1
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Liang G, Huang J, Chen J, Wen X, Li R, Xie H, Zhang Z, Chen Z, Chen Y, Xian Z, He X, Ke J, Lian L, Lan P, Wu X, Hu T. Fatty Acid Oxidation Promotes Apoptotic Resistance and Proinflammatory Phenotype of CD4 + Tissue-resident Memory T cells in Crohn's Disease. Cell Mol Gastroenterol Hepatol 2024; 17:939-964. [PMID: 38423357 PMCID: PMC11026735 DOI: 10.1016/j.jcmgh.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS As the most abundant memory T cells and major source of tumor necrosis factor α in the intestinal mucosa of Crohn's disease (CD) patients, CD4+ tissue-resident memory T (TRM) cells play a critical role in CD pathogenesis. We investigated the role of metabolic reprogramming in the regulation of proinflammatory and apoptosis-resistant phenotype for CD4+ TRM cells. METHODS CD4+ TRM cells were collected from intestinal resection tissues from control and CD patients. Transcriptomic and metabolomic analysis were performed to identify metabolic characteristics of CD4+ TRM cells. Enzyme-linked immunosorbent assay and quantitative polymerase chain reaction experiments were used to assess cytokines level in CD4+ TRM cells; activation-induced cell apoptosis rate was evaluated by flow cytometry. Transwell assay and wound healing assay were performed to detect the effect of CD4+ TRM cells on the migration of normal intestinal epithelial cells. RESULTS Transcriptomic data combined with unbiased metabolomic analysis revealed an increased fatty acid oxidation (FAO) phenotype existed in CD4+ TRM cells from CD patients. The lipidomic data and stable isotope tracer experiments demonstrated that CD4+ TRM cells up-regulated their lipid lipolysis and fatty acid uptake to fuel FAO in CD patients. Mechanistically, the activated nuclear factor kappa B signaling increased transcription of genes involved in lipid lipolysis, fatty acid uptake, and oxidation in CD4+ TRM cells from CD patients. Targeting FAO of CD4+ TRM cells reversed their apoptosis-resistant and proinflammatory phenotype in CD patients. CONCLUSIONS CD4+ TRM cells process an accelerated FAO mediated by activated nuclear factor kappa B signaling in CD patients; targeting FAO could reverse their apoptosis-resistant and proinflammatory phenotype. These findings shed a new light on the pathogenic mechanism investigation and novel therapy development in CD patients.
Collapse
Affiliation(s)
- Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Junfeng Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jing Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaofeng Wen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Hanlin Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zongjin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zexian Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yongle Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenyu Xian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaowen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jia Ke
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Lei Lian
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Department of General Surgery (Gastric Surgery), The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P. R. China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; State Key Laboratory of Oncology in South China, Guangzhou, P. R. China.
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Department of General Surgery (Gastrointestinal Surgery), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
3
|
Wiche Salinas TR, Zhang Y, Gosselin A, Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. Alterations in Th17 Cells and Non-Classical Monocytes as a Signature of Subclinical Coronary Artery Atherosclerosis during ART-Treated HIV-1 Infection. Cells 2024; 13:157. [PMID: 38247848 PMCID: PMC10813976 DOI: 10.3390/cells13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular disease (CVD) remains an important comorbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed in the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) > 5%) revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by computed tomography angiography scan (CTAScan) as the total (TPV) and low attenuated plaque volume (LAPV), in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4+ T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1, and triglyceride levels; lower Th17/Treg ratios; and classical monocyte expansion. Among HIV+, TPV+ versus TPV- exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9lowHLADRhigh monocytes, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9lowHLADRhigh monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Yuwei Zhang
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Annie Gosselin
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Natalia Fonseca Rosario
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Mohamed El-Far
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Ali Filali-Mouhim
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carl Chartrand-Lefebvre
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | | | - Madeleine Durand
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Médecine, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | - Cécile L. Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| |
Collapse
|
4
|
Wiche Salinas TR, Zhang Y, Gosselin A, Do Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. A Blood Immunological Signature of Subclinical Coronary Artery Atherosclerosis in People Living with HIV-1 Receiving Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571922. [PMID: 38187644 PMCID: PMC10769180 DOI: 10.1101/2023.12.15.571922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease (CVD) remains an important co-morbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed on the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) >5%), revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by Computed tomography angiography scan (CTAScan) as total (TPV) and low attenuated plaque volume (LAPV) in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4 + T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells, were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1 and triglyceride levels, lower Th17/Treg ratios, and classical monocyte expansion. Among HIV + , TPV + versus TPV - exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9 low HLADR high monocyte, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9 low HLADR high monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
|
5
|
Wang Y, Song J, Yu K, Nie D, Zhao C, Jiao L, Wang Z, Zhou L, Wang F, Yu Q, Zhang S, Wen Z, Wu J, Wang CY, Wang DW, Cheng J, Zhao C. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency Inhibits Pathological Cardiac Hypertrophy. Hypertension 2023; 80:2099-2111. [PMID: 37485661 DOI: 10.1161/hypertensionaha.122.20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Aberrant amino acid metabolism is implicated in cardiac hypertrophy, while the involvement of tryptophan metabolism in pathological cardiac hypertrophy remains elusive. Herein, we aimed to investigate the effect and potential mechanism of IDO1 (indoleamine 2,3-dioxygenase) and its metabolite kynurenine (Kyn) on pathological cardiac hypertrophy. METHODS Transverse aortic constriction was performed to induce cardiac hypertrophy in IDO1-knockout (KO) mice and AAV9-cTNT-shIDO1 mice. Liquid chromatography-mass spectrometry was used to detect the metabolites of tryptophan-Kyn pathway. Chromatin immunoprecipitation assay and dual luciferase assay were used to validate the binding of protein and DNA. RESULTS IDO1 expression was upregulated in both human and murine hypertrophic myocardium, alongside with increased IDO1 activity and Kyn content in transverse aortic constriction-induced mice's hearts using liquid chromatography-mass spectrometry analysis. Myocardial remodeling and heart function were significantly improved in transverse aortic constriction-induced IDO1-KO mice, but were greatly exacerbated with subcutaneous Kyn administration. IDO1 inhibition or Kyn addition confirmed the alleviation or aggravation of hypertrophy in cardiomyocyte treated with isoprenaline, respectively. Mechanistically, IDO1 and metabolite Kyn contributed to pathological hypertrophy via the AhR (aryl hydrocarbon receptor)-GATA4 (GATA binding protein 4) axis. CONCLUSIONS This study demonstrated that IDO1 deficiency and consequent Kyn insufficiency can protect against pathological cardiac hypertrophy by decreasing GATA4 expression in an AhR-dependent manner.
Collapse
Affiliation(s)
- Yinhui Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.S.)
| | - Kun Yu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Daan Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.N.)
