PQs) are important natural compounds that have been extensively utilized in recent years as agents for antimicrobial, anticancer, and antiviral photodynamic therapies. In this study, we investigated the molecular mechanisms regulating PQ biosynthesis by comparing Shiraia sp. Slf14 with its low PQ titer mutant, Slf14(w). The results indicated that the strain Slf14 exhibited a higher PQ yield, a more vigorous energy metabolism, and a more pronounced oxidation state compared to Slf14(w). Transcriptome analysis consistently revealed that the differences in gene expression between Slf14 and Slf14(w) are primarily associated with genes involved in redox processes and energy metabolism. Additionally, reactive oxygen species (ROS) were shown to play a crucial role in promoting PQ synthesis, as evidenced by the application of ROS-related inhibitors and promoters. Further results demonstrated that mitochondria are significant sources of ROS, which effectively regulate PQ biosynthesis in Shiraia sp. Slf14. In summary, this research revealed a noteworthy finding: the higher energy metabolism of the strain Slf14 is associated with increased intracellular ROS accumulation, which in turn triggers the activation and expression of gene clusters responsible for PQ synthesis.
Collapse
Affiliation(s)
- Xueyi Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xuan Meng
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Yiwen Xiao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Huilin Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Zhibin Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
| | - Du Zhu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (X.W.); (X.M.); (H.Y.)
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China;
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
26
|
Deng H, Ding D, Ma Y, Zhang H, Wang N, Zhang C, Yang G. Nicotinamide Mononucleotide: Research Process in Cardiovascular Diseases. Int J Mol Sci 2024; 25:9526. [PMID: 39273473 PMCID: PMC11394709 DOI: 10.3390/ijms25179526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that plays a crucial role in diverse biological processes, including energy metabolism, gene expression, DNA repair, and mitochondrial function. An aberrant NAD+ level mediates the development of cardiovascular dysfunction and diseases. Both in vivo and in vitro studies have demonstrated that nicotinamide mononucleotide (NMN), as a NAD+ precursor, alleviates the development of cardiovascular diseases such as heart failure, atherosclerosis, and myocardial ischemia/reperfusion injury. Importantly, NMN has suggested pharmacological activities mostly through its involvement in NAD+ biosynthesis. Several clinical studies have been conducted to investigate the efficacy and safety of NMN supplementation, indicating its potential role in cardiovascular protection without significant adverse effects. In this review, we systematically summarize the impact of NMN as a nutraceutical and potential therapeutic drug on cardiovascular diseases and emphasize the correlation between NMN supplementation and cardiovascular protection.
Collapse
Affiliation(s)
- Haoyuan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ding Ding
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Yu Ma
- Department of Health Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Hao Zhang
- School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
27
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
28
|
Liao G, Xie Y, Peng H, Li T, Zou X, Yue F, Guo J, Rong L. Advancements in NMN biotherapy and research updates in the field of digestive system diseases. J Transl Med 2024; 22:805. [PMID: 39215316 PMCID: PMC11363601 DOI: 10.1186/s12967-024-05614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), a crucial intermediate in NAD + synthesis, can rapidly transform into NAD + within the body after ingestion. NMN plays a pivotal role in several important biological processes, including energy metabolism, cellular aging, circadian rhythm regulation, DNA repair, chromatin remodeling, immunity, and inflammation. NMN has emerged as a key focus of research in the fields of biomedicine, health care, and food science. Recent years have witnessed extensive preclinical studies on NMN, offering valuable insights into the pathogenesis of age- and aging-related diseases. Given the sustained global research interest in NMN and the substantial market expectations for the future, here, we comprehensively review the milestones in research on NMN biotherapy over the past 10 years. Additionally, we highlight the current research on NMN in the field of digestive system diseases, identifying existing problems and challenges in the field of NMN research. The overarching aim of this review is to provide references and insights for the further exploration of NMN within the spectrum of digestive system diseases.