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China (D.N.)
| | - Chengcheng Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Liping Jiao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China (L.J.)
| | - Ziyi Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Ling Zhou
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Feng Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Qilin Yu
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Shu Zhang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Zheng Wen
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Junfang Wu
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Cong-Yi Wang
- The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Q.Y., S.Z., C.-Y.W.)
| | - Dao Wen Wang
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Jia Cheng
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| | - Chunxia Zhao
- Department of Internal Medicine, Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.W., K.Y., Chengcheng Zhao, Z. Wang, L.Z., F.W., Z. Wen, J.W., D.W.W., J.C., Chunxia Zhao)
| |
Collapse
|
6
|
Arroyo Hornero R, Idoyaga J. Plasmacytoid dendritic cells: A dendritic cell in disguise. Mol Immunol 2023; 159:38-45. [PMID: 37269733 PMCID: PMC10625168 DOI: 10.1016/j.molimm.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Since their discovery, the identity of plasmacytoid dendritic cells (pDCs) has been at the center of a continuous dispute in the field, and their classification as dendritic cells (DCs) has been recently re-challenged. pDCs are different enough from the rest of the DC family members to be considered a lineage of cells on their own. Unlike the exclusive myeloid ontogeny of cDCs, pDCs may have dual origin developing from myeloid and lymphoid progenitors. Moreover, pDCs have the unique ability to quickly secrete abundant levels of type I interferon (IFN-I) in response to viral infections. In addition, pDCs undergo a differentiation process after pathogen recognition that allows them to activate T cells, a feature that has been shown to be independent of presumed contaminating cells. Here, we aim to provide an overview of the historic and current understanding of pDCs and argue that their classification as either lymphoid or myeloid may be an oversimplification. Instead, we propose that the capacity of pDCs to link the innate and adaptive immune response by directly sensing pathogens and activating adaptive immune responses justify their inclusion within the DC network.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Microbiology & Immunology Department, and Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Crespo JF, Cabanillas B. Recent advances in cellular and molecular mechanisms of IgE-mediated food allergy. Food Chem 2023; 411:135500. [PMID: 36682170 DOI: 10.1016/j.foodchem.2023.135500] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Food allergy is a public health issue the prevalence of which is steadily increasing. New discoveries have contributed to the understanding of the molecular and cellular mechanisms that lead to IgE-mediated food allergy. Novel scientific findings have defined roles for specific cell types, such as T follicular helper cells, in induction of high-affinity IgE by B cells. Also, not only mast cells and basophils contribute to food anaphylaxis, but also other cell types, such as neutrophils and macrophages. Elucidation of mechanisms involved in sensitization to food allergens through organs including the skin is key to deepening our understanding of the "dual exposure" hypothesis, which suggests that allergic sensitization is mainly acquired through inflamed skin while the oral route induces tolerance. This review considers the latest scientific knowledge about the molecular and cellular mechanisms of IgE-mediated food allergy. It reveals crucial components involved in the sensitization and elicitation phases and emerging approaches in anaphylaxis pathophysiology.
Collapse
Affiliation(s)
- Jesus F Crespo
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
8
|
Wang F, Liu M, Ma D, Cai Z, Liu L, Wang J, Zhang W, Zhao L, Zhai C, Xu Y. Dendritic cell-expressed IDO alleviates atherosclerosis by expanding CD4 +CD25 +Foxp3 +Tregs through IDO-Kyn-AHR axis. Int Immunopharmacol 2023; 116:109758. [PMID: 36706593 DOI: 10.1016/j.intimp.2023.109758] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease, in which immune disorders constitute an essential part of vascular pathogenesis. Accumulating evidence indicates that dendritic cells (DCs) and their tryptophan metabolisms regulate host immune responses. However, the mechanistic involvement of metabolic products from DCs in dysregulating vascular immunity during the development of atherosclerosis is far from clear. Flow cytometry examination showed immune cells were accumulated and gradually increased in the atherosclerotic lesions during the atherosclerosis progression, in which IDO+DCs were enriched. To study the role of DC-expressed IDO in the development of atherosclerosis, we made a stable IDO-overexpressing DC line (IDOoeDCs) by lentiviral infection for adoptive transfer into pro-atherosclerotic mice. Compared with DCs containing empty vector (VectorCtrlDC)-treated group, treatment of IDOoeDCs led to a significant reduction of atherosclerotic lesions in the aorta, with decreased aortic infiltration of Th1 immune cells and reduced vascular inflammation. Importantly, IDOoeDCs increased aortic kynurenine (Kyn) concentration and aryl hydrocarbon receptor (AHR) expression, concomitant with CD4+CD25+Foxp3+Treg expansion in the aortic tissues, which were abrogated by AHR antagonist treatment. These results indicate that DC-expressed IDO reduces atherosclerotic lesions by inducing aortic CD4+CD25+Foxp3+Treg expansion through IDO-Kyn-AHR axis, which may represent a novel possibility for treatment or prevention of atherosclerosis.
Collapse
Affiliation(s)
- Fengge Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China; Anhui Province Key Laboratory of Active Biological Macro-molecules, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lin Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Chengfeng Zhai
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui 241000, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
9
|
Koda Y, Nakamoto N, Kanai T. Regulation of Progression and Resolution of Liver Fibrosis by Immune Cells. Semin Liver Dis 2022; 42:475-488. [PMID: 36208620 DOI: 10.1055/a-1957-6384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The excessive accumulation of extracellular matrix proteins results in fibrosis-a condition implicated in several diseased conditions, such as nonalcoholic steatohepatitis, viral hepatitis, and autoimmune hepatitis. Despite its prevalence, direct and effective treatments for fibrosis are lacking, warranting the development of better therapeutic strategies. Accumulating evidence has shown that liver fibrosis-a condition previously considered irreversible-is reversible in specific conditions. Immune cells residing in or infiltrating the liver (e.g., macrophages) are crucial in the pathogenesis of fibrosis. Given this background, the roles and action mechanisms of various immune cells and their subsets in the progression and recovery of liver fibrosis, particularly concerning nonalcoholic steatohepatitis, are discussed in this review. Furthermore, the development of better therapeutic strategies based on stage-specific properties and using advanced techniques as well as the mechanisms underlying recovery are elaborated. In conclusion, we consider the review comprehensively provides the present achievements and future possibilities revolving around fibrosis treatment.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
10
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
11
|
Koda Y, Nakamoto N, Chu PS, Teratani T, Ueno A, Amiya T, Taniki N, Chiba S, Miyamoto K, Sakamoto M, Kanai T. CCR9 axis inhibition enhances hepatic migration of plasmacytoid dendritic cells and protects against liver injury. JCI Insight 2022; 7:159910. [PMID: 35943802 PMCID: PMC9536268 DOI: 10.1172/jci.insight.159910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) perform dual proinflammatory and immunosuppressive roles. We recently reported the potential of pDC therapy for treatment of intractable acute liver failure. However, establishment of efficient methods to deliver pDCs to the liver is essential for future clinical therapeutic applications. The present study demonstrates a higher abundance of liver and peripheral blood pDCs in mice lacking the C-C motif chemokine receptor 9 (CCR9), a pDC gut-homing receptor, than that in wild-type (WT) mice. Adoptive pDC transfer resulted in a higher efficiency of Ccr9-/- pDC migration to the liver than that to the original target organ, the small intestine, compared with that of WT pDCs. Further, Ccr9-/- pDCs consistently migrated efficiently to the concanavalin A-induced inflamed liver, and exerted a more effective immunosuppressive effect, resulting in better protection against acute liver inflammation than that demonstrated by WT pDCs. These findings highlight the therapeutic potential of the manipulation of CCR9 axis as a novel approach to improve migration of immunosuppressive pDCs to the liver in order to exploit their beneficial effects in acute liver disease.
Collapse
Affiliation(s)
- Yuzo Koda
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Amiya
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sayako Chiba
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Bellini R, Bonacina F, Norata GD. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front Cardiovasc Med 2022; 9:934314. [PMID: 35966516 PMCID: PMC9365967 DOI: 10.3389/fcvm.2022.934314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic disease resulting from an impaired lipid and immune homeostasis, where the interaction between innate and adaptive immune cells leads to the promotion of atherosclerosis-associated immune-inflammatory response. Emerging evidence has suggested that this response presents similarities to the reactivity of effector immune cells toward self-epitopes, often as a consequence of a break of tolerance. In this context, dendritic cells, a heterogeneous population of antigen presenting cells, play a key role in instructing effector T cells to react against foreign antigens and T regulatory cells to maintain tolerance against self-antigens and/or to patrol for self-reactive effector T cells. Alterations in this delicate balance appears to contribute to atherogenesis. The aim of this review is to discuss different DC subsets, and their role in atherosclerosis as well as in T cell polarization. Moreover, we will discuss how loss of T cell tolerogenic phenotype participates to the immune-inflammatory response associated to atherosclerosis and how a better understanding of these mechanisms might result in designing immunomodulatory therapies targeting DC-T cell crosstalk for the treatment of atherosclerosis-related inflammation.