Collapse
Affiliation(s)
- Guanyi Liao
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Yuchen Xie
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Tianke Li
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Xinsen Zou
- Department of Intensive Unit Care, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Faguo Yue
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
29
|
Kovilakath A, Mauro AG, Valentine YA, Raucci FJ, Jamil M, Carter C, Thompson J, Chen Q, Beutner G, Yue Y, Allegood J, Wang XX, Dail J, Devarakonda T, Myakala K, Windle JJ, Subler MA, Montefusco D, Willard B, Javaheri A, Bernas T, Mahata SK, Levi M, Liu J, Porter GA, Lesnefsky EJ, Salloum FN, Cowart LA. SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy. Circulation 2024; 150:622-641. [PMID: 38660786 PMCID: PMC11333184 DOI: 10.1161/circulationaha.123.066879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Adolfo G Mauro
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Yolander A Valentine
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research (Y.A.V.), Virginia Commonwealth University, Richmond
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Frank J Raucci
- Department of Pediatrics, Division of Pediatric Cardiology (F.J.R.), Virginia Commonwealth University, Richmond
| | - Maryam Jamil
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Gisela Beutner
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
| | - Yang Yue
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jordan Dail
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Teja Devarakonda
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jolene J Windle
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - Mark A Subler
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - David Montefusco
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Belinda Willard
- Proteomics and Metabolomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, OH (B.W.)
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (A.J.)
- St. Louis Veterans' Affairs Medical Center, MO (A.J.)
| | - Tytus Bernas
- Department of Anatomy and Neurobiology (T.B.), Virginia Commonwealth University, Richmond
| | - Sushil K Mahata
- Veterans' Affairs San Diego Healthcare System and University of California San Diego, (S.K.M)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jinze Liu
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - George A Porter
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
- Department of Pharmacology and Physiology (G.A.P.), University of Rochester Medical Center, NY
- Aab Cardiovascular Research Institute (G.A.P.), University of Rochester Medical Center, NY
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| | - Fadi N Salloum
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| |
Collapse
|
30
|
Hamed M, Martyniuk CJ, Soliman HAM, Osman AGM, Said REM. Neurotoxic and cardiotoxic effects of pyrogallol on catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104481. [PMID: 38857774 DOI: 10.1016/j.etap.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| |
Collapse
|
31
|
Perry CE, Halawani SM, Mukherjee S, Ngaba LV, Lieu M, Lee WD, Davis JG, Adzika GK, Bebenek AN, Bazianos DD, Chen B, Mercado-Ayon E, Flatley LP, Suryawanshi AP, Ho I, Rabinowitz JD, Serai SD, Biko DM, Tamaroff J, DeDio A, Wade K, Lin KY, Livingston DJ, McCormack SE, Lynch DR, Baur JA. NAD+ precursors prolong survival and improve cardiac phenotypes in a mouse model of Friedreich's Ataxia. JCI Insight 2024; 9:e177152. [PMID: 39171530 PMCID: PMC11343603 DOI: 10.1172/jci.insight.177152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Collapse
Affiliation(s)
- Caroline E. Perry
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah M. Halawani
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarmistha Mukherjee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lucie V. Ngaba
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - James G. Davis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel K. Adzika
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alyssa N. Bebenek
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Bazianos
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beishan Chen
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mercado-Ayon
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liam P. Flatley
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Arjun P. Suryawanshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabelle Ho
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Suraj D. Serai
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - David M. Biko
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology and
| | - Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna DeDio
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristin Wade
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Pediatric Cardiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Wang A, Wan X, Zhu F, Liu H, Song X, Huang Y, Zhu L, Ao Y, Zeng J, Wang B, Wu Y, Xu Z, Wang J, Yao W, Li H, Zhuang P, Jiao J, Zhang Y. Habitual Daily Intake of Fried Foods Raises Transgenerational Inheritance Risk of Heart Failure Through NOTCH1-Triggered Apoptosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0401. [PMID: 39010883 PMCID: PMC11246838 DOI: 10.34133/research.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Consumption of fried foods is highly prevalent in the Western dietary pattern. Western diet has been unfavorably linked with high risk of developing cardiovascular diseases. Heart failure (HF) as a cardiovascular disease subtype is a growing global pandemic with high morbidity and mortality. However, the causal relationship between long-term fried food consumption and incident HF remains unclear. Our population-based study revealed that frequent fried food consumption is strongly associated with 15% higher risk of HF. The causal relationship may be ascribed to the dietary acrylamide exposure in fried foods. Further cross-sectional study evidenced that acrylamide exposure is associated with an increased risk of HF. Furthermore, we discover and demonstrate that chronic acrylamide exposure may induce HF in zebrafish and mice. Mechanistically, we reveal that acrylamide induces energy metabolism disturbance in heart due to the mitochondria dysfunction and metabolic remodeling. Moreover, acrylamide exposure induces myocardial apoptosis via inhibiting NOTCH1-phosphatidylinositol 3-kinase/AKT signaling. In addition, acrylamide exposure could affect heart development during early life stage, and the adverse effect of acrylamide exposure is a threat for next generation via epigenetic change evoked by DNA methyltransferase 1 (DNMT1). In this study, we reveal the adverse effects and underlying mechanism of fried foods and acrylamide as a typical food processing contaminant on HF from population-based observations to experimental validation. Collectively, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered HF and highlight the significance of reducing fried food consumption for lower the risk of HF.
Collapse
Affiliation(s)
- Anli Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fanghuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haoyin Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoran Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingyu Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Haoyu Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Hinton A, Claypool SM, Neikirk K, Senoo N, Wanjalla CN, Kirabo A, Williams CR. Mitochondrial Structure and Function in Human Heart Failure. Circ Res 2024; 135:372-396. [PMID: 38963864 PMCID: PMC11225798 DOI: 10.1161/circresaha.124.323800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Despite clinical and scientific advancements, heart failure is the major cause of morbidity and mortality worldwide. Both mitochondrial dysfunction and inflammation contribute to the development and progression of heart failure. Although inflammation is crucial to reparative healing following acute cardiomyocyte injury, chronic inflammation damages the heart, impairs function, and decreases cardiac output. Mitochondria, which comprise one third of cardiomyocyte volume, may prove a potential therapeutic target for heart failure. Known primarily for energy production, mitochondria are also involved in other processes including calcium homeostasis and the regulation of cellular apoptosis. Mitochondrial function is closely related to morphology, which alters through mitochondrial dynamics, thus ensuring that the energy needs of the cell are met. However, in heart failure, changes in substrate use lead to mitochondrial dysfunction and impaired myocyte function. This review discusses mitochondrial and cristae dynamics, including the role of the mitochondria contact site and cristae organizing system complex in mitochondrial ultrastructure changes. Additionally, this review covers the role of mitochondria-endoplasmic reticulum contact sites, mitochondrial communication via nanotunnels, and altered metabolite production during heart failure. We highlight these often-neglected factors and promising clinical mitochondrial targets for heart failure.
Collapse
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Steven M. Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics (A.H., K.N.), Vanderbilt University Medical Center, Nashville
| | - Nanami Senoo
- Department of Physiology, Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (S.M.C., N.S.)
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (C.N.W., A.K.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH (C.R.W.)
| |
Collapse
|
34
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
35
|
Benjamin C, Crews R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024; 14:341. [PMID: 38921475 PMCID: PMC11205942 DOI: 10.3390/metabo14060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
Collapse
|
36
|
Fernandez-Patron C, Lopaschuk GD, Hardy E. A self-reinforcing cycle hypothesis in heart failure pathogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:627-636. [PMID: 39196226 DOI: 10.1038/s44161-024-00480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 08/29/2024]
Abstract
Heart failure is a progressive syndrome with high morbidity and mortality rates. Here, we suggest that chronic exposure of the heart to risk factors for heart failure damages heart mitochondria, thereby impairing energy production to levels that can suppress the heart's ability to pump blood and repair mitochondria (both energy-consuming processes). As damaged mitochondria accumulate, the heart becomes deprived of energy in a 'self-reinforcing cycle', which can persist after the heart is no longer chronically exposed to (or after antagonism of) the risk factors that initiated the cycle. Together with other previously described pathological mechanisms, this proposed cycle can help explain (1) why heart failure progresses, (2) why it can recur after cessation of treatment, and (3) why heart failure is often accompanied by dysfunction of multiple organs. Ideally, therapy of heart failure syndrome would be best attempted before the self-reinforcing cycle is triggered or designed to break the self-reinforcing cycle.
Collapse
Affiliation(s)
- Carlos Fernandez-Patron
- Cardiovascular Research Centre, Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
37
|
Abstract
An important mechanism of gene expression regulation is the epigenetic modification of histones. The cofactors and substrates for these modifications are often intermediary metabolites, and it is becoming increasingly clear that the metabolic and nutritional state of cells can influence these marks. These connections between the balance of metabolites, histone modifications and downstream transcriptional changes comprise a metabolic signaling program that can enable cells to adapt to changes in nutrient availability. Beyond acetylation, there is evidence now that histones can be modified by other acyl groups. In this Cell Science at a Glance article and the accompanying poster, we focus on these histone acylation modifications and provide an overview of the players that govern these acylations and their connections with metabolism.