Collapse
Affiliation(s)
- Rossella Bellini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- *Correspondence: Fabrizia Bonacina,
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- Giuseppe Danilo Norata,
| |
Collapse
|
13
|
Ouyang L, Yu C, Xie Z, Su X, Xu Z, Song P, Li J, Huang H, Ding Y, Zou MH. Indoleamine 2,3-Dioxygenase 1 Deletion-Mediated Kynurenine Insufficiency in Vascular Smooth Muscle Cells Exacerbates Arterial Calcification. Circulation 2022; 145:1784-1798. [PMID: 35582948 PMCID: PMC9197997 DOI: 10.1161/circulationaha.121.057868] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND IDO1 (indoleamine 2,3-dioxygenase 1) is the rate-limiting enzyme for tryptophan metabolism. IDO1 malfunction is involved in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) with an osteogenic phenotype promote calcification and features of plaque instability. However, it remains unclear whether aberrant IDO1-regulated tryptophan metabolism causes VSMCs osteogenic reprogramming and calcification. METHODS We generated global Apoe (apolipoprotein E) and Ido1 double knockout mice, and Apoe knockout mice with specific deletion of IDO1 in VSMCs or macrophages. Arterial intimal calcification was evaluated by a Western diet-induced atherosclerotic calcification model. RESULTS Global deficiency of IDO1 boosted calcific lesion formation without sex bias in vivo. Conditional IDO1 loss of function in VSMCs rather than macrophages promoted calcific lesion development and the abundance of RUNX2 (runt-related transcription factor 2). In contrast, administration of kynurenine via intraperitoneal injection markedly delayed the progression of intimal calcification in parallel with decreased RUNX2 expression in both Apoe-/- and Apoe-/-Ido1-/- mice. We found that IDO1 deletion restrained RUNX2 from proteasomal degradation, which resulted in enhanced osteogenic reprogramming of VSMCs. Kynurenine administration downregulated RUNX2 in an aryl hydrocarbon receptor-dependent manner. Kynurenine acted as the endogenous ligand of aryl hydrocarbon receptor, controlled resultant interactions between cullin 4B and aryl hydrocarbon receptor to form an E3 ubiquitin ligase that bound with RUNX2, and subsequently promoted ubiquitin-mediated instability of RUNX2 in VSMCs. Serum samples from patients with coronary artery calcification had impaired IDO1 activity and decreased kynurenine catabolites compared with those without calcification. CONCLUSIONS Kynurenine, an IDO1-mediated tryptophan metabolism main product, promotes RUNX2 ubiquitination and subsequently leads to its proteasomal degradation via an aryl hydrocarbon receptor-dependent nongenomic pathway. Insufficient kynurenine exerts the deleterious role of IDO1 ablation in promoting RUNX2-mediated VSMCs osteogenic reprogramming and calcification in vivo.
Collapse
Affiliation(s)
- Liu Ouyang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Changjiang Yu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Su
- Department of Nephropathy, Tungwah Hospital of Sun Yat-sen University, Sun Yat-sen University, Dongguan, China
| | - Zengmei Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jian Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| |
Collapse
|
14
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
15
|
Li J, Xia N, Li D, Wen S, Qian S, Lu Y, Gu M, Tang T, Jiao J, Lv B, Nie S, Hu D, Liao Y, Yang X, Shi G, Cheng X. Aorta Regulatory T Cells with a Tissue-Specific Phenotype and Function Promote Tissue Repair through Tff1 in Abdominal Aortic Aneurysms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104338. [PMID: 35332699 PMCID: PMC8948580 DOI: 10.1002/advs.202104338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
In addition to maintaining immune tolerance, Foxp3+ regulatory T cells (Tregs) perform specialized functions in tissue homeostasis and remodeling. However, whether Tregs in aortic aneurysms have a tissue-specific phenotype and function is unclear. Here, a special group of Tregs that potentially inhibit abdominal aortic aneurysm (AAA) progression are identified and functionally characterized. Aortic Tregs gradually increase during the process of AAA and are mainly recruited from peripheral circulation. Single-cell TCR sequencing and bulk RNA sequencing demonstrate their unique phenotype and highly expressed trefoil factor 1 (Tff1). Foxp3cre/cre Tff1flox/flox mice are used to clarify the role of Tff1 in AAA, suggesting that aortic Tregs secrete Tff1 to regulate smooth muscle cell (SMC) survival. In vitro experiments confirm that Tff1 inhibits SMC apoptosis through the extracellular signal-regulated kinase (ERK) 1/2 pathway. The findings reveal a tissue-specific phenotype and function of aortic Tregs and may provide a promising and novel approach for the prevention of AAA.
Collapse
Affiliation(s)
- Jingyong Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ni Xia
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dan Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shuang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shirui Qian
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuzhi Lu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Muyang Gu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tingting Tang
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiao Jiao
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingjie Lv
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaofang Nie
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuhua Liao
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiangping Yang
- School of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guoping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Xiang Cheng
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Key Laboratory for Biological Targeted Therapy of Education Ministry and Hubei ProvinceUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
16
|
Yang J, Hao T, Liu Y, Huang J, Wu W, Wu J, Sun W. Th17/Treg balance and indoleamine 2,3 dioxygenase activity in periodontitis-associated atherosclerotic patients. J Int Med Res 2022; 50:3000605221080877. [PMID: 35220782 PMCID: PMC8894972 DOI: 10.1177/03000605221080877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective This study investigated the peripheral Th17/Treg balance and its potential controlling factor indoleamine 2,3 dioxygenase (IDO) in patients with periodontitis and atherosclerosis (AS), as well as its correlation with Porphyromonas gingivalis infection. Methods In this retrospective study, P. gingivalis-infected atherosclerotic patients (Pg-AS), atherosclerotic patients (AS), P. gingivalis-infected periodontitis patients (Pg), and healthy controls (HCs) were selected after clinical examination, subgingival plaque examination, and plasma anti-P. gingivalis antibody analysis. Treg and Th17 cell percentages, related transcription factors, and functional cytokines in peripheral blood were analysed. Plasma tryptophan (Trp) and kynurenine (Kyn) were measured to determine IDO activity. Results Atherosclerotic patients (Pg-AS and AS groups) had significantly lower IDO activity and higher Th17/Treg ratio than those in the Pg and HC groups. The Th17/Treg ratio was higher and IDO activity was lower in the Pg-AS group compared with the AS group. Transcription factors and cytokines exhibited the same trend as the Th17 and Treg cells. Additionally, IDO activity was negatively correlated with the plasma anti-P. gingivalis antibody titre and the Th17/Treg ratio in the atherosclerotic group. Conclusions P. gingivalis may reduce IDO activity and further promote Th17/Treg imbalance to facilitate AS development. IDO may be a novel molecular marker to predict periodontitis-associated AS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ting Hao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yu Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jin Huang
- Department of Cardiology, Nanjing Chest Hospital, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Wenlei Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Kobayashi S, Wannakul T, Sekino K, Takahashi Y, Kagawa Y, Miyazaki H, Umaru BA, Yang S, Yamamoto Y, Owada Y. Fatty acid-binding protein 5 limits the generation of Foxp3 + regulatory T cells through regulating plasmacytoid dendritic cell function in the tumor microenvironment. Int J Cancer 2022; 150:152-163. [PMID: 34449874 DOI: 10.1002/ijc.33777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) promote viral elimination by producing large amounts of Type I interferon. Recent studies have shown that pDCs regulate the pathogenesis of diverse inflammatory diseases, such as cancer. Fatty acid-binding protein 5 (FABP5) is a cellular chaperone of long-chain fatty acids that induce biological responses. Although the effects of FABP-mediated lipid metabolism are well studied in various immune cells, its role in pDCs remains unclear. This study, which compares wild-type and Fabp5-/- mice, provides the first evidence that FABP5-mediated lipid metabolism regulates the commitment of pDCs to inflammatory vs tolerogenic gene expression patterns in the tumor microenvironment and in response to toll-like receptor stimulation. Additionally, we demonstrated that FABP5 deficiency in pDCs affects the surrounding cellular environment, and that FABP5 expression in pDCs supports the appropriate generation of regulatory T cells (Tregs). Collectively, our findings reveal that pDC FABP5 acts as an important regulator of tumor immunity by controlling lipid metabolism.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tunyanat Wannakul
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Sekino
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Takahashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shuhan Yang
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Fan C, Wu J, Shen Y, Hu H, Wang Q, Mao Y, Ye B, Xiang M. Hypoxia promotes the tolerogenic phenotype of plasmacytoid dendritic cells in head and neck squamous cell carcinoma. Cancer Med 2021; 11:922-930. [PMID: 34964283 PMCID: PMC8855917 DOI: 10.1002/cam4.4511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/11/2022] Open
Abstract
Objective We aim to review the roles of plasmacytoid dendritic cells (pDCs) in head and neck squamous cell carcinoma (HNSCC) and explore the effects of hypoxia on the tolerogenic transformation of pDCs. Background pDCs, best known as professional type I interferon‐secreting cells, play key roles in immune surveillance and antitumor immunity. Recently, pDCs have been shown to be tolerogenic and correlate with poor prognosis in a variety of cancers, including HNSCC. However, it remains unclear what drives the tolerogenic transformation of pDCs in the HNSCC microenvironment. Hypoxia, a prominent hallmark of the tumor microenvironment (TME) of HNSCC, can interfere with multiple immune cells and establish an immunosuppressive TME. Methods In this review, we summarize the antitumor and protumor functions of pDCs, explore the effects of hypoxia on the migration and maturation of pDCs, and discuss related mechanisms in HNSCC. Conclusions pDCs mainly display protumor functions in HNSCC. The hypoxic TME in HNSCC can enhance the migration of pDCs and inhibit the differentiation and maturation of pDCs, promoting the tolerogenic phenotype of pDCs.
Collapse
Affiliation(s)
- Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Mao
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Xu L, Ling J, Su C, Su YW, Xu Y, Jiang Z. Emerging Roles on Immunological Effect of Indoleamine 2,3-Dioxygenase in Liver Injuries. Front Med (Lausanne) 2021; 8:756435. [PMID: 34869457 PMCID: PMC8636938 DOI: 10.3389/fmed.2021.756435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is one of the initial rate-limiting enzymes of the kynurenine pathway (KP), which causes immune suppression and induction of T cell anergy. It is associated with the imbalance of immune homeostasis in numerous diseases including cancer, chronic viral infection, allergy, and autoimmune diseases. Recently, IDO has extended its role to liver field. In this review, we summarize the dysregulation and potentials of IDO in the emerging field of liver injuries, as well as current challenges for IDO targets. In particular, we discuss unexpected conclusions against previous work published. IDO is induced by pro-inflammatory cytokines in liver dysfunction and exerts an immunosuppressive effect, whereas the improvement of liver injury may require consideration of multiple factors besides IDO.
Collapse
Affiliation(s)
- Lingyan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jiawei Ling
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Wen Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Tryptophan: From Diet to Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189904. [PMID: 34576067 PMCID: PMC8472285 DOI: 10.3390/ijms22189904] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the major causes of mortality worldwide. Inflammation is the underlying common mechanism involved in CVD. It has been recently related to amino acid metabolism, which acts as a critical regulator of innate and adaptive immune responses. Among different metabolites that have emerged as important regulators of immune and inflammatory responses, tryptophan (Trp) metabolites have been shown to play a pivotal role in CVD. Here, we provide an overview of the fundamental aspects of Trp metabolism and the interplay between the dysregulation of the main actors involved in Trp metabolism such as indoleamine 2, 3-dioxygenase 1 (IDO) and CVD, including atherosclerosis and myocardial infarction. IDO has a prominent and complex role. Its activity, impacting on several biological pathways, complicates our understanding of its function, particularly in CVD, where it is still under debate. The discrepancy of the observed IDO effects could be potentially explained by its specific cell and tissue contribution, encouraging further investigations regarding the role of this enzyme. Thus, improving our understanding of the function of Trp as well as its derived metabolites will help to move one step closer towards tailored therapies aiming to treat CVD.
Collapse
|
21
|
Liu Y, Li S, Gao Z, Li S, Tan Q, Li Y, Wang D, Wang Q. Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism. Cardiovasc Toxicol 2021; 21:655-668. [PMID: 34021461 PMCID: PMC8211584 DOI: 10.1007/s12012-021-09657-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme for tryptophan metabolism, involved in immune cell differentiation/maturation and cancer biology. IDO1 is also expressed in cardiomyocytes, but its roles in the cardiovascular system are not fully understood. Here, we reported the functions of IDO1 during cardiac hypertrophy. Quantitative real-time PCR and Western blot experiments demonstrated the upregulation of IDO1 mRNA and protein levels in human and hypertrophic mouse hearts, as well as in angiotensin II (Ang II)-induced hypertrophic rat cardiomyocytes. IDO1 activity and metabolite product kynurenine were upregulated in rodent hypertrophic hearts and cardiomyocytes. Inhibition of IDO1 activity with PF-06840003 reduced Ang II-induced cardiac hypertrophy and rescued cardiac function in mice. siRNA-mediated knockdown of Ido1 repressed Ang II-induced growth in cardiomyocyte size and overexpression of hypertrophy-associated genes atrial natriuretic peptide (Anp or Nppa), brain natriuretic peptide (Bnp or Nppb), β-myosin heavy chain (β-Mhc or Myh7). By contrast, adenovirus-mediated rat Ido1 overexpression in cardiomyocytes promoted hypertrophic growth induced by Ang II. Mechanism analysis showed that IDO1 overexpression was associated with PI3K-AKT-mTOR signaling to activate the ribosomal protein S6 kinase 1 (S6K1), which promoted protein synthesis in Ang II-induced hypertrophy of rat cardiomyocytes. Finally, we provided evidence that inhibition of PI3K with pictilisib, AKT with perifosine, or mTOR with rapamycin, blocked the effects of IDO1 on protein synthesis and cardiomyocyte hypertrophy in Ang II-treated cells. Collectively, our findings identify that IDO1 promotes cardiomyocyte hypertrophy partially via PI3K-AKT-mTOR-S6K1 signaling.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Cardiomegaly/drug therapy
- Cardiomegaly/enzymology
- Cardiomegaly/pathology
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Male
- Mice
- Middle Aged
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Yang Liu
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuang Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhanqun Gao
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuangjia Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Qingyun Tan
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yanmei Li
- Emergency Department, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Dongwei Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China.
| | - Qingdong Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, China.