Collapse
Affiliation(s)
- Saikat Bhattacharya
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P. Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
38
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
39
|
Yu J, Shen Q, Li J. Toxicology study profile of Nicotinamide mononucleotide after acute and 90-day sub chronic dosing in Wistar rats and mutagenicity tests. Curr Res Toxicol 2024; 6:100171. [PMID: 38765763 PMCID: PMC11101926 DOI: 10.1016/j.crtox.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) is an intermediate in biosynthesis pathway of Nicotinamide adenine dinucleotide (NAD+), an essential cofactor in all living cells involved in fundamental biological processes. Evidence stemming from recent studies have unveiled numerous roles of NAD+ metabolism on aging, longevity, delaying the progression of age-related diseases. A three-study genetic toxicity (genetox) battery (bacterial mutagenesis, in vitro cytogenetics, and in vivo mammalian test) is usually required to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time. The acute oral LD50 of NMN was greater than 2000 mg/kg body weight with 5000 mg/kg body weight as LD50 cut-off value and was classified under "Category 5 or Unclassified" as per Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Based on 90 days repeated dose toxicity test the NOAEL was considered to be NLT 800 mg NMN/kg body weight in Wistar rats. The bacterial reverse mutation test, the in vitro and in vivo chromosomal aberration test, found NMN to be non-mutagenic. In the mammalian bone marrow chromosomal aberration test, it was concluded that NMN is non clastogenic at and up to 2,000 mg/kg body weight in all the animals tested to confirm safety of a new dietary ingredient and this study showed the data from in vivo mutagenicity test for the first time.
Collapse
Affiliation(s)
- Jianjun Yu
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| | - Qiang Shen
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| | - Jiayan Li
- Effepharm (Shanghai) Co. Ltd, Shanghai, China
| |
Collapse
|
40
|
Zhang J, Qiu L, Liu Z, Liu J, Yu B, Liu C, Ren B, Zhang J, Li S, Guan Y, Zheng F, Yang G, Chen L. Circadian light/dark cycle reversal exacerbates the progression of chronic kidney disease in mice. J Pineal Res 2024; 76:e12964. [PMID: 38803014 DOI: 10.1111/jpi.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Circadian disruption such as shift work, jet lag, has gradually become a global health issue and is closely associated with various metabolic disorders. The influence and mechanism of circadian disruption on renal injury in chronic kidney disease (CKD) remains inadequately understood. Here, we evaluated the impact of environmental light disruption on the progression of chronic renal injury in CKD mice. By using two abnormal light exposure models to induce circadian disruption, we found that circadian disruption induced by weekly light/dark cycle reversal (LDDL) significantly exacerbated renal dysfunction, accelerated renal injury, and promoted renal fibrosis in mice with 5/6 nephrectomy and unilateral ureteral obstruction (UUO). Mechanistically, RNA-seq analysis revealed significant immune and metabolic disorder in the LDDL-conditioned CKD kidneys. Consistently, renal content of ATP was decreased and ROS production was increased in the kidney tissues of the LDDL-challenged CKD mice. Untargeted metabolomics revealed a significant buildup of lipids in the kidney affected by LDDL. Notably, the level of β-NMN, a crucial intermediate in the NAD+ pathway, was found to be particularly reduced. Moreover, we demonstrated that both β-NMN and melatonin administration could significantly rescue the light-disruption associated kidney dysfunction. In conclusion, environmental circadian disruption may exacerbate chronic kidney injury by facilitating inflammatory responses and disturbing metabolic homeostasis. β-NMN and melatonin treatments may hold potential as promising approaches for preventing and treating light-disruption associated CKD.