| |
Collapse
|
22
|
Nakano R, Yoshida O, Kimura S, Nakao T, Yokota S, Ono Y, Minervini MI, Geller DA, Thomson AW. Donor plasmacytoid dendritic cells modulate effector and regulatory T cell responses in mouse spontaneous liver transplant tolerance. Am J Transplant 2021; 21:2040-2055. [PMID: 33247989 PMCID: PMC8628164 DOI: 10.1111/ajt.16412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
We assessed the role of donor liver non-conventional plasmacytoid dendritic cells (pDCs) in spontaneous liver transplant tolerance in a fully MHC-mismatched (C57BL/6 (H2b ) to C3H (H2k )) mouse model. Compared with spleen pDCs, liver pDCs expressed higher levels of DNAX-activating protein of 12 kDa and its co-receptor, triggering receptor expressed by myeloid cells 2, and higher ratios of programed death ligand-1 (PD-L1):costimulatory CD80/CD86 in the steady state and after Toll-like receptor 9 ligation. Moreover, liver pDCs potently suppressed allogeneic CD4+ and CD8+ T cell proliferative responses. Survival of pDC-depleted livers was much poorer (median survival time: 25 days) than that of either untreated donor livers or pDC-depleted syngeneic donor livers that survived indefinitely. Numbers of forkhead box p3 (FoxP3)+ regulatory T cells in grafts and mesenteric lymph nodes of mice given pDC-depleted allogeneic livers were reduced significantly compared with those in recipients of untreated livers. Graft-infiltrating CD8+ T cells with an exhausted phenotype (programed cell death protein 1+ , T cell immunoglobulin and mucin domain-containing protein 3+ ) were also reduced in recipients of pDC-depleted livers. PD1-PD-L1 pathway blockade reversed the reduction in exhausted T cells. These novel observations link immunoregulatory functions of liver interstitial pDCs, alloreactive T cell exhaustion, and spontaneous liver transplant tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osamu Yoshida
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shoko Kimura
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Toshimasa Nakao
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shinichiro Yokota
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Yoshihiro Ono
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marta I. Minervini
- Department of Pathology, Division of Transplantation Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Adachi A, Honda T, Dainichi T, Egawa G, Yamamoto Y, Nomura T, Nakajima S, Otsuka A, Maekawa M, Mano N, Koyanagi N, Kawaguchi Y, Ohteki T, Nagasawa T, Ikuta K, Kitoh A, Kabashima K. Prolonged high-intensity exercise induces fluctuating immune responses to herpes simplex virus infection via glucocorticoids. J Allergy Clin Immunol 2021; 148:1575-1588.e7. [PMID: 33965431 DOI: 10.1016/j.jaci.2021.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epidemiologic studies have yielded conflicting results regarding the influence of a single bout of prolonged high-intensity exercise on viral infection. OBJECTIVE We sought to learn whether prolonged high-intensity exercise either exacerbates or ameliorates herpes simplex virus type 2 (HSV-2) infection according to the interval between virus exposure and exercise. METHODS Mice were intravaginally infected with HSV-2 and exposed to run on the treadmill. RESULTS Prolonged high-intensity exercise 17 hours after infection impaired the clearance of HSV-2, while exercise 8 hours after infection enhanced the clearance of HSV-2. These impaired or enhanced immune responses were related to a transient decrease or increase in the number of blood-circulating plasmacytoid dendritic cells. Exercise-induced glucocorticoids transiently decreased the number of circulating plasmacytoid dendritic cells by facilitating their homing to the bone marrow via the CXCL12-CXCR4 axis, which led to their subsequent increase in the blood. CONCLUSION A single bout of prolonged high-intensity exercise can be either deleterious or beneficial to antiviral immunity.
Collapse
Affiliation(s)
- Akimasa Adachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Yamamoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, the Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Technology and Research (A∗STAR), Biopolis, Singapore.
| |
Collapse
|
24
|
Go DM, Lee SH, Lee SH, Woo SH, Kim K, Kim K, Park KS, Park JH, Ha SJ, Kim WH, Choi JH, Kim DY. Programmed Death Ligand 1-Expressing Classical Dendritic Cells MitigateHelicobacter-Induced Gastritis. Cell Mol Gastroenterol Hepatol 2021; 12:715-739. [PMID: 33894424 PMCID: PMC8267570 DOI: 10.1016/j.jcmgh.2021.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori has been reported to modulate local immune responses to colonize persistently in gastric mucosa. Although the induced expression of programmed cell death ligand 1 (PD-L1) has been suggested as an immune modulatory mechanism for persistent infection of H pylori, the main immune cells expressing PD-L1 and their functions in Helicobacter-induced gastritis still remain to be elucidated. METHODS The blockades of PD-L1 with antibody or PD-L1-deficient bone marrow transplantation were performed in Helicobacter-infected mice. The main immune cells expressing PD-L1 in Helicobacter-infected stomach were determined by flow cytometry and immunofluorescence staining. Helicobacter felis or H pylori-infected dendritic cell (DC)-deficient mouse models including Flt3-/-, Zbtb46-diphtheria toxin receptor, and BDCA2-diphtheria toxin receptor mice were analyzed for pathologic changes and colonization levels. Finally, the location of PD-L1-expressing DCs and the correlation with H pylori infection were analyzed in human gastric tissues using multiplexed immunohistochemistry. RESULTS Genetic or antibody-mediated blockade of PD-L1 aggravated Helicobacter-induced gastritis with mucosal metaplasia. Gastric classical DCs expressed considerably higher levels of PD-L1 than other immune cells and co-localized with T cells in gastritis lesions from Helicobacter-infected mice and human beings. H felis- or H pylori-infected Flt3-/- or classical DC-depleted mice showed aggravated gastritis with severe T-cell and neutrophil accumulation with low bacterial loads compared with that in control mice. Finally, PD-L1-expressing DCs were co-localized with T cells and showed a positive correlation with H pylori infection in human subjects. CONCLUSIONS The PD-1/PD-L1 pathway may be responsible for the immune modulatory function of gastric DCs that protects the gastric mucosa from Helicobacter-induced inflammation, but allows persistent Helicobacter colonization.
Collapse
Affiliation(s)
- Du-Min Go
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Lee
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Su-Hyung Lee
- Division of Cancer Biology, Research Institute of National Cancer Center, Gyeonggi-do, Republic of Korea
| | - Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kibyeong Kim
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyeongdae Kim
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyu Seong Park
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Sciences, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
26
|
Park JH, Kim DW, Shin MJ, Park J, Han KH, Lee KW, Park JK, Choi YJ, Yeo HJ, Yeo EJ, Sohn EJ, Kim HC, Shin EJ, Cho SW, Kim DS, Cho YJ, Eum WS, Choi SY. Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury. BMB Rep 2020. [PMID: 32684242 PMCID: PMC7704220 DOI: 10.5483/bmbrep.2020.53.11.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 Plus Center, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
27
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
29
|
Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med 2020; 217:132613. [PMID: 31821440 PMCID: PMC7037237 DOI: 10.1084/jem.20190459] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Chen et al. review the effects of type-I IFNs and the potential of anti–type-I IFN therapies in atherosclerosis. The contribution of dyslipidemia and inflammation in atherosclerosis is well established. Along with effective lipid-lowering treatments, the recent success of clinical trials with anti-inflammatory therapies and the accelerated atherosclerosis in many autoimmune diseases suggest that targeting inflammation may open new avenues for the prevention and the treatment for cardiovascular diseases (CVDs). In the past decades, studies have widened the role of type-I interferons (IFNs) in disease, from antivirus defense to autoimmune responses and immuno-metabolic syndromes. While elevated type-I IFN level in serum is associated with CVD incidence in patients with interferonopathies, experimental data have attested that type-I IFNs affect plaque-residing macrophages, potentiate foam cell and extracellular trap formation, induce endothelial dysfunction, alter the phenotypes of dendritic cells and T and B lymphocytes, and lead to exacerbated atherosclerosis outcomes. In this review, we discuss the production and the effects of type-I IFNs in different atherosclerosis-associated cell types from molecular biology studies, animal models, and clinical observations, and the potential of new therapies against type-I IFN signaling for atherosclerosis.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
30
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
31
|
Ketelhuth DFJ, Lutgens E, Bäck M, Binder CJ, Van den Bossche J, Daniel C, Dumitriu IE, Hoefer I, Libby P, O'Neill L, Weber C, Evans PC. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc Res 2020; 115:1385-1392. [PMID: 31228191 DOI: 10.1093/cvr/cvz166] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/19/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammation is an important driver of atherosclerosis, and the favourable outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial revealed the large potential of anti-inflammatory drugs for the treatment of cardiovascular disease, especially in patients with a pro-inflammatory constitution. However, the complex immune reactions driving inflammation in the vascular wall in response to an atherosclerotic microenvironment are still being unravelled. Novel insights into the cellular processes driving immunity and inflammation revealed that alterations in intracellular metabolic pathways are strong drivers of survival, growth, and function of immune cells. Therefore, this position paper presents a brief overview of the recent developments in the immunometabolism field, focusing on its role in atherosclerosis. We will also highlight the potential impact of immunometabolic markers and targets in clinical cardiovascular medicine.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Esther Lutgens
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Magnus Bäck
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carolin Daniel
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University of Munich, Munich, Germany
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute & Cardiology Clinical Academic Group, St. George's Hospital, University of London, Cranmer Terrace, London, UK
| | - Imo Hoefer
- Laboratory of Clinical Chemistry and Hematology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luke O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University of Munich, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute of In Silico Medicine and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Ye Y, Gaugler B, Mohty M, Malard F. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology 2020; 9:e1139. [PMID: 32489664 PMCID: PMC7248678 DOI: 10.1002/cti2.1139] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of dendritic cells specialised in secreting high levels of type I interferons. pDCs play a crucial role in antiviral immunity and have been implicated in the initiation and development of many autoimmune and inflammatory diseases. This review summarises the latest advances in recent years in several aspects of pDC biology, with special focus on pDC heterogeneity, pDC development via the lymphoid pathway, and newly identified proteins/pathways involved in pDC trafficking, nucleic acid sensing and interferon production. Finally, we also highlight the current understanding of pDC involvement in autoimmunity and alloreactivity, and opportunities for pDC‐targeting therapies in these diseases. These new insights have contributed to answers to several fundamental questions remaining in pDC biology and may pave the way to successful pDC‐targeting therapy in the future.
Collapse
Affiliation(s)
- Yishan Ye
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Bone Marrow Transplantation Center The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Béatrice Gaugler
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France
| | - Mohamad Mohty
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Service d'Hématologie Clinique et Thérapie Cellulaire AP-HP, Hôpital Saint-Antoine Sorbonne Université Paris France
| | - Florent Malard
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Service d'Hématologie Clinique et Thérapie Cellulaire AP-HP, Hôpital Saint-Antoine Sorbonne Université Paris France
| |
Collapse
|
33
|
Cauwels A, Tavernier J. Tolerizing Strategies for the Treatment of Autoimmune Diseases: From ex vivo to in vivo Strategies. Front Immunol 2020; 11:674. [PMID: 32477325 PMCID: PMC7241419 DOI: 10.3389/fimmu.2020.00674] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases such as multiple sclerosis (MS), type I diabetes (T1D), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic, incurable, incapacitating and at times even lethal conditions. Worldwide, millions of people are affected, predominantly women, and their number is steadily increasing. Currently, autoimmune patients require lifelong immunosuppressive therapy, often accompanied by severe adverse side effects and risks. Targeting the fundamental cause of autoimmunity, which is the loss of tolerance to self- or innocuous antigens, may be achieved via various mechanisms. Recently, tolerance-inducing cellular therapies, such as tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs), have gained considerable interest. Their safety has already been evaluated in patients with MS, arthritis, T1D, and Crohn’s disease, and clinical trials are underway to confirm their safety and therapeutic potential. Cell-based therapies are inevitably expensive and time-consuming, requiring laborious ex vivo manufacturing. Therefore, direct in vivo targeting of tolerogenic cell types offers an attractive alternative, and several strategies are being explored. Type I IFN was the first disease-modifying therapy approved for MS patients, and approaches to endogenously induce IFN in autoimmune diseases are being pursued vigorously. We here review and discuss tolerogenic cellular therapies and targeted in vivo tolerance approaches and propose a novel strategy for cell-specific delivery of type I IFN signaling to a cell type of choice.
Collapse
Affiliation(s)
- Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Orionis Biosciences, Ghent, Belgium
| |
Collapse
|
34
|
Ospina-Quintero L, Jaramillo JC, Tabares-Guevara JH, Ramírez-Pineda JR. Reformulating Small Molecules for Cardiovascular Disease Immune Intervention: Low-Dose Combined Vitamin D/Dexamethasone Promotes IL-10 Production and Atheroprotection in Dyslipidemic Mice. Front Immunol 2020; 11:743. [PMID: 32395119 PMCID: PMC7197409 DOI: 10.3389/fimmu.2020.00743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The targeting of proinflammatory pathways has a prophylactic and therapeutic potential on atherosclerotic cardiovascular diseases (CVD). An alternative/complementary strategy is the promotion of endogenous atheroprotective mechanisms that are impaired during atherosclerosis progression, such as the activity of tolerogenic dendritic cells (tolDC) and regulatory T cells (Treg). There is a need to develop novel low cost, safe and effective tolDC/Treg-inducing formulations that are atheroprotective and that can be of easy translation into clinical settings. We found that apolipoprotein E-deficient (ApoE–/–) mice treated with a low-dose combined formulation of Vitamin D and Dexamethasone (VitD/Dexa), delivered repetitively and subcutaneously (sc) promoted interleukin-10 (IL-10) production by dendritic cells and other antigen presenting cells in the lymph nodes draining the site of injection and the spleens. Expectedly, the treatment also increased the numbers of IL-10-producing CD4+ T cells. Concomitantly, the frequency of IFNγ-producing CD4+ and CD8+ T cells in the spleen, and the IFNγ response of splenocytes to polyclonal stimulation ex vivo were lower after VitD/Dexa treatment, indicating a reduced proatherogenic Th1 response. Interestingly, VitD/Dexa-treated mice had smaller atherosclerotic lesions, with reduced lipid content and lower inflammatory infiltrate of macrophages and T cells in the aortic root. No hypolipidemic or antioxidant effect could be detected, suggesting that a dominantly immunomodulatory mechanism of atheroprotection was engaged under the low-dose sc VitD/Dexa conditions used. Finally, no evidence of clinical, biochemical or immune toxicity was observed in treated ApoE–/– mice and, most importantly, C57BL/6 mice latently infected with Leishmania parasites and treated with an identical VitD/Dexa dose/scheme showed no clinical or microbiological signs of disease reactivation, suggesting the absence of general immunosuppression. Altogether, these results indicate that a non-toxic, non-immunosuppressive, low-dose of VitD/Dexa, administered subcutaneously and repetitively, exerts atheroprotective effects in dyslipidemic mice, apparently due to the induction of an IL-10-producing network of lymphoid and myeloid immune cells. These well known, widely available, and inexpensive small molecules can be easily co-formulated into a simple and accessible agent with a potential use as a prophylactic or therapeutic immune intervention for CVD and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Ospina-Quintero
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Julio C Jaramillo
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - Jorge H Tabares-Guevara
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación (GIM), Instituto de Investigaciones Médicas, Facultad de Medicina, Corporación Académica para el Estudio de Patologías Tropicales (CAEPT), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
35
|
Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells 2020; 9:cells9030671. [PMID: 32164335 PMCID: PMC7140645 DOI: 10.3390/cells9030671] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics-drugs that selectively remove senescent cells by inducing their apoptosis-are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan.