Collapse
Affiliation(s)
- Jiayang Zhang
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Lejia Qiu
- Health Science Center, East China Normal University, Shanghai, China
| | - Zhaiyi Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaxin Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai, China
| | - Baoyin Ren
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Jiaqi Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - Shuyao Li
- Health Science Center, East China Normal University, Shanghai, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihong Chen
- WuHu Hospital, East China Normal University (The Second People's Hospital, Wuhu), Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
41
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
42
|
Ji T, Lv Y, Liu M, Han Y, Yuan B, Gu J. Causal relationships between mitochondrial proteins and different pathological types of lung cancer: a bidirectional mendelian randomization study. Front Genet 2024; 15:1335223. [PMID: 38596213 PMCID: PMC11002161 DOI: 10.3389/fgene.2024.1335223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
An increasing number of studies point to an association between mitochondrial proteins (MPs) and lung cancer (LC). However, the causal relationship between MPs and LC remains unclear. Consequently, our study employed a bidirectional Mendelian randomization (MR) analysis to explore the causal association between MPs and different pathological types of LC. A two-sample MR study was performed using the genome-wide association study (GWAS) data publicly available. We applied the primary inverse variance weighted (IVW) method along with additional MR methods to validate the causality between MPs and different pathological types of LC. To ensure the robustness of our findings, sensitivity analyses were employed. Moreover, we performed a bi-directional MR analysis to determine the direction of the causal association. We identified a total of seven MPs had significant causal relationships on overall LC, lung squamous cell carcinoma (LUSC), and small cell lung carcinoma (SCLC). We found two MPs had significant associations with overall LC, four MPs had significant associations with LUSC, and four MPs had significant associations with SCLC. Additionally, an MP was found to have a nominal relationship with LUSC. Moreover, no causality was found between MPs and lung adenocarcinoma (LUAD). Bidirectional MR showed no reverse effect between identified MPs and different pathological types of LC. In general, our findings of this MR study suggest causal associations of specific MPs with overall LC, LUSC, and SCLC. However, no such causality was found in LUAD.
Collapse
Affiliation(s)
- Tanao Ji
- Department of General Practice, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yue Lv
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Meiqun Liu
- Department of Electrocardioeraphy, Qidong People’s Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Nantong, China
| | - Yujie Han
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| | - Baochang Yuan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| | - Jun Gu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong Key Laboratory of Respiratory, Nantong, China
| |
Collapse
|
43
|
Liu SZ, Chiao YA, Rabinovitch PS, Marcinek DJ. Mitochondrial Targeted Interventions for Aging. Cold Spring Harb Perspect Med 2024; 14:a041199. [PMID: 37788882 PMCID: PMC10910403 DOI: 10.1101/cshperspect.a041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Changes in mitochondrial function play a critical role in the basic biology of aging and age-related disease. Mitochondria are typically thought of in the context of ATP production and oxidant production. However, it is clear that the mitochondria sit at a nexus of cell signaling where they affect metabolite, redox, and energy status, which influence many factors that contribute to the biology of aging, including stress responses, proteostasis, epigenetics, and inflammation. This has led to growing interest in identifying mitochondrial targeted interventions to delay or reverse age-related decline in function and promote healthy aging. In this review, we discuss the diverse roles of mitochondria in the cell. We then highlight some of the most promising strategies and compounds to target aging mitochondria in preclinical testing. Finally, we review the strategies and compounds that have advanced to clinical trials to test their ability to improve health in older adults.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
44
|
Wang Y, Xie F, He Z, Che L, Chen X, Yuan Y, Liu C. Senescence-Targeted and NAD +-Dependent SIRT1-Activated Nanoplatform to Counteract Stem Cell Senescence for Promoting Aged Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304433. [PMID: 37948437 DOI: 10.1002/smll.202304433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Indexed: 11/12/2023]
Abstract
Age-related bone defects are a leading cause of disability and mortality in elderly individuals, and targeted therapy to delay the senescence of bone marrow-derived mesenchymal stem cells (MSCs) has emerged as a promising strategy to rejuvenate bone regeneration in aged scenarios. More specifically, activating the nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) pathway is demonstrated to effectively counteract MSC senescence and thus promote osteogenesis. Herein, based on an inventively identified senescent MSC-specific surface marker Kremen1, a senescence-targeted and NAD+ dependent SIRT1 activated nanoplatform is fabricated with a dual delivery of resveratrol (RSV) (SIRT1 promoter) and nicotinamide riboside (NR, NAD+ precursor). This targeting nanoplatform exhibits a strong affinity for senescent MSCs through conjugation with anti-Kremen1 antibodies and enables specifically responsive release of NR and RSV in lysosomes via senescence-associated β-galactosidase-stimulated enzymatic hydrolysis of the hydrophilic chain. Furthermore, this nanoplatform performs well in promoting aged bone formation both in vitro and in vivo by boosting NAD+, activating SIRT1, and delaying MSC senescence. For the first time, a novel senescent MSC-specific surface marker is identified and aged bone repair is rejuvenated by delaying senescence of MSCs using an active targeting platform. This discovery opens up new insights for nanotherapeutics aimed at age-related diseases.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fangru Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zirui He
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
45
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
46
|
Sandroni PB, Schroder MA, Hawkins HT, Bailon JD, Huang W, Hagen JT, Montgomery M, Hong SJ, Chin AL, Zhang J, Rodrigo MC, Kim B, Simpson PC, Schisler JC, Ellis JM, Fisher-Wellman KH, Jensen BC. The alpha-1A adrenergic receptor regulates mitochondrial oxidative metabolism in the mouse heart. J Mol Cell Cardiol 2024; 187:101-117. [PMID: 38331556 PMCID: PMC10861168 DOI: 10.1016/j.yjmcc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
AIMS The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic β-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic β-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The β-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.
Collapse
Affiliation(s)
- Peyton B Sandroni
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Melissa A Schroder
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Hunter T Hawkins
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Julian D Bailon
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - James T Hagen
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - McLane Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Seok J Hong
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Andrew L Chin
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jiandong Zhang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Manoj C Rodrigo
- Cytokinetics, Inc., South San Francisco, CA, United States of America
| | - Boa Kim
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America; Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jessica M Ellis
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Brian C Jensen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America.
| |
Collapse
|
47
|
Chen Q, Li L, Samidurai A, Thompson J, Hu Y, Willard B, Lesnefsky EJ. Acute endoplasmic reticulum stress-induced mitochondria respiratory chain damage: The role of activated calpains. FASEB J 2024; 38:e23404. [PMID: 38197290 PMCID: PMC11032170 DOI: 10.1096/fj.202301158rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
The induction of acute endoplasmic reticulum (ER) stress damages the electron transport chain (ETC) in cardiac mitochondria. Activation of mitochondria-localized calpain 1 (CPN1) and calpain 2 (CPN2) impairs the ETC in pathological conditions, including aging and ischemia-reperfusion in settings where ER stress is increased. We asked if the activation of calpains causes the damage to the ETC during ER stress. Control littermate and CPNS1 (calpain small regulatory subunit 1) deletion mice were used in the current study. CPNS1 is an essential subunit required to maintain CPN1 and CPN2 activities, and deletion of CPNS1 prevents their activation. Tunicamycin (TUNI, 0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 72 h of TUNI treatment. ER stress was increased in both control littermate and CPNS1 deletion mice with TUNI treatment. The TUNI treatment activated both cytosolic and mitochondrial CPN1 and 2 (CPN1/2) in control but not in CPNS1 deletion mice. TUNI treatment led to decreased oxidative phosphorylation and complex I activity in control but not in CPNS1 deletion mice compared to vehicle. The contents of complex I subunits, including NDUFV2 and ND5, were decreased in control but not in CPNS1 deletion mice. TUNI treatment also led to decreased oxidation through cytochrome oxidase (COX) only in control mice. Proteomic study showed that subunit 2 of COX was decreased in control but not in CPNS1 deletion mice. Our results provide a direct link between activation of CPN1/2 and complex I and COX damage during acute ER stress.
Collapse
Affiliation(s)
- Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ling Li
- Proteomics Core, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arun Samidurai
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ying Hu
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Edward J. Lesnefsky
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
- Richmond Department of Veterans Affairs Medical Center, Richmond, Virginia, USA
| |
Collapse
|
48
|
Yu H, Gan D, Luo Z, Yang Q, An D, Zhang H, Hu Y, Ma Z, Zeng Q, Xu D, Ren H. α-Ketoglutarate improves cardiac insufficiency through NAD +-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med 2024; 30:15. [PMID: 38254035 PMCID: PMC10804789 DOI: 10.1186/s10020-024-00783-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Daojing Gan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Zhen Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Qilin Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Dongqi An
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Yingchun Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| | - Hao Ren
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of China, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, 1838 Northern Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
49
|
Walker MA, Chen H, Yadav A, Ritterhoff J, Villet O, McMillen T, Wang Y, Purcell H, Djukovic D, Raftery D, Isoherranen N, Tian R. Raising NAD + Level Stimulates Short-Chain Dehydrogenase/Reductase Proteins to Alleviate Heart Failure Independent of Mitochondrial Protein Deacetylation. Circulation 2023; 148:2038-2057. [PMID: 37965787 PMCID: PMC10842390 DOI: 10.1161/circulationaha.123.066039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Collapse
Affiliation(s)
- Matthew A. Walker
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Aprajita Yadav
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Tim McMillen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Yuliang Wang
- Department of Computer Science & Engineering,
University of Washington, Seattle, WA 98195
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
50
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|