Collapse
|
36
|
Huang YS, Ogbechi J, Clanchy FI, Williams RO, Stone TW. IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Front Immunol 2020; 11:388. [PMID: 32194572 PMCID: PMC7066259 DOI: 10.3389/fimmu.2020.00388] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Felix I Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Zheng Z, Guo X, Yu M, Wang X, Lu H, Li F, Wang J. Identification of Human IDO1 Enzyme Activity by Using Genetically Encoded Nitrotyrosine. Chembiochem 2020; 21:1593-1596. [DOI: 10.1002/cbic.201900735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaopeng Zheng
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
- Department of OncologyGuizhou People's Hospital Nanming District Guiyang 550005 P.R. China
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xuzhen Guo
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| | - Minling Yu
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Xiaoyan Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Hongguang Lu
- Department of DermatologyThe Affiliated Hospital of Guizhou Medical UniversityDepartment of Immunology, orgDiv/>School of Basic Medical ScienceGuizhou Medical University Beijing Road Yunyan District Guiyang 550005 P.R. China
| | - Fahui Li
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
| | - Jiangyun Wang
- Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of Sciences 15 Datun Road Beijing 100101 P.R. China
- College of Life SciencesUniversity of Chinese Academy of Sciences 19 Yuquan Road Shijingshan District Beijing 100049 P.R. China
| |
Collapse
|
38
|
Durante W. Amino Acids in Circulatory Function and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:39-56. [PMID: 32761569 DOI: 10.1007/978-3-030-45328-2_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the major cause of global mortality and disability. Abundant evidence indicates that amino acids play a fundamental role in cardiovascular physiology and pathology. Decades of research established the importance of L-arginine in promoting vascular health through the generation of the gas nitric oxide. More recently, L-glutamine, L-tryptophan, and L-cysteine have also been shown to modulate vascular function via the formation of a myriad of metabolites, including a number of gases (ammonia, carbon monoxide, hydrogen sulfide, and sulfur dioxide). These amino acids and their metabolites preserve vascular homeostasis by regulating critical cellular processes including proliferation, migration, differentiation, apoptosis, contractility, and senescence. Furthermore, they exert potent anti-inflammatory and antioxidant effects in the circulation, and block the accumulation of lipids within the arterial wall. They also mitigate known risk factors for cardiovascular disease, including hypertension, hyperlipidemia, obesity, and diabetes. However, in some instances, the metabolism of these amino acids through discrete pathways yields compounds that fosters vascular disease. While supplementation with amino acid monotherapy targeting the deficiency has ameliorated arterial disease in many animal models, this approach has been less successful in the clinic. A more robust approach combining amino acid supplementation with antioxidants, anti-inflammatory agents, and/or specific amino acid enzymatic pathway inhibitors may prove more successful. Alternatively, supplementation with amino acid-derived metabolites rather than the parent molecule may elicit beneficial effects while bypassing potentially harmful pathways of metabolism. Finally, there is an emerging recognition that circulating levels of multiple amino acids are perturbed in vascular disease and that a more holistic approach that targets all these amino acid derangements is required to restore circulatory function in diseased blood vessels.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
39
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
40
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
41
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
42
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
43
|
Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, Yoon WK, Prat A, Seidah NG, Choi J, Lee SP, Yoon SH, Nam JW, Seong JK, Oh GT, Randolph GJ, Artyomov MN, Cheong C, Choi JH. Transcriptome Analysis Reveals Nonfoamy Rather Than Foamy Plaque Macrophages Are Proinflammatory in Atherosclerotic Murine Models. Circ Res 2019; 123:1127-1142. [PMID: 30359200 DOI: 10.1161/circresaha.118.312804] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Monocyte infiltration into the subintimal space and its intracellular lipid accumulation are the most prominent features of atherosclerosis. To understand the pathophysiology of atherosclerotic disease, we need to understand the characteristics of lipid-laden foamy macrophages in the subintimal space during atherosclerosis. OBJECTIVE We sought to examine the transcriptomic profiles of foamy and nonfoamy macrophages isolated from atherosclerotic intima. METHODS AND RESULTS Single-cell RNA sequencing analysis of CD45+ leukocytes from murine atherosclerotic aorta revealed that there are macrophage subpopulations with distinct differentially expressed genes involved in various functional pathways. To specifically characterize the intimal foamy macrophages of plaque, we developed a lipid staining-based flow cytometric method for analyzing the lipid-laden foam cells of atherosclerotic aortas. We used the fluorescent lipid probe BODIPY493/503 and assessed side-scattered light as an indication of cellular granularity. BODIPYhiSSChi foamy macrophages were found residing in intima and expressing CD11c. Foamy macrophage accumulation determined by flow cytometry was positively correlated with the severity of atherosclerosis. Bulk RNA sequencing analysis showed that compared with nonfoamy macrophages, foamy macrophages expressed few inflammatory genes but many lipid-processing genes. Intimal nonfoamy macrophages formed the major population expressing IL (interleukin)-1β and many other inflammatory transcripts in atherosclerotic aorta. CONCLUSIONS RNA sequencing analysis of intimal macrophages from atherosclerotic aorta revealed that lipid-loaded plaque macrophages are not likely the plaque macrophages that drive lesional inflammation.
Collapse
Affiliation(s)
- Kyeongdae Kim
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Dahee Shim
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jun Seong Lee
- Laboratory of Cellular Physiology and Immunology (J.S.L., T.J.Y., C.C.), Institut de Recherches Cliniques de Montréal, Canada
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (K.Z., J.W.W., K.-W.K., G.J.R., M.N.A.).,Computer Technologies Department, ITMO University, Saint Petersburg, Russia (K.Z.)
| | - Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (K.Z., J.W.W., K.-W.K., G.J.R., M.N.A.)
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (K.Z., J.W.W., K.-W.K., G.J.R., M.N.A.)
| | - Man-Young Jang
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hyung Seok Jang
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Tae Jin Yun
- Laboratory of Cellular Physiology and Immunology (J.S.L., T.J.Y., C.C.), Institut de Recherches Cliniques de Montréal, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada (T.J.Y., C.C.)
| | - Seung Hyun Lee
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Won Kee Yoon
- Biomedical Mouse Resource Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Republic of Korea (W.K.Y.)
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology (A.P., N.G.S.), Institut de Recherches Cliniques de Montréal, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology (A.P., N.G.S.), Institut de Recherches Cliniques de Montréal, Canada
| | - Jungsoon Choi
- Department of Mathematics (J.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (S.-P.L.)
| | - Sang-Ho Yoon
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jin Wu Nam
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Korea Mouse Phenotyping Center, Seoul National University, Republic of Korea (J.K.S.)
| | - Goo Taeg Oh
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, Republic of Korea (G.T.O.)
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (K.Z., J.W.W., K.-W.K., G.J.R., M.N.A.)
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (K.Z., J.W.W., K.-W.K., G.J.R., M.N.A.)
| | - Cheolho Cheong
- Laboratory of Cellular Physiology and Immunology (J.S.L., T.J.Y., C.C.), Institut de Recherches Cliniques de Montréal, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada (T.J.Y., C.C.)
| | - Jae-Hoon Choi
- From the Department of Life Sciences (K.K., D.S., M.-Y.J., H.S.J., S.H.L., S.-H.Y., J.W.N., J.-H.C.), College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Davison LM, Liu JC, Huang L, Carroll TM, Mellor AL, Jørgensen TN. Limited Effect of Indolamine 2,3-Dioxygenase Expression and Enzymatic Activity on Lupus-Like Disease in B6.Nba2 Mice. Front Immunol 2019; 10:2017. [PMID: 31555267 PMCID: PMC6727869 DOI: 10.3389/fimmu.2019.02017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
B6.Nba2 mice spontaneously develop a lupus-like disease characterized by elevated levels of serum anti-nuclear autoantibody (ANA) immune complexes and constitutive type I interferon (IFNα) production. During disease progression, both plasmacytoid dendritic cells (pDCs) and antibody secreting plasma cells accumulate in spleens of B6.Nba2 mice. Indoleamine 2,3-dioxygenase (IDO) has been suggested to play a role in several autoimmune diseases including in the MRL/lpr model of mouse lupus-like disease; however, it remains unknown if IDO is involved in disease development and/or progression in other spontaneous models. We show here that IDO1 protein and total IDO enzymatic activity are significantly elevated in lupus-prone B6.Nba2 mice relative to B6 controls. IDO1 expression was restricted to PCs and SignR1+ macrophages in both strains, while significantly increased in B6.Nba2-derived SiglecH+ (SigH+) pDCs. Despite this unique expression pattern, neither pharmacologic inhibition of total IDO nor IDO1 gene ablation altered serum autoantibody levels, splenic immune cell activation pattern, or renal inflammation in B6.Nba2 mice. Interestingly, IDO pharmacologic inhibition, but not IDO1 deficiency, resulted in diminished complement factor C'3 fixation to kidney glomeruli, suggesting a possible therapeutic benefit of IDO inhibition in SLE patients with renal involvement.
Collapse
Affiliation(s)
- Laura M Davison
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jessica C Liu
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Lei Huang
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Thomas M Carroll
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| | - Andrew L Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Trine N Jørgensen
- Cleveland Clinic Foundation, Department of Immunology, Lerner Research Institute, Cleveland, OH, United States
| |
Collapse
|
45
|
Liang H, Chen M, Qi F, Shi L, Duan Z, Yang R, He J, Lou B, Li Y, Yang Q. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther 2019; 4:23. [PMID: 31637003 PMCID: PMC6799842 DOI: 10.1038/s41392-019-0058-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
The discrepancy of indoleamine 2, 3-dioxygenase 1 (IDO1) function in atherosclerosis has been noted. Compared to the protective effect of IDO1 against established atherogenesis, the role of IDO1 in the developmental process of atherosclerosis is still unclear. Here, the expression patterns and activities of IDO1 and its isoenzyme tryptophan 2,3-dioxygenase (TDO) in aortas and blood samples of patients with atherosclerosis were investigated. IDO1 and TDO were colocalized with CD3-positive lymphocytes and CD68-positive macrophages in atherosclerotic lesions. The expression and activity of IDO1 and TDO increased with the grade of the histological classification in early atherosclerosis (grade I, II), but the increase did not continue in advanced atherosclerosis (grade III). Treatment of THP-1 macrophages (THP-M) with oxidized low-density lipoprotein (oxLDL) induced the expression of IDO1 via the PI3K/Akt/NF-κB pathway, indicating the potential function of IDO1 in foam cells. Before and after treatment with oxLDL on THP-M, IFN-γ-induced IDO1 exhibited different degrees of promotion on foaming, inflammatory factor production and cell apoptosis. Finally, we found that the IDO1 inhibitor 1-methyl-tryptophan could elevate the high-density lipoprotein cholesterol level in serum and reduce the area of the aortic atherosclerotic lesions in high-fat diet-fed ApoE-/- mice. Our study indicated that IDO1 played a complicated and unfixed role in the entire process of atherogenesis, despite the atheroprotective role in established atherosclerosis. IDO1 also had proatherosclerotic functions in the developmental stages of atherosclerosis. Modulation of IDO1 could be a good method for alleviating atherosclerosis.
Collapse
Affiliation(s)
- Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Mantian Chen
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fangfei Qi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhen Duan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruoyu Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinchao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yigang Li
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Koda Y, Nakamoto N, Chu PS, Ugamura A, Mikami Y, Teratani T, Tsujikawa H, Shiba S, Taniki N, Sujino T, Miyamoto K, Suzuki T, Yamaguchi A, Morikawa R, Sato K, Sakamoto M, Yoshimoto T, Kanai T. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. J Clin Invest 2019; 129:3201-3213. [PMID: 31264967 DOI: 10.1172/jci125863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening condition, and liver transplantation is the only therapeutic option. Although immune dysregulation is central to its pathogenesis, the precise mechanism remains unclear. Here, we show that the number of peripheral and hepatic plasmacytoid DCs (pDCs) decrease during acute liver injury in both humans and mice. Selective depletion of pDCs in Siglechdtr/+ mice exacerbated concanavalin A-induced acute liver injury. In contrast, adoptively transferred BM-derived pDCs preferentially accumulated in the inflamed liver and protected against liver injury. This protective effect was independent of TLR7 and TLR9 signaling, since a similar effect occurred following transfer of MyD88-deficient pDCs. Alternatively, we found an unexpected immunosuppressive role of pDCs in an IL-35-dependent manner. Both Il12a and Ebi3, heterodimeric components of IL-35, were highly expressed in transferred pDCs and CD4+CD25+ Tregs. However, the protective effect of pDC transfer was completely lost in mice depleted of Tregs by anti-CD25 antibody. Moreover, pDCs derived from IL-35-deficient mice had less of a protective effect both in vivo and in vitro even in the presence of Tregs. These results highlight a unique aspect of pDCs in association with Tregs, serving as a guide for immunotherapeutic options in ALF.
Collapse
Affiliation(s)
- Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Aya Ugamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Shiba
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Yamaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
47
|
Li M, Kwok MK, Fong SSM, Schooling CM. Indoleamine 2,3-dioxygenase and ischemic heart disease: a Mendelian Randomization study. Sci Rep 2019; 9:8491. [PMID: 31186442 PMCID: PMC6560130 DOI: 10.1038/s41598-019-44819-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Tryptophan is an essential amino acid. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the tryptophan-kynurenine pathway, is positively associated with cardiac events, and may be relevant to cancer. We used Mendelian Randomization to obtain unconfounded estimates of the association of IDO1 with ischemic heart disease (IHD), ischemic stroke and their risk factors, all-cancer, cancer of the prostate, lung and bronchus, and breast. We obtained genetic instruments independently and strongly (p-value < 5 × 10-8) predicting plasma IDO1 from a proteome genome-wide association study (GWAS), and applied them to consortia GWAS of the outcomes, including the UK Biobank SOFT CAD GWAS (cases < = 76 014, non-cases < = 264 785) for IHD. Estimates were obtained using inverse variance weighting; with MR-Egger, weighted median and MR-PRESSO as sensitivity analyses. IDO1 was inversely associated with IHD (odds ratio (OR) 0.96 per standard deviation, 95% confidence interval (CI) 0.93 to 1.00, p-value = 0.04), diabetes (OR 0.91, 95% CI 0.85 to 0.97) and prostate cancer (OR 0.96, 95% CI 0.93 to 0.99) with a directionally consistent estimate for stroke (OR 0.98, 95% CI 0.95 to 1.02) but not with blood pressure, or the other cancers considered. IDO1 might be a potential therapeutic target for IHD, diabetes and prostate cancer.
Collapse
Affiliation(s)
- Mengyu Li
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shirley Siu Ming Fong
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- City University of New York, Graduate School of Public Health and Health Policy, New York, NY, USA.
| |
Collapse
|
48
|
Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity 2019; 50:941-954. [PMID: 30995508 PMCID: PMC6924925 DOI: 10.1016/j.immuni.2019.03.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1β (IL-1β), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA.
| |
Collapse
|
49
|
Williams JW, Elvington A, Kessler S, Wohltmann M, Wu GF, Randolph GJ. B Cell-Mediated Antigen Presentation through MHC Class II Is Dispensable for Atherosclerosis Progression. Immunohorizons 2019; 3:37-44. [PMID: 31356175 PMCID: PMC6999615 DOI: 10.4049/immunohorizons.1800015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Depletion of B cells attenuates plaque development and modulates T cell responses in mouse models of atherosclerosis, suggesting that Ag presentation by B cells may promote disease progression. Thus, we set out to determine the role of B cell-mediated MHC class II (MHC II) Ag presentation during atherosclerotic plaque development. We developed murine conditional MHC II deletion and expression systems under control of the B cell-restricted CD19 promoter in an experimental model of atherosclerosis. Mice lacking MHC II expression only on B cells exhibited systemic shifts in germinal center and marginal zone B cell populations, leading to a reduced Ab response compared with littermate control animals. However, all populations were present and normal cholesterol uptake was detected in the plasma following high-fat diet treatment. In a second model, in which conditional expression of MHC II is limited only to B cells, showed similar overall cellularity characteristics compared with mice with complete MHC II deficiency. High-fat diet feeding showed no major changes in atherosclerotic plaque size or plaque cellular content in either conditional deletion or conditional expression approaches, compared with control animals. By testing the necessity and sufficiency of MHC II on B cells in the progression of atherosclerosis, we determine that MHC II on B cells does not directly regulate lesion development in murine models.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Skyler Kessler
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Mary Wohltmann
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
50
|
Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 2019; 50:37-50. [PMID: 30650380 PMCID: PMC6342491 DOI: 10.1016/j.immuni.2018.12.027] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Pathology and Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|